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1. Introduction

Renormalization was introduced into dynamics in the mid 1970s by Feigenbaum,
Coullet, and Tresser and since then has established itself as a powerful tool for
penetrating into the small-scale structure of phase portraits and bifurcation loci. It
turned out to be challenging to develop a rigorous mathematical theory of
renormalization (for example, to prove hyperbolicity of the renormalization
operator), but every time when this is achieved, plentiful deep consequences reward
the effort.

The complex quadratic family provided us with several important renormalization
schemes: quadratic-like, near-parabolic, and Siegel. All three are intimately related to
the observed self-similarity of the Mandelbrot set M and to the celebrated MLC
Conjecture on the local connectivity of M. The conjecture comes in two flavors,
“primitive” and “satellite”. Development of the quadratic-like renormalization has led
to substantial progress in the primitive case, while the near-parabolic
renormalization has given an insight into the satellite situation.

In this paper we design a new “pacman” renormalization and prove the
hyperbolicity of the corresponding renormalization operator. It implies the
hyperbolicity
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Figure 1. A (full) pacmanisa 2: 1 map f: U— Vsuch that the critical arc

y1has three preimages: yo, y+, and 7-.

of the Siegel renormalization for arbitrary periodic combinatorics (resolving a
problem going back to the early 1980s) and gives an insight into the self-similarity of
the Mandelbrot set near the main cardioid. In the second part of this project [DL] we
will give further applications by proving local connectivity of the Mandelbrot set at
some satellite parameters of bounded type (that had been previously out of reach)
and showing that the corresponding Julia sets have positive area.

1.1. Statements of the results. Although the Mandelbrot set M is highly
nonhomogeneous, it possesses some remarkable self-similarity features. Most
notable is the presence of baby Mandelbrot sets inside M which are almost
indistinguishable from M itself. The explanation of this phenomenon is provided by
renormalization theory for quadratic-like maps, which has been a central theme in
holomorphic dynamics since the mid-1980s (see [DH2,5,McM1,L1] and references
therein).

By exploring the pictures, one can also observe that the Mandelbrot set has
selfsimilarity features near its main cardioid. For instance, as Figure 2 indicates, near
the (anti)golden mean point, the (pn/pn+2)-limbs of M scale down at rate A-2», where
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PACMEN 655

A=(1+ \/F))/Z and pnare the Fibonacci numbers. The goal of this paper is to develop
a renormalization theory responsible for this phenomenon.
Our renormalization operator acts on the space of “pacmen”, which are

holomorphic maps f: (Ua) = (V,a) between two nested domains (see Figure 1), such
thatf: U\ yo— V'\y1is a double branched covering, where y1 is an arc connecting a to
dV . The pacman renormalization Rf of f (see Figure 5) is defined by removing the
sector S1 bounded by y1 and its image y2, and taking the first return map to the

remaining space; see §2 for precise definitions. Note that it acts on the rotation
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Figure 2. Limbs 8/21,21/55,55/144,144/377,... scale geometrically
fast on the right-hand side of the (anti)golden Siegel parameter,
while limbs 5/13,13/34,34,/89,89/233,... scale geometrically fast on
the left-hand side. The bottom picture is a zoom of the top picture.
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Figure 3. The map (1.1) induces a 2 : 1 map on R/Z.

numbers as

P f
(1.1) T 1-0ifo 1
the graph of (1.1) is shown on Figure 3 (see Appendix 4, in particular, (A.2)).

Let us denote by Oper the set of combinatorially periodic rotation numbers; i.e.,
rotation numbers periodic under (1.1). Numbers in Oper belong to the cycles of
numbers with periodic continued fraction expansion.

A pacman is called Siegel with rotation number 8 if « is a Siegel fixed point with
rotation number 8 whose closed Siegel disk is a quasidisk compactly contained in U
(subject to extra technical assumptions; see Definition 3.1).

20 —1

1 1
<0<z, 0— if 5 <0<

Theorem 1.1 (Hyperbolicity of the renormalization). For any rotation number 6 €
Oper, the pacman renormalization operator R has a unique periodic point f which is a
Siegel pacman with rotation number 6. This periodic point is hyperbolic with one-
dimensional unstable manifold. Moreover, the stable manifold of f consists of all Siegel

pacmen.

The problem of hyperbolicity goes back to the work of physicists [Wi,MN,MP]; see
§1.3 for the description of the previous progress in the area.

Corollary 1.2 (Stability of Siegel maps). Let f be a Siegel pacman with rotation number
6 € BOper. Consider the space No(f) of maps sufficiently close to f whose a-fixed point has
rotation number 6. Then the Siegel disk of g depends continuously on g € Ne(f).

In fact, the stability of Siegel disks on the unstable manifold is one of the main steps
in the proof of Theorem 1.1.
Let c(6), 6 € R/Z, be the parameterization of the main cardioid C by the rotation

number 6. At any parabolic point ¢(p/q), there is a satellite hyperbolic component A, /4
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of M attached to c(p/q). Let ay/q be the center of this component, i.e,, the unique
superattracting parameter inside Ap/q.

In this paper, the notation ax ~ B, will mean that ax/8» - const# 0.
Theorem 1.3 (Scaling Theorem). Let 6 € Oper be a rotation number, and let pr/qn be its

continued fraction approximands. Then

1
T,

See Theorem 8.2 for a more precise version of the Scaling Theorem. In particular,
Theorem 8.2 is stated for any one-parameter space witnessing the bifurcation of a
Siegel map.

Self-similarity of the Mandelbrot set near the (anti)golden parameter is illustrated
on Figure 2. Theorem 8.2 says that the centers of satellite hyperbolic components
indeed scale as the picture predicts. In [DL] we combine methods of Theorem 1.3 with
methods and ideas from transcendental dynamics to obtain a scaling law for a much
larger class of parameters. The self-similarity of the whole limbs is still an open
question. This problem is closely related to the problem of the realization of
parameter rays for the transcendental family representing the unstable manifold.

We believe that our methods allow one to extend Theorems 1.1 and 1.3 to the case
of rotation numbers of bounded type; the details will appear elsewhere. We conjecture
that an analogous statement is true for arbitrary combinatorics, which would provide

us with good geometric control of the molecule of the Mandelbrot set (see Appendix
Q).

|c(8) = ap, /4.,

1.2. Outline of the proof. We let

- e(z) = eZm‘z;
_pp:zrre(f)z+ 22;

- Pobe the set of pacmen with rotation number 6 € R/Z;

- Obnd be the set of combinatorially bounded rotation numbers (i.e., rotation
numbers whose continued fraction expansions have bounded coefficients).

Let us first review Siegel renormalization theory which is the most relevant to our
results; for extra historical comments on the progress in this program see §1.3.

Any holomorphic map f: (Usa) = (C,a) whose fixed point a is neutral with rotation

number 6 € Oper is locally linearizable near a. Its maximal completely invariant

linearization domain Zris called the Siegel disk of /- If Zy is a quasidisk compactly
contained in Urwhose boundary contains exactly one critical point, then fis called a
(unicritical) Siegel map. For any 6 € Bper, the quadratic polynomial pe and any Siegel
pacman give examples of Siegel maps (see §3, in particular Theorem 3.2).

There are two versions of the Siegel renormalization theory: holomorphic
commuting pairs renormalization and cylinder renormalization. The former was
developed by McMullen [McM2] (see also an earlier work by Stirnemann [St]) who
proved, for any rotation number 8 € Oper, the existence of a renormalization periodic

Licensed to Stony Brook Univ. Prepared on Fri Oct 6 12:49:18 EDT 2023 for download from IP 129.49.88.178.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PACMEN 659

point fand the exponential convergence of the renormalizationngb(p”) to the orbit
of f. McMullen also studied the maximal domain of analyticity for f.

The cylinder renormalization Reyl was introduced by Yampolsky who showed that
fcan be transformed into a periodic point for Reyl with a finite codimension stable
manifold "V’ (f*) and an at least one-dimensional unstable manifold V" (/+)

[Ya]. Inou and Shishikura [IS] established hyperbolicity of the cylinder
renormalization for high type Siegel parameters, and Gaidashev and Yampolsky [GY]
proved it for the golden rotation number (see §1.3). However, the general conjecture
that fis hyperbolic with dim W”(f*) =1 remained open.

Let us now select our favorite 8 € Oper; it is fixed under some iterate of (1.1). Then

the corresponding iterate of the Siegel renormalization fixes f, so below we will refer
to the fas “renormalization fixed points”.

We start our paper (§2) by discussing an interplay between a “pacman” and a
“prepacman”. The latter (see Figure 6) is a piecewise holomorphic map with two

branches f: U — S, one of which is univalent while the other has “degree 1.5”,

+ +
with a single critical point. Such an object can be obtained from a pacman by cutting
along the critical arc y1. For technical reasons, we “truncate” both pacmen and
prepacmen by removing a small disk around the co-a point; see Figure 4.

Then we define, in three steps, the pacman renormalization. First we define a “pre-
renormalization” (Definition 2.3) as a prepacman obtained as the first return map to
an appropriate sector S. Then, by gluing the boundary arcs of S, we obtain an
“abstract” pacman. Finally, we embed this pacman back into the complex plane.

There are some choices involved in this definition. We proceed to show that near
any renormalizable pacman f, the choices can be made so that we obtain a
holomorphic operator R in a Banach ball (Theorem 2.7).

In Section 3 we analyze the structure of Siegel pacmen f. The key result is that any
Siegel map can be renormalized (in an appropriate sense) to a Siegel pacman
(Corollary 3.7), where the rotation number changes as an iterate of (1.1); see Lemma
3.18.

In the case when/ = [uis the Siegel renormalization fixed point, this provides us
with the pacman renormalization fixed point (§3.7). Moreover, the pacman
renormalization R becomes a compact holomorphic operator in a Banach
neighborhood of f, with at least one-dimensional unstable manifoldswu(f*); see
Theorem 3.16. Along these lines, we introduce and discuss associated geometric
objects (§3.1): the pacman “Julia sets” K(f) and J(f), “bubble chains”, and “external
rays”. We also use them to show, via the pullback argument, that any two
combinatorially equivalent Siegel pacmen are hybrid equivalent (Theorem 3.11), i.e,,
there is a qc conjugacy between them which is conformal on the Siegel disk.

For a Siegel pacman f, any renormalization prepacman can be “spread around” to
provide us with a dynamical tiling of a neighborhood of the Siegel disk; see §4.2 and
Figures 7 and 15. Moreover, this tiling is robust under perturbations of f, even when
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the rotation number gets changed; see Theorem 4.6. In this case, the domain filled
with the tiles can be used as the central “bubble” for the perturbed map f, replacing
for many purposes the original Siegel diskZ« of fs.In particular, it allows us to control
long-term f-pullbacks of small disks D centered at JZ.(making sure that these
pullbacks are not “bitten” by the pacman’s mouth). This is the crucial technical result
of this paper (Key Lemma 4.8).

When fis the renormalization fixed point and the perturbed map f belongs to its

unstable manifold W"(/« ), then we can apply this construction to the
antirenormalizations R-"f. This allows us to show that the maximal holomorphic
extension of the associated prepacman is a o-proper map F = (f+: X+ - C), where X«
are plane domains (Theorem 5.1).

Applying this result to a parabolic mapf € I‘V“'(f*), we conclude that its attracting
Leau-Fatou flower contains the critical point, so the critical point is non-escaping
under the dynamics (Corollary 6.4).

After this preparation, we are ready to proof Theorem 1.1; see §7. Assuming for the
sake of contradiction that dim W"“(f.) > 1, we can find a holomorphic curve T
* C Wu'(f*) through fconsisting of Siegel pacmen with the same rotation number.
Approximating this curve with parabolic curves I'n < WH(f +), we conclude that the
critical point is non-escaping for f € T's. This allows us to apply Yampolsky’s
holomorphic motions argument [Ya] to show that dimWV"(f.) = 1.

Finally, using the small orbits argument of [L1], we prove that fis hyperbolic under
the pacman renormalization, completing the proof.

Along these lines we prove the stability of Siegel maps (see Corollary 7.9): if a small
perturbation of a Siegel map f fixes the multiplier of the a-fixed point, then the new

map g is again a Siegel map. Moreover, the Siegel quasidisk Zgis in a small
neighborhood ofZ 1.

To derive Theorem 1.3 from Theorem 1.1, we need to show that the centers of the
hyperbolic components in question are represented on the unstable manifold W (f.
)- We first show that the roots of these components are represented on
Wu(f*) which requires good control of the corresponding pacmen Julia sets (see

§6.5), and robustness of the renormalization with respect to a particular choice of
cutting arcs; see Appendix B. Then we use quasiconformal deformation techniques
to reach the desired centers from the parabolic points; see §8.

Throughout the paper we use Appendix B containing a topological preparation
justifying robustness of the antirenormalizations with respect to the choice of cutting
arcs.

In Appendix C we formulate the Molecule Conjecture on the existence of a pacman
hyperbolic operator with the one-dimensional unstable foliation whose horseshoe is
parametrized by the boundary of the main molecule of the Mandelbrot set. This
conjecture would imply the MLC for all infinitely renormalizable parameters of
satellite type.

1.3. More historical comments. Renormalization of Siegel maps appeared first in the
work by physicists (see [Wi,MN,MP]) as a mechanism for self-similarity of the golden
mean Siegel disk near the critical point. A few years later, Douady and Ghys discovered
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a surgery that reduces previously unaccessible geometric problems for Siegel disks!
of bounded type to much better understood problems for critical circle maps. This
led, in particular, to the local connectivity result for Siegel Julia sets of bounded type
(Petersen [Pe]) and also became a key to the mathematical study of the Siegel
renormalization. In particular, the McMullen-Yampolsky theory mentioned above (see
§1.2) is based upon this machinery.

Holomorphic commuting pairs (as well as almost commuting holomorphic pairs)
were studied by Stirnemannhe [St], who gave a computer-assisted proof of the
existence of a renormalization fixed point with a golden-mean Siegel disk and showed
that the renormalizations of the quadratic polynomial with the golden-mean Siegel
disk converge to that fixed point. Recently, Gaidashev and Yampolsky gave a
computer-assisted proof of the hyperbolicity of the renormalization for the golden
mean rotation number [GY].

On the other hand, in the mid 2000’s, Inou and Shishikura proved the existence and
hyperbolicity of Siegel renormalization fixed points of sufficiently high combinatorial
type using a completely different approach, based upon the parabolic perturbation
theory [IS]. For a different viewpoint on this result see [Ya].

The proof in [IS] involves certain computer estimates. A computer-free proof of
hyperbolicity in high type was presented by Cheritat [Che]. His approach also gives a
proof of hyperbolicity for high type in the unicritical case z¢+ c.

The Siegel renormalization theory achieved further prominence when it was used
for constructing examples of Julia sets of positive area (see Buff-Cheritat [BC] and
Avila-Lyubich [AL2]).

A different line of research emerged in the 1980s in the work of Branner and
Douady who discovered a surgery that embeds the 1/2-limb of the Mandelbrot set
into the 1/3-limb [BD]. This surgery is the prototype for the pacman renormalization
that we are developing in this paper.

Note also that according to the Yoccoz inequality, the p/q-limb of the Mandelbrot
set has size 0(1/q). It is believed, though, that 1/q?2is the right scaling. The pacman
renormalization can eventually provide an insight into this problem.

Remark 1.4. Genadi Levin has informed us about his unpublished work where it is
proven, by different methods, that

C
ayq —c(p/q)| < =,C >0
(1.2) | p/q | qz ]

where ap/q is the center of the p/q-satellite hyperbolic component and c¢(p/q) is its
root. He has also informed us that (1.2) was independently established by Mitsuhiro
Shishikura. Note that Theorem 1.3 gives a precise asymptotics for |ay/q - c(p/q)|.

1.4. Notation. We often write a partial map as f: W W; this means that DomfU Imf c
w.

A simple arc is an embedding of a closed interval. We often say that a simple arc
€:10,1] = connects (0) and (1). A simple closed curve or a Jordan curve is an

1 The original surgery applies to Siegel polynomials only. Its extension to general Siegel maps leads to
quasicritical circle maps; see [AL2].

2 Unless the germ of f has finite order.
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embedding of the unit circle. A simple curve is either a simple closed curve or a simple
arc.

A closed topological disk is a subset of a plane homeomorphic to the closed unit
disk. In particular, the boundary of a closed topological disk is a Jordan curve. A
quasidisk is a closed topological disk qc-homeomorphic to the closed unit disk.

Given a subset U of the plane, we denote by intU the interior of U.
Let U be a closed topological disk. For simplicity we say that a homeomorphism f*:

U - Cis conformal if f| intU is conformal. Note that if U is a quasidisk, then such an f
admits a qc extension through dU.

A closed sector, or topological triangle, S is a closed topological disk with two
distinguished simple arcs y,y-in dS meeting at the vertex v of S satisfying -

{v} = y-N y=. Suppose further that y-,intS,y: have clockwise orientation at v. Then y-is
called the left boundary of S while y. is called the right boundary of S. A closed
topological rectangle is a closed topological disk with four marked sides.

Letf: (Wa) = (C,a) be a holomorphic map with a distinguished a-fixed point. We
will usually denote by A the multiplier at the a-fixed point. If A = e(¢) with ¢ € R, then
@ is called the rotation number of f. If, moreover, ¢ = p/q € Q, then p/q coincides with
the combinatorial rotation number:2there is a cycle of q local attracting petals at ¢ and
fmaps the ith petal to i+p counting counterclockwise.

Consider a continuous map f: U— C and let S c C be a connected set. An f-lift is a
connected component of f1(S). Let
X0,X1,..,Xn,Xi+1 = f(Xi)
be an forbit with x» € S. The connected component of f(S) containing xo is called the
pullback of S along the orbit xq,...,Xn.

To keep notation simple, we will often suppress indices. For example, we denote a

pacman by f: Ur— V, however a pacman indexed by i is denoted as fi: Ui— V instead

of i Usi= V.

Consider two partial maps f: X Xand g: Y Y. A homeomorphism h: X - Yis
equivariant if
(1.3) h-flx)=g ° h(x)

for all x with x € Domfand h(x) € Domg. If (1.3) holds for all x € T, then we say that h
is equivarianton T

We will usually denote an analytic renormalization operator as “R” i.e, Rf is a
renormalization of f obtained by an analytic change of variables. A renormalization

postcomposed with a straightening will be denoted by “R”; for example, Rs: Ms— M is

Licensed to Stony Brook Univ. Prepared on Fri Oct 6 12:49:18 EDT 2023 for download from IP 129.49.88.178.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PACMEN 663

the Douady-Hubbard straightening map from a small copy Msof M to the Mandelbrot
set. The action of the renormalization operator on the rotation numbers will be

denoted by “R".

Slightly abusing notation, we will often identify a triangulation (or a lamination)
with its support.

2. Pacman renormalization operator

Definition 2.1 (Full pacman). Consider a closed topological disk VV with a simple arc
y1 connecting a boundary point of V to a point « in the interior. We will call y1 the
critical arc of the pacman. A full pacman is a map

fU>V
such that (see Figure 1)

c la)=a

. Uis a closed topological disk with UE V;

« the critical arc y1 has exactly three lifts yo © U and y-,y: € dU such that yo starts
at the fixed point a while y-,y: start at the prefixed point a; we assume that y1
does not intersect yo,y-, y+ away from a;

e f:U- Visanalyticand f: U\ yo— V\ y1is a two-to-one branched covering;

¢ fadmits a locally conformal extension through U\ {a'},

Since f: U \yo— V'\y1is a two-to-one branched cover, fhas a unique critical point,
called co(f), in U \ yo. We denote by c1(f) the image of co.

We will mostly consider truncated pacmen or simply pacmen defined as follows.
Consider first a full pacman f: U — V and let O be a small closed topological disk
around® € int O F ‘31(f) and assume that y1 cross-intersects d0 at a single point.
Then £1(0) consists of two connected components, call them©o 2 @and Op 3 ' we

obtain a truncated pacman
1) f: U\ 0}, 00) = (V.O),
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Figure 4. A pacman is a truncated version of a full pacman (see
Figure 1); itis an almost 2 : 1 map f: (U,00) = (V,0) with f{oU) c oV
Uy1U ao0.

A pacman is an analytic map as in (2.1) admitting a locally conformal extension
through dU such that fcan be topologically extended to a full pacman; see Figure 4. In
particular, every point in V'\ O has two preimages while every point in O has a single

preimage.
2.1. Dynamical objects. Let us fix a pacman f: U = V. Note that objects below are
sensitive to small deformations of dU. The non-escaping set of a pacman is

wi= N0

n=0
The escaping setis V \ Kr.
We recognize the following two subsets of the boundary of U: the external boundary
dxtU := f1(9V) and the forbidden part of the boundaryUh‘bU = 0U N\ 9=U

Suppose lo : [0,1] _fV is an arc connecting a point in Krto dV . We define
inductively imagesfm © [0, 1] = V for m < M € {1.2,.... 00} a5 follows. Suppose

tm< 1is the maximal parameter such that the image of [0,tm] under  nis within U.
Iflm (tm) € U then we saylm-+1is defined and we set {m+1(t) := (£ (t/tn) for ¢

< 1. Abusing notation, we write

F-m - f(fm.—l),
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We define external rays of a pacman in the following way. Let us embed a

rectangle R in V' \U so that the bottom horizontal side B is equal to d=tU and the top

horizontal side T is a subset of V. The images of the vertical lines within R

form a lamination of VTU. We pull back this lamination to all iterated preimages f(R).
Leaves of this lamination that start at dV are called external ray segments of f; infinite
external ray segments are called external rays of f. Note that if y is an external ray, then
fly), as defined in the previous paragraph, is also an external ray.

We have two maps from B to T: one is the natural identification 7 along the vertical
lines, the other is the map./: B --* T'which is defined only on f1(T). Composition
thereof,® = 7 'of: B-->Bisa partially defined two-to-one map.

We consider the set A © B of all points for which the whole forward orbit is

welldefined. Then A is completely invariant and there is a unique orientation-
preserving map 6: A — S!which semiconjugates ¢: A — A to the doubling map of the
circle.

We say that 6(a) is the angle of the external ray segment passing through the point a.
An external ray segment passing through a point a € A is infinite (i.e, it is an

external ray) if and only if it hits neither an iterated precritical point nor an iterated
lift of 9fbU. The latter possibility is a major technical issue we have to deal with.

2.2. Prime pacman renormalization. Let us first give an example of a prime
renormalization of full pacmen where we cut out the sector bounded by y1and y2; see
Figure 5. This renormalization is motivated by the surgery procedure that Branner
and Douady [BD] used to construct a map between the Rabbit L1 and the Basilica
L1,z limbs of the Mandelbrot set; see Appendix C.1. Pacman renormalization will be
defined in §2.3.

Recall that a sector S is a closed topological disk with two distinguished arcs in dS
meeting at a single point, called the vertex of S. Suppose f: U — Vis a full pacman and
(A) yo,y1, and yz2:= f{y1) are mutually disjoint except for the fixed point a.
Denote by S1 the closed sector of V bounded by y1 Uyz and not containing yo. Let us
further assume that

(B) Sidoes not contain the critical value; and
(CQ) y-UyscV\ S
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o~

Let V be the Riemann surface ~ with boundary

" = f~Yy) N~y and v
=) Ny 2 obtained from V

v \intS1 —
\intS$1 by gluing y1: by means of f. This means that

while Y(z)= Y(f(2)) €V

there is a quotient map

Y %4
such that i 15 conformal in VA S for all® € 71. Let us

select an embeddingV —C.

The sector S1 has two f-lifts; let So be the lift of S1 attached to @ and letS0 be the lift
of S1attached to a. Condition (B) implies that y-U y+ < V'\ So. Define

T2 ifzeSon fNU).

Then the map f_ descends via 1 into a full pacman]6 : U — Vwith the critical ray y'1.

Figure 5. Prime renormalization of a pacman: delete the sector S1,
forget in U the sectorS0 attached to @, and iterate f twice on So. By
gluing~  -"Tand yzalong f: y1 - y2 we obtain a new pacman f: U
- V.

2.3. Pacman renormalization. Let us start with defining an analogue of commuting
pairs for pacmen.

A map y: S — Vfrom a closed sector (S, ,f3+) onto a closed topological disk
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V c C is called a gluing if i is conformal in the interior of S, ¥ (8-) = Y(B+), and ¥ can
be conformally extended to a neighborhood of any point in - U 5+ except the vertex
of S.

Definition 2.2 (Prepacmen; Figure 6). Consider a sector S with boundary rays -,83+
and with an interior ray fo that divides S into two subsectors T-,T+. Let f~: U-— S f+:
U:— S be a pair of holomorphic maps, defined on U- c T-,U. C T+. We say that F = (S,f~
,f+) is a prepacman if there exists a gluing ¥ of S which projects (f-,f) onto a pacman f
: U—- V, where 8-,f+are mapped to the critical arc y1and Sois mapped to yo.

The map ¥ is called a renormalization change of variables. The definition implies
that fand f: commute in a neighborhood of Bo. Note -

that every pacman f: U — V has a prepacman obtained by cutting V along the critical
arc y1.

Dynamical objects (such as the non-escaping set) of a prepacman F are preimages
of the corresponding dynamical objects of funder .

Definition 2.3 (Pacman renormalization; Figure 7). We say that a pacman f: U — Vs
renormalizable if there exists a prepacman

G=(g-=f~U--5 g+=:Us>S)

defined on a sector S € V with vertex at a such that g-,g+ are iterates of f realizing
the first return map to S and such that the f-orbits of U ,U+before -
they return to S cover a neighborhood of @ compactly contained in U. We call G the
pre-renormalization of fand the pacmand: U — V' is the renormalization of f.
The numbers a,b are the renormalization return times.
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Figure 6. A (full) prepacman (f: U - Sf:Us—> S). We

have U-=Y-U Y.and f~- maps Y- two-to-one to S-and it maps Y- to S:.
The map fi maps U: univalently onto S.. After gluing - and S+
dynamically we obtain a full pacman: the arcs 8- and S+ project to y1,

the arc fo projects to yo, and the arc § projects to yz.

The renormalization of fis called prime ifa + b = 3.

Similarly, a pacman renormalization is defined for any map f: U = V with a
distinguished fixed point which will be called a. For example, we will show in
Corollary 3.7 that any Siegel map is pacman renormalizable.

Combinatorially, a general pacman renormalization is an iteration of the prime
renormalization; see details in Appendix A, in particular Lemma A.2.

We define A = Acto be the union of points in the f-orbits of U-,U. before they return
to S. Naturally, A is a triangulated neighborhood of a; see Figure 7. We call A a
renormalization triangulation and we will often say that A is obtained by spreading

around U-,U-.

Definition 2.4 (Conjugacy respecting prepacmen). Let fand g be any two maps with
distinguished a-fixed points, and let R and @ be two prepacmen in the dynamical plane
of fand g defining some pacman renormalizations. Let h be a local conjugacy between
fand g restricted to neighborhoods of their a-fixed points. Then h respects R and Q if
h maps the triangulation Arto Agso that the image of (Sr Urx+) is (Sq Ug+).

2.4. Banach neighborhoods. Consider a pacman f : Ur— V with a non-empty

truncation disk 0. We assume that there is a topological disk U 2 Us with a

piecewise smooth boundary such that fextends analytically to U and continuously

Licensed to Stony Brook Univ. Prepared on Fri Oct 6 12:49:18 EDT 2023 for download from IP 129.49.88.178.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PACMEN 669

Figure 7. Pacman renormalization of f: the first return map from U-

U U:back to § = §- U S.is a prepacman. Spreading around Us: the
orbits of U- and U: before returning back to S triangulate a
neighborhood A of a; we obtain f: A - A U §, and we require that A

U S is compactly contained in Domf.

T~
to its closure. Choose a small € > 0 and define‘i’ff"(f' E) to be the set of analytic maps

g : U —=C with continuous extensions to dU such that

sup (2) — 9] < =
zcl

ThenVer (1 %) is a Banach ball.

We say that a curve y lands at a at a well-defined angle if there exists a tangent line
toyata.

Lemma 2.5. Suppose yo,y1land at a at distinct well-defined angles. If € > 0 is sufficiently

small, then for every— 9 € Niz(f.2) there is a domain Ugc U such that g : UgVis a

pacman with the same V,y1,0 (up to translation).

Proof For9 € Nz (f:€) with small ¢, set

Licensed to Stony Brook Univ. Prepared on Fri Oct 6 12:49:18 EDT 2023 for download from IP 129.49.88.178.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



670 DZMITRY DUDKO, MIKHAIL LYUBICH, AND NIKITA SELINGER

and set yo(g) to be the lift of y1(g) landing at a- Since Y0(f),711and at distinct well-
defined angles, so do yo(g),y1if € is small; i.e., yo(g),y1 are disjoint.
Setgs=f+ 6(g - f) and Ts(z) := z + (a(gs) — a(f)), where 6 € [0,1]. Define s(z) =

gs1° Ts ° f{z) on AUy, where the inverse branch is chosen so that yo(z) = z and s(2) is
continuous with respect to 6. We claim that isis well defined and that ys(0Uj) is a
simple closed curve for all § € [0,1]. Indeed, let A € U be a closed annular

neighborhood of dUrthat contains no critical points of f. For &£ small enough, the
derivative of any9 € Ny (f, £) is uniformly bounded and non-vanishing on a slightly
shrunk 4; in particular g has no critical points in A.

It follows that 15| A has uniformly bounded derivative and (choosing yet smaller ¢,
if necessary) is close to the identity map, hence ¥s(0Us) c A is well defined for all 6.

Since fhas no critical values in 4, it is locally injective, which implies that

Ps(x) # 77*"’0‘(10') when x is sufficiently close to y. We conclude that ysis injective
on dUr Therefore ¥1(dUy) is a simple closed curve; let Uy be the disk enclosed by
Y1(0Uj). It is straightforward to check that g : Uy — V is a pacman with critical arc y1

and truncation disk O.

Consider a pacman f: Ur— V. Applying the A-lemma, we can endow all g: Uy > V
from a small neighborhood of f with a foliated rectangle Ry as in §2.1 such that Ry
moves holomorphically and the holomorphic motion of Ry is equivariant. As a
consequence, an external ray R(g) with a given angle depends holomorphically on g
unless R(g) hits an iterated lift of 0f*U, or an iterated precritical point.

Lemma 2.6 (Stability of periodic rays). Suppose a periodic ray R(f) lands at a repelling
periodic point x in the dynamical plane of f. Then the ray R(g) lands at

x for all g in a small neighborhood of f. Moreover, the closure R(g) is contained

in a small neighborhood of R(f).

Proof. Since x is repelling periodic, it is stable by the implicit function theorem. Present
R(g) as a concatenation of arcs R1RzR3 -+ such that Ri+1(g) is an iterated lift of Ri(g). By
continuity, Ri(g) is stable for i < n, where n is big if g is sufficiently close to f. If n is
sufficiently big and g is sufficiently close to f, then Ru(g) is in a small neighborhood of
x(g) and, since x(g) is repelling, Rn+1(g) is in an even smaller neighborhood of x(g).

Proceeding by induction, we obtain that Rn+j(g)
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shrinks to x(g); i.e., R(g) lands at x(g). It also follows that R(g) is in_a small

neighborhood of R_(f).

2.5. Pacman analytic operator. Suppose that f: U — V'is a renormalization of f: Ur—

Vvia a quotient map'i"f’f : S5 =V that extends analytically through 057\

{a} (this actually follows from the definition of renormalization), where Sfc V is
distinct well-defined angles. We claim that there exists an analytic renormalization
the domain of a prepacman F such that curves fo,(+ 8- all land at a at pairwise

operator defined on a neighborhood of f.
We note that 8 = f*.(fo) for some integers k- k-.For a map g thatis +
sufficiently close to f, the fact that the three curves land at different angles implies that

Bo,g*+(Bo),g*-(Bo) are disjoint. Define 74: foU B-U B+ — C by

Tg: 2 2+ afg) —a(f) on foand Tg=gk ° Tg ° fk.on fs
Then 14 is an equivariant holomorphic motion of fo UB- UB-+ over a neighborhood of f.
By the A-lemma [BR,ST] 74 extends to a holomorphic motion of Sfover a possibly
smaller neighborhood of f. Denote by 4 the Beltrami differential of .

Define a Beltrami differential vgon C as¥s = (¥r)apg on V anq vg= 0 outside of

V, and let ¢4 be the solution of the Beltrami equation
Oy dch,
9 _,, 9
0z ¢ 0z

that fixes @’ oo, and the critical value. We see that y5:= ¢4 ° ¢ ° T51is conformal on Sy
:=74(S). It follows that 1y depends analytically on g (see Remark on p. 345 of [L1]).

We claim now thatC = (S5, 9"~ gh) is a prepacman. Indeed, by definition of
Lemma 2.5, °g restricts to a pacman with the same range as f. We now have the 14, we
have g.(t4(Bo)) = B and g glues G to a map "g which is close tof. By
following theorem.

. o fU0=5V,
Theorem 2.7 (Analytic renormalization operator). Suppose that’ '~ is a
renormalization of f: Ur— V via a quotient map r: Sr— V. Assume that the curves
Po,5-B+ (see Definition 2.2) land at « at pairwise distinct welldefined angles. Then for

every sufficiently small neighborhoodNﬁ (f.e ), there exists a compact analytic pacman
renormalization operatorR: 4 — ddefined on'Vo (f+€)

such that R(f) = £’ Moreover, the gluing map g used in this renormalization, also

depends analytically on g.
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Proof. We have already shown that g depends analytically on9 < N (f, ). Choose an
intermediate domain U’ U with Us € U € U g0 that the operator R is the

composition of the restriction operator Ni(f,€) — E\Pﬁ,(f,s) and the pacman

I . .
renormalization operator defined on J\U,(f,_g)_ Since the former is compact, we
conclude that R is compact.

3. Siegel pacmen

We say a holomorphic map f: U — V is Siegel if it has a fixed point a, a Siegel
quasidissz 2 Qcompactly contained in U, and a unique critical point co € U that is on
the boundary of Zr Note that in [AL2] a Siegel map is assumed to satisfy additional
technical requirements; these requirements are satisfied by restricting f to an

appropriate small neighborhood of 21,
Let us foliate a Siegel disk Zrof f by equipotentials parametrized by their heights

ranging from 0 (the height of a) to 1 (the height of 0Zy). Namely, if h: Zr— Dlis a
linearizing map conjugating f| Zrto the rotation® e(?)2 then the preimage under h

of the circle with radius 7 is the equipotential of Zrat height n.

Definition 3.1. A pacman f: U — Vis Siegel if

» fis a Siegel map with Siegel disk Zrcentered at a;

e the critical arc y1 is the concatenation of an external ray Ri followed by an
inner ray I1 of Zrsuch that the unique point in the intersection y1 N 0Zris not
precritical; and

. writingf3 (U\ Op, Q) — (V,O) as in (2.1), the disk O is a subset of Zf
bounded by its equipotential.

The rotation number of a Siegel pacman (or a Siegel map) is 8 € R/Z such that e(6)
is the multiplier at a. It follows (see Theorem 3.2) that the rotation number of the
Siegel map is in Ovnd. The level of truncation of fis the height of d0.

Since y1is a concatenation of an external ray R1and an internal ray /1, so is yo: it is
a concatenation of an external ray Roand an internal ray lowith f{RoU lo) = R1U I1. Two
Siegel pacmen f: Us— Vrand g: Uy — Vyare combinatorially equivalent if they have the
same rotation number and if Ro(f1) and Ro(f2) have the same external angles; see (2.1).
Starting from §3.6 we will normalize yo so that it passes through the critical value.

A hybrid conjugacy between Siegel maps f1: U1— Viand f2: Uz — Vzis a qc-conjugacy
h: U1 U V1- U2 U V2 that is conformal on the Siegel disks. A hybrid conjugacy between
Siegel pacmen is defined in a similar fashion. We will show in Theorem 3.11 that

combinatorially equivalent pacmen are hybrid equivalent.
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roe =1
We will often refer to the connected componentz‘f of [THZ)NZy attached to co
as a co-Siegel disk.

3.1. Local connectivity and bubble chains. Consider a quadratic polynomial
po: 2z el )2+ 2%

Theorem 3.2. If 6 € Obng, then the closed Siegel disk Z of peis a quasidisk containing the
critical point of pe.

Conversely, suppose a holomorphic map f: U — V with a single critical point has a

fixed Siegel quasidiska eunv containing the critical point of f. Then f has a rotation
number of bounded type.

In particular, peis a Siegel map. The first part of Theorem 3.2 follows essentially
from the Douady-Ghys surgery; see [D1]. Conversely, if f: U — Vis a Siegel map, then
applying the inverse Douady-Ghys surgery we obtain a quasicritical circle map is
quasisymmetrically conjugate to the rigid rotation if and only if the rotation f, see
[AL2, Definitions 3.1]. By [H,Sw,AL2], the restriction of fto the unit circle

number of fis bounded. (Compare to [G]].)

Let us now fix a polynomial  p = pewith 6 € Obna. A bubble of p is either

L Z(J = ?p, or
[ ] 26 = 7::, = ’p—l (Zi“) \ Zp’ or

—
« an iterated p-lift of Z» (5¢¢ §1 4 for the definition of a lift).

The generation of a bubble Zkis the smallest n = 0 such that p"(Zx) € Zo. In particular,
Zohas generation 0 andZ0 has generation 1. If the generation of Zkis at least 2, then p:
Zk— p(Zk) admits a conformal extension through dZ (because
p(Zk) 3 (’.1).

We say that a bubble Z, is attached to a bubble Zn—1if Z, N Z,—1 # 0 and the
generation of Z» is greater than the generation of Z-1.

A limb of a bubble Zk is the closure of a connected component of K, \ Zk not

containing the a-fixed point. A limb of/0 = Zy is called primary.

Theorem 3.3 ([Pe]). The filled-in Julia set K, is locally connected. Moreover, for every &
> ( there is an n 2 0 such that every connected component of K, minus all bubbles of
generation at most n has diameter less than ¢.

In particular the diameter of bubbles in K, tends to 0: for every € > 0 there are at

most finitely many bubbles with diameter greater than ¢. Similarly, the diameter of
limbs of any bubble tends to 0.
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An (infinite) bubble chain of K, is an infinite sequence of bubbles B=(Z1,Z,...) such
that Z1 is attached to Zoand Z+1 is attached to Z; see Figure 8.

Figure 8. A bubble chain (red) landing at the S-fixed point.

As a consequence of Theorem 3.3, every bubble chain B = (Z1,Z3,...) lands: there is a

unique x € K, such that for every neighborhood U of x there is an m = 0 such that

Ufzzm Zi is within U. Conversely, if x € Ky does not belong to any bubble, then there is
a bubble chain B = (Z1,Z2...) landing at x. A point x is periodic if and only if B is periodic:
there is an m > 1 and g = 1 such that p?maps (Zm,Zm+1,...) to (Z1,Z2,...).

Let f: U— Vbe a Siegel pacman. Limbs, bubbles, and bubble chains for f are defined
in the same way as for quadratic polynomials with Siegel quasidisks. In particular, a

bubble of f is eitherZ /> T 7}j FHZNZs ) or an frri-lift ofz}, where n is the
generation of the bubble. Since f is the only bubble intersecting
{c1} U y4, all bubbles of positive generation are conformal lifts on’f. We
define the Julia set of fas
Jri= U f=(0Zy)
(3.1) n=>0 .

We will show in Theorem 3.12 that Theorem 3.3 holds for standard Siegel pacmen
and that Jris the closure of repelling periodic points.

Limbs, bubbles, and bubble chains of a prepacman F are preimages of the
corresponding dynamical objects of f.

3.2. Siegel prepacmen. A prepacman Q of a Siegel pacman q is also called Siegel; the
rotation number and level of truncation of Q are those of q. Recall that Q consists of
two commuting maps q-: U- = Sg, g+ U+ = Spsuch that U- and U are separated by fo.
Given a Siegel map fwe say that fhas a prepacman Q around x € dZif q-,q+ are iterates

of f, the vertex of Sgis at a(f), and Bo(Q) intersects 0Zrat x.
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Lemma 3.4. Suppose that p is a Siegel quadratic polynomial with rotation number 0 €
Ovna. Consider a point x € dZp such that x is neither the critical point of p nor its iterated

preimage. Then for every r € (0,1) and every € > 0, the map p has a Siegel prepacman
(3.2) Q=(g-: U-— Soq+: U+ = So)

around x such that

e the rotation number of Q is a renormalization of 0 - iteration of (A.2);
e foreveryz€ U the orbit zp(z),.,p*(z) is in the e-neighborhood ofzp
(2) = q=(2);

where p

+

r is the level of truncation of Q; and
 every external ray segment (see §2.1) of Q is within an external ray of p.

Before proceeding with the prooflet us define a sector renormalization of p |
7 o . DlLet h:Z, -
“v_Consider the rotation of Lo : 2 — €(2) of the unit disk
D1be the unique conformal conjugacy between P | Zyand Le | D! normalized such

that h(x) = 1. A sector pre-renormalization of Leis a commuting pair (L* | X—,Lb | X+)

realizing the first return map to X UX: (see Figure 27), where

X-, X+are closed sectors of D! such that X-NX. is the internal ray going towards

1; see details in— /8 projects (§A.2. Denote byL? | X-,L° | X&:the angle of) to a new
rotation.X = X- UX. at 0. The gluing map

VA VA

Definition 3.5. A sector pre-renormalization ofP | Z around x € 0Zpis a commuting
pair (* | X- p,*L%| X| X-+,p) *by| Xh, where.) obtained by pulling back a sector pre-

renormalization (Le

o X-:= h-l(X-), X+:=h1(X+), and X := h-1(X) = X- U X: are closed sectors onf,
e theinternal ray Io:= X- N X:lands at x.
The gluing map 2 — 2'/% descents to

Px:=h1e [z>2/5] o h

with¥z(X) = Zry,
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Proof of Lemma 3.4. Consider the sector renormalization (p* | X- ,p° | X+) from

Definition 3.5 and assume that the angle 6 of X is small. We will now extend

(p*| X-,p" | X+) beyondzw to obtain a prepacman (3.2); see Figure 9. Set
I-:= p(Io),1+ := p*(lo),I := f+°(l0).

Then the sector X-is bounded by I-,/oand X+ is bounded by /o, I-.
Since x is not precritical, there are unique external rays R-,R+,R extending I-,I+,]
beyondZw. Let Sobe the closed sector bounded by R-U I-U I+ U R+ and truncated by an

external equipotential E at a small height ¢ > 0. The curve

RUI dividesU S into two closed sectorsU S+ andUS- such that S+ is betweena(X ) cRS-

UandI-and®(XR.) cI whileS.. S is between R I and R+ I+. We note thatp - - -

p
Let us next specify U- o X-,U+ D X: such that

(3.3) Q=1(q-,9+) = (p*| U-,p"| U)

is a full prepacman. Since the p-orbits of X-,X: cover Zpbefore they return back to X,
we see that 0X N dZ, has a unique precritical point, call it o, that travels through the
critical point of p before it returns to X. Below we assume that

o € X the case® € X+is analogous. Then S: has a conformal pullback U+

R
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Figure 9. A full Siegel prepacman; compare with Figure 6. In the
dynamical plane of a quadratic polynomial p, the sector Sg= S- U S+
is bounded by R- U I-U I+ U R+ and truncated by an equipotential at
small height. Pulling back S-,S+along

appropriate branches of* | U, p° | Up+?),pis a full prepacman (3.3). Truncating® we
obtain U-=Y-U Y+and U

so that (p?| U-, p°| U-+) at w and at the vertex where R. meets E (see

(p
Figure 11) we obtain a required prepacman (3.2).

along p®: X. — S.. We have U: c Spbecause rays and equipotentials bounding

Soenclose U-.
The sector S has a degree two pullback Y along p* X = S. Under *: Y — S the fixed

point- a has two preimages, one of them is- - @, we denote-

p

the other preimage by w. Let Y+ be the conformal pullback of S: along the orbit p*: {w}
- {a}. We define U-:=Y-UY: C Sgand we observe that @ in (3.3) is a full prepacman.
By Theorem 3.3, primary limbs of K, intersecting a small neighborhood of x have

small diameters. By choosing 6 and o sufficiently small we can guarantee that So\Z,
is in a small neighborhood of x.
Let us now truncate Q at level r and let us show that the orbit

z,p(2),...p*(2) = q=(2),k € {a,b},

ofanyze U is in a small neighborhood ofZ». The truncation of Qatlevel r
removes points in U =Y Y. with p the equipotential
atheightt:=r

+ - -U 4. Since®-dimages in the subdisk ofis small, we obtain
thatZtyis close to 1.bounded by
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/
Figure 10. Since W is truncated by an equipotential of“» at small

height, the pointpj (2) € W'\ Zyis in a small neighborhood of co.

Since Kpis locally connected (Theorem 3.3), all the external rays of p land. For z €
U=\ Ky, define p(z) € K, to be the landing point of the external ray passing through z.
Since Spis truncated by an equipotential at a small height, the orbit of z stays close to
that of p(z). This reduces the claim to the case z € Ky N Ux.

By Theorem 3.2, there is an ¢ >0 such that all of the big (with diameter at least ¢)
primary limbs of p are attached to one of¢0, -1 - - -, ©—, where cois the critical point
of p and c-;is the unique preimage of €0 under p' | Z;, Since §is assumed to be small,
the orbit of¢0 travels through all¢—¢; - - - ; €0 before it returns to Sp.

Let us denote by L the primary limb of p containing z (the case® € 7pis trivial). If L
is not attached to0, then by the above discussion all L,p(L),...p*(L) = q (L) are small
and the claim follows.

* /

C,
Suppose that L is attached to. ? Denote by L-i the connected component of
R\ Zpattached to c-. SinceCs travels through a critical point, we have L = L-j

for somej < k.

Let W be the pullback of Sgalong

PP =p(ch) = Pk(dl),

!

and let W’ be W truncated by the equipotential of“» at height t; see Figure 10.

Since t = r¥is close to 1, we obtain thatW’ M L is in a small neighborhood of cobecause
the angle of W at o’ (the non-fixed preimage of a) is small—it is equal to 6. Therefore,
p/(2) is close to co, and by continuity all?’ ' (2), P 2(2), ... J""_ﬁ(ﬂ are

only big limbs, we obtain that the orbitclose to €0,¢—1..-.,¢—¢. Recall that

pi-z,pi(z()z€),...,pL-i. Sincek(z) is in a small neighborhoodﬁm Loy,..., L ¢ are the of

VA

p.
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It remains to specify external rays for Q. As shown on Figure 11 we slightly

truncate Spat the vertex where R: meets the equipotential E and we slightly truncate
U such that the truncations are respected dynamically and such that =

the preimage of theextU;, wheredSg \q(:RU-qU—R+V)qunderis the pacman ofQ consists

of exactly two curves thatQ. We now can embed project to d

Figure 11. By truncating the prepacman from Figure 9 and
embedding rectangles R+, we endow the prepacman with external

rays.

in So \ (U-U U+) two rectangles R- and R+ that define external rays of Q as in §2.1.

3.3. Pacman renormalization of Siegel maps. An immediate consequence of [AL2,
Theorem 3.19, Proposition 4.3] is the following.

Theorem 3.6. Any two Siegel maps with the same rotation number are hybrid
conjugate on neighborhoods of their closed Siegel disks.

Proof. By [AL2, Proposition 4.3] any Siegel maps f,g can be obtained by performing the
Douady-Ghys surgery on quasicritical circle mapsﬁ~g”. By [AL2, Theorem 3.19], there

isaqcmaph conjugating f and “g in a small neighborhood of the unit circle. Then h
descends into a qc map h conjugating f and g in small neighborhoods of the
boundaries of their Siegel disks. A hybrid conjugacy between f and g is obtained by
setting h | Zrto be the canonical conformal conjugacy between f | Zrand g | Zs and
running the pullback argument.

As a corollary of Theorem 3.6 and Lemma 3.4 we obtain the following.
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Corollary 3.7. Every Siegel map f: U — V is pacman renormalizable.

Moreover the following holds. Let f be a Siegel map, and let p be the unique quadratic
polynomial with the same rotation number as f. Let h be a hybrid conjugacy from a

neighborhood onf to a neighborhood onp, respectively. Then there are prepacmen R
and Q in the dynamical planes of f and p, respectively, such that h respects R and Q in the
sense of Definition 2.4.

Proof. Choose a small € > 0 such that the e-neighborhood of Zris in the domain of h.
Then h pulls back a prepacman Q from Lemma 3.4 to a prepacman R in the dynamical
plane of f. This shows that fis pacman renormalizable. Lemma 3.8. Suppose that a
Siegel pacman f'is a renormalization of a quadratic polynomial. Then the non-escaping
set Kris locally connected.

Moreover, for every € > 0 there is an n 2 0 such that every connected component of Kr
minus all the bubbles with generation at most n is less than . All the external rays of f
land and the landing point belongs to Jz. Conversely, every point in Jfis the landing point

of an external ray. The Julia set Jfis the closure of repelling periodic points.
Proof. The proof follows from Theorem 3.3. Suppose that fis obtained from a of p by

removing an open sector. All of the limbs OfZ(x attached to the removed quadratic
polynomial p. Then every bubble Z. of fis obtained from a bubble Z«

sector are also removed. It follows from Theorem 3.3 that for € > 0 thereisann = 0
such that every connected component of Kyminus all of the bubbles with generation
at most n is less than €. Since bubbles of fare locally connected, so is Kr. The landing
property of external rays is straightforward.

3.4. Rational rays of Siegel pacmen. By a rational point we mean either a periodic

or preperiodic point. Similarly, a periodic or preperiodic ray is rational.
Let us fix pacmen fp and prepacmen R,Q as in Corollary 3.7. Let Kz be the non-

escaping set of R. By definition, Kr € K5 spreading around Krwe define the local non-

escaping set of f:
loe . T @
(3.4) k= U /" (RR)

n=0

This is the set of points that do not escape Arunder f: Ar —> ArUSEk; see Figure 7.

Similarly we define

= Ur(e)

n=0

It is immediate that h conjugates f| Klcr  and p | Klo¢,. As a consequence, the local

Julia set
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n
P FIRP(02)
J n20

is the closure of repelling periodic points because so is Ji°c,. (Indeed, every y € Jloc, is
the landing point of an external ray R, because J, is locally connected. Since external
rays in a pacman are parametrized by angles in S! (see §2.1), p has a periodic external
ray Rxlanding at x € Jloc,.) Moreover, for every periodic point y € Klo¢rthere is a unique

periodic bubble chain By of Klo¢flanding at y.

Lemma 3.9 (External rays). Let y € Jlosrbe a periodic point. Then there is a periodic
external ray Rylanding aty with the same period as y.

Proof. Let By = (Z1,Z2,...) be the bubble chain in Kl¢slanding at y. Denote by x the unique
point in the intersection of y1 N dZo. By Definition 3.1, the external ray Rilands at x.
There are two iterated preimages®¢: Tp € 07z, of x (by density of those) such that the
raysRér It (iterated lifts of R1) landing at™¢: *'» together with Z1 separate y from ar
see Figure 12. We denote by D the open subdisk of ¥V bounded bnyvRﬂ: 71 and
containing y. Let Dy be the (univalent) pullback of D along f: {y} — {y}. Then D, e D,
By the Schwarz lemma, f?: Dp = D expands the hyperbolic metric of D.
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Figure 12. Illustration to the proof of Lemma 3.9. The ray R: has
preimages R and R, that land at Z1 such thatRP’URﬂtogether with
appropriate arcs in dV U Z1 bound a disk D containing y. The disk D
has a univalent lift/?» € D, By the Schwarz lemma, f?: Dy = D is
expanding, which implies that there is an external ray landing at y.

There is a unique periodic external ray Ryin D with period p. We claim that Rylands
aty. Indeed, parametrize R as R: R-o = V with f°(R,(t + p)) = Ry(t). Since all the points
in D away from y escape in finite time under— oo f: D, = D, the Euclidean distance
between R(t) and y goesto O as t +.

The next lemma is a preparation for a pullback argument.
Lemma 3.10 (Rational approximation of y1). For every € > 0, there are

. loc
o periodic points®t> Tr € 5

e external rays Rand Ry landing at™t: s, respectively,

.. . Byand B, . ) o ;
e periodic bubble chains = _ inKloes  landing at®¢: *p, respectively, and
e internal rays I and I, of Zrlanding at the points at which B and By are attached

such thatf¢ U By Ulyand R, U B, U I, are in the e-neighborhood of y1 and such that
Ry U By U Iy js on the left of yiwhile R, U B, U I, is on the right of y1.

Proof. Consider a finite set of periodic points y1,y2,...yp € J°¢r. By Lemma 3.9 each yiis
the landing point of an external periodic ray, call it Ry;, and the landing point of a
periodic bubble chain, call it B,.. Let {W1, Wx,.., W} be the set of connected components

of

[J \ Zf U(Byxi. U R-‘q‘-i_

we assume that dW, contains df*Ur. By adding more periodic points we can also
assume that® & IW, get

W:=Wiu W2U - U Wp-1.

By the Schwarz lemma, f| W is expanding with respect to the hyperbolic metric of
W. Sinceo & BWT,’ there is a sequence of periodic points®*.Jj € J}FC such that the orbit
of z¢ is in W and such that x;jconverges from the left to the unique point x1in y1 N
daZy.

We claim that the external rays B 4 landing at x; converge to the external ray
landing at x:. Indeed, since™?.j — 1, the external angle of ['¢.i (see § 2.1) converges to
the external angle of Ri. By continuity, R 5([0, T]) converges to R1([0,T]) for any T €
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Rso. Since f| W is expanding, Re ([T, +00)) is in a small neighborhood of x; which
converges to xi.

The bubble chains Be,j of ﬁ?;m landing at x; shrink because there are no big limbs
in a neighborhood of x1. Define I;to be the internal ray of Zrlanding at the point where
Bjis attached. Thenf?e; UBe;Ulejis a required approximation for sufficiently big j.
Similarly, R, U B, U I,is constructed.

3.5. Hybrid equivalence. Recall from §2 that a pacman f: Ur— Vris required to have
a locally analytic extension through dUr. By means of the pullback argument, we will

now show the following.

Theorem 3.11. Let f: Ur— Vrand g: Uy — Vg be two combinatorially equivalent Siegel
pacmen and suppose that fand g have the same truncation level. Then fand g are hybrid

equivalent.

Proof. Let p be the unique quadratic polynomial with the same rotation number as f

and g. Lethf ang hg be hybrid conjugacies from neighborhoods of 21 and 4y to

a neighborhood of Zp, respectively. As in Corollary 3.7, there are prepacmen @, R, and
S in the dynamical planes of p, f; and g, respectively, such that hrand hgare conjugacies
respecting prepacmen R,Q and S,Q, respectively; see Definition 2.4. The composition
h:=hg! ° hris a conjugacy respecting R,S.

We define Klo¢ras in (3.4); Kloggand Klo¢, are similarly defined. Then h conjugates f|
Kiocrand g | Kiocg .

As in Lemma 3.10 let Be(f) UB(f)UL(f ) and R)(f) U Bo(f) U L(f) be
approximations of y1(f) from the left and from the right, respectively. Similarly, let

Re(g) U Be(9) U Le(9) and R,(g) U Bo(g) U I,(g) be approximations of y1(g). We
choose the approximations in compatible ways:
L4 B.& (g) L(g) B,n(g)a Iﬁ(g) are the images Oth”(f): Ii(f) Bp(f)-, [p(f) under
h;
e Rui(g), Rp(y) have the same external angles asPe(f), Bo(f).
Write
Tpi= 85 | (R URe T, = 85 | 9" (R, U Re)
n>0 ) and n>0 i
Then Trand Ty are forward invariant sets such that Vr\ Trand V;\ Ty consist of finitely

many connected components. Sincelt¢(9). RP(Q) have the same external angles, we
can extend h to a qc map h: Vy— Vysuch that h is equivariant on TfU OdextUr.
We now slightly increase Urby moving 0fPUrso that the new disk Ursatisfies
f(o"™uy)c Z;uB,UR,UB,UR,,

and we can slightly move(Indeed, we can slightly movey: Cy- cfitgUfibs Uso that its
image is withinsso that its image is within ¢ U Be U Z; Ry U By U Zy.)

Licensed to Stony Brook Univ. Prepared on Fri Oct 6 12:49:18 EDT 2023 for download from IP 129.49.88.178.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



684 DZMITRY DUDKO, MIKHAIL LYUBICH, AND NIKITA SELINGER

ad

Similarly, we slightly increase Uy by moving 0f*Ug so that the new disk Uy satisfies
g(d™u,)c Z,uB,UR,UB,UR,

and such that h | Trlifts to a conjugacy between f| dUrand g | dU. This allows us to

apply the pullback argument: we set ho:= h and we construct qc maps

g loh, jof(x) ifzeily

hn i Vi = Vg by ha(z) = {h. 1(x) if = ¢ s

We can choose h such that ho and hi are connected by an isotopy h-, [0,1]xVf— Vythat

is constant on Trand uniformly continuous in the hyperbolic metrics of VF\ Ty, Vy\T.
This implies that the Euclidean distance between h, and ha+1 tends to 0. Since the
space of qc maps with uniformly bounded dilatation is compact, we may pass to the

limit and construct a hybrid conjugacy between fand g.

3.6.Standard Siegel pacmen. We say a Siegel pacman is standard if yo passes through
the critical value.
A standard prepacman R in the dynamical plane of a Siegel map g is a prepacman

around the critical value of g (see §3.2). Then the pacman r obtained from R is
standard and the renormalization change of variables & respects the internal ray

landing at the critical value:

(3.5) Yr(11(g)) = I1(r).

The pacman renormalization associated with R is called a standard pacman
renormalization of g.

By Theorem 3.11, two standard Siegel pacmen are hybrid equivalent if and only if
they have the same rotation number.
Theorem 3.12. Let f be a standard Siegel pacman. Then Ky is locally connected.

Moreover, for every € > 0 there is an n = 0 such that every connected component of Ky

minus all of the bubbles with generation at most n is less than e.

As a consequence, every periodic point of Jris the landing point of a bubble chain.

Proof: For every 6 € BObng, there is a standard pacman g with rotation number 8 such
thatg is a renormalization of a quadratic polynomial. The statement now follows from
Theorem 3.11 combined with Lemma 3.8.

3.7. A fixed point under renormalization. Consider a Siegel map f with rotation

number 6 € Oper and consider x € dZfsuch that x is neither the critical point nor its
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iterated preimage. Let (f* | X-x,f° | X+x) be the sector prerenormalization of f | Zsas

in Definition 3.5. Since 6 € Oper, we can assume
(see §A.4) that the renormalization fixes F1Z5, the gluing map %= Xo = Zy

projects (| X-x,/° | X+x) back to f| Z: For x € {co,c1} we write

l/)O = ll}co,XO = Xco,Xt,O = Xi,co
and l/)l = l/)L‘l,Xl = Xc1,Xt,1 = Xi,m.
Theorem 3.13 ([McM2]). For every 6 € Oper, there is a Siegel map 9« U, — Viwith

rotation number 6 such that for a certain sector pre-renormalization ofY+ | Zg.

as above the gluing map o extends analytically through 9Z. N 9Xo to a gluing map o
projecting (98 | S—o .92 | S+0) back tog«: Ux — Vy whereS+,0 C Uy
Moreover, there is an improvement of the domain: the forward orbits
U ¢s-ou U ¢S
i€{0,1,....a} je{0.1,....b}
. U Vv
are compactly contained inU« MV,

Up to conformal conjugacy, g is unique in a neighborhood ofZg.. We note that the
improvement of the domain follows from complex a priori bounds for quasicritical
circle maps [AL2, §3.3] after applying the inverse Douady-Ghys surgery; see also [Ya,
Proposition 3.2]. It will allow us in Theorem 3.16 to construct a pacman analytic self-
operatorR: B --+ B.

Corollary 3.14. The gluing map 1 extends analytically throughazm nox, and, up to
replacing 1 with its iterate, satisfies the same properties as o in Theorem 3.13; in
particular, the improvement of the domain holds for 1.

Prooﬁl We need to check that¥’t := g» © 0 © 6" is well defined. Since Yo projects
(95, 97) 10 9« and since the mapsYs - 9° are two-to-one in a neighborhood of co, we

. . =1, . .
obtain that for z close to c1the gluing map o maps9- (~) to a pair of points that
have the same g-image. This shows that i1 is well defined. Up to replacing 11 with its
iterate we can guarantee that the improvement of the domain holds for ¥1.

Note that i1 is expanding onZs. N 9X1because?’1 | Zg.is conjugate to

15 Dlz » 2% 1
Lemma 3.15 (Fixed Siegel pacman). For any 0 € Oper there is a standard Siegel pacman
[ Us = Vi that has a standard Siegel prepacman
F =(f*lU->5S f°lU. > S)

together with a gluing map ppojeSting Aback to f. Moreover, the improvement of the
domain holds for the renormalization:

(3.6) Ap, € f,1(UL),
(See §2.3 for the definition of AF.-)

The pacman fis conformally conjugate to g in a neighborhood offx 1= 2y,
Proof. Consider a Siegel map g from Theorem 3.13 and 1 from Corollary 3.14.
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By Corollary 3.7, g has a standard prepacman Q: Ug+ — Sgsuch that S5\ Zg.is in a
small neighborhood of c1. Since 6 is of periodic type, we can prescribe Q to have
rotation number 6. Since 1 is expanding onaZ.ug, for a sufficiently big integer t = 1 the
prepacman

(¥1)"(Q) = (%1 0 gz 0¥y : ¥ (Ug.s) = %7 (Sq))
has the property thatﬁ"ft (S@) \ Zq. is in a much smaller neighborhood of c1.
Let f+: Usx — Vibea pacman obtained from Q. The prepacman ( ‘f{’i)*{Q)projects
to the standard prepacman, call it
F.: (f*:ii L’;_i — S,,)
such that+ \ Z1. s in a small neighborhood of c1. The map”‘iq descends to a gluing
map, call it 3, projecting Fback to f.
If t is sufficiently big, then Ar, is compactly contained info ' (Us).

3.8. Analytic renormalization self-operator. Applying Theorem 2.7 to ffrom Lemma
3.15 we obtain the following.

Theorem 3.16 (Analytic operatorR: B -=* B), Let f.: U = Vi be a pacman, and
let F be a prepacman from Lemma 3.15. Then there are small neighborhoods
N (fi:2), Nig(f«,9) of fo with & <6 gnd there is an analytic pacman renormal-
ization operator ™ Nis(f«:€) = Ni([fe.0) such that Rfs = f+. Moreover, the
operator R is compact, so its spectrum is a sequence converging to 0. The
prerenormalization ofRf v is B

Proof. Let f«: U" — V' pe a pacman obtained form f+: Us — V. by slightly
decreasing U so thatU’ € U. and &7, € f7'(U"). Since the renormalization is
defined on 4F., by Theorem 2.7 there is a compact analytic pacman
renormalization operator Ngi(fi8) = Ng(fi, 6 ), where U’ and U are small
neighborhoods of the closures of U” and U.. Precomposing with the restriction
operatorf\’rﬁ(f*as) -

N (

!

fes £), we obtain the required operator R.

To simplify notation, we will often write an operator in Theorem 3.16 as R: B
Bwith B = Np(fs, 5). We can assume (by Lemma 3.4) that fhas any given truncation
level between 0 and 1.
Corollary 3.17. In a small neighborhood of f, the operator R: B B has an analytic finite-

dimensional unstable submanifold Wt tangent to the unstable direction of R.

We will show in Theorem 7.7 that Wvhas dimension 1.

Proof. Since R is compact, it has a finite-dimensional unstable direction.

[HPS, Corollary (5.4)] asserts that W exists as a C*-smooth submanifold. The
corollary is proven by showing that the graph transform on the space of submanifolds

in a sufficiently small cone-neighborhood of the unstable direction of R (i.e,
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“candidates” to W¥) has the unique fixed point Wu. In our analytic setup, the graph
transform iteratively applied to an analytic submanifold gives a sequence of analytic
submanifolds converging exponentially fast and uniformly to W (see the estimate on
p. 55 of [HPS]). Therefore, W is an analytic submanifold. An indifferent pacman is a
pacman with indifferent a-fixed point. The rotation number of an indifferent pacman

fis 8 € R/Z so that e(60) is the multiplier at a(f).
If, moreover, 8 € Q, then fis parabolic.
We denote by 6the multiplier of f.
Lemma 3.18. Let Ryim: R/Z = R/Z be the map defined by
6

1 —
if0< 0<3, (3.7) Romm (0) = {1;0 e 2 -1

(NI

if1;

6
see (A.2). Then there is a k = 1 such that the following holds. Let f € B be an indifferent
pacman with rotation number 0. Then Rf is again an indifferent pacman with rotation

number Rpm* (6).

, € —
In partlcular,R (6.) = 9*prm .
Proof. Recall that the renormalization R of fi is an extension of a sector

renormalization of/ | 7*; see Definition 3.5 and Appendix A. By Lemma A.2, a sector
renormalization is an iteration of the prime renormalization. Therefore, R is an
iteration of the prime pacman renormalization Rprm; see Definition 2.3. We need to
check that if fis an indifferent pacman with rotation number 8, then Rprmfis again an
indifferent pacman with rotation number Rprm(6). By continuity, it is sufficient to
assume that fis a parabolic pacman with rotation number p/q. The statement is clear
if the germ of fhas finite order. So assume that fhas a local attracting flower at a with
q petals. If p < q/2, then Rprm deletes p local attracting petals; otherwise Rprm deletes
g-p local attracting petals. We see that Rprmf has rotation number Rprm(p/q)-

Remark 3.19. We will show in [DL] thatR : B --+ 3 can be constructed so thatk is the
minimal period of 8 under Rprm.

4. Control of pullbacks

Let us fix the renormalization operator

R:B--+B,Rf. = f.

from Theorem 3.16 around a fixed Siegel pacman f. By Corollary 3.17 R has an
unstable manifoldV" at fi,
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4.1. Renormalization triangulations. Suppose that fo € B is renormalizable n = 0
times (this is always the case if fois sufficiently close to f) and antirenormalizable -m
> 0 times. We write [fi: Uxr— V] := RKfo for the kth (anti)renormalization of fo, where
m < k < n. We denote by yx: Sk— V the renormalization change of variables realizing

the renormalization of fi-1 (compare with the left side of Figure 21). We write
k= Pk-1.

Let us cut the dynamical plane of fk: Ux— V, with k € {m,..,n}, along y1; we denote

the resulting prepacman by

(4.1) Fr= (fir: Uge = V\ y1).
Y
Y1 = f(yo) /\ ¥ (yo)
S = P(1)
Yo

Figure 13. Suppose f{z) = Az with A € R4, and let S be the sector
between yoand y1= f{y0). Let i: S — C be the gluing map identifying
yo and y1 dynamically. If|Al /= 1, then ¥(yo) does not land at 0 at a
well-defined angle.

Lemma 4.1. By restricting R to a smaller neighborhood of f, the following is true.

Suppose fois renormalizable n = 1 times. Then the map

DPn:=@1° @2 ° =+ ° @n

admits a conformal extension from a neighborhood of ci(f:) (where ®y is defined
canonically) to V \ y1. The map ®n: V\ y1 > V embeds the prepacman Fn (4.1) to the
dynamical plane of fo; we denote the embedding by

RO = (10 0L 50

0 b, 0
= (f[gl” : Ur(n,.)— - SS”, fl§ " Ur(!.,—)4— - S-r(:n))

where the numbers anbn are the renormalization return times satisfying (A.4).

(0) (0)
Us.- andU-n,+,- see §2.3 and

Let Anbe the triangulation obtained by spreading around
Figure 7. In the dynamical plane of fowe have
ho:=TUp20 Db ---3 M,

A1(fo) is close in the Hausdorff topology to by (f+), and moreoverfo(bn) € by,
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We call Anthe nth renormalization triangulation. Examples of Ao, A1,Az are shown in
Figures 14 and 15. We say that An(fo) is the full lift of An-1(f1). Similarly (i.e., by lifting
and then spreading around), a full lift will be defined for other objects.

In the proof of Lemma 4.1 we need to deal with the fact that 1(y1) can spiral
around a; see Figure 13 for illustration. We will first show in Lemma 4.2 that Lemma
41 holds in a neighborhood of 9Z. . By the topological robustness of
antirenormalization (Theorem B.8), Lemma 4.1 holds also inside Z.

4.1.1. Combinatorics of triangles. Before giving the proof of Lemma 4.1, let us

introduce additional notation. For consistency, we set @ := id; then Ao = Up is a
triangulation consisting of two closed triangles—the closures of the connected
components of Uo \ (yoU y1). We denote these triangles by Ao(0) and Ao(1) so that
int(Ao(0)),yo,int(Ao(1)) have counterclockwise orientation around a; see Figure 14.
The triangulation Ao(f:) is defined similarly.

Let An(0,f0),An(1,f0) be the images of Ao(0,f1),A0(1,fz) via the map ®» from Lemma
4.1. By definition, As is a triangulated neighborhood of a obtained by spreading
around Ax(0,f0),Ax(1,f0). We enumerate in counterclockwise order these triangles as
An(i) with i € {0,1,..,qs—1}. By construction, A n(0)UAL (1) 3¢y (f).

We remark that fo | Ax is an antirenormalization of f.: Un — V in the sense of

Appendix A. Moreover, there is a pn»such that

(4.2) fo: An(f) = Au(i + pn)

is conformal for % {=Pn; —pn + 1} allwith the index taken modulo gn. For the
exceptional triangles, we have an almost two-to-one map

(43) f[}: Au(_pn) @] An(_pn + 1) — S((]”) :) AH((}) @] An(l)

We will show in Theorem 4.6 that if fois close to f, then b, =1; A, ("5) approximates
7+ dynamically and geometrically.
By construction, for every triangle An(i fo) there exist ¢t 2 0 and j € {0,1} such thata

certain branch of fo-*maps conformally An(ifo) to An(j,fo). We define Wnion An(i,fo) by
(4—4) Wyi= O,1 e fO_t: An(l,ﬁ)) 4 AO(],fn)
4.1.2. Walls. Let A be a closed annulus, and let O be the bounded component of C\A.

We say that 4 is a univalent N-wall if the restriction fo | OUA is univalent and for all z

€ O and all j with |j| < N we have
(fol OV A)(z) c OV A

More generally, we say that A is an N-wall if A contains a univalent N-wall A such that
0O is in the bounded component of c\ 4,

Licensed to Stony Brook Univ. Prepared on Fri Oct 6 12:49:18 EDT 2023 for download from IP 129.49.88.178.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



690 DZMITRY DUDKO, MIKHAIL LYUBICH, AND NIKITA SELINGER

Fix a small r > 0 and denote by Z} the open subdisk of Z bounded by the
equipotential at height r. Set Mo :=Uo\Z. It is a closed annulus enclosing a. We
decompose Ilo into two closed rectangles I1o(0) = IToNAo(0) and ITo(1) = IToNAo(1);
they are the closures of the connected components of Ilo \ (yo N y1). The following

lemma proves that the wall of An exists.

Lemma 4.2 (The wall of An). Suppose all fo fi,...fn are sufficiently close to f. Then there
exists a wall I1x(fo) with the following properties:

(1) The map ®nextends from a neighborhood of c1(fx) to ITo \ y1.
(2) LetIIx(0,f0) and Mx(1,fo) be the images of To(0,fn) and Io(1,fn) under ®n. Then,

by spreading around I1.(0,f0) and I1a(1,f1), we obtain an annulus I1. enclosing
a. We enumerate counterclockwise rectangles in I1n as In(i) with i € {0,1,....qn -
1}

(3) We havello 2 My 3 -+ 3 N, with To(f) close to Mo(fx),

(4) Forevery In(i), there is a t =2 0 such that a certain branch of fot maps Ia(i) onto

MIn(j) with j € {0,1}. Then
(4.5) Wni:= ®n-1 o fo-e: [n(i,fo) — Mo(j fn)

is conformal. If n is sufficiently big, then all the Wi expand the Euclidean metric
and the expanding constant is at least n" for a fixed n > 1. In particular, the
diameters of the rectangles in I1n tend to 0.

(5) Thewall Ix(fo) approximates?Z« in the following sense: 97+ is a concatenation

of arcs JoJ1 +++Jq—1 such that In(i) and Jiare close in the Hausdorff topology.

As in the case of renormalization triangulation, we say that I1x(fo) is the full lift of

Hn—l[fl).

Proof. The proof follows from the robustness of the renormalization change of

variables in a , ~ neighborhood of 7. . Such
f(]:fl :"'zfn va«

change of variables is eventually expanding.

Consider first the case. It follows from the improvement of the domain that the wall
M, (f,) is well defined and, moreover, the diameters of the rectangles in [I'In(f*) tend
to 0 as n increases. Choosing a sufficiently big k and applying the Schwarz lemma
(after a slight enlargement of the rectangles), we obtain that all the W
kit (i, fi) = Ho(J, f*) expand the Euclidean metric.

By continuity and the assumption that fofi,... f» are sufficiently close to f, the maps

Wit k(i,fs) = To(jifs+k) also expand the Euclidean metric. Decomposing Wh,i: I1a(i,fo) =
o(j,fn) into a composition of“?ij maps of the form Wx¢and one remaining map, we see
that Wh,i: In(i,fo) = Mo(j,fx) is a required expanding map. This implies claim (4); other

claims are consequences of claim (4).
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4.1.3. Proof of Lemma 4.1. We will now apply Theorem B.8 to show that the full lift
An(fo) of Ao(fn) exists.
Let@o C Zi be the closed annulus bounded by the equipotentials at heights r and

2r.Then Qo c Tloand we decompose Qo into two rectangles Qo(0) = HO(O)OQO and Qo(1)

= ITo(1)NQo. Let Qn(0,fo) and Qn(1,fo) be the images of Qo(0,fx) and Qo(1,f) under Pn.
By spreading around Q»(0,f0) and @n(1,f0), we obtain (by Lemma 4.2) an annulus @Qn
enclosing a. We enumerate counterclockwise rectangles in Qnas Qn(i) with i € {0,1,....qn
- 1}. We have Qx(i) < ().

Denote by Qn the open topological disk enclosed by Q.. Then fo | Qn UQn is an
antirenormalization of fi | Q-1 UQn-1 (in the sense of Appendix B) with respect to the
dividing pair of curves yo,y1.

By induction, we will now extend the wall IT, to the triangulation An. Suppose the
n—1)
statement is verified for n — 1. In the dynamical plane of fi, we denote by 7o the
(n—1)
lift of yo(fn) under the (n - 1)-antirenormalization specified so that 7o crosses Qn-1
at Qn-1(0) N @n-1(1). Note that Qn(0) U Qn(1) is in a small neighborhood of c1 because

. . ~n=1) . .
@, is contracting. Therefore, o NQn-1is uniformly close to yo N Qn-1. We can

slightly adjust yo in a neighborhood of Qn-1, such that the new?o" " crosses Qn-1at
_(n—1) . ~(n—=1) X
Q@n-1(0) N @n-1(1). Let™ and y1"ew be the images of o and yorev, respectively.
Since a wall contains a fence (see Remark B.11), by Theorem B.8 the
(n—1) _(n—1)

antirenormalization of fi | Q»-1 U Qn-1 with respect to 7o + T is naturally
conjugate to the corresponding antirenormalization of fi | Qn»-1UQn-1 with respect to
Adiew

/o :71new, Therefore, the full lift An(fo) of An-1(f1) exists; An(fo) is a required
triangulation of I, U Q.

By (3.6) combined with continuity, we have fo(A1) © Ao. Applying induction on n,
we obtainfo(Ant1) € Ay,

7O _ ( (0) . 70 S(m)
We can now define " ot Unt "

dynamical plane of fo, where

as the lift of Fx (see (4.1)) to the

Sn(@ ::fb (An(_pn) U An(_pn + 1))
(compare with (4.3)).

4.1.4. Changing y1. In fact, the exact behavior of y1in a small neighborhood of « is
irrelevant in the proof of Lemma 4.1. We have
Lemma 4.3. Let 70" 71" = [n(%) be a new pair of curves in the dynamical plane
of fasuch that

* W\ ZI =%\ Zlandn \ ZL =\ 2 and

¢ Yo"e¥ and y1"ev are disjoint away from a.

ew Jew

Then Lemma 4.1 still holds after replacing yo,y1 with 701", More precisely, let
AG0, ), G (1, fn) be the closures of the connected components of
Uo \ (00 UATY) in the dynamical plane of fn. As in Lemma 4.1 the map ®n
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extends from a neighborhood of ci(fa) to V \ yi"ew; let Arew, (0,f0), A%, (1,f0) be the
images ofAHQW(Oa fn): AGTY(L, fn) under the new ®n. By spreading around
Arew, (0,f0),Arew,  (1,fo) we obtain a new triangulated neighborhood A%, of a.

Note that Arew, and Antriangulate the same neighborhood of a.

Proof. Since y1"ew,yoev coincide with y1,y0 outside Z7, the wall I1, is unaffected; thus we

A~ TIeW

can repeat the proof of Lemma 4.1 for71

4.1.5. Siegel triangulations. We will also consider triangulations that are perturbations
of An. Let us introduce appropriate notation. Consider a pacman f € B. A Siegel
triangulation Ais a triangulated neighborhood of a consisting of closed triangles, each
with a vertex at , such that

« triangles of A are {A(7)}ie(0,..q enumerated counterclockwise around a so that
A(7) is attached to A(i - 1) (on the right) and to A(i + 1) (on the left); all other
pairs of triangles are disjoint away from a;
¢ thereisap >0 such that fmaps A(7) to A(i+p) for allp+1}, PE{—p,— while
fLA(=p-p +1)) N A=A(0,1);
¢ A has a distinguished 2-wall IT enclosing a and containing dA such that each
[1(7) := IT N A(i) is connected and f maps I1(i) to II(i + p) for all i {-», p+
1}; and
¢ II contains a univalent 2-wall Q such that each Q(i) := QNII(i) is connected and
fmaps Q(i) to Q(i + p) for alll & {—p.—p+ 1},
The nth renormalization triangulation is an example of a Siegel triangulation.
Similar to Lemma 4.2(5), we say that IT approximates?Z. if 9Z.is a concatenation
of arcs Jo/1+--Jq-1 such that I[1(7) and Jiare close in the Hausdorff topology.
Lemma 4.4. Let f € B be a pacman such that all £, Rf,..,R"f are in a small neighborhood
of f. Let A(R"f) be a Siegel triangulation in the dynamical plane of R"f such that TI(R"f)
approximatesOZ.. Then A(R"f) has a full lift A(f) which is again a Siegel triangulation.
Moreover, T1(f) also approximates9 7.

Proof. The proof is similar to the proof of Lemma 4.1. Suppose first n = 1. Since all
[1(i,Rf) are small, the arc yo can be slightly adjusted3in a neighborhood of

IT so that yo crosses IT along I1(;,Rf) N [1(i + 1,Rf) with? & {—P. =P + 1}, This allows us
to construct a full lift TI(f) of II(Rf). By Corollary B.14, the annuli I1(f) and Q(f) are
again 2-walls. Applying Theorem B.8 from Appendix B we construct a full lift A(f) of

3 The lift of the triangulation will depend on this adjustment.
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A(Rf). Lemma 4.2(4) allows us to apply induction on n: for big n, the wall TI(f)
approximates?Z. better than I1(R"f) approximates?Z..

Ao(0)

Ao(1) Ao(0)

Figure 14. Renormalization tiling. Right: triangles Ao(0),A0(1) are the
closures of the connected components of Ur\(yoUy1). They form a
renormalization tiling of level 0. Left: the triangles labeled by 0 and
1, i.e, A1(0,/) and Ai(1f), respectively, are antirenormalization
embeddings of Ao(0,f1),A0(1,f1); the forward orbit of A1(0,/),A1(1,f)
triangulates a neighborhood of a. Together with Ao(0) U Ao(1), this
gives a tiling of Urof level 1.

4.2. Renormalization tilings. In this subsection we will show the robustness of
renormalization triangulations. Along these lines we will also extend Ax(f) to a tiling
of Ur.

Let?0 be the preimage of 71 \ Uy under f: "yo — y'1; see Figure 14. In other words,
Y0 is the subcurve of “yo consisting of points that escape Urafter one iteration. Set I'(
f)=0Up UnG(f).

Lemma 4.5. For every i we have
W1,i(0A1(fo) N dA1(ifo)) < T'(f).

Moreover, there is an i such that 70 C Y1.i(9b1(fo) NOAL(Z, fo)), The set T(f) is disjoint
from Ao(f).
There are disjoint arcs fo and 1= f(Bo) such that
e the concatenation 0]’7’3 and Bo connects dAoto dA1; and

e Biconnects dAoto OA1

In a small neighborhood of fthe curves fo,[51can be chosen so that there is a holomorphic
motion of
(4.6) [A1 U0k UAg U Bo U B (fo)

that is equivariant with the following maps:

(1) fo: Bo(fo) = B1(fo);
(2) fo: Av(iy fo) = Av(i +p1, fo) fori & {—p1.—p1 + 1}
(3) Wyt 9b(fo) MAL(i, fo) = D(f1)-

;
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Proof. Each triangle A1(7) has three distinguished closed sides; we denote them by A(i),
p(D), andk(f) such that A(i) and p(i) are the left and right sides meeting at the a-fixed
point while(-’(i) is the side opposite to a. We have:

A(@)Ap(i + 1) is the symmetric difference between
O (fo) NN (i, fo)) = € U (M@)Ap(i + 1)) U (p(i) AN 1))
whereA(i) and p(i + 1). Note that w1,:(£(7)) C Obo and, moreover,U; Wy, (€(i)) = O,
Let us analyze A(#) Ap(i + 1). We assume that A(2) # pliy 1). Then one of the

curves in {A(1),p(i+1)} is a W-preimage of yo(f1) while the other is a preimage of y1(f1).
We have:
Wy (A0 Ap(i +1)) = 75,

Itis clear (see Appendix A) that A(E) # plis 1) for at least one i.
The property I'(f) N dA1(f) = @ follows from dAo N f{A1) = @; see Lemma 4.1. Since

T(AHNAA1(f) = @, we can find So such that¥o UBois in a small neighborhood of yo and
Y6 Y5 connects dAo to 0(A1\(A1(-p1)UA1(-p1-1))). Then S1 = f{fo) is disjoint from yo
U foand 1 connects dAo to dA1.

In a small neighborhood of fwe have a holomorphic motion of dAo(fo). Applying the
A-lemma, we obtain a holomorphic motion of the triangulation Ao that is equivariant
with fo | yo. Lifting this motion via W1, we obtain a holomorphic motion of A1 U T
equivariant with (2) and (3). Applying again the A-lemma, we extend the latter motion
to the motion of (4.6) that is also equivariant with (1).

Let Ao be the closed annulus between dAoand dA1. The arcs¥o U Fo. 51 split
Ao into two closed rectangles Ao(0),A0(1) (see Figure 14) enumerated such that int(
A0(0)),75 U Bo, int(Ao(1)), 51 have counterclockwise orientation.
Let Anbe the closed annulus between dA»and 0An+1. Define

An(0,f0) := ®n(A40(0,f2)) and An(1,fo) := Pn(Ao(1L,f1))
and spread An(0,f0),An(1,f0) dynamically (compare with the definition of Ax(i) in §4.1);
we obtain the partition of Axs(fo) by rectangles {An(ifo)}osi<y: enumerated
counterclockwise. Similar to (4.5) we define the map Wn,i: An(i,fo) = Ao(j,fn) with j €
{0,1}.

The nth renormalization tiling is the union of all the triangles of Asand the union of
all the rectangles of all A for all m < n. The nth renormalization tiling is defined as
long as fo,...,fnare in a small neighborhood of f.

A qc combinatorial pseudoconjugacy of level n between fo and fis a qc map
h: Uy — Ul that is compatible with the nth renormalization tilings as follows:

e hmaps Ad(ifo) to Anlt, f4) for all i

e h maps/l-m (i, fo) to Am(1, f*) foralliand m < n;

e his equivariant on Ax(ifo) for all ; an&¢+h isrequivarihnt on Am(ifo) for all.
i €~ pm, —pm +1 } and m<n
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The following theorem says that f | An(f) approximates both dynamically and

geometrically.

Theorem 4.6 (Combinatorial pseudoconjugacy). Consider an nth renormalizable
pacman f and set

d:= max dist(R'f. f.)
i€{0,1,....n} )

If d is sufficiently small, then there is a qc combinatorial pseudoconjugacy h of level n
between f and fand, moreover, the following properties hold. The qc dilatation and the
distance between h | An(f) and the identity on An(f) are bounded by constants K(d),M(d),
respectively, with K(d) = 1 and M(d) - 0 asd - 0.

Proof. By Lemma 4.5, the set (4.6) moves holomorphically with f in a small
neighborhood of f. Applying the A-lemma, we obtain a holomorphic motion t of the
first renormalization tiling with fin a small neighborhood of f..,

o

Figure 15. Renormalization tiling of level 2; tilings of smaller levels
are depicted on Figure 14. There are qz = 12 triangles in Az with
rotation number pz/qz = 5/12. Geometry of triangles in A2 is
simplified. The image of A2(8)UA2(9) is a sector slightly bigger than
A2(0) U A2(1); compare with Figure 7.
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Suppose now that d is so small that all f;:= Rif are in U. For every Axs(i) of foor of f
consider the map Whi: An(i) = Ao(j), where Ao(j) is the corresponding triangle of f, or
of f. Then h on Ax(i,fo) is defined by applying first
Woit An(ifo) = Ao(j.fr) (see (4.4)), then applying the motion T from Ao(jifn) *© Ao(J, fw),
and then applying gt Aol fo) = Aali. fo).

Similarly, for everyAm (i) of fo or of ficonsider the map Wmi: Am(i) = Ao(j), where
Ao(j) is the corresponding rectangle of fm or of f. Then h on Am(ifo) is defined by
applying first Wmi: Am(ifo) — Ao(jfm), then applying the motion 7 from
A (4: fo) to A (d, f*), and then applying ‘P?_nld‘ Ao, fo) = Anliy £,

Observe now that h is well defined for all the points on the boundaries of all the
rectangles and all the triangles because t is equivariant with (1), (2), (3) of Lemma
4.5. Therefore, all points have well-defined images under h.

The qc dilatation of h is bounded by the qc dilatation of 7 at fiwith i € {0,1,...,n}. This

bounds the qc dilatation of h by K(d) as above with K(d) - 1asd — 0.

If n = 1, then since 7 is continuous, the distance between h | A1(fo) and the identity
on Ai(fo) is bounded by M(d) as required. If n > 1, then A (fo) € Uo and the claim
follows from the compactness of qc maps with bounded dilatation.

Figure 16. If Djintersects S = A(0)JUA(1) and S is disjoint from A(I), then

Dj-1may intersect A\A(f1(I)) because f{A) = AUS.

Corollary 4.7. There is an € > 0 with the following property. Suppose that f € B is
infinitely renormalizable and that all R"f for n = 0 are in the e-neighborhood of f. Then
there is a qc map h: Uy = Us such that h-tisa conjugacy onZ..

Therefore, a certain restriction of f is a Siegel map and.f. '+ are hybrid conjugate on
neighborhoods of their Siegel disks.
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Proof. If ¢ is sufficiently small, then by Theorem 4.6, for every n = 0 there exists qc
combinatorial pseudoconjugacy hnof level n between fand fsuch that the dilation of
hnis uniformly bounded for all n. By compactness of qc maps, we may pass to the limit
and construct a qc map h: Uy = Us sych that h! is a conjugacy on Z, and

(f) € h™ *). It follows, in particular, that fis a Siegel map. By

Theorem 3.6, the maps./, [+ are hybrid conjugate on neighborhoods of their Siegel
disks.

4.3. Control of pullbacks. Recall from Lemma 4.1 that a;b. denote the closest
renormalization return times computed by (A.4). By definition, a, + bx = qu. We now
restrict our attention to f€ Wv,

Key Lemma 4.8. There is a small open topological disk D around®! (f+) and there is a
small neighborhood U C W" of [ such that the following property holds. For every
sufficiently big n = 1, for each t € {anbs}, and for all f € R-"(U), we have c1+(f) := f'(c1) €
D and D can be pulled back along the orbit c1(f),cz(f),...c1+(f) € D to a disk Do such that

f Do— D is a branched covering; moreover, Do C Uf\ y1.

Proof. The main idea of the proof is to block the forbidden part of the boundary dfbUy
from the backward orbit of D. The proof is split into short subsections. We start the
proof by introducing conventions and additional terminology. The central argument
will be presented in Claim 10(4).

4.3.1. The triangulated disk A approximatesi*. Throughout the proof we will often say
that a certain object is small if it has small size independently of n. Choose a big s =0
and choose a small neighborhood U ©of f. such that every f€ R-2(U) is at least m := n
+ s renormalizable and each fi:= Rif with i € {0,1,..,m} is close to f.

Consider the mth renormalization triangulation Am(i) of f. Let h be a qc
combinatorial pseudoconjugacy oflevel m as in Theorem 4.6. To keep notation simple,
we sometimes drop the subindex m and write A(7),A,q,p for Am(i),Am,qmpm.

Since fiwith i € {0,1,..,m} are close to f, the map h | A is close to the identity
(by Theorem 4.6). In particular, Af) =h! (A(f*)) approximates?w. Since s is big and
since a;b;have exponential growth with the same exponent (A.4), we have (4.7) t/qm
€ {an/qn+s,bn/qn+s} is arbitrary small.

4.3.2. Disks Prx > fHer ). For convenience, we will write €0 = C‘U(f*) and €1 =
ffl(f*). Let us show that!? 3 fl(‘—"l). Consider first the dynamical plane of f. Since n is

big, we see thatf&m (c1), £ ((’T) are arbitrarily close to; ie., D3 ff(“l). It follows
from (4.7) that

(4.8) min{ambm} — 1 > max{anbn} 2t

This shows that7: - - - /x(¢] 1) do not visit triangles A( —Pm> L) UA(=pm + 1, fi)as
it takes either am— 1 or bm - 1 iterations for a point in A(0: ) UAQ, f. ) to visit
them. Since h is a Con]ugacy away from A(-p) U A(-p + 1), we obtain that h-1 maps

61- cofiel) toer, S (flj Since h is close to the identity, f(c1) is close to
fHer); thus fHe) e D
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Let Do,Dy,...Di = D be the pullbacks of D along the orbit cy,..., f(c1) € D; ie,
De:=D > ft((fl) and D;is the connected component of f1(D;+1) containing fi(c1). Our
main objective is to show that the D:do not intersect dfbUy this will imply that the
maps f: Di— Di1are branched coverings for all i € {0,...,t-1}.

4.3.3. Sectors A(I) and A(I). An interval I of Z/qZ is a set of consecutive numbers i,i +
1,..,1 + j taken modulo q. We define the sector parametrized by I as

A(l) = Uier /—\(".). Furthermore, we let

(st "
0,1pp+1}=9, P In{ay£0 2 itrn
(4.9) Sam = p) pp+1 if,

[ \g-puoy- 0 {pp+1t£0.

In other words, we require that if I p contains one of p, p + 1, then it also contains
the other number; and similarly with the pair 0,1. By (4.2) and (4.3) the following
holds.

Claim 1. The preimage of A(I) under f| A is within A(f1(I)).
Unfortunately, we do not have the property that
if D;n A c A(I), then Dj-1nN A c A(F1(]))

because the image of A(-p) U A(-p + 1) is slightly bigger than A(0) U A(1); see (4.3).
To handle this issue, we will adjust A to a slightly smaller triangulated neighborhood
A such that

(4.10) A CSf(A) S Aforalli€{0,1,.., min{ambm}}.

Consider the dynamical plane of f = R™f and let Ao(0,fm) and Ao(1,fn) be the
closures of the connected components of fin~1(Un)\(y1 Uyo) attached to a such that
Ao(0,fm) < Ao(0,fm) and Ao(1,fm) € Ao(1,fm); see Figure 17. Writing Ao(fm) = Ao(0,fm) U
A1(1,fm) we obtain a shrunken version of Ao(fn). The map ®m» embeds Ao(0,fm) and

A1(1,fm) to the dynamical plane of fo; spreading
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SRRV
S

Figure 17. Right: Ao(0,fm) and Ao(1,fm) are shrunken versions of
Ao(0,fm) and Ao(1,fm). Left: by transferring Ao(0,fm) and Ao(1,fm) to
Am(0,f0) and Am(1,f0) by ®mo, and spreading these triangles
dynamically, we obtain the triangulated neighborhood Am of a such
that Amis a slightly shrunken version of Am; compare with Figures
14 and 15.

around the embedded triangles, we obtain a triangulated neighborhood A of a such
that (4.10) holds.
Let us also give a slightly different description of A. Recall (4.4) that Wm,imaps each

Am(ifo) conformally to some Ao(j,fm). Then A(7) = Am(ifo) © Am(ifo) is the preimage of
Ao(j,fm) under that map. We define

r= All) and A( I):U}A(i)

0<i<q

For the same reason as for Nf*), the triangulation Nf*) approximates7*. And since

h | Ais close to the identity, A(f) also approximates £ in the sense of Theorem 4.6.
For the same reason as for Claim 1, we have the following.

Claim 2. We have A(i) = A N A(i) for every i. The preimage of A(I) under f| A is within
AFHD)-

The following claim is a refinement of (4.10). This will help us to control the
intersections of Dk with A.

Claim 3. Let I be an interval. Consider z € A. If fi(z) € A(I) for i < min{ab}, then z €
AFD).
As a consequence, if T N A c A(]) for an interval  and a set T € V, then
fIT) N A cAF(D)
for all i < min{a,b}.
Proof. Since fi(z) € A(I), every preimage of fi(z) under the ith iterate of f| A is within

A(f1(1)) by Claim 1. By Claim 2, z € A(f(I)) n A < A(f(D).
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The second statement follows from the first because points in A do not escape A
under f for all i < min{a,b}; see (4.10).

4.3.4. Truncated sectors Sxand disks O% 2 D1 2 Di Let I; be the smallest interval
containing {0,1} such that A(I,f) © D;n A(f) for all fsubject to the condition of the Key
Lemma. Set I := f7(I). By Claim 3 we have Dkn A C

A(Ix).

Figure 18. The rectangle Skis an appropriate truncation of A(/x) such that
SkD DN A and Sk> (f| A)~1(Sk+1).

Recall that the intersection of each A( f+) with 7. is a closed sector of Z.bounded
by two closed internal rays of Z. Let us fix p > 1 which will be specified in §4.3.5 as a
certain period. Since D;is small, we obtain the following.

Claim 4. (1) All |Ix|/q are small. All A(lk, f+) have a small angle at the a-fixed point.
(2) Foreveryjs<t-3-p,the intervals I;lj:1,...,lj+p+3 are pairwise disjoint.

(3) Moreover, the intervals Io,1i,..., Ip+1 are disjoint from {-p,-p + 1}.

Proof- It is sufficient to prove the statement for f; the map h transfers the result to the
dynamical plane of f.

All A(%: f*) have comparable angles (see Lemma A.3): there are x <y independent
of n such that the angle of A(i) at a is between x/q and y/q.

Let y be the angle of A(l;) at a. The angle y is small because D = D; is small. By
definition of Ix= f1(Ix+1) (see (4.9)) the angle of A(lx+1) at a is bounded by the angle of
A(Ix) at a plus y/q. Therefore, the angle at a of every A(Ix) is bounded by y +(2+t)y/q,
where the number (2+t)y/q is still small by (4.7). We obtain that all A(Ix) have small
angles.

Since/« | 7 s an irrational rotation and |Ix|/q are small, we see that [;[j+1,..., Li+p+3

are disjoint. Since Io contains {0,1} we see that Io,1,..,Ip+1 do not intersect {-p,—p + 1}
< F().

Recall from §3 that the Siegel disk Z, of [ is foliated by equipotentials
parametrized by their heights ranging from 0 (the height of @) to 1 (the height of 0Z,).
We denote byZ: the open subdisk of Zbounded by the equipotential at height r.

Next we will construct a rectangle Skby truncating A(Ix) by a curve in
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h=1(Z;\ Z;7°) such that the family g, is backward invariant in the following
sense: SkD (f| A)1(Sk+1) forall k€ {0,1,..,t-1}; see Figure 18. Assume that r < 1 is close

to 1 and choose ¢ > 0 such that 1-r is much bigger than ¢. Consider an interval Ik for k

<t and consider i € Ix.

o If for all{ € {k.k+1.....t} we have ¢ T P({ — k) & {—P.—p + 1}, then
define
Si(i) = AG)\ h=Y (22,

e otherwise define
Si(i) = A(@) \ h=H(Z]79),
Setsk = UiEIk S"C(j). Since A(xs f+) has a small angle at a (see Claim 4) and the
truncation level r is close to 1, we have the following.

Claim 5. All Sxare small.

Claim 6. For every k < t, the preimage of Sk+1under f| A is within Sk.

Proof. By Claim 2 we only need to check that the truncation is respected by backward
dynamics. The proof is based on the fact that points in Sk pass at most once through
the critical sector A(-p)UA(—p+1) under the iteration of ff2,...,fk

The sector Sk consists of subsectors Sk(i), where? € I If i & {=p.—p + ]}, then
[ Sk(i) = Sk+1(1 + p)
is a homeomorphism. Suppose i € {-p, P+ 1}. Then Siy1(i+p) = A(i) \h~(Z])
because i+p,..,i+p(t-k) are disjoint from {-p,—p+1} by (4.8). On the other hand, by
definition of Sk,

Sk D hTH((A(=p, ) UA(=p+ 1, L)\ Z07°),
Since h is close to identity (see §4.3.1), the preimage of Sk+1(i + p) under f| A is within

Sk(i) € Sk.

We can assume that D;is so small that it does not intersect h~! (ZI'). ThenDin A C
Si; using Claims 3 and 6 we obtain DkN A C Sk.

Next let us inductively enlarge Dxas Dk 2 D% 2 Dk Set
Dt =D := Du

and define D« to be the connected component of f1(Dx+1) containing Dkx. We define D«
to be the filled-in D} Uint Sk; ie, Dk I8 D} Uint Sy, plus all of the bounded components
of C\ (D}, Uint Si).

Claim 7. For all k<t the intersection DiNA is connected and we haveSk =Dk M\, Proof.

The claim follows from Dk NA c Sk, Claim 6, and the definition of Dx.
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4.3.5. Bubble chains. Below we will separate the forbidden part of the boundary oftbUr
from all D;by external rays and bubble chains (see Figure 19). Recall from §3.1 that
for fa bubble chain is a sequence of iterated lifts of Z+; for fthe role of Z. will be
played by A.

Consider first the dynamical plane of f. Recall from Theorem 3.12 that the non-
escaping set K of fsislocally connected and that K has at most finitely many limbs
(and bubbles) with diameter at least ¢ for every € > 0. Let Zs and Z» be two bubbles

attached to Z* such that Zs and Zp are close to y- and y+, respectively. Let ff“be the
iterate of fsuch that /" (Za)= Z . Recall from
Definition 3.1 that y1, as well as yo, is a concatenation of an external ray and an internal

ray. We also recall from §3.6 that we normalized yo to pass through the critical value.
Therefore, the critical pointct*) is the landing point of two external rays R-,R:; we

denote by W the open wake of Z : the connected component of V \ (R- U R:)
contamng + Let Wgbe the univalent pullback of Wunder

Jrein(Za) = Z1, Then Wais the wake of Zoand we haveWa € W, By the Schwarz
lemma, the map./”* : Wa — W' has a unique fixed point; we call it x.

Ul‘r‘l: (._‘r*

Figure 19. Separation of df*Urfrom a. Disks A and A approximatez*

and Zi. Iterated lifts of A form periodic bubble chains Bx and By,
landing at periodic points x and y. Together with external rays Ry Ry
the bubble chains By By separate d™Urfrom the critical value. The
configuration is stable because of the stability of local dynamics at x

and y. Disks Dxmay intersect A but, by Claim 10, they do not intersect
B, U B, \ W.

Set Z2:= Zaand for | > 2 define Zi1to be the unique preimage of Z;under
fP«: Wy — W’ By the expansion of/+*: Wa = W' the Zshrink to x. We have
constructed the bubble chain Bx
(4.11) 71 =7, 75, Zs, ...
landing at x. Write px:= psand denote bme C B the subchain obtained by removing
7' in B,. Then pxis the minimal period of Bybecause/”" (B%) = Bu.
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Similarly, we define y to be the unique fixed point off¥*: Wy = W' 2 Wy and
Byto be the bubble chain landing at y. The minimal period of By is py. We have
gon — Py , ,

(4.12) B, = ['*(B})  and By = 1" (B,) ey 1y 22,
We denote by p the least common period of Bxand By. Let Rxand Rybe the external rays
landing at x, y.

Since fis close to f, by Lemma 2.6, periodic rays Ry Ry exist in the dynamical plane
of fand are close to the corresponding rays in the dynamical plane of f.

Set A to be the closure of the connected component of f1(A) \ A that has a non-
empty intersection with A. Then A is connected and

(4.13) AN C A(=p) UA(=ps 1) and/(N) C A,
We say that A is attached to A, or more specifically that A is attached to A(-p)U A(-p

+1).

-/ —_—
Observe also that A approximates Z . because A is close to Z+ and fis close to f.
A bubble of generation e + 1 > 1 for fis an f-lift of A. Fix a bigh! > 1.

We assume that the neighborhood U € W in the statement of Key Lemma 4.8 is

—
selected sufficiently small, depending in particular on M. Since A is close toZ+, the
map fis close to f, and dA N (A(0) U A(1)) is small, we obtain the following.

Claim 8. Every bubbleZs of [. of generation up to M is approximated by a bubble Asof
fsuch that

(1) Asisclose to Zsand f| Asis close tof« | Zs;
(2) if Zsis attached to Zy, then Asis attached to Ay; and
(3) ifZsis attached to Z, then Asis attached to A\ (A(0) U A(1))..

Using Claim 8, we approximate the bubbles Zxin Bx (see (4.11)) with k < M by the
corresponding bubbles Ax. We can assume that the remaining Zu+; are within the
linearization domain of x. Taking pullbacks within the linearization domain of x, we
construct the bubble chain Bx(f) landing at x as a sequence N =h,ho,. .. Similarly,
By(f) is constructed. The chains Bx UBy(f) are close toBs UBy(f*) in the following
sense: there are continuous maps

g1: B UB,(f) = By U By(.f*) and¥2: Ba U By(f.) = B, U By(f)

close to the identities. Equation (4.12) holds in the dynamical planes of f. Thus we
have constructed (RxU BxU B, U Ry)(f) that is close to (Rr' U B, UB, URy)(f.).

Assume that D is so small that it is disjoint from the forward orbit of RxU Ry. As a

consequence, we obtain the following.

Claim 9. All Dy are disjoint from RxU R,.

Proof. We proceed by induction on k € {tt-1,..,0}. Since D1 is disjoint from the

forward orbit of RxU Ry, so is Dk U irlt‘(SL:); the latter surrounds Dx.
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4.3.6. Control of Dx.

Claim 10. For all k € {0,1,...,t} the following hold:

(1) Drintersects Aif and only if [xD {-p,—p + 1}.

(2) IfDrintersects A, then
D NN C fH(Sk41)
is contained in a small neighborhood of co.
(3) If Drintersects N for k <t —1 thenk <t - 1 - p and Dys1, Dis,...
Die+p+1are disjoint from A.

(4) If Drintersects BxUB,, then the intersection is within A and, in particular, Ix D

{-p-p +1}. [0} = Dy
(5) D«is an open disk disjoint from 0fUy; in particular,is a branched covering (of
degree one or two) for k <t.
Proof. We proceed by induction. Suppose that all of the statements are proven for
moments {t..,.k + 2,k + 1}; let us prove them for k.
Iflio{-p, —P+1} then Dppy D Spp1(0) USpyi(1) 3 er (see §43.4). Since

Dyyq
N.  contains either Sk+i1(=1)orS (2), wesee that D' = f~'(Dpy1 4y )

intersects

Suppose IkN{-p,—p+1} = @. Then D«+1 does not contain c1. Hence every point in Dk+1
has at most one preimage under/ | % Since DisinA is connected, every preimage of
Dis1 N A under/ | Dj isin A, By (4.13), Dx has empty intersection with A. Since
D}, U Skdoes not surround N, we also obtain Dk N A = (), This proves part (1).
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Figure 20. Illustration to the proof of Claim 10, part (4), in case px=
3. Suppose that f2 maps the bubble hs (in B;) to N and suppose
that DkNA2 7 0, Let Ay be the lift of f{Az2) attached to A.

Since f{Az) is attached t05k+1 = D+1 1A and since Dis1 USk+1 does
not surround the critical value, we obtain that the pullback of f{Az)

along [+ D) — Dkyiis attached to Sk, contradicting
DrNhg # 0,

Part (2) follows from Dx+1 N A C Sk+1 (see Claim 7), the definition of Dy, and the fact
that Sk+11s a small neighborhood of c1; see Claim 5.

Part (3) follows from part (1) combined with Claim 4 (part (2)).
Let us now prove part (4); see Figure 20 for illustration. By continuity, part (4)
holds for k € {t,..,t-p}. Below we assume that k < t—p. Assume that part (4)

N(B \A') #0; the case ® N (B \A") #0

does not hold; let D« B, = (W =M, has hs, .. ), X
y is similar. Write

where Aiis a bubble attached to Ai-1. Then there is a Aiwith i > 2 such that
Dk N A:‘. # m

We assume that+i = 2 is minimal and we claim that i = 2. Recall from §4.3.5 that f’ maps

Aj+1 to Aj, where px < p is the minimal period of x. Suppose i > 2 and consider
(i) _ i
B:" = Ui N since Dr N BY # 0and (Dk Y Sk) N

()
Rx = @ (the latter follows from Claim 9), we obtain that Dr N By’ # @; hence
i (i—1
Dk+1 N f(B'E:)) # 0, Applying induction we obtain Dk+p. BV = Digp. N

fre (B:E:”) # ®, contradicting the induction assumption that part (4) holds for k+px.
Consider the bubbles

By Claim 8, part (3), they are attached to A \ (A(0) U A(1)). Observe that

Dui+px intersects A. Indeed, since 9?« U Sk is disjoint from Ry, the disk Dy intersects
B, = U_fgg Ar’; hence Dk+1 1N f(B) # 0). Applying induction we obtain
D #+pe N B = Digp, N f7(B}) # 0 Therefore, D #+r. A # ¥ because Diep is
disjoint from B by the induction assumption that part (4) holds for k + px.

Since Dk+p. intersects A e haye Th+p. 2 {—p,—p+1} Therefore, each fi(Az2)
with j € {1,..., px} is attached to Sk+; C Di+;. Moreover, every point in Dxs+jhas at most one

for j € {1,

/
preimage underf | Dletj—1 cs e} because

Dk+jN A C Sk+jdoes not contain ci.
Let /2 be the lift of f{Az) attached to Sk. We note that Ny # Do gndf (o) # N
(by (4.12)). Recall that every point in D«+1 has at most one preimage under I 1Dk we
claim that the lift of f{DxN Az) under/ | @7 15 in Ay and not in Ax.
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Indeed, since Dk+1 U f{Az) neither contains nor surrounds the critical value, the lift of
f(DkNA2) under/ | @} agrees with the lift of f{Dx NAz2) under/ | 2%, This proves part
(4).

By part (2) Dk+11is disjoint from 0fftUrbecause Dk+1 can intersect BxU Byonly in a

small neighborhood of co. Therefore, f:®% = Dr+1is a branched covering.

This shows f: Do — D;is a branched covering. Observe next that Do nA c Sois a

small neighborhood of c1 that is disjoint from y1. We can easily separate Do \A from
y1\A using A and finitely many backward iterated lifts of Bx UBy URxUR,.

This finishes the proof of the Key Lemma.

5. Maximal prepacmen
Letg : X — Y be a holomorphic map between Riemann surfaces. Recall that g is
e proper, if g-1(K) is compact for each compact KC Y;
e o-proper (see [McM2, §8]) if each component of g-1(K) is compact for each
compact K c Y ; or equivalently if X and Y can be expressed as increasing
unions of subsurfaces X;, Yisuch that g : Xi— Yiis proper.

A proper map is clearly o-proper.
A prepacman F = (f-,f.) of a pacman fis called maximal if both f- and f. extend to o-

proper maps f-: X- —» C and f.: : X+ = C. We will usually normalize

-1(critical value), where yris a quotient map from F to f; F such
that 0 = Yr
see §2.3. Under this assumption F is defined uniquely up to rescaling.
Theorem 5.1 (Existence of maximal prepacmen). Every f € W sufficiently close to f

has a maximal prepacman F that depends analytically on f.

A refined statement will be proven as Theorem 5.5. The analytic dependence
means that the restriction of a map to a disk compactly contained in the domain
depends analytically on f in the associated Banach space. Note that analytic
dependence is sufficient to check for one-parameter families. In the proof, we will
show that F is obtained from fby an analytic change of variables.

5.1. Linearization of y)-coordinates. Consider again [fo: Uo— V'] € Wt close to f. By
definition of W¢, the map fo can be antirenormalized infinitely many times. We define

the tower of antirenormalizations as

t(fo) = (Fi)xeo.
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[7 = Uz
/ S-2
Zo Uz
S-1
Zo Uz
So
Figure 21. Left: each pacman fi* embeds as a prepacman to the
dynamical plane of /"1 via @*i. Right: sectors Si* after linearization
of ip-coordinates. Note that Si* can intersect 7T in a small
neighborhood of a* = Ti(a).
(k—1)

(k—1)
Each frembeds to the dynamical plane of fi-1as a prepacmanFA: such that Fox
are iterates of fk-1.

Let us specify the following translation:

Tk: z - z - c1(fx).

Let us now translate each fi so that ci(fk) = 0. We mark the translated objects with “s”.
For k<0, set
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@k(z) := Tk-1 ° @k ° Tk-1
sothat  9%(0) = 0. Similarly, definelUs = Tk(Uk) andVy" = TA‘-(V), and conjugate
—_ k) .
all frand allf = £y, by Tk; the resulting maps are denoted by fR=UR = Vidand by
Fie = (fice + 1 Uk + = Ske).

We also writeVT (k) == Tk (”fl). The tower (Fk*)kso is illustrated on Figure 21. Denote
by

||
Z..
Ho 2= '*( (f*)) = ('*) (O)e Ha < 1,

the self-similarity coefficient of

Lemma 5.2 (Linearization). For every fo € Wt sufficiently close to f, the limit

hy(z) = h§, = lim —
(5.1) i=—00 Ih%

is a univalent map on a certain neighborhood of 0 (independent on fo).

We remark that the linearization is normalized in such a way that (}35)!(0) = ljf
Jo=fa
Proof. The proof follows from a standard linearization argument. Write ¢*i (z) = piz +
0(z2); since ¢ritends exponentially fast to ¢*« we see that y;tends exponentially fast

to u and that the constant in the error term does not depend on i. For

z in a small neighborhood of 0, we have

|¢541 00 d5(2)] < C(lpe| +¢ )ilz|
C and £ > 0 such that |p,| + 2 <
for some constants 1. Write
PO (z) 1= She1 0 0 BBC)
fx
Then
hli=1(z ¢ (¢, 0 08(z I . .
&) _ 4 (:.Jrl }l.l( ) _ powns +0 (874100 ¢5(2))
(2) Ha®Pyy o0 Of(2) o

tends exponentially fast to 1 in some neighborhood of 0. This implies that h()(z)

converges to a univalent map in some neighborhood of 0.

Let us write h*i = hs We will use bold symbols for objects in the linearizing
coordinates. By construction (5.1), the maps h*;satisfy the linearization equation (see
Figure 21)

(5.2) hi_yo¢} = [z = puz]ohf,

Fori<0, set

(5.3) R (2) =, B3 (2),
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It follows from (5.2) that

(5.4) hi(z) = b2, (98(2)) = - = b (dfp1 0+ 0 853(2)),

We will usually use “#” to mark linearized objects rescaled by e

Lemma 5.3 (Extension of hd). Under the above assumptions hi extends to a univalent
mapht: int(V* \71) = C

Proof. By Lemma 4.1 the map¢5:_1 ©--- 0 ¢fextends to a conformal map defined on
int[Vn' \”:’f). Since®’—1 2" °9{is contracting, for every?® € int (Ve \"J’f) there is an i
<Osuchthat®i-10-° 5'35(2) is within a neighborhood of 0 where h*;is defined (this
is easily true it/o = J2; applying Theorem 4.6 we obtain this property for allf(T).
Therefore, (5.4) extends/0 dynamically to int(Vn' \ )

S, =h? (V'\ Fe by h#
We set ). Let us now conjugate every map W s we define
#o o e (} #)*
F¥ kOFE O\ ) We construct the tower in the linearizing coordinates
Fo)= (F}) _ = (. Ul, —sf)
(5.5) t#( 0) k¥ Jk<o kot kit k<0,
where
(5.6) int(sf) = hi (VE\1) = h.!. o Ty (Vi \ fl

and other objects marked by “#” are similarly defined.
The next lemma follows from (A.4).

Lemma 5.4. There are numbers mi,1,ma,2,mz,1,m2,2 such that for k < 0 we have
# # \ma
— (f )ml‘l O(fk!_l_)ml'z’f
(f# )mzm o (f’f+)rr?2.2

i
fle+1,—

#
k+14 =

Note also that

#:I: fkt(ﬁ ) 1 k

k
(5.7) " fi

5.2. Global extension of prepacmen in Wu Using Key Lemma 4.8 we deduce the
following.

Theorem 5.5 (Existence of a maximal prepacman). If fo € W is sufficiently close to f,
then every pair Fjéé - (fﬁi) in the tower t#(Fo) (see (5.5)) extends to o-proper
branched coverings

fiu#2: X#kr — C,

where X#+ are open connected subsets of C.

Note that the case./o = [ follows from [McM2, Theorem 8.1].

Proof. Let
Fo=(fo+: Ug+— S:=V\ (y1U 0))
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be a commuting pair obtained from\ Fo= (fo,+: Uo+ — V-+1\(y01)) fromby removing
alo:. By small neighborhood O of a from V y1and by removing fo

Lemma 4.1 the map @«-1 ° -+ ° o embeds Fo to the dynamical plane of fk as a

commuting pair denoted by
58) = () i ol - el

: : - o : vy ue® 5
Since @k is contracting at the critical value, the diameter of ~0.—~ >0+ 0

c1(fx) tends to 0. By Key Lemma 4.8, for a sufficiently big k < 0 there is a small open

topological disk D around the critical value of fi such that the pair (5.8) extends into a

pair of commuting

FM = (f,:""‘,f:”") Wy Hf’f) — D, branched coverings

WS UWH UD v\
(5.9)
with
Conjugating (5.9) by hf © Tk we obtain the commuting pair
(fo—.fos): W W - DE

Since for a sufficiently big t and all m < 0 the modulus of the annulus D(m-9\ D(m) s

. ny D) — .
uniformly bounded from 0 we obtain‘/x«0 C. Setting
13 e
0, = U w 0+ = U W(;)
(5.10) X k<0 , X n<0
we obtain# o-proper maps fo:: Xo+ = C, where Xo+ are connected. Similarly,

(fk+) extends to a pair of o-proper maps.

6. Maximal parabolic prepacmen

Since the multiplier of the a-fixed point is expanded underR at f*(by Lemma 3.18),
we can consider a parabolic pacman fo € W close to fsuch that Theorem 5.5

applies forRrfofwitho. As in” < §05and bywe denote byF#, the rescaled version ofF, =

(f»,+) the maximal prepacmen ofF so that Fois an f, = iteration of F¥#,; see Lemma 5.4.

6.1. The post-critical set of a maximal prepacman. The forward orbit of z € C
under Fris

Orbz(Fn) = {fn,s— ° fn,r+(Z) | S,r= 0},

we do not require that f,5- ° f,7+(z) is defined for all pairs s,r. A finite orbit of z is orb
SUF,) = {f5 _ofl (2)|s.re{0,1,....q}}
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Similarly, orbz(F#») and orb=;9(F#) are defined. Since Fois an iteration of F»*, there is
a k>1 such that
orb 1(Fp) C orl)q (F#)

foralln<0andze€C.

An orbit path of Fmis a sequence xo,x1,..,.xn such that either#, an orbit path ofxi+1 =
fFm,0-(is axi)

or Xi+1 = fm+(xi). Since Fois an iteration of F» “suborbit” path of F#y.
Let us denote by
C(Fy):={z€C| f,f,ﬁ(z) ~0or f' L(2) = D}k,
the set of critical points of Fk, its post critical set is

= J oot (C(Fy)

n+m>0
n,m>0

Similarly P(F#»n) is defined. Clearly,
P(Fo) C P (F}) = pi P(Fy)
Recall that 0 is a critical value of F#, for all n < 0; we denote by o*»the critical point
of F*#; such that o*; is identified with the critical point co(f:) under the

homeomorphism intsi =V'\ 71; see (5.6).

Lemma 6.1 (Every critical orbit “passes” through 0). For any critical point xo of fo, with

L € {~,+} the following holds. For all sufficiently big n < 0 there is an orbit path of F#y

(6.1) X0,X1,X2,...,xk; Xi = fnj# (1) (Xi-1)

such that
o fo.="fnju (k) o fnj# (-1) © -+ ° fnj# (1), in particular xi = fo,(xo0);
e xi=o#nand xi+1= 0 for some i.

Therefore,

P(Fy) C U orhg (F

n<0

Proof. Clearly, the second statement follows from the first. We will use notation from
the proof of Theorem 5.5. Suppose for definiteness = “~". Recall (5.10) that

bomf (n) 0. = Uneo W (j); thus 2o € W for

GRS o | W
w™)  somen <0.The map f (m)  is conformally
conjugate to(see (5.9)) after identifying W with -

. This shows that xo,fo,-(x0) is within an actual orbit x¢,x3,...,xx of
(£7.: UF L 8H)

T
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which is a prepacman of f,. We deduce that one of x;is o*»and xi+1 = 0.

6.2. Global attracting basin of a parabolic pacman. Since fo+ : Domfo+ — C are o-

proper commuting maps with maximal domain we have
(6.2) Dom(fo,- ° fo+) = Dom(fo+ ° fo-) € DomFo:= Domfo- N Domfo,+.

Note that for every q = 1 we have fd /=1id in any small neighborhood of a(fo)
because, otherwise, considering a lift f(g-— off ;. of [ we would obtain fJ-— Ofﬁq,+ =id
in C which is impossible. Therefore, there is a small open attracting parabolic flower
Ho around the a-fixed point of fo. Each petal of Holands at a at a well-defined angle.
Assume Hois small enough so that Ho < V' \ y1, possibly up to a slight rotation of y1. By
Lemma 4.3 the flower Ho lifts to the dynamical plane of Fo via the identification
VA = intSo; we denote by Ho the lift.

Let e (Po/d0) /=1 be the multiplier of the a-fixed point of fo. Since fo is close to f,
we have qo> 1. By replacing Howith its subflower we can assume that there are exactly
qo connected components of Ho with combinatorial rotation number po/qo. We

. 0 1 qo—1
enumerate them counterclockwise aso: Ho,---» Hy" Then fo maps

i i+po
H§ to Hy"™ we will show in Corollary 6.4 that Hois in fact unique; i.e., fohas exactly
qo attracting directions at a. Denote by Hio the lift ofHo to the dynamical plane of Fo.

Lemma 6.2. There aret,s = 1 withr + s = qosuch that
f.— o £ (Hj) € Hj
a b

The set Hois in Dom(f0.— © f0.+) for all a,b = 0.

It will follow from Proposition 6.5 that fo.— © 6.+ Ho = Ho 5 the first return
map.
Proof. We have fo° (Hy) € H, Cutting the prepacman foalong y1 we see that there are
r,s 21 withr +s =qosuch thatff§=f o fo(Ho) C Ho, This implies the first claim. As a

tj 5
consequence, Hois in Dom(fo.— © *0.:+4) for all j > 0. Combined with (6.2), we obtain the
second claim.

of

a b
As a consequence, all of the branches of fo.— ~ "0+ with a,b € Z are well defined for

points in Ho. Set
n= U ()" o (for) (Ho)

a,beZ

to be the full orbit of Ho. Since fo,-, fo~ commute and Ho is forward invariant under f

0.— © ff?-+, the set His an open fully invariant subset of C within Domfo,- N Domfo,+. We
call H the global attracting basin of the a-fixed point.

A connected component H of H is periodic if there are s,r € Nso such that f

o ofg (H) = H' 5 pair (s,r) is called a period of H. We will show in Corollary 6.6

that there is no component H of H such that fo.— (H) = H or f.+ (H) =H' for some
r>0.
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By Lemma 6.2, the components of H intersecting Hoare (1,s)-periodic. Observe next

that for any periodic component Hand any component H of H there are a,b = 1 with f
: / _
0o fOJ,+ (H") = H’; i.e, Hand H are dynamically related. Indeed, by definition there

a’ b 5t et
are @', b’ €7 such that a certain branch of fo.— © fo.+ maps Hto H. Applying f0.— fo+
with * >>1, we obtain the required a,b = 1. As a consequence, all the periodic
components have the same periods; in particular they are (r,s)-periodic.

. . . . qo . 770 0 .
6.3. Attracting Fatou coordinates. It is classical that Jo" s Hy = Hy admits

. . . .o
attracting Fatou coordinates: a univalent mapf v+ Hy =€ such that
o ho fi*(2) = h(z) +1; and
e thereis an L > 1 such that

(63) h(H) > {= € € | Re(2) > L}

There is a unique dynamical extension h: Ho— C such that
(6.4) h ° fo(z) =h(z) + 1/qo.
Lifting h to the dynamical plane of Fo we obtain h: Ho— C.

Lemma 6.3 (Fatou coordinates of H). The map h: Ho — C extends uniquely to a map h:

H - C satisfying

(6.5) h - fo:(2) = h(z) + 1/q0

for any choice of “+”. For every component H of H, the map hl H' is T -proper. The
singular values of h are exactly the h-images of the critical points of Fo and their iterated
preimages.

Moreover, components of Ho are in different components of H. The set H is a proper
subset of C. By postcomposing h with a translation we can assume that

(6.6) h(0) = 0.

Figure 22. A parabolic pacman fo with rotation number 1/3 embeds
as a prepacman into the dynamical plane of a parabolic
pacfman=f-fi2 with rotation number 3. /8. We have fo- = f-31 and
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714 DZMITRY DUDKO, MIKHAIL LYUBICH, AND NIKITA SELINGER

Proof. On Hoequation (6.5) is just a lift of(6.4). Applying fo- +! and using commutativity
of fo,-,fo,+, we obtain a unique extension of h to H such that (6.5) holds.

Since fo - fo,+ are o-proper maps, so is h | H. Indeed, suppose that Hc H is a periodic
component intersecting Ho; the other cases follow by applying a certain branch of f

a

b
0,— © fo.+, where a,b € Z. Recall from Lemma 6.2 that His (1,s)periodic. Consider a
compact set K c C. We denote by K a connected component of the preimage of K under

hl H' Then fora sufficiently big ¢ 1, we have Re(K + i) > Land K2 "~ fi_ o f5 (K
) intersects Ho, where L is a constant from (6.3). Then K2 € Hoand Kz is compact as a

connected component of the preimage of K + i under h | H' MY, We obtain that K

—ri — 51 ri 51 3
CHhZofl (K?) is compact because fo.— © 0+ 13 7_proper. This also shows that

singular values of h are the h-images of either critical points of Fo or their iterated
preimages. (We recall a o-proper map has no asymptotic values.)

Let H¥ and HYo be two different components of Ho, and let H*and H”be the periodic

components of H containing H¥ and Ho. Since all points in H*and H” escape eventually
; t 5 .
to Hi and Hvo under the iteration of f0.— °fi + we have H* # HY,

As a consequence H=  C. The claim concerning (6.6) is immediate.

From now on we assume that (6.6) holds. Denote by Hrer c H the union of periodic
components of H.

Corollary 6.4 (Critical point). The set Hrer contains P(Fo) and at least one critical point.
In particular, 0 € Hrer, All the critical points of Fo are within H. In the dynamical plane
of fo the flower Ho is unique: fo has exactly qo attracting directions at a cyclically

permuted by fo.

Proof. Since h: Hrer — C is not a covering map, Hper contains at least one critical point
of Fo. Since Hreris forward invariant, Hrer contains o#; for all sufficiently big n < 0; see
Lemma 6.1. Therefore, Hrer contains all of the critical values of Fo. Since H is fully

invariant, it contains all of the critical points. As a consequence, Ho
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£,

0,-

fO, +

fo, +

Figure 23. The maximal prepacman Fo = (fo,+) of a parabolic pacman
fo with rotation number 1/3; see Figure 22. The map fo- shifts
periodic components of H to the left while fo .+ shifts the periodic

components of H to the right. We have f,- = f,2-1- °

andfn-1f+0,and+fn2+in Figure 22).= fn-1,- * fo-1,+ for all n (obtained fromJfo.— = fi
=fi

is unique because the global attracting basin of another flower would also contain 0.

6.4. Dynamics of periodic components. It follows from Lemma 6.2 that
n= U () o (£7,)" (Ho)

a,beZ

for all n < 0. It is also clear that Hreris the union of F#, -periodic components.

Let Hnbe a small parabolic attracting flower of f, admitting a lift to the dynamical
plane of F#,; we denote this lift by H#, — Hn.. We denote by pn/qnthe combinatorial
rotation number of fn.

Let In be an index set enumerating clockwise the connected components of Hx
starting with the component closest to y1. Since H,embeds naturally to the dynamical
plane of fao-1 (see Figure 22), we have a natural embedding of I» to
In-1.

Let us write

Io={-ao,—ao+ 1,..,bo— 1,bo}

with ao,bo > 0 and ao +bo +1 = qo. The component of Ho indexed by i+1 follows in
clockwise order the component of Hoindexed by i. Then fo maps the component of Ho
indexed by i to the component of Hoindexed by either i — poori + qo- podepending on

whether i - po 2 -ao.
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For every n < 0, choose a parameterization In= {~an—an+ 1,..,bn— 1,bn} so that the

natural embedding of I to In-1is viewed as In C In-1. Set -0 :=

UnSO I” - Z
Recall (see §6.2) that a connected component H of H is periodic if f

5 r ! — !
0,-° f0-+(H )=H for some s,r € N>o.

Proposition 6.5 (Parameterization of Hrer). The connected components of Hrer are
uniquely enumerated as (HY)iez so that for every sufficiently big n < 0 the component
Hi contains the image of the component of Hn indexed by i under H, ~=Hs#, c Hper,

The actions of f,*+ on (H)iez are given (up to interchanging fn*- and fa*+) by
(6.7) fn#-(Hi) = (Hi-pr) and fn#+(Hi) = Hi+qn-pn.

Moreover, by re-enumerating components of Howe can assume that H° contains 0.
Proof. By construction, /—oc == Z enumerates all of the periodic components of H
intersectingUnS0 Hf with actions given by (6.7). SinceUfezH" is forward invariant
and since every periodic component is in the forward orbit of HO (see §6.2), we obtain
U-ieZHf = Hrer. We can re-enumerate (H?)iez in a unique way so that

H’ 5 0.
) r (Hn’) — HI
Corollary 6.6. There is no component H of H such that f0.— or f
0.4 (H') = Hlfor somer > 0.
Proof. Suppose the converse and consider such H, say ﬂg-f(H’) = H Choosea,b e Z
a b
such that a certain branch of fo.— © 0.+ maps Hto HC. Recall that (1,s) is a period of HO.
a b T 3
By postcomposing f0.— © f3 + with an iterate of f9.— © f0.+ we can assume that abz=0.
T a b
It now follows from Proposition 6.5 that applying first f0.- ‘H and then f0.— © 0.4 is

b !
ofg . | H

different from applying 0. and then fo"-. This is a contradiction.

Corollary 6.7. For a,b,cd= 0 andn <0,

CARICANUEI A RGN0
ifand only ifa = ¢ and b = d.

a b _ g d
Proof. 1t is sufficient to prove it for n = 0. Suppose f0.- ofy 1 (0) = f5_ of§ (0). It
follows from (6.5) that a+b = c+d. If (a,b) is not equal to (¢,d), then fo2- - fo?.(0), f (0)

c 5 fa‘.
0,= 770+ g are in different connected components of Hyer; see (6.7). Therefore,

a=cand=.
6.5. Valuable flowers of parabolic pacmen. This subsection is a preparation for
proving the Scaling Theorem (§8); it will not be used in proving the Hyperbolicity
Theorem (§7).
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Definition 6.8 (Valuable flowers). Let fbe a parabolic pacman with rotation number
p/q- A valuable flower (see Figure 26) is an open forward invariant set H such that

(A) HU{a(f)} is connected;

(B) H has q connected components HOH?Y,..,H%-1, called petals, enumerated
counterclockwise at @; every H'is an open topological disk with a single
access to @;

(C) fH) c H;
(D) all of the points in H are attracted by «; (E) H-P contains the critical point of f.
We remark that a local flower (see §6.2) satisfies (A)-(D).
We say a Siegel triangulation (see §4.1.5) A respects a flower H if every petal of H
is within a triangle of A.
Theorem 6.9 (Parabolic valuable flowers). Let fo € W be a parabolic pacman. Then
for all sufficiently bign < 0 the pacman fn = Rfo has a valuable flower Hn and a Siegel
triangulation A(fx) respecting Hnsuch that:
e A(fy) has a wall TI(f,) approximatingOZ.; e A(fy-1)
and Hn-1are full lifts of A(fx) and Ha.

Moreover, for a given closed disk D c HO the flower Hawithn < 0 can be constructed
in such a way that D projects via int(S7) =V \m (see {5'6)) to a subset of HOy.

Proof. Let us recall (see §6.2) that a local flower Ho was chosen sufficiently small such
that Hoc V' \ y3, possibly up to a slight rotation of y1in a small neighborhood of a. We
denote by Arewg the triangulation obtained from Ao by this slight adjustment of y1. By
Lemma 4.3, the triangulation< Arewp admits a full liftrew, the flowerArew-n to the
dynamical plane of f; for all n 0. Since Hois respected by Ao

Ho also admits a full lift Hn to the dynamical plane of fa such that Hx is respected by

Anew-p.

6.5.1. Valuable petals. Recall that pn/qn denotes the rotation number of fi. A valuable
petal Hin of fnis an open connected set attached to a such that

. fr¥extends analytically from a neighborhood of « to f;%: Hi, —
Hin (in particular, Hin is fa9-invariant);

. fn%: Hin > Hin has a critical point; and all points in H/ are
attracted to o under f4.

° n nn
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Claim 1. Forn < 0the map fu has a valuable petal H°, containing the critical value 0
such that H% = H,® U D, where Hx?is a petal of Hnand D is a small neighborhood of c1
containing the projection of D via (5.6). Moreover, there is an M > 0 such that f,9M(H0,)
C Hn

Proof. In the dynamical plane of Fo consider the petal H” 2 0. Recall from §6.4 that H*,
denotes the lift of Hxto the dynamical plane of Fi. Ifn <pis sufficiently big, then H°

contains a unique connected component of H#,, call it (H#,)?. Note also that (H#,)°=
(H*m)O for all sufficiently big?, " < 0; see Proposition 6.5.
Enlarge D to a bigger closed disk D ¢ Hsuch that

. (H*2)0U D is forward invariant under the first return map f

0. of54 (see Lemma 6.2); and
o 5 off, (Hf)’UD)>0._

Since D is compact, we have D c S#; for all sufficiently big 7 <0. For such n we can
project D to the dynamical plane of f; we denote this projection by

D > e1, By construction,” D U Hp0 is fyd-invariant: fu% : H,® - H,® has an analytic
extension to fn?: DUHn® — DUH. For 1 €0, the disk D is a small neighborhood of c.

For n <0, we enumerate petals of H, counterclockwise so that H.° € H%. Choose a
big K (we will specify K in §6.5.3). For k € {0,1,..., K} we define Dk to be the image of Do
= D under fik, and for k € {-:K,—-K +1,..,—1} we define Dk to be the lift of Do along the

orbit of fik: Hi? ¥ — Hn0. Then

(68) Hprk := Hnpnk U Dk n
is a valuable petal extending Hn for all k € {-K,..,K}. For n <0, all HPx"*are in a small
neighborhood of Z..

6.5.2. Walls respecting Hn. Set N := M + 3, where M is defined in Claim 1. Let us consider
the dynamical plane of fo. In a small neighborhood of @ we can choose a univalent (N
+ 1)qo-wall Ao respecting Hoin the following way:

(a) aisin the bounded component Oo of C \ Ao while the critical point and the

critical value of fo are in the unbounded component of C \ Ao;

(b) each petalH(% intersects Aoat a connected set; and by enlarging Ho, we can also

guarantee

(c) Hocontains all z € Ao U Oo with forward orbits in Ao U Oo.

We can also assume that the intersection of Ao with each triangle of Arewsis a closed
topological rectangle. Lifting these rectangles to the dynamical plane of f, and
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spreading around them, we obtain a full lift An of Ao. Then Axis a univalent Nqn.-wall
(see Lemma B.13) enclosing an open topological disk(’» > < such that Anrespects Hy
as above (see (a)-(c)). Naturally, Ax consists of closed topological rectangles: each
rectangle is in a certain triangle of Arew,.

Claim 2. For n < 0, the wall A» approximates 9%+ (compare to Lemma 4.2, part
(5)): 0Z. s q concatenation of arcs JoJ1+++Jm-15such that Jiis close to the ith rectangle of
An counting counterclockwise.

Proof. By Theorem 4.6, it is sufficient to prove such a statement in the dynamical plane
of f+: if Ao is an annulus bounded by two equipotentials of Z, then a full lift An
approximates?Z.for a big n. Since the antirenormalization change of variables for fis
conjugate to z = ztwith t < 1, the claim follows.

Consider the dynamical plane of f. Recall thatis a Lol 2. homeomorphism. For
k € Z, we define

— k
e = (fo | Z.) (o)
Consider now the dynamical plane of f.. For k € {-K,-K +1,..,K}, we define ck(fx) €

fak{co} to be the closest point to © (f+). The point ¢ (fkn) is well defined as long as fx

is in a small neighborhood of f.

Claim 3. For k € {-K,-K + 1,...,K}, we have

e ck+1(fn) € Hpnak; and

e HPnk\ Onis in a small neighborhood of ck+1
Proof. The first statement follows from ck-1(f») € Dk € H%*; see (6.8). The second
statement follows from the improvement of the domain.

Claim 4. Let P be a connected component of On \Hn. Then f:%| P is univalent for all i €

{1,..,N}. Moreover,

fu¥i(P) C fu¥i(P) foralli<jin{0,1,..,N}

Proof. The first claim follows from the assertion that Anis an Nqn.-wall. The second

claim follows from (c).
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(f')fr b [ j'*

Ry

Figure 24. Separation of @ U.. Co-Siegel disk Ztogether with its
iterated lifts form two periodic bubble chains landing at periodic
points x and y. The bubble chains together with external rays Rxand
Ry separated™ U, from a.

6.5.3. Julia rays in 93, Consider the dynamical plane off+ : Ux — V_ By Theorem 3.12,
we can choose (see Figure 24) two periodic points Z:¥ € J« together with two
periodic external rays Ry Rylanding at x, y and two periodic bubble chains By Bylanding
atx,y so thatx and y are close to? U, and RxU BxU B, U Ry separates?™U, from c1 as
well as from all the remaining points in the forward orbits of x,y. Let p be a common
period of x,y. Set K := 4p.

A Julia ray Jof Jiisa simple arc in J starting at a point indZ,.

Claim 5. There are Julia rays Jx < Bxand ], € Bysuch that Jxand ], start at the critical
point coand land at x and y, respectively. Moreover, Jxand ], are periodic with period p:

the rays Jxand Jydecompose as concatenations Jx'Jx%Js3 «-- and Jy)2],3 -+- such that/t maps

Jxkand ]k to J¥-1and k-1, respectively.

N —!
Proof. Write By= (Z1,Z3,...); since x is close to 9""U. we see that Z1 = Z.. Since x is
periodic with period p, there is an a > 0 such that f’ maps Za+ito Zifor all i.

1~ ~ . . . . .

Let/: € Jube a simple arc in dZ1 UdZz U---UdZ, connecting the critical point co to
the point where 0Z,+11s attached to dZ,. We inductively define /¢ to be the iterated lift
of J¥~1such that J¢ starts where JJ-1 terminates. This constructs

Jo= Y23 -+ Jy=JyY,2)3 - is similarly constructed.

6.5.4. Julia rays for fn. Recall that in Claim 5 we specified Julia raysjztr(fx) and

J:u(f*]. Since fy is sufficiently close to f, the periodic points x,y exist in the dynamical
plane of foand are close to those of f. For n <0 let us now construct Julia rays Jx(f») =
JxYx3s3 -+ and Jy(fa) = Jy))2],3 -+- such that

k k=1 1 Tk k-1
(1) far maps/e t0 Ji " and Jy to JyT o mbare with Claim 5);
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(2) J¥(fx) and Jy%(fz) are in small neighborhoods of J¥*(f+) and J,*(f+), respectively;
fn

Figure 25. Illustration to the proof of Claim 6. If Y intersects

O, then applying f» we obtain that P Ufu(Y.) encloses H%. Since P is
surrounded by the wall"»Ap, the set a9 (P U fa(Y )) also encloses~
HO. Then fad| fu™ (P U fa(Y)) has degree one while f:4 | H%, has degree

2; this is a contradiction.

(3) for z € ! U J¥* U Jy1 U J,2 there is a q < 2p such that either f19(z) € On

or fi(z) € U\*‘ISQIJ [Hf;pw. In the former case we can assume that/r (2) &

A, U0, for t €{0,1,..., qg—1}
Construction of Jxand J,. We will use notation from the proof of Claim 5. By stability of
periodic points, x,y exist for fnand are close toZ(f+): ..U(f*). The curve
Jxtis a simple arcin dZ1U 0Z2 U -+ U 0Z,. We split J1 as the concatenation

0 7l : d(j
 hUubhU---ud, withs = 12 N0Z; 1et/7" be the smallest iterate mapping Z;
toZ . SinceJ= C Js, the curve
~ d() 7
5= LO)

is a simple arc in?Z. connecting 1 and a certain ¢,;) c.

Using Claims 2 and 3, we approximate each £ (f*)

by a curveli(/ n) within

On U Ha(t0-1) U HO,, Lifting’i (f'u-) along the branch of f;90) that is close to
(i) 4

£ (f*), we construct £ (f'n) that is close to fj(f*). Assembling all jwe
construct Jx!(fz). By continuity, pulling back Jx!(f») we construct finitely many
J;':f.‘(f'n) approximating'j:i:(f*) such that the remaining curves -j;:?‘(f*) are within the
linearization domain of x. Taking pullbacks within the linearization domain of x, we
construct a ray Jx(f») landing at x. Similarly, J,is constructed. Property (3) follows from

1t()] < p.
6.5.5. Blocking 0fUn. Recall from Claim (1) that f,9M(H%,) c Hx0. For t € {M,M - 1,M -

2,..,0} we set Hq(9 to be the forward f:-orbit of fn9t(Hx0).
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Claim 6. The flower Hn8) does not intersect 0fbUn for all t € {M,...,0}.

0
As a consequence, Hnextends to a required Hn = , ) for n < 0.

kep,

Proof. Recall that valuable petals Hn' " < Un with |k| < K are already constructed.

Set

' .= g \ U HFPn
(6.9) [k|<K
Let us show thatHf;m does not hit RxU JxU Jy U Ry; this would imply that

t
Hn( does not intersect 0P Un. Suppose the converse; since 1" does not intersect
. . . . (1), .
RxU Ry, we can consider the first moment ¢t (i.e., t is the closest to M) when Hn( )hltS

JxU Jy. Denote by X a petal of H::m intersecting JxU J,. Choose z € X N(Jx U J,); we can

assume that z € Ji! U2 U]t UJ% otherwise t is not the first moment when
(L) 1. . . .

Hy™ hits J.UJy By property (3) from §6.5.4, there is a g < 2p such that either
G ( ~ qf ~ kp,

fi(z) € Oy or fl(z) € Ul“SQP HyP . The latter would imply that

Xis a petal inU\kIS4P I]—l'{‘ipn; this contradicts (6.9). Therefore, f,9(z) € On.
Write
Ol = f7H0)\ (A, U0,) 3 fi=Y(2)
and set Y := fi-1(X). We have¥, NY 2 :{71(2); see Figure 25. Since H-»"" contains a
critical point, we see that f:7(z) is within a connected component P of O»\ (Hn U {a})

and, moreover;,.P U fo(Y) surrounds HO%.

Let us apply f»4™to fo(Y) U P. By Claim 4 (recall that.N > M + 1; see §6.5.2), we have
fa4:M(P) € (AnU On) \ Hwmand fr9M(P) does not contain a critical point of f,%. On the
other hand, f44M+1(Y') does not contain a critical point of f;%as a subset ofr H.. Note
that fo%M (P U fa(Y)) still surrounds.Hx?. This is a contradiction: fa?| 9™ (P U fa(Y))
has degree one while f,4| H%, has degree 2.

6.5.6. Siegel triangulation. It remains to construct a Siegel triangulation A(f)
respecting H» for n < 0.In the dynamical plane of f,, let us choose a curve 1 C V
connecting dV to a such that 1entersUn 10 O-:i, then reaches 0H-»"», then travels
to @ within 9H-"". We can assume that{1 \ O s disjoint from y1 \ On. Observe that
1is liftable to the dynamical planes{m for all m < n. Indeed,?1 N IHP" is liftable
because so is OHP», whilel1 \ OH, Pn is liftable because it is disjoint from y1.

Let us slightly perturb 1 so that the new 1is disjoint from Hy. Define o to be
the preimage of 1 connecting dU»to a. Then’1 U £o splits Uy into two closed sectors;
they form the triangulation denoted by A(fz). We can assume that 1 was chosen so
that{1 \ On and £o \ Oy, are connected. We define the wall I1(f») to be the closures of

two connected components ofUn \ (On U fo U £y),
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For m < n we define A(fn) and I1(fm) to be the full lifts of A(f») and I1(f»). Then A(fn)
is a required triangulation form < n.

7. Hyperbolicity Theorem

Recall that by A we denote the multiplier of the a-fixed point of f. For A close to A set
F(A) := {f€ W¢| the multiplier of a is A}

to be the analytic submanifold of W« obtained by fixing the multiplier at a. Then F(A)

forms a foliation of a neighborhood of f.

7.1. Holomorphic motion of P(Fo). Let U € Wbe a small neighborhood of fsuch that

every f € U has a maximal prepacmen; see Theorem 5.5.

Lemma 7.1 (Holomorphic motion of the critical orbits). For every p/q, the set

U orbg (F#)
n<0
moves holomorphically with fo € F(e(p/q)) n U.

Recall from Lemma 6.1 that ! (Fo) € Un<o orbo(F#, ); thus P(Fo) also moves
holomorphically with fo € F(e(p/q)) n U.

Proof. By Corollary 6.7, points in orbo(F#r) do not collide with each other when fo €
F(e(p/q)) N U is deformed. This gives a holomorphic motion of orbo(Fo) < orbo(F*1)

c orbo(F#2) c - and we can take the union.

Letl{’ C U be a neighborhood of fsuch that every non-empty]:()\) N U has radius
at least three times less than those of F(A) N U.

Corollary 7.2 (Extended holomorphic motions). For fo € F(e(p/a)) U there is
dynamics of (F#n)n) on

a holomorphic motion t(fo) of C such that t(fo) is equivariant (with respect to the

U orbg (F#)

n<0

Proof. The proof follows by applying the A-lemma to the holomorphic motion from
Lemma 7.1.
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Corollary 7.3 (Passing to the limit of holomorphic motions). For fo € F(A)NU'there

is a holomorphic motion t(fo) of C such that t(fo) is equivariant on

|J orbo(F7)

n<0

Proof. Choose a sequence pn/qn such that elPn/an) — ‘3(9*). By passing to the limit in
Corollary 7.2 we obtain the desired property.

Corollary 7.4. The dimension of* (M) s 0

Proof. Suppose the dimension of}—(/\*) is greater than 0. Consider the space

F(A) NU' By Corollary 7.3 the set?’ (Fo) © Un<o orbo(F7f ) moves
holomorphically with fo e FA) U, Projecting this holomorphic motion to
the dynamical plane of fo, we obtain a holomorphic motion of the post-critical set of
Jo € F(A) MU’ Therefore, there is a small neighborhood of J+ i F(A:) N’
consisting of Siegel maps. But all such maps must be in the stable manifold of fby
Theorem 7.5.

7.2. The exponential convergence. The following theorem follows from [McM2,
Theorem 8.1].

Theorem 7.5. Let f € B be a Siegal pacman with the same rotation number as f which
is sufficiently close to f. Then R"f converges exponentially fast to f.

Remark 7.6. The proof of [McM2, Theorem 8.1] is based on a “deep point argument”.
Alternatively, the exponential convergence follows from a variation of the Schwarz

lemma following the lines of [L1,AL1].
7.3. The hyperbolicity theorem.

Theorem 7.7 (Hyperbolicity of R). The renormalization operator R: B — B is
hyperbolic at fwith one-dimensional unstable manifold W and codimension-one stable
manifold W5,
In a small neighborhood of fthe stable manifold Ws coincides with the set of pacmen
in B that have the same multiplier at the a-fixed point as f. Every pacman in Wsis Siegel.
In a small neighborhood of f the unstable manifold W is parametrized by the

multipliers of the a-fixed points of f € Wu.

Proof. It was already shown in Corollary 7.4 that the dimension of W is one. Let us
show that Ws has codimension one. Denote by B*the submanifold of B consisting of

all the pacmen with the same multiplier at the a-fixed point as f. Then R naturally
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restricts to R: B* —» B+ Consider the derivative Diff(R | B*); by Corollary 7.4 the

spectrum of Diff(R | B*) is within the closed unit disk. Suppose that the spectrum of
Diff(B*) intersects the unit circle. By [L1, Small orbits theorem] R | B-has a small slow

orbit: there is an f € B*such that fis infinitely many times renormalizable but

. 1 . n -
ﬂglilm - log |R" f|| = 0‘

Moreover, it can be assumed thatof f. By Corollary 4.7, fis a Siegel pacman and by

Theorem 7.5,{Rf}n=01is in a sufficiently small neighborhoodRnf converges

exponentially fast to f. This is a contradiction. Therefore, the spectrum of R is
compactly contained in the unit disk, and all of the pacmen in B* are infinitely
renormalizable and thus are Siegel (Corollary 4.7). The submanifold B* coincides with

Wsin a small neighborhood of f.

7.4. Control of Siegel disks. The following lemma follows from [McM2, Theorem
8.1] combined with Theorem 3.6 and Lemma 3.4.

Lemma 7.8. Every Siegel map f has a pacman renormalization Rzf such that

Rafis in B and is sufficiently close to f.

We say that a holomorphic map f: U — Vs locally Siegel if it has a distinguished
Siegel fixed point. The following corollary follows from Theorem 7.7 combined with

Lemma 7.8.

Corollary 7.9. Let f: U — W be a Siegel map with rotation number 6 € Oper, and let N(f)

be a small Banach neighborhood of f. Then every locally Siegel map

g € N(f) with rotation number 0 is a Siegel map. Moreover, the Siegel disk Zy

depends continuously on g.

8. Scaling Theorem
In this section we prove a refined version of Theorem 1.3. Considerf. € ©,and
let f be a Siegel map with rotation number 6. Let ! > f be a small Banach
neighborhood of f, and let W c U be a one-dimensional slice containing f such that W
is transverse to the hybrid class of f; i.e., in a small neighborhood of f € W all maps
have different multipliers at their a-fixed points.

We say a map g € U is satellite if it has a satellite valuable flower.
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Definition 8.1 (Satellite valuable flowers). A satellite valuable flower of g is an open
forward invariant set H such that (see Figure 26)

Figure 26. A satellite valuable flower (red) of the 5/13 Rabbit approximates
the golden Siegel disk (also red).

(A) HU {a(g)} is connected;

(B) H has q connected components H%HY,..,H%1, called petals, enumerated
counterclockwise at a; every H' is an open topological disk with a single
access to a;

(C) g(H) c H*P, where p is coprime to q;

(D) there is an attracting periodic cycle y = (yo,y4,...,Yq-1) with y: € H attracting all
points in H;

(E) H-Pcontains the critical point of g.

The number p/q is called the combinatorial rotation number of H. The multiplier of H
is the multiplier of y.

For convenience, let us say that a parabolic valuable flower (see Definition 6.8)
with rotation number p/q is a satellite valuable flower with rotation number p/q and
multiplier 1.

By Lemma 3.18, R acts on the rotation numbers of indifferent pacmen as Rpm for

a certain k = 1; see also Remark 3.19.

_ ¢
Theorem 8.2. Suppose a sequence (Pn/an) 2o converges to 6 so thatTprm (Pn/an)
= pu+1/qn+1. Fix A1 € D1and a small neighborhood of 2. Then there is a continuous path

At€ DU {1} with t € [0,1] emerging from 1 = Ao such that for every sufficiently big
n < 0 there is a unique path gnt € W, where t € [0,1], with the following properties:
e gnthas a valuable flower Hnt with rotation number pn/qn; moreoverfort #0
the multiplier of the corresponding attracting cycle yn¢is equal to Ay
e all Hu: are contained in the given small neighborhood onJr and depend

continuously on t; and
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T

. dist(f' Gnt) ~ ((Riv‘l‘m)f(g*)) forevery t.

Note that the path gnstarts at a unique parabolic map in W with rotation number
pr/qn.

8.1. Proof of Theorem 8.2. The proof is split into short subsections. Consider a
pacman hyperbolic renormalization operator R: B --+ B around a fixed point
fo= ’RU*

of R at f, -) with rotation number 6. As before, W* denotes the unstable manifold
8.1.1. Perturbation of parabolic pacmen. By shifting the sequence (pn/qn)» we can

assume that po/qois close to 6. Then there is a unique parabolic pacman fo € W with

rotation number po/qo. Then fn:= R7fo,n < 0, has rotation number pnr/qn.

By Theorem 6.9 and possibly by further shifting (ps/qn)s, we can assume that
¢ each fyhas a valuable flower H(f») at the a-fixed point;

¢ each frhas a triangulation A(f») respecting H(fn): every petal of H(f») is within

a triangle of A(fn);

A(fx) has a wall TI(f,) approximating?Z.;

A(fn) and H(f:) are the full lifts of A(fa+1) and H(fa+1).

Let go € W¥be a slight perturbation of fo that splits a into a repelling fixed point a
and an attracting cycle y(go) such that a is on the boundary of the immediate
attracting basin of y(go). Then A(fo), I1(go), H(fo) are perturbed to A(go), I1(go), H(go)
such that all points in H(go) are attracted by y(go). We can assume that the
perturbation is sufficiently small such that IT(go) still approximates?Z.. By Lemma
4.4, there are full lifts A(gn), H(gn) of A(go), H(go).

As before, we denote by Fr and Gn the maximal prepacmen of f; and g» and we
denote by G*»the rescaled version of Gnsuch that Go= G*o is an iteration of G*». Recall
from §6.2 that H(fo) admits a global extension H(Fo) in the dynamical plane of Fo.
Similarly, we now define the maximal extension H(Gn) of H(gx).

Each H(gx) lifts to the dynamical plane of G*;; denote by H(go) the lift of H(go).
Similar to (6.2), we set

H(Go) = U (g0,-)" o (20,+)" (H(g0))

a,beZ

to be the full orbit of H(go). The same argument as in the proof of Lemma 6.2 shows
that H(Go) is fully invariant and is within DomGo,- N DomGo,+.

Denote by Hper(Go) the union of periodic components of H(Go). The same argument
as in the proof of Proposition 6.5 shows the following.

Proposition 8.3 (Parameterization of Hrer(Go)). The connected components of

Hper(Go) are uniquely enumerated as (Hi)iez such that H” > 0 and such that the
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actions of gn#o+ i)iez are given (up to interchanging gn- and gn+) by on (H
(8.1) gn#-(Hi) = (Hi-pn) and gn#+(Hi) = Hi+qu-pn.

8.1.2. QC-deformation of gn. Suppose first that A1 /= 0. Denote by Ao the multiplier of
¢ s .0 0
¥(go). Let g0.—°80,+* H'(Go) » H (G”) be the first return map (compare with

Lemma 6.2). There is a semiconjugacy h: H°(Go) = C from ga.f © &0+ to the linear
map z — Aoz. Choose a continuous path of gc maps 7:: C = C with t € [0,1] such that
To=id and t:conjugates z = Aoz to z = A:z.

Lifting 7: under h and spreading the associated Beltrami form dynamically, we
obtain a qc map t: C — C conjugating Go to a maximal prepacman Go; similarly t
conjugates G*n¢to a maximal prepacman G#n¢for n < 0.

Define now tn¢ to be the projection of t to the dynamical plane of g» via intS

# o o .
P = VAm (see (5.6)); we normalize Tn¢to preserve a(gn) and c1(gn). By compactness

of gc-maps, there is a small T > 0 such that all gn¢are in B for ¢t < T. For m < 0 consider
the sequence R-"*m(gy). All pacmen in this sequence are qcconjugate with uniform
dilatation. Moreover, the conjugacies preserve the critical value and the a-fixed point
because of the normalization for renormalization change of variables; see §2.5. By
compactness of qc-maps, R-"*™(gx,) has an accumulated point gm: € B, and, moreover,
we can assume that Rgm¢= gm+1¢; i.e., gmt € W¥and gm:tends tof+ as M tends to -oo.
We define A(qnt),I1(qnt),H(gnt) to be the images of A(gnt),I1(gnt),H(gnt) via the qc-
conjugacy from m.t 10 Gnt, By improvement of the domain, A(qn:) is in a small
neighborhood of Zand I1(gn:) approximates 9Z. for n <0, By shifting the sequence
(pn/qn)nwe can assume that this already occurs for n = 0. We can now repeat the above
argument and construct gnfor t € [T 2T]. After finitely many repetitions, we construct
qneforall tin [0,1].

8.1.3. QC-surgery towards the center. Suppose now A1 = 0. In this case we apply a qc-
surgery. As in §8.1.2 we denote by Ao the multiplier of y(go).
Consider the first return map
wo = 86— ogb,: H'(Go) — H(Go)

It has a unique attracting fixed point y? and a unique critical value at 0. Thus wo also
has a unique critical point. We can choose a small disk D around y° such that

« 0 €wo(D) D;

e wo: H(Go) \ D = HO(Go) \ wo(D) is a 2-to-1 covering map.
By Theorem 6.9, we can project D to a disk within H(go). We claim that there is a
continuous path of qc maps 71t HY(Go) — Hl)(GU) and a continuous path we

HO(Go) — H%(Go) such that® Tiis equivariant (with respect to the actions of wo and
wt) on H(Go)\D;

¢ w:has a unique critical value at 0 and a unique attracting fixed point at yo,;;
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« Y01=0;ie,0isa supperattracting fixed point of wi.

Indeed, it is sufficient to construct w: | D and i D equivariant on dD; pulling back
the Beltrami differential of 77 ID via the covering map wo | H(Go)\D gives the
Beltrami differential for 7/ | H"(Go).

Applying Go, we spread the Beltrami form of T dynamically to obtain a global qc

map tw: C — C which is unique up to affine rescaling. Spreading the surgery
dynamically, we obtain a continuous path of maximal prepacmen G#,:. Define now 7,
to be the projection of t:to the dynamical plane of g» via intS*,~ VA similarly, gn

is the projection of G#5+ The argument now continues in the same way as in §8.1.2.

8.1.4. Lamination around J«- In §§8.1.1, 8.1.2, and 8.1.3 we constructed continuous
pathsdn.t € W n <« 0, with R(qn) = gn+1cS0 that each gnchas a valuable flower

H(gnt) with multiplier Ar, where Ao = 1. Moreover, H(gn¢) is within a triangulation
A(gn) respecting H(qn,) such that the wall TT(gn:) approximatesdZx.
For a big m <0, we define Fmtto be the set of all pacmen close to gm:such that the

multiplier of y(gm.) is A¢ Locally (Fm,t)tiS a codimension-one lamination of B. Since Fm.t

is in a small neighborhood of gm:, every pacman g € Fm¢has a valuable flower H(g)
and a triangulation A(g) respecting H(g) such that A(g) and H(g) depend
continuously on g. The wall T1(g) approximates?Z. For n < m, we define

Fnt:= {g €B | Rm—n(g) € Fm,l:}.

Since R is hyperbolic,
(8.2) F:={FnentU {Ws}

forms a codimension-one lamination in a neighborhood of f. A pacman 9 € Fu¢has

H(g) and A(g) having the same properties as above. In particular, all the pacmen in

Fneare hybrid conjugate in neighborhoods of their valuable flowers.

8.1.5. Scaling. By Corollary 3.7, the Siegel map fcan be renormalized to a pacman. By
Lemma 7.8 we can assume that the renormalization of f is within a small
neighborhood of f. This allows us to define an analytic renormalization operator
Ra: U --» Bfrom a small neighborhood of fto a small neighborhood of £, Since
maps in W have different multipliers, the image of W under Rz is transverse to the

lamination F; see (8.2).

We define f»¢to be the unique intersection of Fnewith the image of W under Rz, and
we define gnt € W to be the preimage of fu¢via Rz. Since T1(fn) approximatesaz*, the
triangulation A(f»¢) and the valuable flower H(fxt) have full lifts A(gs:) and H(gn:); see
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Lemma 4.4. Since the holonomy along F is asymptotically conformal [L1, Lemma 7.3],

we obtain the scaling result for gu,.

8.1.6. Uniqueness of gn: Recall (Theorem 7.7) that W¢ is parametrized by the
multipliers of the a-fixed points. Therefore, parabolic pacmen with rotation numbers
p-u-/CIm n <0, are unique. As a consequence the paths of satellite pacmen emerging
from these parabolic pacmen are unique. Similarly, parabolic maps gno € W with

rotation numbers pr/qnare unique; thus the paths gncare unique.

Appendix A. Sector renormalizations of a rotation
Consider 6 € R/Z and let
Lo: : DI =Dz — e(d):z
be the corresponding rotation of the closed unit disk by angle 6.

A.1. Prime renormalization of a rotation. Assume that t /=0 and consider
a closed internal ray I of D A fundamental sector Y C D! of Lgis the smallest
closed sector bounded by I and Le(I). If 8 = 1/2, then I U Lo(1) is a diameter and

both sectors of D! bounded by IULs(I) are fundamental. The angle w at the vertex of
Yis@if6€[0,1/2]or1-60if1-6€[0,1/2].

A fundamental sector is defined uniquely up to rotation; let us first rotate it such

that 1€ D' \y. Set Y := L-91(Y) and set Y+ to be the closure of D1\ [Y u Y—); see
Figure 27. Then

(A.1) (Lo| Y+,L2| Y-)

is the first return of points in Y~ UY: backto Y-UY.. The prime renormalization of

. DI 1
Lois the rotation Lpm (@) D' =D
Yprm:Y-U Y+— D1z - z1/(1-w).

obtained from (A.1) by applying the gluing map

Lemma A.1. We have

1 _f
FOS0S9, (A2) Ryw(0) = {15“
2-1 if:

I
B
IA

rol—

[
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(delete)

Figure 27. Left: the prime renormalization deletes a fundamental sector
Y and projects (L%9| Y-,Lo| Y+) to a new rotation.

Right;([Lg+1 (L] X+)
Y = X-U X

is the first return map to a fundamental sector

Present 0 using continued fractions in the following ways:

0 =[0;a1,az,...] =1 - [0;b1,b>,...]

with ai,bi € N>o. Then

[0;a; — 1, as,...]

ifai> 1, if

ai=1,

R-prm([{]: a,as, ... ]) = {

1 —[0;as,as,...]

and
R (1 [0:b,b }){1‘[0?51‘1=b?""] ifbi>1,

prm -

[0;b2,b3,...] ifbi=1

As a consequence, 0 is periodic under Rprm if and only if there is a 8 with periodic

p— n /
continued fraction expansion such that? = Firm (@ ) for some n = 0.

Proof. The proof follows by routine calculations. If 8 € [0,1/2], then projecting z —

e(0)z by prm we obtain

If 6 € [1/21], then projecting

z — e(0 — 1)z by ¥prm we obtain

2o (e(0-1)")"" = e (%) 2.

0-1 ¢ [ . 20-1
Observe that 7 '0]; adding +1 we obtain ~ & .
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Write

1
0 =
ay + [0y a9, ag, . . .|

and observe that 6 € [0,1/2] if and only if a1 > 1 (with the exception 6 = [0;1,1]). If a1

> 1, then

0 1
= :Bn'm 0
1—-6 a+[0;a0,as,...] —1 ! ()

Ifai=1, then
20 — 1
0

Similarly Rprm(1 - [0;b1,b2,...]) is verified.

=2—a; —[0;as,as,...] = By (0)

A.2. Sector renormalization. A sector renormalization R of Leis

¢ a renormalization sector X presented as a union of two subsectors X- UX.
normalized so that 1 € X-nN Xs;
¢ a pair of iterates, called a sector pre-renormalization,
E
(A3) (L§ | X- 1§ [ %)
realizing the first return of points in X- U X+ back to X; and
¢ the gluing map
U RA_URy —» DIz — 2%
projecting (A.3) to a new rotation L, where w is the angle of X at 0.

We write RLg=L,, and we call a and b the renormalization return times. We allow one
of the sectors X: to degenerate, but not both. Note that the assumption 1 € X- N X
can always be achieved using rotation.

The prime renormalization is an example of a sector renormalization.
Suppose two sector renormalizations R1(Le) = L, and Rz(L,) = Lvare given. The

composition Rz = R1(Le) = Lvis obtained by lifting the pre-renormalization of Rz to the

dynamical plane of Le.

Lemma A.2. A sector renormalization is an iteration of the prime renormalization.

Proof. Suppose R is a sector renormalization with renormalization return times a and
b as above. Proceed by induction on a + b. If a + b = 3, then R is the prime
renormalization. Otherwise, we project the pre-renormalization of R to the dynamical

plane of Rprm(L6) and obtain the new sector renormalization R of Rprm(L¢) so that
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R o Rprm(u-ﬁ‘) = R(U‘H)

The renormalization return times®'s ' of R’ satisfya’ + b < a + b,

Consider again the fundamental sector Y bounded by I and Lg(I). There is a
minimal a > 0 such that L-*(I) € Y. Up to rotation, we can assume that L-?(I) lands at
1. We define X to be the subsector of Y bounded by I and L-%(1) and we define X- to
be the subsector of Y bounded by L(I) and L-*(I). Then

(L5 | X, L5 | X.)
is a sector pre-renormalization, called the first return to the fundamental sector; see
Figure 27. We denote by Rfast the associated sector renormalization and we write u =
Reast(0) if Reast(Le) = L.
By Lemma A.2, for every ¢ /=0thereisa unique n(8) such that Rrst(0) =
B}:Eﬁ% (9). We note thatif 6 € {1/m,1 - 1/m} withm > 1, thenn(6) =m - 1. (In
this case the sector X-is degenerate.)

A.3. Renormalization triangulation. Given a sector pre-renormalization (A.3), the
set of sectors

a—1 b—1
U L) [ Lo(ts)
i=0 i=0
is called a renormalization triangulation of D. Alternatively, consider the associated

renormalization L, = R(Le). The internal rays towards 1 and L,(1) split D! into two

closed sectors To and Ty We call {T-T+} the basic triangulation of L. Lifting the

sectors T-,T+ via the gluing map, and spreading them dynamically we obtain the
renormalization triangulation. We also say that the renormalization triangulation is
the full lift of the basic triangulation.

Let On be the set of angles 6 such that 6 = [0;ay,az,...] with |ai| < Nor 6 =1 -
[0;a1,az,...] with |ai| < N. By Lemmas A.1 and A.2, the set Oy is invariant under any
sector renormalization.

Lemma A.3. For every N there is a t > 1 with the following property. Consider the
renormalization triangulation associated with some sector renormalization of L,

where 6 € On. Then any two triangles have comparable angles at 0: the ratio of the

angles is between 1/t and t.

Proof. There is a neighborhood U of 1 such that for all 8 € O~ we have Lo(l) ¢ U,
Therefore, both sectors in the basic triangulation have comparable angles at 0
uniformly on 8 € On. Since a renormalization triangulation is the full lift of a basic

triangulation, the lemma is proven.
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A.4. Periodic case. It follows from Lemmas A.1 and A.2 that Lyis a fixed point of some
sector renormalization if and only if 6 € Oper. Suppose 6 € Oper and choose a sector
renormalization R1 such that R1(Lg) = Le. WriteRn ‘= R{ and denote by anbs, and
the renormalization return times and the gluing map of Rn. Then¥n = ¢1 and there is

a matrix M with positive entries such that

Op _ pn—1 ay
(A4) (f’) =" (bl).

As a consequence, an,bnhave exponential growth with the same exponent. We also
note that

(A5) aibi> 2

because R1= Ré{prmwith t > 1.

Appendix B. Lifting of curves under antirenormalization

In this appendix we give a sufficient condition for liftability of arcs under a sector
antirenormalization. This implies that the sector antirenormalization is robust with
respect to a particular choice of cutting arcs; see Theorem B.8.

B.1. Robustness of antirenormalization. Consider a closed pointed topological disk
(W,0) and let U,V be two closed topological subdisks of W such that 0 € int(UnV'). A
homeomorphism f: U - V fixing 0 is called a partial homeomorphism of (W,0) and is
denoted byf5 W - Wor f: (W,0) (W0). If U = V = W, then fis an actual self-

homeomorphism of (140).

Figure 28. Left: a homeomorphism f: W — Wand a dividing pair yo,y1.
Right: the 1/3 antirenormalization of f (with respect to the

clockwise orientation).

B.1.1. Leaves over [: (W,0) ==+ (W,0) et yo,y1 be two simple arcs connecting 0 to
points in dW such that yoand y1 are disjoint except for 0 and such that y1 is the image
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of yo in the following sense: Y% =% NUand 71 = 1N Vare simple closed
curves such that f maps’}‘r’) o 71 Such a pair yo,y1is called dividing. Then yo U y1 splits
W into two closed sectors A and B denoted so that intA,ysintB,yo are clockwise
oriented around 0; see the left side of Figure 28.
We say thato = [(A) = P(B) is the left boundary of A and the right boundary of B
and we say that71 = p(A) = ’g(B) is the right boundary of A and the left boundary of
B.
Let X,Y be topological spaces, and let9: X --* Ybe a partially defined continuous
map. We define
XUy Y :=XUY/(pomy 2« ~ g(z) € Img),
Consider a (finite or infinite) sequence (Sk)x, where each Skis a copy of either
A or B. Define the partial map9k - p(Sk) -+ E(Skﬂ) by
d : Al ~l
KETTTOL e (6, =~ (AB), if
id: v) =4
fhi = (S Ske1) =~ (B,A),
_ frv = _
(B.1) if (SkSk+1) =~ (AA), if (SkSk+1) =~
(B,B).

i =

The dynamical gluing of (Sk)kis

s S,l.‘—l u SL: I—I:fik S.‘-'+1 u

Jk—1 G417

The jump (k) from S is set to be 0 L1 (Sk Skt 1to Skr ,0,- )
is a copy of

(AB), (B,A), (A/A), (B,B), respectively.
For a sequence s = (ai)ierwe denote by s[i] the ith element in s; i.e., s[i] = a..
Definition B.1 (Leaves of/: W -=* W), Suppose s € {A B}?. Set Ws[i] to be a copy of

the closed sector s[i]. The leaf Wsis the surface obtained by the dynamical

gluing of (Ws[i])iez. - \ - —i:S[i] =
The projection m: Ws W maps each Ws[i] p(Ws[i 1]) to s[i]. By s Ws[i]

we denote the corresponding inverse branch.
Note that if s[i] = s[i + 1], then m is discontinuous at Ws[i] N Ws[i + 1]. As z

approaches Ws[i] N Ws[i + 1] from intWs[i], respectively, intWs[i + 1], its image m(z)
approaches p(s[i]), respectively,("(s[": +1]) # p(sli]).

For everyC s, there is a unique point 0 € Wssuch that 7(0) = 0. By construction,
Ws\ {0} s topologically a closed half-plane.

For ] 7 we write Ve[l = Ujes Wsli ]- To keep notation simple, we write
Ws[2 1] = Ws[{k | k = i}] and similarly for “>""<”, “<”".
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B.1.2. Lifts of curves. Let a: [0,1] = W'\ {0} be a curve in W. A lift of a to Wsis a curve
a: [0,1] = Wsuch that
« for every t € [0,1], there is an n(t) € Z such that
n(a(t)) = fO(a(t);
(0) = 0; n(f) is constant for all ¢ for which®(?) is
within some 1]); and
o if a(t') € int Wiliy while a(t) € int Wi[ix 1], thenn(f) — 1(t) is equal to
the jump from Ws[i] to Ws[i + 1].

Wali] \ p(Wafi -

In other words, whenever a crosses the boundary of s[i], the lift of « is adjusted to
respect the dynamical gluing. A lift of a curve parametrized by [0,1) is similarly
defined. Note that () is, in general, discontinuous.

For every curve a as above, there is at most one lift of»  a starting at a given

preimage of a(0) under : Ws W. It is easy to see that there is an € > 0 such that all lifts
(specified by the starting points) of a: [0,e] = W exist, and are thus unique. The main
question we address is the existence of the global lifts.

fa: [01)->W _ _ \{0}issuch that a(1) =lime1a(t) = 0, then we say that

alifta of a lands at 0 if r(a(t)) > 0ast— 1.

B.1.3. Antirenormalizations. We will now show that for every p/q there is a unique
antirenormalization with rotation number p/q.

Lemma B.2. For every q € N>2and every p € {1,2,..,q - 1} coprime with q there exists a
unique q-periodic sequence s € {A,B}* such that
e s[0]=Aands[-1]=B;

e foreveryJ € £ with (4 mod q) & {—p,—p — 1} we have s[j + p] = s[j;
e s[-p-1]=Aands[-p] =B.

Proof. Since p and q are coprime, there are unique a,b € {1,2,..,q—1} such that
pa=-1modgq pb =
1 mod q.

Note that a + b = q. We have
e s[ip+jq]=Aforallie{0,1,.,a-1}andallj € Z; and

e s[-1+ip+jq]=Bforalli€{0,..,b-1}andallj€Z.

The numbers ab appearing in the proof of Lemma B.2 are called the
renormalization return times.
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For a sequence s as in Lemma B.2, let

s/q € {A B}/, (s/q)[i] := s[i + Zq]

be the quotient sequence, and let Ws/, be the quotient of the leaf Ws by identifying
each Ws[k] with Ws[k + q]. We denote by m: Ws/q — W the natural projection.
Then the p/q-antirenormalization f-1: Ws/; Ws/qis defined as follows (see Figure 28):

o for everyj ¢ {_p - 1,-p}, the map f~1: Wsy[jl = Wss[j + p] is the natural
isomorphism;
o the map/—1: Wa/ql—p =1, =p] --» Wy [1,0is f: W\ yg - W\
Note that p/q is the clockwise rotation number.
By construction, (f-*1 | Ws/q[0],/~°1 | Ws/q[-1]) is the first return of f-1 back

to Wyyq[=1. 0].After appropriate gluing of arcs in oW
(f s/ [*LODq , the map
“a1 | We/q[0],fb1 | Wasg[-1]) is 2 W ——> W
Denote by
~s/a s/
(BZ) o »1pda

~sfa s/ o
the left boundaries of Ws/q[0] and Ws/g[p], respectively. Then™o % ais a dividing
pair for f~1: Ws/q Ws/qand the antirenormalization procedure can be iterated.

Let S be a curve in W, and let 8 be a lift of § to Ws. The image of f in
Weyq = W/ ~ . ~8 .
s/q s is called a lift of  to W s/q. For example, 7o 4is a lift of yo.

B.1.4. Prime antirenormalization. The 1/3 and 2/3-antirenormalizations are called
prime. It is easy to check that

e ifp/q=1/3,thens/q=(AAB); «ifp/q=2/3, thens/q = (ABB).

Lemma B.3 (Compare with Lemma A.2). Any antirenormalization is an iteration of
prime antirenormalizations.

Proof. We proceed by induction on q. Assume q > 3, define /e = R]H'm(p/q)(see
(A.2)), and observe that 4" < 4.

e If 0 < p < q/2, then the p/g-antirenormalization is the 1/3-
antirenormalization of the P'/9"-antirenormalization.

e If q/2 < p < q, then the p/qg-antirenormalization is the 2/3-

. . . ! / . . .
antirenormalization of the P /a -antirenormalization.

Denote by s := (A,B)? the sequence in {A,B}? with even entries equal to A

and odd entries equal to B. Simplifying notation, we write Ws.= W-.
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Suppose that f: W — W is a homeomorphism. In this case antirenormalizations of

f can be defined canonically (i.e., independent of the choice of yo,y1) as follows.

Observe first that
(B.3) m: We \ {6} — W {0}
is a universal cover. Let (77 C We)ic,be ~ _, all the lifts __ of yo and
y1 enumerated from left to right such 7i Ti+1 that W[i]is 7
betweenand; in particularis a lift of
Yimod 2. Let
f—,f+: W.- W.

be the lifts of f: W — W specified so that

-(32:) = 72i -1 R and
Jr(3:) = 23, + commute. Write

Y Yo vi vz Y3 Observe
that f w.[-1] W.[0] W 1] W.[2] W.[3]
and f
f-1-
f+(r1)
f— 1,+
/_\\
f- 1+
TN
Fionra 70 [llustrationtoLemmaB.3: f-1,-: W.[2]> W.[0]
~Ti=fl e fir Weos W
and f after ghiing +* and 73 f-1+: W[0,1] - W-[1,2] become the

1/3-antirenormalization of o ; see also Figure 28.

then™ | (Wa '\ {U}) is a deck transformation of W and we can rewrite (B.3) as

WA{0} = (We\ {0}) /)
W ~ W, /(1).

We also write
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Lemma B.4 (The 1/3-antirenormalization). Suppose f : W — W is a

selfhomeomorphism. Set
fre=f fa-mtl= foo fil T
=falo e fa,=f1le fi2,

Then t-1acts properly discontinuously onWe \ {6} We view
(Wa\ {0}) /()

as a punctured closed topological disk and we viewWe/{(T-1) as a closed topological
disk.

Let f~1: W-1—> W-1be the 1/3-antirenormalization of f. Then f-1is conjugate to

for 2 m=1) = fo s =) Wo {r—1) — W /(1)

by the conjugacy he W_y — WL[0,1,2]/(m_1)
mapping W_ 0], W_1[1], W_[2]
repectVe o W2l (e 1), Walol/tr 1), Walll/r 1)

which are copies of A,A,B.
Proof. Clearly, W.[0,1,2] is a fundamental domain for 7-1. It is easy to see (see

Figure 29) that h identifies
e f-1: W-1[0] - W-1[1] (which is id: A — A) with

f-1,-=11: W.[2] » W-][0];
e fi1: W-1[1,2] » W-1[2,0] (whichis f: W\ yo— W\ y1) with

Frie: WR[0,1] - WA[1,2].

Remark B.5. The proof of Lemma B.4 shows also that h is uniquely characterized by

the following properties:
3/ 10 38/(7)
e h Yoo 0% maps(see N (B.2));
Y4 w ( o and ¢ C I'V_l
o iff CWA{0}isa curve starting at = -
h{€/(t-1)) C Wa _s/3
of starting at some point of 7o ,then is the

unique lift of starting at72.

is the unique lift

Similar to Lemma B.4 we have
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Lemma B.6 (The 2/3-antirenormalization). Suppose f : W —= W is a self-

homeomorphism. Set

[+ =1 = fi o fq, ff-=f, T 1
i=flo e fa,=f20 f

W\ {0}
(We\{0}) /¢r-a)

Then t-1acts properly discontinuously on . We view

as a punctured closed topological disk and we view We/{7-1) as a closed topological
disk.
Let f~1: W-1—> W-1be the 2/3-antirenormalization of f. Then f-11is conjugate to

foa M=) = for s J{T—1) s Wo (1) — W /(7-1)

by the conjugacy
h: I‘V,l — 11;[_] ’ []! ”/{7—*1)

mapping
W-1[0], W-1[1], W-1[2]

respectively to
We[01/{r—1), We[1]/(7—1), We[=1]/{7—1)
which are the copies of A,B,B.
B.1.5. Fences. Consider again a partial homeomorphismfi W --» Wand let s be an
antirenormalization sequence from Lemma B.2. We view W as a subset of C.
A fence is a simple closed curve Q € Domf N Imfsuch that

¢ (isinthe bounded component Q of C \ Q; and
¢ (Qintersects yoat a single point x and @ intersects y1 at f(x).
Let /=11 Wssq - H'FS/q be an antirenormalization of /-1 35 1N §B.1.3. We denote

by Qsthe lift of Q to Wsand we denote by Qs/q the projection of Qsto Ws/q.
Lemma B.7. The curve Qs/qis again a fence respecting'?s/q~ ”/;/q; see (B.2).
Proof. Every Qs/q N Ws/q[i] is an arc connecting a point on the left boundary of Ws/[i]
to a point on the right boundary of Wsy[i]. Moreover, QsqNWsyq[i] meets
Qs/qNWsq[i+1] because 9k - p(Si) --» E(SIH) (see (B.1)) respects the intersection of
Q with yo,y1.

B.1.6. Robustness of antirenormalization.
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Theorem B.8. Let/: W -+ W pe q partial homeomorphism, let yo,y1 € W be a
dividing pair of arcs, let Q € Domf be a fence respecting yo,y1 and enclosing 2 = 0, and
let

f1: W1 Wt
be the p/q-antirenormalization of f; see §B.1.3.

Assume that yo"e¥,y1"eV is another pair of dividing arcs such that W0\ Q, A\ Q
coincides with yo\ Q,y1\ Q. Denote by

f~1new: W-1,new W-1,new

the p/q-antirenormalization of f relative to the pair Yo" :71"". Then f-1and f-inew are
naturally conjugate by h: W-1 — W-1new uniquely specified by the following properties:

(1) » h(z) = n(z) for every z € W-1\ Q-1, where Q-1is the topological disk

enclosed by Q-1 (see Lemma B.7); and (2) Bc Wiiisa liftofa curve fc W,

then "(5) is a lift of B to W-1new.
Proof. Since the pair“ftllmw V29 \Q coincides with Yo\ Qy1\ Q, condition (1)
uniquely specifies h | W-1\ Q-1.

Let us now extend/: W -=» W to a homeomorphism f: W = W mapping yo to y1.

The extension changes f-1| W-1\Q-1and f-1new | W-1new \Q2-1new but does not affect f-1
| Q-1and f-1new | Q-1new. Therefore, it is sufficient to prove the theorem under the

assumption that f: W— Wis a homeomorphism.

Since every antirenormalization is an iteration of prime antirenormalizations (see

Lemma B.3), we can further assume that f~1 andf—l,new are prime antirenormalizations.

By Lemmas B.4 and B.6 both f~1 andf—l,new are naturally conjugate to
Foa, =1 o /{m 0 Wa/{m 1) = Wo /(T 1)__ _

which is independent of the choice of yo,y1. It remains to observe that the conjugacy

between f-1 and f-1,new satisfies condition (2); see Remark B.5.

Corollary B.9 (Lifting condition). The curves Yonew and y1,new have unique lifts

(B 4) h—l (,}[(j/q.uew) ) h_l (,}Jz/q.uuw) C I‘V_l

(see (B.2)) such that the pair (B.4) coincides withﬁ"g/qs”}’;/q in W_i1\ @ Moreover,
(B.4) is a dividing pair.

Remark B.10 (General lifting condition). Suppose that s is a sequence such that (A,B)
or (B,A) appears infinitely many times in both s[> 0] and s[< 0]. In the arXiv version

of the paper we proved that if So,81 = f{Bo) is a pair of curves respecting (Q,yo,y1), then
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all lifts of So,B1in Ws exist, are pairwise disjoint, and land at 0. In particular, this

implies Corollary B.9 and Theorem B.8.

B.1.7. Walls. Let us view W as a subset of C. A wall around 0 respecting yo,y1is either a
closed annulus or a simple closed curve Q € U N V such that

(1) C \ Q has two connected components, and, moreover, denoting by Q the
bounded component of C \ Q, we have 0 € (;
(2) yon Q and y1 N Q are connected;

(3) ifxe Q, then £1(x) € QU Q.

In other words, points in W do not jump over Q under the iteration of f. If Q is a simple
closed curve, then frestricts to an actual homeomorphism f: Q — Q.

Remark B.11. Note that a wall contains a fence; see §B.1.5. Therefore, in the statement

of Theorem B.8 we can replace a fence with a wall.
For a sequence s € {A,B}? we denote by Qs[i] the closure of the preimage of Q under

m: Wis[i] - W; we set Qs = Uiez Qs[i].

Lemma B.12. The set Qs is connected. The closure of the connected component of Ws\

Qs containing 0 is Qs.

Proof. The proof follows from the definition: since points in Q do not jump over Q
every Qs[i] intersects Qs[i+1], therefore Qsis connected and the claim follows.

Suppose f-1: Ws/q— Ws/qis an antirenormalization of fand suppose Whas a wall Q
(respected by yo,y1,f) enclosing Q. The image of Qsin W/ is called the full lift Qs/q of Q.
Similarly, we denote by s/, the image of Qsin Ws/,. We say that Q is an N-wall if it takes

atleast N iterates of 21 for points in (1 to cross Q. The next lemma follows by definition.

Lemma B.13. If Q is an N-wall, then Qs/qis an (N — 1)min{a,b}-wall

Since for a periodic combinatorics min{a,b} = 2 (see (A.5)), we have the following.
Corollary B.14. Suppose f-1: Ws/y — Ws/qis an antirenormalization of f associated with
a periodic combinatorics; see §A.4. Then a lift of a 2-wall (respected by yo,y1,f) is again

a 2-wall.
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Remark B.15. Antirenormalization can easily be defined for a partial branched
covering fo: (W0) (W,0) of any degree. In this case it is natural to assume that yo does
not contain a critical point of f. To apply Theorem B.8, it is sufficient to assume that
there is a univalent fence Q (respected by yo,y1,f) enclosing Q1 such that f| Q U Q has
degree one. The antirenormalization is robust with respect to replacing yo,y1 with a

. A lew o
new pairYo - 7i"ew as above.

2 Yo @ r2
fé S
/ZL\S 0
a f(,' yl a fC

delete 2 So
Y2 ¢
Yo

Figure 30. Possible local dynamics at the a-fixed point.

Appendix C. The Molecule Conjecture

Let us denote by Mol the main molecule of the Mandelbrot set; i.e.,, the smallest
closed subset of M containing the main hyperbolic component as well as all hyperbolic
components obtained from the main component via parabolic bifurcations; see
[DH1,L2] for the background on the Mandelbrot set. In this appendix we write f:(z) =
zZ2+c.

C.1. Branner-Douady maps. Let us denote by Lp/q the primary p/q-limb of the
Mandelbrot set, and let us denote by Mp/q € Lp/q the p/qg-satellite small copy of M. We
also write Lo/s1 = Mo/1= M.

In [BD] Branner and Douady constructed a partial surjective continuous map

-1,
Rprm : L1/3 L1z such that its inverse Rprm * Lija = Ly is an embedding.

This construction could be easily generalized to a continuous map Rprm* Lp/q

LRem(p/q), Where (compare to (A.2))

B <
§<

[

| [y if0™

7

Rprm (p/q) = = 1
p o
ifa< ® <1,

as follows. Recall that ¢ € Ly if and only if in the dynamical plane of f; there are exactly

q external rays landing at the a-fixed point and the rotation number of these rays is
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744 DZMITRY DUDKO, MIKHAIL LYUBICH, AND NIKITA SELINGER

p/q; i.e, if y is a ray landing at «, then there are p - 1 rays landing at a between y and
f<(y) counting counterclockwise.

Choose an external ray yo landing at « in the dynamical plane of f: with ¢ € Ly
Define y1 = fc(y0) and y2 = fc(y1). Denote by So the open sector between yo and y1 not
containing y2; see Figure 30. Similarly, let S1be the open sector between y1 and y2 not
containing yo. We assume that yo is chosen such that S1 does not contain the critical
value; thus S1 has two conformal lifts, one of them is So and we denote byS("J the other.
151 O S0, then replaceS{J by its unique lift in C \ S1.

Let us delete S1, glue y1 and y2 dynamically so™t Sa~ f(x) €72 and iterate fe
twice on So. We obtain a new map denoted by Jer C\Sh —=C. The filled-in Julia
set K. of f.is the set of points with bounded orbits that do not escape to90. The set

K. is connected if and only if 0 does not escape to S(Il; in this case the new local

dynamics of fc at a has rotation number Rpm(p/q) and, moreover, fc is hybrid
equivalent to a quadratic polynomialL L pm frerm(c) With ¢ € LL Rpm(p/La). This defines
theM

map Rprm: p/q R (p/q). Note that Rprm: 1/2 0/1 =
becomes the Douady-Hubbard straightening map M1, - M of the basilica satellite
copy of the Mandelbrot set.

In general, Rprm: Lp/q LRom(p/q) depends on the choice of yo. However, if ¢ € Mp/, then
Rprm(c) € MRum(p/q @and Rprm : Mp/jg = MRum(p/q coincides with the canonical

homeomorphism between small copies of the Mandelbrot set.

Remark C.1. The Branner-Douady surgery has also been studied by Riedl [R]; he
showed, in particular, that every dyadic Misiurewicz parameter is connected through
a simple arc (vein) in the Mandelbrot set to the origin.

C.2. The molecule and the fast molecule maps. Denote by A the main hyperbolic
component of M. Recall that a parameter ¢ € JdA is parametrized by the multiplier
e(6(c)) of its non-repelling fixed point. We define the molecule map

Rprm: M --» Msuch that

¢ Rprm : Lp/q LRomm(p/q) is the Branner-Douady renormalization map for p/q #0/1
and for some choice of yo; and e if ¢ € A, then Rpm(c) is such that

=

r 16(5&){:)' S 9((:) S -

iV}

if 0,

b

8(Rorm(c)) oo~ ir

b3
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Siegel parameters of periodic type are exactly periodic points of Rprm | A (Lemma
A.2). Furthermore, for a satellite copy of the Mandelbrot set Ms, there is an n = 1 such
that R%rm: Ms— M is the Douady-Hubbard straightening map.

The map Rprm: M --+ Mis combinatorially modeled by Q(z) := z(z +1)?; see Figure
31. The latter map has a unique parabolic fixed point at 0. The attracting basin of 0
contains exactly one critical point of Q. The second critical point is a preimage of 0.
Denote by F the invariant Fatou component of Q. We can

extend Rprm to A so that Rprml Ajs conjugate, say by 7, to Q | F. Then & extends
uniquely to a monotone continuous map 7 : Mol = Kg semiconjugating Rprm | Mol and
Q | Ko, where Kpis the filled-in Julia set of Q:

Mol — Rpm — Mol

™ T

l |
Ko — ¢ Ky

If the MLC-conjecture holds, then m is a homeomorphism.
For every c € 0A \ {cusp} define n(c) :=n(6.), where 6.is the rotation number of f

6
and n(6) is specified by Rpast(0) = Rggnz {9); see §A.2. For every c € Lp/q define n(c) :=
n(cp/q), where cy/q is the root of Lp/. The fast Molecule map is a partial map on M

defined by

Rfast(c) = Roprm(e)(c).

The restriction Rrst | dMol \ {cusp} is continuous but it does not extend continuously

to the cusp: Reast(0M1/n) = M.

Figure 31. Left: the Mandelbrot set. Right: the filled Julia set of Q(z) =
z(z+ 1)z
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C.3. The molecule conjecture. Given a renormalization operator R: B B, its
renormalization horseshoe is the set of points in B with bi-infinite precompact orbits.
We conjecture that there is a pacman renormalization operator Rfast: Bmol = Bmol with
the following properties. The operator Rfastis hyperbolic and piecewise analytic with
one-dimensional unstable direction such that its renormalization horseshoe Rfast :
Hwmol = Hwmol is compact and combinatorially associated with Rfast | Mol \ {cusp} as

follows.
There is a continuous surjective map p: Hvol = Mol that is a semiconjugacy away

from the cusp:

Huol\ p-i(cusp) "~ ~ Hwol\ p~1(cusp)

OMol \ {cusp} 7 Ras —dMol \ {cusp}

Denote by diMol the set of non-parabolic parameters in dMol. Conjecturally, Rfast |
Hwmol is the natural extension of Rest | dMol \ {cusp} compactified by adding limits to
parabolic parameters at all possible directions. Such a construction is known as a

parabolic enrichment; see [La,D2].

all pacmen inThe space BFwmsolare hybrid conjugate tohas a codimension-one stable
lamination (fcin neighborhoods of their “motherFes)cemol such that

c

g
hedgehogs”; see §C.4. For every f € Hwol, the leaf }—I’U') is a stable manifold of Rfast at f.
The unstable manifold of Rfast at f is parametrized by a parabolic enrichment of a

neighborhood of p(f). Locally, Rfast can be factorized as an iterate

of Rpr]n: BMol — B
-1 , . .
p~ " (cusp). mol; however, the latter operator has parabolic behavior at

The Molecule Conjecture contains both Theorem 7.7 (for periodic type parameters
from 0A) and the Inou-Shishikura theory [IS] (for high type parameters from dA). It
also implies the local connectivity of the Mandelbrot set for all parameters on the
main (and thus any) molecule.

C.4. Conjecture on the upper semicontinuity of the mother hedgehog. A closely
related conjecture is the upper semicontinuity of the mother hedgehog. For a Siegel
parameter ¢ € dA, consider the closed Siegel diskZc of fei if fohas a Cremer point,
then letZc = {”}' If Z. contains a critical point, then we set

H. := Z. Otherwise, f-has a hedgehog (see [PM]): a compact closed connected filled-
H Zesuch thatfe: H' — H'isa homeomorphism.

. . . 2
in forward invariant set™* =
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We define Hcto be the mother hedgehog (see [Chi]): the closure of the union of all of
the hedgehogs of f..

Recall that the filled-in Julia set K; of a polynomial depends upper
semicontinuously on g. Viewing H. as an indifferent-dynamical analogue of Kj we
conjecture the following.

Conjecture C.2. The mother hedgehog H.depends upper semicontinuously on c.

For bounded type parameters (i.e.,, when Hcis a Siegel quasidisk) Conjecture C.2
follows from the continuity of the Douady-Ghys surgery.
Conjecture C.2 can be adjusted for parabolic parameters ¢ € A as follows. Let Acbe

the immediate attracting basin of the parabolic fixed point a. Then there is a choice of

a valuable flower H: with H.c A.U{a} such that H: depends upper
semicontinuously on ¢ € dA. In particular, Hc contains the union of all limiting mother
hedgehogs for perturbations of f..

Similarly, Conjecture C.2 can be adjusted for all parameters in dMol. Our result on
the control of the valuable flower (see Theorem 8.2) can be thought of as a step
towards this general conjecture.

Conjecture C.2 and its generalizations describe in a convenient way how an
attracting fixed point bifurcates into repelling. An important consequence is control
of the post-critical set: if a perturbation of f.is within Mol, then the new postcritical
set is within a small neighborhood of H.. A statement of this sort (for parabolic
parameters approximating a Siegel polynomial) was proven by Buff and Ch’eritat; see
[BC, Corollary 4]. This was a key ingredient in constructing a Julia set with positive
measure.
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