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1. Introduction 

Renormalization was introduced into dynamics in the mid 1970s by Feigenbaum, 

Coullet, and Tresser and since then has established itself as a powerful tool for 

penetrating into the small-scale structure of phase portraits and bifurcation loci. It 

turned out to be challenging to develop a rigorous mathematical theory of 

renormalization (for example, to prove hyperbolicity of the renormalization 

operator), but every time when this is achieved, plentiful deep consequences reward 

the effort. 

The complex quadratic family provided us with several important renormalization 

schemes: quadratic-like, near-parabolic, and Siegel. All three are intimately related to 

the observed self-similarity of the Mandelbrot set M and to the celebrated MLC 

Conjecture on the local connectivity of M. The conjecture comes in two flavors, 

“primitive” and “satellite”. Development of the quadratic-like renormalization has led 

to substantial progress in the primitive case, while the near-parabolic 

renormalization has given an insight into the satellite situation. 

In this paper we design a new “pacman” renormalization and prove the 

hyperbolicity of the corresponding renormalization operator. It implies the 

hyperbolicity 
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Figure 1. A (full) pacman is a 2 : 1 map f : U → V such that the critical arc 

γ1 has three preimages: γ0, γ+, and γ−. 

of the Siegel renormalization for arbitrary periodic combinatorics (resolving a 

problem going back to the early 1980s) and gives an insight into the self-similarity of 

the Mandelbrot set near the main cardioid. In the second part of this project [DL] we 

will give further applications by proving local connectivity of the Mandelbrot set at 

some satellite parameters of bounded type (that had been previously out of reach) 

and showing that the corresponding Julia sets have positive area. 

1.1. Statements of the results. Although the Mandelbrot set M is highly 

nonhomogeneous, it possesses some remarkable self-similarity features. Most 

notable is the presence of baby Mandelbrot sets inside M which are almost 

indistinguishable from M itself. The explanation of this phenomenon is provided by 

renormalization theory for quadratic-like maps, which has been a central theme in 

holomorphic dynamics since the mid-1980s (see [DH2,S,McM1,L1] and references 

therein). 

By exploring the pictures, one can also observe that the Mandelbrot set has 

selfsimilarity features near its main cardioid. For instance, as Figure 2 indicates, near 

the (anti)golden mean point, the (pn/pn+2)-limbs of M scale down at rate λ−2n, where 

α 

γ 1 

f 

γ 0 
γ + 

γ − 
U 
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2 and pn are the Fibonacci numbers. The goal of this paper is to develop 

a renormalization theory responsible for this phenomenon. 

Our renormalization operator acts on the space of “pacmen”, which are 

holomorphic maps f : (U,α) → (V,α) between two nested domains (see Figure 1), such 

that f : U \ γ0 → V \γ1 is a double branched covering, where γ1 is an arc connecting α to 

∂V . The pacman renormalization Rf of f (see Figure 5) is defined by removing the 

sector S1 bounded by γ1 and its image γ2, and taking the first return map to the 

remaining space; see §2 for precise definitions. Note that it acts on the rotation 
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Figure 2. Limbs 8/21,21/55,55/144,144/377,... scale geometrically 

fast on the right-hand side of the (anti)golden Siegel parameter, 

while limbs 5/13,13/34,34/89,89/233,... scale geometrically fast on 

the left-hand side. The bottom picture is a zoom of the top picture. 
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Figure 3. The map (1.1) induces a 2 : 1 map on R/Z. 

numbers as 

(1.1)  if 0 1; 

the graph of (1.1) is shown on Figure 3 (see Appendix A, in particular, (A.2)). 

Let us denote by Θper the set of combinatorially periodic rotation numbers; i.e., 

rotation numbers periodic under (1.1). Numbers in Θper belong to the cycles of 

numbers with periodic continued fraction expansion. 

A pacman is called Siegel with rotation number θ if α is a Siegel fixed point with 

rotation number θ whose closed Siegel disk is a quasidisk compactly contained in U 

(subject to extra technical assumptions; see Definition 3.1). 

Theorem 1.1 (Hyperbolicity of the renormalization). For any rotation number θ ∈ 

Θper, the pacman renormalization operator R has a unique periodic point f which is a 

Siegel pacman with rotation number θ. This periodic point is hyperbolic with one-

dimensional unstable manifold. Moreover, the stable manifold of f consists of all Siegel 

pacmen. 

The problem of hyperbolicity goes back to the work of physicists [Wi,MN,MP]; see 

§1.3 for the description of the previous progress in the area. 

Corollary 1.2 (Stability of Siegel maps). Let f be a Siegel pacman with rotation number 

θ ∈ Θper. Consider the space Nθ(f) of maps sufficiently close to f whose α-fixed point has 

rotation number θ. Then the Siegel disk of g depends continuously on g ∈ Nθ(f). 

In fact, the stability of Siegel disks on the unstable manifold is one of the main steps 

in the proof of Theorem 1.1. 

Let c(θ), θ ∈ R/Z, be the parameterization of the main cardioid C by the rotation 

number θ. At any parabolic point c(p/q), there is a satellite hyperbolic component Δp/q 

θ 
0 0 . 5 1 

1 
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of M attached to c(p/q). Let ap/q be the center of this component, i.e., the unique 

superattracting parameter inside Δp/q. 

In this paper, the notation αn ∼ βn will mean that αn/βn → const  

Theorem 1.3 (Scaling Theorem). Let θ ∈ Θper be a rotation number, and let pn/qn be its 

continued fraction approximands. Then 

. 

See Theorem 8.2 for a more precise version of the Scaling Theorem. In particular, 

Theorem 8.2 is stated for any one-parameter space witnessing the bifurcation of a 

Siegel map. 

Self-similarity of the Mandelbrot set near the (anti)golden parameter is illustrated 

on Figure 2. Theorem 8.2 says that the centers of satellite hyperbolic components 

indeed scale as the picture predicts. In [DL] we combine methods of Theorem 1.3 with 

methods and ideas from transcendental dynamics to obtain a scaling law for a much 

larger class of parameters. The self-similarity of the whole limbs is still an open 

question. This problem is closely related to the problem of the realization of 

parameter rays for the transcendental family representing the unstable manifold. 

We believe that our methods allow one to extend Theorems 1.1 and 1.3 to the case 

of rotation numbers of bounded type; the details will appear elsewhere. We conjecture 

that an analogous statement is true for arbitrary combinatorics, which would provide 

us with good geometric control of the molecule of the Mandelbrot set (see Appendix 

C). 

1.2. Outline of the proof. We let 

– e(z) = e2πiz; 

– ; 

– Pθ be the set of pacmen with rotation number θ ∈ R/Z; 

– Θbnd be the set of combinatorially bounded rotation numbers (i.e., rotation 

numbers whose continued fraction expansions have bounded coefficients). 

Let us first review Siegel renormalization theory which is the most relevant to our 

results; for extra historical comments on the progress in this program see §1.3. 

Any holomorphic map f : (Uf,α) → (C,α) whose fixed point α is neutral with rotation 

number θ ∈ Θper is locally linearizable near α. Its maximal completely invariant 

linearization domain Zf is called the Siegel disk of   is a quasidisk compactly 

contained in Uf whose boundary contains exactly one critical point, then f is called a 

(unicritical) Siegel map. For any θ ∈ Θper, the quadratic polynomial pθ and any Siegel 

pacman give examples of Siegel maps (see §3, in particular Theorem 3.2). 

There are two versions of the Siegel renormalization theory: holomorphic 

commuting pairs renormalization and cylinder renormalization. The former was 

developed by McMullen [McM2] (see also an earlier work by Stirnemann [St]) who 

proved, for any rotation number θ ∈ Θper, the existence of a renormalization periodic 
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point f and the exponential convergence of the renormalizations ) to the orbit 

of f. McMullen also studied the maximal domain of analyticity for f. 

The cylinder renormalization Rcyl was introduced by Yampolsky who showed that 

f can be transformed into a periodic point for Rcyl with a finite codimension stable 

manifold ) and an at least one-dimensional unstable manifold  

[Ya]. Inou and Shishikura [IS] established hyperbolicity of the cylinder 

renormalization for high type Siegel parameters, and Gaidashev and Yampolsky [GY] 

proved it for the golden rotation number (see §1.3). However, the general conjecture 

that f is hyperbolic with dim ) = 1 remained open. 

Let us now select our favorite θ ∈ Θper; it is fixed under some iterate of (1.1). Then 

the corresponding iterate of the Siegel renormalization fixes f, so below we will refer 

to the f as “renormalization fixed points”. 

We start our paper (§2) by discussing an interplay between a “pacman” and a 

“prepacman”. The latter (see Figure 6) is a piecewise holomorphic map with two 

branches f : U → S, one of which is univalent while the other has “degree 1.5”, 

 ± ± 

with a single critical point. Such an object can be obtained from a pacman by cutting 

along the critical arc γ1. For technical reasons, we “truncate” both pacmen and 

prepacmen by removing a small disk around the co-α point; see Figure 4. 

Then we define, in three steps, the pacman renormalization. First we define a “pre-

renormalization” (Definition 2.3) as a prepacman obtained as the first return map to 

an appropriate sector S. Then, by gluing the boundary arcs of S, we obtain an 

“abstract” pacman. Finally, we embed this pacman back into the complex plane. 

There are some choices involved in this definition. We proceed to show that near 

any renormalizable pacman f, the choices can be made so that we obtain a 

holomorphic operator R in a Banach ball (Theorem 2.7). 

In Section 3 we analyze the structure of Siegel pacmen f. The key result is that any 

Siegel map can be renormalized (in an appropriate sense) to a Siegel pacman 

(Corollary 3.7), where the rotation number changes as an iterate of (1.1); see Lemma 

3.18. 

In the case when is the Siegel renormalization fixed point, this provides us 

with the pacman renormalization fixed point (§3.7). Moreover, the pacman 

renormalization R becomes a compact holomorphic operator in a Banach 

neighborhood of f, with at least one-dimensional unstable manifolds  ); see 

Theorem 3.16. Along these lines, we introduce and discuss associated geometric 

objects (§3.1): the pacman “Julia sets” K(f) and J(f), “bubble chains”, and “external 

rays”. We also use them to show, via the pullback argument, that any two 

combinatorially equivalent Siegel pacmen are hybrid equivalent (Theorem 3.11), i.e., 

there is a qc conjugacy between them which is conformal on the Siegel disk. 

For a Siegel pacman f, any renormalization prepacman can be “spread around” to 

provide us with a dynamical tiling of a neighborhood of the Siegel disk; see §4.2 and 

Figures 7 and 15. Moreover, this tiling is robust under perturbations of f, even when 
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the rotation number gets changed; see Theorem 4.6. In this case, the domain filled 

with the tiles can be used as the central “bubble” for the perturbed map f, replacing 

for many purposes the original Siegel disk . In particular, it allows us to control 

long-term fn-pullbacks of small disks D centered at  (making sure that these 

pullbacks are not “bitten” by the pacman’s mouth). This is the crucial technical result 

of this paper (Key Lemma 4.8). 

When f is the renormalization fixed point and the perturbed map f belongs to its 

unstable manifold  ), then we can apply this construction to the 

antirenormalizations R−nf. This allows us to show that the maximal holomorphic 

extension of the associated prepacman is a σ-proper map F = (f± : X± → C), where X± 

are plane domains (Theorem 5.1). 

Applying this result to a parabolic map ), we conclude that its attracting 

Leau-Fatou flower contains the critical point, so the critical point is non-escaping 

under the dynamics (Corollary 6.4). 

After this preparation, we are ready to proof Theorem 1.1; see §7. Assuming for the 

sake of contradiction that dim   1, we can find a holomorphic curve Γ

 ) through f consisting of Siegel pacmen with the same rotation number. 

Approximating this curve with parabolic curves Γ ), we conclude that the 

critical point is non-escaping for  . This allows us to apply Yampolsky’s 

holomorphic motions argument [Ya] to show that dim  

Finally, using the small orbits argument of [L1], we prove that f is hyperbolic under 

the pacman renormalization, completing the proof. 

Along these lines we prove the stability of Siegel maps (see Corollary 7.9): if a small 

perturbation of a Siegel map f fixes the multiplier of the α-fixed point, then the new 

map g is again a Siegel map. Moreover, the Siegel quasidisk   is in a small 

neighborhood of . 

To derive Theorem 1.3 from Theorem 1.1, we need to show that the centers of the 

hyperbolic components in question are represented on the unstable manifold 
). We first show that the roots of these components are represented on 

 ) which requires good control of the corresponding pacmen Julia sets (see 

§6.5), and robustness of the renormalization with respect to a particular choice of 

cutting arcs; see Appendix B. Then we use quasiconformal deformation techniques 

to reach the desired centers from the parabolic points; see §8. 

Throughout the paper we use Appendix B containing a topological preparation 

justifying robustness of the antirenormalizations with respect to the choice of cutting 

arcs. 

In Appendix C we formulate the Molecule Conjecture on the existence of a pacman 

hyperbolic operator with the one-dimensional unstable foliation whose horseshoe is 

parametrized by the boundary of the main molecule of the Mandelbrot set. This 

conjecture would imply the MLC for all infinitely renormalizable parameters of 

satellite type. 

1.3. More historical comments. Renormalization of Siegel maps appeared first in the 

work by physicists (see [Wi,MN,MP]) as a mechanism for self-similarity of the golden 

mean Siegel disk near the critical point. A few years later, Douady and Ghys discovered 
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a surgery that reduces previously unaccessible geometric problems for Siegel disks1 

of bounded type to much better understood problems for critical circle maps. This 

led, in particular, to the local connectivity result for Siegel Julia sets of bounded type 

(Petersen [Pe]) and also became a key to the mathematical study of the Siegel 

renormalization. In particular, the McMullen-Yampolsky theory mentioned above (see 

§1.2) is based upon this machinery. 

Holomorphic commuting pairs (as well as almost commuting holomorphic pairs) 

were studied by Stirnemannhe [St], who gave a computer-assisted proof of the 

existence of a renormalization fixed point with a golden-mean Siegel disk and showed 

that the renormalizations of the quadratic polynomial with the golden-mean Siegel 

disk converge to that fixed point. Recently, Gaidashev and Yampolsky gave a 

computer-assisted proof of the hyperbolicity of the renormalization for the golden 

mean rotation number [GY]. 

On the other hand, in the mid 2000’s, Inou and Shishikura proved the existence and 

hyperbolicity of Siegel renormalization fixed points of sufficiently high combinatorial 

type using a completely different approach, based upon the parabolic perturbation 

theory [IS]. For a different viewpoint on this result see [Ya]. 

The proof in [IS] involves certain computer estimates. A computer-free proof of 

hyperbolicity in high type was presented by Cheritat [Che]. His approach also gives a 

proof of hyperbolicity for high type in the unicritical case zd + c. 

The Siegel renormalization theory achieved further prominence when it was used 

for constructing examples of Julia sets of positive area (see Buff-Cheritat [BC] and 

Avila-Lyubich [AL2]). 

A different line of research emerged in the 1980s in the work of Branner and 

Douady who discovered a surgery that embeds the 1/2-limb of the Mandelbrot set 

into the 1/3-limb [BD]. This surgery is the prototype for the pacman renormalization 

that we are developing in this paper. 

Note also that according to the Yoccoz inequality, the p/q-limb of the Mandelbrot 

set has size O(1/q). It is believed, though, that 1/q2 is the right scaling. The pacman 

renormalization can eventually provide an insight into this problem. 

Remark 1.4. Genadi Levin has informed us about his unpublished work where it is 

proven, by different methods, that 

(1.2) , 

where ap/q is the center of the p/q-satellite hyperbolic component and c(p/q) is its 

root. He has also informed us that (1.2) was independently established by Mitsuhiro 

Shishikura. Note that Theorem 1.3 gives a precise asymptotics for |ap/q − c(p/q)|. 

1.4. Notation. We often write a partial map as f : W  W; this means that Domf ∪ Imf ⊂ 

W. 

A simple arc is an embedding of a closed interval. We often say that a simple arc

C connects (0) and (1). A simple closed curve or a Jordan curve is an 

 
1 The original surgery applies to Siegel polynomials only. Its extension to general Siegel maps leads to 

quasicritical circle maps; see [AL2]. 

2 Unless the germ of f has finite order. 
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embedding of the unit circle. A simple curve is either a simple closed curve or a simple 

arc. 
A closed topological disk is a subset of a plane homeomorphic to the closed unit 

disk. In particular, the boundary of a closed topological disk is a Jordan curve. A 
quasidisk is a closed topological disk qc-homeomorphic to the closed unit disk. 

Given a subset U of the plane, we denote by intU the interior of U. 

Let U be a closed topological disk. For simplicity we say that a homeomorphism f : 

U → C is conformal if f | intU is conformal. Note that if U is a quasidisk, then such an f 

admits a qc extension through ∂U. 

A closed sector, or topological triangle, S is a closed topological disk with two 

distinguished simple arcs γ ,γ+ in ∂S meeting at the vertex v of S satisfying − 

{v} = γ− ∩ γ+. Suppose further that γ− ,intS,γ+ have clockwise orientation at v. Then γ− is 

called the left boundary of S while γ+ is called the right boundary of S. A closed 

topological rectangle is a closed topological disk with four marked sides. 

Let f : (W,α) → (C,α) be a holomorphic map with a distinguished α-fixed point. We 

will usually denote by λ the multiplier at the α-fixed point. If λ = e(φ) with φ ∈ R, then 

φ is called the rotation number of f. If, moreover, φ = p/q ∈ Q, then p/q coincides with 

the combinatorial rotation number:2 there is a cycle of q local attracting petals at α and 

f maps the ith petal to i+p counting counterclockwise. 

Consider a continuous map f : U → C and let S ⊂ C be a connected set. An f-lift is a 

connected component of f−1(S). Let 

x0,x1,...,xn,xi+1 = f(xi) 

be an f orbit with xn ∈ S. The connected component of f−n(S) containing x0 is called the 

pullback of S along the orbit x0,...,xn. 

To keep notation simple, we will often suppress indices. For example, we denote a 

pacman by f : Uf → V , however a pacman indexed by i is denoted as fi: Ui → V instead 

of fi: Ufi → V . 

Consider two partial maps f : X  X and g: Y  Y . A homeomorphism h: X → Y is 

equivariant if 

(1.3) h ◦ f(x) = g ◦ h(x) 

for all x with x ∈ Domf and h(x) ∈ Domg. If (1.3) holds for all x ∈ T, then we say that h 

is equivariant on T. 

We will usually denote an analytic renormalization operator as “R”, i.e., Rf is a 

renormalization of f obtained by an analytic change of variables. A renormalization 

postcomposed with a straightening will be denoted by “R”; for example, Rs: Ms → M is 
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the Douady-Hubbard straightening map from a small copy Ms of M to the Mandelbrot 

set. The action of the renormalization operator on the rotation numbers will be 

denoted by “R”. 

Slightly abusing notation, we will often identify a triangulation (or a lamination) 

with its support. 

2. Pacman renormalization operator 

 
Definition 2.1 (Full pacman). Consider a closed topological disk V with a simple arc 

γ1 connecting a boundary point of V to a point α in the interior. We will call γ1 the 

critical arc of the pacman. A full pacman is a map 

 
f : U → V 

such that (see Figure 1) 

• f(α) = α; 

 
• U is a closed topological disk with U ⊂ V ; 

• the critical arc γ1 has exactly three lifts γ0 ⊂ U and γ− ,γ+ ⊂ ∂U such that γ0 starts 

at the fixed point α while γ− ,γ+ start at the prefixed point α; we assume that γ1 

does not intersect γ0,γ− , γ+ away from α; 

• f : U → V is analytic and f : U \ γ0 → V \ γ1 is a two-to-one branched covering; 

• f admits a locally conformal extension through . 

Since f : U \γ0 → V \γ1 is a two-to-one branched cover, f has a unique critical point, 

called c0(f), in U \ γ0. We denote by c1(f) the image of c0. 

We will mostly consider truncated pacmen or simply pacmen defined as follows. 

Consider first a full pacman f : U → V and let O be a small closed topological disk 

around  ) and assume that γ1 cross-intersects ∂O at a single point. 

Then f−1(O) consists of two connected components, call them and . We 

obtain a truncated pacman 

(2.1) . 
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Figure 4. A pacman is a truncated version of a full pacman (see 

Figure 1); it is an almost 2 : 1 map f : (U,O0) → (V,O) with f(∂U) ⊂ ∂V 

∪ γ1 ∪ ∂O. 

A pacman is an analytic map as in (2.1) admitting a locally conformal extension 

through ∂U such that f can be topologically extended to a full pacman; see Figure 4. In 

particular, every point in V \ O has two preimages while every point in O has a single 

preimage. 

2.1. Dynamical objects. Let us fix a pacman f : U → V . Note that objects below are 

sensitive to small deformations of ∂U. The non-escaping set of a pacman is 

K . 
n≥0 

The escaping set is V \ Kf. 

We recognize the following two subsets of the boundary of U: the external boundary 

∂extU := f−1(∂V ) and the forbidden part of the boundary . 

Suppose   is an arc connecting a point in Kf to ∂V . We define 

inductively images  as follows. Suppose 

 
tm ≤ 1 is the maximal parameter such that the image of [0,tm] under m is within U. 

If , then we say  is defined and we set for t 

≤ 1. Abusing notation, we write 

. 

O 

γ 1 

f 

γ 0 

U 

V 
∂ ext U 

∂ frb U 
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 We define external rays of a pacman in the following way. Let us embed a 

 
rectangle R in V \U so that the bottom horizontal side B is equal to ∂extU and the top 

horizontal side T is a subset of ∂V . The images of the vertical lines within R 

 
form a lamination of V \U. We pull back this lamination to all iterated preimages f−n(R). 

Leaves of this lamination that start at ∂V are called external ray segments of f; infinite 

external ray segments are called external rays of f. Note that if γ is an external ray, then 

f(γ), as defined in the previous paragraph, is also an external ray. 

We have two maps from B to T: one is the natural identification π along the vertical 

lines, the other is the map which is defined only on f−1(T). Composition 

thereof, is a partially defined two-to-one map. 

We consider the set A ⊂ B of all points for which the whole forward orbit is 

welldefined. Then A is completely invariant and there is a unique orientation-

preserving map θ: A → S1 which semiconjugates φ: A → A to the doubling map of the 

circle. 

We say that θ(a) is the angle of the external ray segment passing through the point a. 

An external ray segment passing through a point a ∈ A is infinite (i.e., it is an 

external ray) if and only if it hits neither an iterated precritical point nor an iterated 

lift of ∂frbU. The latter possibility is a major technical issue we have to deal with. 

2.2. Prime pacman renormalization. Let us first give an example of a prime 

renormalization of full pacmen where we cut out the sector bounded by γ1 and γ2; see 

Figure 5. This renormalization is motivated by the surgery procedure that Branner 

and Douady [BD] used to construct a map between the Rabbit L1/3 and the Basilica 

L1/2 limbs of the Mandelbrot set; see Appendix C.1. Pacman renormalization will be 

defined in §2.3. 

Recall that a sector S is a closed topological disk with two distinguished arcs in ∂S 

meeting at a single point, called the vertex of S. Suppose f : U → V is a full pacman and 

(A) γ0, γ1, and γ2 := f(γ1) are mutually disjoint except for the fixed point α. 

Denote by S1 the closed sector of V bounded by γ1 ∪γ2 and not containing γ0. Let us 

further assume that 

(B) S1 does not contain the critical value; and 

(C) γ− ∪ γ+ ⊂ V \ S1. 
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Let V be the Riemann surface with boundary 

obtained from V 

\intS1 by gluing γ1 : by means of f. This means that 

there is a quotient map 

 ψ : V 

such that ψ  for all . Let us 

select an embedding C.  

The sector S1 has two f-lifts; let S0 be the lift of S1 attached to α and let  be the lift 

of S1 attached to α. Condition (B) implies that γ− ∪ γ+ ⊂ V \ S0. Define 

, 

Then the map f¯ descends via ψ into a full pacman with the critical ray γˆ1. 

 

Figure 5. Prime renormalization of a pacman: delete the sector S1, 

forget in U the sector  attached to α, and iterate f twice on S0. By 

gluing  and γ2 along f : γ1 → γ2 we obtain a new pacman fˆ: U 

→ V . 

2.3. Pacman renormalization. Let us start with defining an analogue of commuting 

pairs for pacmen. 

 
A map ψ: S → V from a closed sector (S,β ,β+) onto a closed topological disk 

 − 

α 

γ 1 

f 

U 

V 

α  

γ 2 

f 2 

delete ( ) 
S 1 

S  0 
S 0 α α   U 

ˆ f 

 V 

ˆ γ 1 

V \ int S 1 →  

while ψ ( z )= ψ ( f ( z )) ∈ V 
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V ⊂ C is called a gluing if ψ is conformal in the interior of S, ψ(β−) = ψ(β+), and ψ can 

be conformally extended to a neighborhood of any point in β− ∪ β+ except the vertex 

of S. 

Definition 2.2 (Prepacmen; Figure 6). Consider a sector S with boundary rays β− ,β+ 

and with an interior ray β0 that divides S into two subsectors T− ,T+. Let f− : U− → S,f+ : 

U+ → S be a pair of holomorphic maps, defined on U− ⊂ T− ,U+ ⊂ T+. We say that F = (S,f− 

,f+) is a prepacman if there exists a gluing ψ of S which projects (f− ,f+) onto a pacman f 

: U → V , where β− ,β+ are mapped to the critical arc γ1 and β0 is mapped to γ0. 

The map ψ is called a renormalization change of variables. The definition implies 

that f and f+ commute in a neighborhood of β0. Note − 

that every pacman f : U → V has a prepacman obtained by cutting V along the critical 

arc γ1. 

Dynamical objects (such as the non-escaping set) of a prepacman F are preimages 

of the corresponding dynamical objects of f under ψ. 

Definition 2.3 (Pacman renormalization; Figure 7). We say that a pacman f : U → V is 

renormalizable if there exists a prepacman 

 G = (g− = fa: U− → S, g+ = fb: U+ → S) 

defined on a sector S ⊂ V with vertex at α such that g− ,g+ are iterates of f realizing 
the first return map to S and such that the f-orbits of U ,U+ before − 

they return to S cover a neighborhood of α compactly contained in U. We call G the 

pre-renormalization of f and the pacman  is the renormalization of f. 

The numbers a,b are the renormalization return times. 

 
β − 

β + 

β 

S + 

S − 

Υ − 

Υ + 
U + 

2:1 

β 0 

gluing 

β ±  γ 1 

γ 2 γ 1 

γ 0 
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 Figure 6. A (full) prepacman (f : U → S,f+ : U+ → S). We 
 − − 

have U− = Υ− ∪ Υ+ and f− maps Υ− two-to-one to S− and it maps Υ+ to S+. 

The map f+ maps U+ univalently onto S+. After gluing β− and β+ 

dynamically we obtain a full pacman: the arcs β− and β+ project to γ1, 

the arc β0 projects to γ0, and the arc β projects to γ2. 

The renormalization of f is called prime if a + b = 3. 

Similarly, a pacman renormalization is defined for any map f : U → V with a 

distinguished fixed point which will be called α. For example, we will show in 

Corollary 3.7 that any Siegel map is pacman renormalizable. 

Combinatorially, a general pacman renormalization is an iteration of the prime 

renormalization; see details in Appendix A, in particular Lemma A.2. 

 
We define Δ = ΔG to be the union of points in the f-orbits of U− ,U+ before they return 

to S. Naturally, Δ is a triangulated neighborhood of α; see Figure 7. We call Δ a 

renormalization triangulation and we will often say that Δ is obtained by spreading 

around U− ,U+. 

Definition 2.4 (Conjugacy respecting prepacmen). Let f and g be any two maps with 

distinguished α-fixed points, and let R and Q be two prepacmen in the dynamical plane 

of f and g defining some pacman renormalizations. Let h be a local conjugacy between 

f and g restricted to neighborhoods of their α-fixed points. Then h respects R and Q if 

h maps the triangulation ΔR to ΔQ so that the image of (SR,UR,±) is (SQ,UQ,±). 

2.4. Banach neighborhoods. Consider a pacman f : Uf → V with a non-empty 

truncation disk O. We assume that there is a topological disk   with a 

piecewise smooth boundary such that f extends analytically to U and continuously 
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Figure 7. Pacman renormalization of f: the first return map from U− 

∪ U+ back to S = S− ∪ S+ is a prepacman. Spreading around U±: the 

orbits of U− and U+ before returning back to S triangulate a 

neighborhood Δ of α; we obtain f : Δ → Δ ∪ S, and we require that Δ 

∪ S is compactly contained in Domf. 

to its closure. Choose a small ε > 0 and define ) to be the set of analytic maps

C with continuous extensions to ∂U such that 

 

Then ) is a Banach ball. 

We say that a curve γ lands at α at a well-defined angle if there exists a tangent line 

to γ at α. 

Lemma 2.5. Suppose γ0,γ1 land at α at distinct well-defined angles. If ε > 0 is sufficiently 

small, then for every→   there is a domain Ug ⊂ U such that g : Ug V is a 

pacman with the same V,γ1,O (up to translation). 

Proof. For ) with small ε, set 

U + 
S + 

S − 

U − 

f 

f 

2:1 

c 0 
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, 

and set γ0(g) to be the lift of γ1(g) landing at α  land at distinct well-
defined angles, so do γ0(g),γ1 if ε is small; i.e., γ0(g),γ1 are disjoint. 

Set gδ = f + δ(g − f) and Tδ(z) := z + (α(gδ) − α(f)), where δ ∈ [0,1]. Define ψδ(z) = 

gδ−1◦Tδ ◦f(z) on ∂Uf, where the inverse branch is chosen so that ψ0(z) = z and ψδ(z) is 

continuous with respect to δ. We claim that ψδ is well defined and that ψδ(∂Uf) is a 

simple closed curve for all δ ∈ [0,1]. Indeed, let   be a closed annular 

neighborhood of ∂Uf that contains no critical points of f. For ε small enough, the 

derivative of any ) is uniformly bounded and non-vanishing on a slightly 

shrunk A; in particular g has no critical points in A. 

It follows that ψδ | A has uniformly bounded derivative and (choosing yet smaller ε, 

if necessary) is close to the identity map, hence ψδ(∂Uf) ⊂ A is well defined for all δ. 

Since f has no critical values in A, it is locally injective, which implies that 

) when x is sufficiently close to y. We conclude that ψδ is injective 

on ∂Uf. Therefore ψ1(∂Uf) is a simple closed curve; let Ug be the disk enclosed by 

ψ1(∂Uf). It is straightforward to check that g : Ug → V is a pacman with critical arc γ1 

and truncation disk O.  

Consider a pacman f : Uf → V . Applying the λ-lemma, we can endow all g: Ug → V 

from a small neighborhood of f with a foliated rectangle Rg as in §2.1 such that Rg 

moves holomorphically and the holomorphic motion of Rg is equivariant. As a 

consequence, an external ray R(g) with a given angle depends holomorphically on g 

unless R(g) hits an iterated lift of ∂frbUg or an iterated precritical point. 

Lemma 2.6 (Stability of periodic rays). Suppose a periodic ray R(f) lands at a repelling 

periodic point x in the dynamical plane of f. Then the ray R(g) lands at 

 
x for all g in a small neighborhood of f. Moreover, the closure R(g) is contained 

 
in a small neighborhood of R(f). 

Proof. Since x is repelling periodic, it is stable by the implicit function theorem. Present 

R(g) as a concatenation of arcs R1R2R3 ··· such that Ri+1(g) is an iterated lift of Ri(g). By 

continuity, Ri(g) is stable for i ≤ n, where n is big if g is sufficiently close to f. If n is 

sufficiently big and g is sufficiently close to f, then Rn(g) is in a small neighborhood of 

x(g) and, since x(g) is repelling, Rn+1(g) is in an even smaller neighborhood of x(g). 

Proceeding by induction, we obtain that Rn+j(g) 
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shrinks to x(g); i.e., R(g) lands at x(g). It also follows that R(g) is in a small 

 
neighborhood of R(f).  

2.5. Pacman analytic operator. Suppose that fˆ: U → V is a renormalization of f : Uf → 

V via a quotient map  that extends analytically through ∂Sf\ 

{α} (this actually follows from the definition of renormalization), where Sf ⊂ V is 

distinct well-defined angles. We claim that there exists an analytic renormalization 

the domain of a prepacman F such that curves β0,β+,β− all land at α at pairwise 

operator defined on a neighborhood of f. 

We note that β = fk±(β0) for some integers k+,k−.For a map g that is ± 

sufficiently close to f, the fact that the three curves land at different angles implies that 

β0,gk+(β0),gk−(β0) are disjoint. Define τg : β0 ∪ β− ∪ β+ → C by 

 and τg = gk± ◦ τg ◦ f−k± on β±. 

Then τg is an equivariant holomorphic motion of β0 ∪β− ∪β+ over a neighborhood of f. 

By the λ-lemma [BR,ST] τg extends to a holomorphic motion of Sf over a possibly 

smaller neighborhood of f. Denote by μg the Beltrami differential of τg. 

Define a Beltrami differential νg on C as  and νg = 0 outside of 

V, and let φg be the solution of the Beltrami equation 

 

that fixes α, ∞, and the critical value. We see that ψg := φg ◦ψf ◦τg−1 is conformal on Sg 

:= τg(S). It follows that ψg depends analytically on g (see Remark on p. 345 of [L1]). 

We claim now that ) is a prepacman. Indeed, by definition of 

Lemma 2.5, ˆg restricts to a pacman with the same range as fˆ. We now have the τg, we 

have gk±(τg(β0)) = β± and ψg glues G to a map ˆg which is close to fˆ. By 

following theorem. 

Theorem 2.7 (Analytic renormalization operator). Suppose that   is a 

renormalization of f : Uf → V via a quotient map ψf : Sf → V . Assume that the curves 

β0,β−,β+ (see Definition 2.2) land at α at pairwise distinct welldefined angles. Then for 

every sufficiently small neighborhood , there exists a compact analytic pacman 

renormalization operator defined on  

such that R(f) = fˆ. Moreover, the gluing map ψg, used in this renormalization, also 

depends analytically on g.  
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Proof. We have already shown that ˆg depends analytically on ). Choose an 

intermediate domain   with   so that the operator R is the 

composition of the restriction operator  ) and the pacman 

renormalization operator defined on  ). Since the former is compact, we 

conclude that R is compact.  

3. Siegel pacmen 

We say a holomorphic map f : U → V is Siegel if it has a fixed point α, a Siegel 

quasidisk compactly contained in U, and a unique critical point c0 ∈ U that is on 

the boundary of Zf. Note that in [AL2] a Siegel map is assumed to satisfy additional 

technical requirements; these requirements are satisfied by restricting f to an 

appropriate small neighborhood of . 

Let us foliate a Siegel disk Zf of f by equipotentials parametrized by their heights 

ranging from 0 (the height of α) to 1 (the height of ∂Zf). Namely, if h: Zf → D1 is a 

linearizing map conjugating f | Zf to the rotation , then the preimage under h 

of the circle with radius η is the equipotential of Zf at height η. 

Definition 3.1. A pacman f : U → V is Siegel if 

• f is a Siegel map with Siegel disk Zf centered at α; 

• the critical arc γ1 is the concatenation of an external ray R1 followed by an 

inner ray I1 of Zf such that the unique point in the intersection γ1 ∩ ∂Zf is not 

precritical; and 

• writing  ) as in (2.1), the disk O is a subset of Zf 

bounded by its equipotential. 

The rotation number of a Siegel pacman (or a Siegel map) is θ ∈ R/Z such that e(θ) 

is the multiplier at α. It follows (see Theorem 3.2) that the rotation number of the 

Siegel map is in Θbnd. The level of truncation of f is the height of ∂O. 

Since γ1 is a concatenation of an external ray R1 and an internal ray I1, so is γ0: it is 

a concatenation of an external ray R0 and an internal ray I0 with f(R0 ∪ I0) = R1 ∪ I1. Two 

Siegel pacmen f : Uf → Vf and g: Ug → Vg are combinatorially equivalent if they have the 

same rotation number and if R0(f1) and R0(f2) have the same external angles; see (2.1). 

Starting from §3.6 we will normalize γ0 so that it passes through the critical value. 

A hybrid conjugacy between Siegel maps f1 : U1 → V1 and f2 : U2 → V2 is a qc-conjugacy 

h: U1 ∪ V1 → U2 ∪ V2 that is conformal on the Siegel disks. A hybrid conjugacy between 

Siegel pacmen is defined in a similar fashion. We will show in Theorem 3.11 that 

combinatorially equivalent pacmen are hybrid equivalent. 
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We will often refer to the connected component  attached to c0 

as a co-Siegel disk. 

3.1. Local connectivity and bubble chains. Consider a quadratic polynomial 

θ . 

 
Theorem 3.2. If θ ∈ Θbnd, then the closed Siegel disk Z of pθ is a quasidisk containing the 

critical point of pθ. 

Conversely, suppose a holomorphic map f : U → V with a single critical point has a 

fixed Siegel quasidisk  containing the critical point of f. Then f has a rotation 

number of bounded type. 

In particular, pθ is a Siegel map. The first part of Theorem 3.2 follows essentially 

from the Douady-Ghys surgery; see [D1]. Conversely, if f : U → V is a Siegel map, then 

applying the inverse Douady-Ghys surgery we obtain a quasicritical circle map is 

quasisymmetrically conjugate to the rigid rotation if and only if the rotation  f; see 

[AL2, Definitions 3.1]. By [H,Sw,AL2], the restriction of f to the unit circle 

number of f is bounded. (Compare to [GJ].) 

 Let us now fix a polynomial p = pθ with θ ∈ Θbnd. A bubble of p is either 

, or 

, or 

 • an iterated p-lift of 1.4 for the definition of a lift). 

The generation of a bubble Zk is the smallest n ≥ 0 such that pn(Zk) ⊂ Z0. In particular, 

Z0 has generation 0 and  has generation 1. If the generation of Zk is at least 2, then p: 

Zk → p(Zk) admits a conformal extension through ∂Zk (because 

 
We say that a bubble Zn is attached to a bubble   and the 

generation of Zn is greater than the generation of Zn−1. 

A limb of a bubble Zk is the closure of a connected component of Kp \ Zk not 

containing the α-fixed point. A limb of  is called primary. 

Theorem 3.3 ([Pe]). The filled-in Julia set Kp is locally connected. Moreover, for every ε 

> 0 there is an n ≥ 0 such that every connected component of Kp minus all bubbles of 

generation at most n has diameter less than ε. 

In particular the diameter of bubbles in Kp tends to 0: for every ε > 0 there are at 

most finitely many bubbles with diameter greater than ε. Similarly, the diameter of 

limbs of any bubble tends to 0. 
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An (infinite) bubble chain of Kp is an infinite sequence of bubbles B=(Z1,Z2,...) such 

that Z1 is attached to Z0 and Zn+1 is attached to Zn; see Figure 8. 

β 

Figure 8. A bubble chain (red) landing at the β-fixed point. 

As a consequence of Theorem 3.3, every bubble chain B = (Z1,Z2,...) lands: there is a 

unique x ∈ Kp such that for every neighborhood U of x there is an m ≥ 0 such that

 is within U. Conversely, if x ∈ Kp does not belong to any bubble, then there is 

a bubble chain B = (Z1,Z2,...) landing at x. A point x is periodic if and only if B is periodic: 

there is an m > 1 and q ≥ 1 such that pq maps (Zm,Zm+1,...) to (Z1,Z2,...). 

Let f : U → V be a Siegel pacman. Limbs, bubbles, and bubble chains for f are defined 

in the same way as for quadratic polynomials with Siegel quasidisks. In particular, a 

bubble of f is either  , or an fn−1-lift of  , where n is the 

generation of the bubble. Since  is the only bubble intersecting 

{c1} ∪ γ1, all bubbles of positive generation are conformal lifts of  . We 

define the Julia set of f as 

(3.1) . 

We will show in Theorem 3.12 that Theorem 3.3 holds for standard Siegel pacmen 

and that Jf is the closure of repelling periodic points. 

Limbs, bubbles, and bubble chains of a prepacman F are preimages of the 

corresponding dynamical objects of f. 

3.2. Siegel prepacmen. A prepacman Q of a Siegel pacman q is also called Siegel; the 

rotation number and level of truncation of Q are those of q. Recall that Q consists of 

two commuting maps q− : U− → SQ, q+: U+ → SQ such that U− and U+ are separated by β0. 

Given a Siegel map f we say that f has a prepacman Q around x ∈ ∂Zf if q− ,q+ are iterates 

of f, the vertex of SQ is at α(f), and β0(Q) intersects ∂Zf at x. 

   
 

H FWDQJ

X 
O D U 

Z 0 

Z 1 
Z 2 
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 1 .Let h : Z p → 

Lemma 3.4. Suppose that p is a Siegel quadratic polynomial with rotation number θ ∈ 

Θbnd. Consider a point x ∈ ∂Zp such that x is neither the critical point of p nor its iterated 

preimage. Then for every r ∈ (0,1) and every ε > 0, the map p has a Siegel prepacman 

(3.2) Q = (q−: U− → SQ,q+: U+ → SQ) 

around x such that 

• the rotation number of Q is a renormalization of θ – iteration of (A.2); 

• for every z ∈ U the orbit z,p(z),...,pk(z) is in the ε-neighborhood of  

k(z) = q± (z); 

where p 
± 

• r is the level of truncation of Q; and 

• every external ray segment (see §2.1) of Q is within an external ray of p. 

Before proceeding with the proof let us define a sector renormalization of p | 

. Consider the rotation of ) of the unit disk 

D1 be the unique conformal conjugacy between  and Lθ | D1 normalized such 

that h(x) = 1. A sector pre-renormalization of Lθ is a commuting pair (La | 
X

− ,Lb | X+) 

realizing the first return map to 
X

− ∪X+ (see Figure 27), where 

 
X−, X+ are closed sectors of D1 such that X−∩X+ is the internal ray going towards 

1; see details in→ 1/δ projects (§A.2. Denote byLa | X− ,Lb | Xδ+the angle of) to a new 

rotation.X = X− ∪X+ at 0. The gluing map 

z z 

Definition 3.5. A sector pre-renormalization of  around x ∈ ∂Zp is a commuting 

pair (a | X− p,aLb
θ| X| X−+,p) bby| Xh, where+) obtained by pulling back a sector pre-

renormalization (Lθ 

• X− := h−1(
X

−), X+ := h−1(X+), and X := h−1(X) = X− ∪ X+ are closed sectors of , 

• the internal ray I0 := X− ∩ X+ lands at x. 

The gluing map  descents to 

ψx := h−1 ◦ [z → z1/δ] ◦ h 

with . 
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Proof of Lemma 3.4. Consider the sector renormalization (pa | X− ,pb | X+) from 

Definition 3.5 and assume that the angle δ of X is small. We will now extend 

(pa | X− ,pb | X+) beyond  to obtain a prepacman (3.2); see Figure 9. Set 

I− := pb(I0),I+ := pa(I0),I := fa+b(I0). 

Then the sector X− is bounded by I−,I0 and X+ is bounded by I0, I+. 

Since x is not precritical, there are unique external rays R− ,R+ ,R extending I− ,I+ ,I 

beyond . Let SQ be the closed sector bounded by R− ∪ I− ∪ I+ ∪ R+ and truncated by an 

external equipotential E at a small height σ > 0. The curve 

R∪I divides∪ S into two closed sectors∪ S+ and∪S− such that S+ is betweena(X ) ⊂RS− 

∪andI− andb(XR+) ⊂I whileS+. S is between R I and R+ I+. We note that p − − − 

p 

Let us next specify U− ⊃ X− ,U+ ⊃ X+ such that 

(3.3) Q = (q− ,q+) = (pa | U− ,pb | U+) 

is a full prepacman. Since the p-orbits of X− ,X+ cover  before they return back to X, 

we see that ∂X ∩ ∂Zp has a unique precritical point, call it , that travels through the 

critical point of p before it returns to X. Below we assume that 

; the case  is analogous. Then S+ has a conformal pullback U+ 

 

I − 

I 0 
I 

I + 

R 

R − 

R + 

R 0 

S + 

S − 

Υ − 

Υ + 

E 

U + 

Z p 

Z  p α 

ω 
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Figure 9. A full Siegel prepacman; compare with Figure 6. In the 

dynamical plane of a quadratic polynomial p, the sector SQ = S− ∪ S+ 

is bounded by R− ∪ I− ∪ I+ ∪ R+ and truncated by an equipotential at 

small height. Pulling back S− ,S+ along 

 appropriate branches ofa | U, pb | Up+
a),pis a full prepacman (3.3). Truncatingb we 

obtain U− = Υ− ∪ Υ+ and U+ 

so that (p a | U− , pb | U−+) at ω and at the vertex where R+ meets E (see 

(p 

Figure 11) we obtain a required prepacman (3.2). 

along pb: X+ → S+. We have U+ ⊂ SQ because rays and equipotentials bounding 

SQ enclose U+. 

The sector S has a degree two pullback Υ along pa: X → S . Under a: Υ → S the fixed 

point− α has two preimages, one of them is− − α, we denote− 

p 
 − − 

the other preimage by ω. Let Υ+ be the conformal pullback of S+ along the orbit pa: {ω} 

→ {α}. We define U− := Υ− ∪Υ+ ⊂ SQ and we observe that Q in (3.3) is a full prepacman. 

By Theorem 3.3, primary limbs of Kp intersecting a small neighborhood of x have 

small diameters. By choosing δ and σ sufficiently small we can guarantee that  

is in a small neighborhood of x. 

Let us now truncate Q at level r and let us show that the orbit 

z,p(z),...,pk(z) = q±(z),k ∈ {a,b}, 

of any z ∈ U is in a small neighborhood of . The truncation of Q at level r 

removes points in U = Υ Υ+ with p the equipotential 

at height t := r 

 ± − − ∪ δ. Sincea-δimages in the subdisk ofis small, we obtain 
thatZtpis close to 1.bounded by 
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Figure 10. Since W is truncated by an equipotential of   at small 

height, the point  is in a small neighborhood of c0. 

Since Kp is locally connected (Theorem 3.3), all the external rays of p land. For z ∈ 

U± \ Kf, define ρ(z) ∈ Kp to be the landing point of the external ray passing through z. 

Since SQ is truncated by an equipotential at a small height, the orbit of z stays close to 

that of ρ(z). This reduces the claim to the case z ∈ Kp ∩ U±. 

By Theorem 3.2, there is an 0 such that all of the big (with diameter at least ε) 

primary limbs of p are attached to one of , where c0 is the critical point 

of p and c−i is the unique preimage of . Since δ is assumed to be small, 

the orbit of  travels through all  before it returns to SQ. 

Let us denote by L the primary limb of p containing z (the case is trivial). If L 

is not attached to , then by the above discussion all L,p(L),...,pk(L) = q (L) are small 

and the claim follows. 
± 

Suppose that L is attached to. Denote by L−i the connected component of 

attached to c−i. Since  travels through a critical point, we have L = L−j 

for some j < k. 

Let W be the pullback of SQ along 

, 

and let  truncated by the equipotential of  at height t; see Figure 10. 

Since t = rδ is close to 1, we obtain that  is in a small neighborhood of c0 because 

the angle of  (the non-fixed preimage of α) is small—it is equal to δ. Therefore, 

pj(z) is close to c0, and by continuity all ) are 

only big limbs, we obtain that the orbitclose to  . Recall that 

pj−z,pi(z()z∈),...,pL−i. Sincek(z) is in a small neighborhood  are the of

. 

Z p 
Z  p 

α α  

S Q 

W  

c 0 

f k − j 
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It remains to specify external rays for Q. As shown on Figure 11 we slightly 
truncate SQ at the vertex where R+ meets the equipotential E and we slightly truncate 
U such that the truncations are respected dynamically and such that ± 

the preimage of theextUq, where∂SQ \q(:RU−q∪→R+V)qunderis the pacman ofQ consists 

of exactly two curves thatQ. We now can embed project to ∂ 

 

Figure 11. By truncating the prepacman from Figure 9 and 

embedding rectangles R±, we endow the prepacman with external 

rays. 

in SQ \ (U− ∪ U+) two rectangles R− and R+ that define external rays of Q as in §2.1.

  

3.3. Pacman renormalization of Siegel maps. An immediate consequence of [AL2, 

Theorem 3.19, Proposition 4.3] is the following. 

Theorem 3.6. Any two Siegel maps with the same rotation number are hybrid 

conjugate on neighborhoods of their closed Siegel disks. 

Proof. By [AL2, Proposition 4.3] any Siegel maps f,g can be obtained by performing the 

Douady-Ghys surgery on quasicritical circle maps f,˜ g˜. By [AL2, Theorem 3.19], there 

is a qc map h˜ conjugating f˜ and ˜g in a small neighborhood of the unit circle. Then h˜ 

descends into a qc map h conjugating f and g in small neighborhoods of the 

boundaries of their Siegel disks. A hybrid conjugacy between f and g is obtained by 

setting h | Zf to be the canonical conformal conjugacy between f | Zf and g | Zg and 

running the pullback argument.  

As a corollary of Theorem 3.6 and Lemma 3.4 we obtain the following. 

 + 

 − 

U + 

U − 
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Corollary 3.7. Every Siegel map f : U → V is pacman renormalizable. 

Moreover the following holds. Let f be a Siegel map, and let p be the unique quadratic 

polynomial with the same rotation number as f. Let h be a hybrid conjugacy from a 

neighborhood of  to a neighborhood of , respectively. Then there are prepacmen R 

and Q in the dynamical planes of f and p, respectively, such that h respects R and Q in the 

sense of Definition 2.4. 

Proof. Choose a small ε > 0 such that the ε-neighborhood of Zf is in the domain of h. 

Then h pulls back a prepacman Q from Lemma 3.4 to a prepacman R in the dynamical 

plane of f. This shows that f is pacman renormalizable.  Lemma 3.8. Suppose that a 

Siegel pacman f is a renormalization of a quadratic polynomial. Then the non-escaping 

set Kf is locally connected. 

Moreover, for every ε > 0 there is an n ≥ 0 such that every connected component of Kf 

minus all the bubbles with generation at most n is less than ε. All the external rays of f 

land and the landing point belongs to Jf. Conversely, every point in Jf is the landing point 

of an external ray. The Julia set Jf is the closure of repelling periodic points. 

Proof. The proof follows from Theorem 3.3. Suppose that f is obtained from a of p by 

removing an open sector. All of the limbs of   attached to the removed quadratic 

polynomial p. Then every bubble Zα of f is obtained from a bubble Zα 

sector are also removed. It follows from Theorem 3.3 that for ε > 0 there is an n ≥ 0 

such that every connected component of Kf minus all of the bubbles with generation 

at most n is less than ε. Since bubbles of f are locally connected, so is Kf. The landing 

property of external rays is straightforward.  

3.4. Rational rays of Siegel pacmen. By a rational point we mean either a periodic 

or preperiodic point. Similarly, a periodic or preperiodic ray is rational. 

Let us fix pacmen f,p and prepacmen R,Q as in Corollary 3.7. Let KR be the non-

escaping set of R. By definition, KR ⊂ Kf; spreading around KR we define the local non-

escaping set of f: 

(3.4) K . 
n≥0 

This is the set of points that do not escape ΔR under f : ΔR → ΔR∪SR; see Figure 7. 

Similarly we define 

K . 
n≥0 

It is immediate that h conjugates f | Klocf and p | Klocp . As a consequence, the local 

Julia set 
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J n≥0 

is the closure of repelling periodic points because so is Jlocp . (Indeed, every y ∈ Jlocp is 

the landing point of an external ray Ry because Jp is locally connected. Since external 

rays in a pacman are parametrized by angles in S1 (see §2.1), p has a periodic external 

ray Rx landing at x ∈ Jlocp .) Moreover, for every periodic point y ∈ Klocf there is a unique 

periodic bubble chain By of Klocf landing at y. 

Lemma 3.9 (External rays). Let y ∈ Jlocf be a periodic point. Then there is a periodic 

external ray Ry landing at y with the same period as y. 

Proof. Let By = (Z1,Z2,...) be the bubble chain in Klocf landing at y. Denote by x the unique 

point in the intersection of γ1 ∩ ∂Z0. By Definition 3.1, the external ray R1 lands at x. 

There are two iterated preimages  (by density of those) such that the 

rays  (iterated lifts of R1) landing at  together with Z1 separate y from ; 

see Figure 12. We denote by D the open subdisk of V bounded by   and 

containing y. Let Dp be the (univalent) pullback of D along fp: {y} → {y}. Then . 

By the Schwarz lemma, fp: Dp → D expands the hyperbolic metric of D. 

 

Z 0 
Z  0 

α 

f p 

R 1 

I 1 

x 

D 

R  

R ρ 
y 

D p 

Z 1 

loc 
f : = 

  
f |  loc 

f 

  − n 
( ∂Z f ) 
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Figure 12. Illustration to the proof of Lemma 3.9. The ray R1 has 

preimages R and Rρ that land at Z1 such that  together with 

appropriate arcs in ∂V ∪ Z1 bound a disk D containing y. The disk D 

has a univalent lift  . By the Schwarz lemma, fp : Dp → D is 

expanding, which implies that there is an external ray landing at y. 

There is a unique periodic external ray Ry in D with period p. We claim that Ry lands 

at y. Indeed, parametrize R as R: R>0 → V with fp(Ry(t + p)) = Ry(t). Since all the points 

in D away from y escape in finite time under→ ∞ fp: Dp → D, the Euclidean distance 

between R(t) and y goes to 0 as t + . 

The next lemma is a preparation for a pullback argument. 

Lemma 3.10 (Rational approximation of γ1). For every ε > 0, there are 

• periodic points , 

• external rays R and Rρ landing at , respectively, 

• periodic bubble chains  in Klocf landing at , respectively, and 

• internal rays I and Iρ of Zf landing at the points at which B and Bρ are attached 

such that  and Rρ ∪ Bρ ∪ Iρ are in the ε-neighborhood of γ1 and such that

 is on the left of γ1 while Rρ ∪ Bρ ∪ Iρ is on the right of γ1. 

Proof. Consider a finite set of periodic points y1,y2,...,yp ∈ Jlocf . By Lemma 3.9 each yi is 

the landing point of an external periodic ray, call it Ry,i, and the landing point of a 

periodic bubble chain, call it By,i. Let {W1,W2,...,Wp} be the set of connected components 

of 

); 

we assume that ∂Wp contains ∂frbUf. By adding more periodic points we can also 

assume that . Set 

W := W1 ∪ W2 ∪ ··· ∪ Wp−1. 

By the Schwarz lemma, f | W is expanding with respect to the hyperbolic metric of 

W. Since , there is a sequence of periodic points  such that the orbit 

of  and such that x,j converges from the left to the unique point x1 in γ1 ∩ 

∂Zf. 

We claim that the external rays   landing at x,j converge to the external ray 

landing at x1. Indeed, since , the external angle of  2.1) converges to 

the external angle of R1. By continuity, ]) converges to R1([0,T]) for any T ∈ 
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R>0. Since f | W is expanding,  )) is in a small neighborhood of x,j which 

converges to x1. 

The bubble chains  landing at x,j shrink because there are no big limbs 

in a neighborhood of x1. Define I,j to be the internal ray of Zf landing at the point where 

B,j is attached. Then  is a required approximation for sufficiently big j. 

Similarly, Rρ ∪ Bρ ∪ Iρ is constructed.  

3.5. Hybrid equivalence. Recall from §2 that a pacman f : Uf → Vf is required to have 

a locally analytic extension through ∂Uf. By means of the pullback argument, we will 

now show the following. 

Theorem 3.11. Let f : Uf → Vf and g: Ug → Vg be two combinatorially equivalent Siegel 

pacmen and suppose that f and g have the same truncation level. Then f and g are hybrid 

equivalent. 

Proof. Let p be the unique quadratic polynomial with the same rotation number as f 

and g. Let  be hybrid conjugacies from neighborhoods of  and  

a neighborhood of Zp, respectively. As in Corollary 3.7, there are prepacmen Q, R, and 

S in the dynamical planes of p, f, and g, respectively, such that hf and hg are conjugacies 

respecting prepacmen R,Q and S,Q, respectively; see Definition 2.4. The composition 

h := hg−1 ◦ hf is a conjugacy respecting R,S. 

We define Klocf as in (3.4); Klocg and Klocp are similarly defined. Then h conjugates f | 

Klocf and g | Klocg . 

As in Lemma 3.10 let  ) and Rρ(f) ∪ Bρ(f) ∪ Iρ(f) be 

approximations of γ1(f) from the left and from the right, respectively. Similarly, let 

) and Rρ(g) ∪ Bρ(g) ∪ Iρ(g) be approximations of γ1(g). We 

choose the approximations in compatible ways: 

) are the images of ) under 

h; 

) have the same external angles as  

Write 

) and . 

Then Tf and Tg are forward invariant sets such that Vf \ Tf and Vg \ Tg consist of finitely 

many connected components. Since ) have the same external angles, we 

can extend h to a qc map h: Vf → Vg such that h is equivariant on Tf ∪ ∂extUf. 

We now slightly increase Uf by moving ∂frbUf so that the new disk Uf satisfies 

. 

and we can slightly move(Indeed, we can slightly moveγ+ ⊂γ− ⊂frb∂Ufrbf Uso that its 

image is withinf so that its image is within  
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∂ 

Similarly, we slightly increase Ug by moving ∂frbUg so that the new disk Ug satisfies 

 

and such that h | Tf lifts to a conjugacy between f | ∂Uf and g | ∂Ug. This allows us to 

apply the pullback argument: we set h0 := h and we construct qc maps 

, 

We can choose h such that h0 and h1 are connected by an isotopy h˜: [0,1]×Vf → Vg that 

is constant on Tf and uniformly continuous in the hyperbolic metrics of Vf \Tf, Vg \Tg. 

This implies that the Euclidean distance between hn and hn+1 tends to 0. Since the 

space of qc maps with uniformly bounded dilatation is compact, we may pass to the 

limit and construct a hybrid conjugacy between f and g.  

3.6. Standard Siegel pacmen. We say a Siegel pacman is standard if γ0 passes through 

the critical value. 

A standard prepacman R in the dynamical plane of a Siegel map g is a prepacman 

around the critical value of g (see §3.2). Then the pacman r obtained from R is 

standard and the renormalization change of variables ψR respects the internal ray 

landing at the critical value: 

(3.5) ψR(I1(g)) = I1(r). 

The pacman renormalization associated with R is called a standard pacman 

renormalization of g. 

By Theorem 3.11, two standard Siegel pacmen are hybrid equivalent if and only if 

they have the same rotation number. 

Theorem 3.12. Let f be a standard Siegel pacman. Then Kf is locally connected. 

Moreover, for every ε > 0 there is an n ≥ 0 such that every connected component of Kf 

minus all of the bubbles with generation at most n is less than ε. 

As a consequence, every periodic point of Jf is the landing point of a bubble chain. 

Proof. For every θ ∈ Θbnd, there is a standard pacman g with rotation number θ such 

that g is a renormalization of a quadratic polynomial. The statement now follows from 

Theorem 3.11 combined with Lemma 3.8.  

3.7. A fixed point under renormalization. Consider a Siegel map f with rotation 

number θ ∈ Θper and consider x ∈ ∂Zf such that x is neither the critical point nor its 
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F  =( f  
 

| U − → S  ,f  
 

| U + → S  ) 

ψ  : S  → V  

iterated preimage. Let (fa | X−,x ,fb | X+,x) be the sector prerenormalization of  as 

in Definition 3.5. Since θ ∈ Θper, we can assume 

(see §A.4) that the renormalization fixes  : the gluing map 

projects (fa | X−,x ,fb | X+,x) back to f | Zf. For x ∈ {c0,c1} we write 

ψ0 = ψc0,X0 = Xc0,X±,0 = X±,c0 

and ψ1 = ψc1,X1 = Xc1,X±,1 = X±,c1. 

Theorem 3.13 ([McM2]). For every θ ∈ Θper, there is a Siegel map with 

rotation number θ such that for a certain sector pre-renormalization of  

as above the gluing map ψ0 extends analytically through  to a gluing map ψ0 

projecting  back to , where . 

Moreover, there is an improvement of the domain: the forward orbits 

 
are compactly contained in . 

Up to conformal conjugacy, g is unique in a neighborhood of . We note that the 

improvement of the domain follows from complex a priori bounds for quasicritical 

circle maps [AL2, §3.3] after applying the inverse Douady-Ghys surgery; see also [Ya, 

Proposition 3.2]. It will allow us in Theorem 3.16 to construct a pacman analytic self-

operator . 

Corollary 3.14. The gluing map ψ1 extends analytically through  and, up to 

replacing ψ1 with its iterate, satisfies the same properties as ψ0 in Theorem 3.13; in 

particular, the improvement of the domain holds for ψ1. 

Proof. We need to check that  is well defined. Since ψ0 projects 

 and since the maps b are two-to-one in a neighborhood of c0, we 

obtain that for z close to c1 the gluing map ψ0 maps ) to a pair of points that 
have the same g-image. This shows that ψ1 is well defined. Up to replacing ψ1 with its 
iterate we can guarantee that the improvement of the domain holds for ψ1.  

Note that ψ1 is expanding on  because  is conjugate to 

 D  . 

Lemma 3.15 (Fixed Siegel pacman). For any θ ∈ Θper there is a standard Siegel pacman 

 that has a standard Siegel prepacman 

together with a gluing map projecting F back to f. Moreover, the improvement of the 

domain holds for the renormalization: 

(3.6) . 

(See §2.3 for the definition of  

The pacman f is conformally conjugate to g in a neighborhood of . 

Proof. Consider a Siegel map g from Theorem 3.13 and ψ1 from Corollary 3.14. 

1 →  1 ,z → z 1 /t ,t> 1 
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By Corollary 3.7, g has a standard prepacman Q: UQ,± → SQ such that is in a 

small neighborhood of c1. Since θ is of periodic type, we can prescribe Q to have 

rotation number θ. Since ψ1 is expanding on , for a sufficiently big integer t ≥ 1 the 

prepacman 

 

has the property that  is in a much smaller neighborhood of c1. 

Let  be a pacman obtained from Q. The prepacman ( projects 

to the standard prepacman, call it 

 

such that  is in a small neighborhood of c1. The map  descends to a gluing 

map, call it ψ, projecting F back to f. 

 If t is sufficiently big, then  is compactly contained in   

3.8. Analytic renormalization self-operator. Applying Theorem 2.7 to f from Lemma 

3.15 we obtain the following. 

Theorem 3.16 (Analytic operator . Let  be a pacman, and 

let F be a prepacman from Lemma 3.15. Then there are small neighborhoods 

 and there is an analytic pacman renormal- 

ization operator   such that  . Moreover, the 

operator R is compact, so its spectrum is a sequence converging to 0. The 

prerenormalization of .  

Proof. Let   be a pacman obtained form   by slightly 

decreasing U so that   and  ). Since the renormalization is 

defined on , by Theorem 2.7 there is a compact analytic pacman 

renormalization operator  ), where  are small 

neighborhoods of the closures of  . Precomposing with the restriction 

operator  

), we obtain the required operator R.  

To simplify notation, we will often write an operator in Theorem 3.16 as R: B  

B with ). We can assume (by Lemma 3.4) that f has any given truncation 

level between 0 and 1. 

Corollary 3.17. In a small neighborhood of f, the operator R: B  B has an analytic finite-

dimensional unstable submanifold Wu tangent to the unstable direction of R. 

We will show in Theorem 7.7 that Wu has dimension 1. 

Proof. Since R is compact, it has a finite-dimensional unstable direction. 

[HPS, Corollary (5.4)] asserts that Wu exists as a C∞-smooth submanifold. The 

corollary is proven by showing that the graph transform on the space of submanifolds 

in a sufficiently small cone-neighborhood of the unstable direction of R (i.e., 
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“candidates” to Wu) has the unique fixed point Wu. In our analytic setup, the graph 

transform iteratively applied to an analytic submanifold gives a sequence of analytic 

submanifolds converging exponentially fast and uniformly to Wu (see the estimate on 

p. 55 of [HPS]). Therefore, Wu is an analytic submanifold.  An indifferent pacman is a 

pacman with indifferent α-fixed point. The rotation number of an indifferent pacman 

f is θ ∈ R/Z so that e(θ) is the multiplier at α(f). 

If, moreover, θ ∈ Q, then f is parabolic. 

We denote by θ the multiplier of f. 

Lemma 3.18. Let Rprm : R/Z → R/Z be the map defined by 

if  , (3.7)  2 −1 

if 1; 
θ 

see (A.2). Then there is a k ≥ 1 such that the following holds. Let f ∈ B be an indifferent 

pacman with rotation number θ. Then Rf is again an indifferent pacman with rotation 

number Rprm
k (θ). 

 In particular, prm . 

Proof. Recall that the renormalization   is an extension of a sector 

renormalization of ; see Definition 3.5 and Appendix A. By Lemma A.2, a sector 

renormalization is an iteration of the prime renormalization. Therefore, R is an 

iteration of the prime pacman renormalization Rprm; see Definition 2.3. We need to 

check that if f is an indifferent pacman with rotation number θ, then Rprmf is again an 

indifferent pacman with rotation number Rprm(θ). By continuity, it is sufficient to 

assume that f is a parabolic pacman with rotation number p/q. The statement is clear 

if the germ of f has finite order. So assume that f has a local attracting flower at α with 

q petals. If p ≤ q/2, then Rprm deletes p local attracting petals; otherwise Rprm deletes 

q−p local attracting petals. We see that Rprmf has rotation number Rprm(p/q).  

Remark 3.19. We will show in [DL] that  can be constructed so that k is the 

minimal period of θ under Rprm. 

4. Control of pullbacks 

Let us fix the renormalization operator 

 

from Theorem 3.16 around a fixed Siegel pacman f. By Corollary 3.17 R has an 

unstable manifold . 
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4.1. Renormalization triangulations. Suppose that f0 ∈ B is renormalizable n ≥ 0 

times (this is always the case if f0 is sufficiently close to f) and antirenormalizable −m 

≥ 0 times. We write [fk : Uk → V ] := Rkf0 for the kth (anti)renormalization of f0, where 

m ≤ k ≤ n. We denote by ψk : Sk → V the renormalization change of variables realizing 

the renormalization of fk−1 (compare with the left side of Figure 21). We write 

φk := ψk−1. 

Let us cut the dynamical plane of fk : Uk → V , with k ∈ {m,...,n}, along γ1; we denote 

the resulting prepacman by 

(4.1) Fk = (fk,±: Uk,± → V \ γ1). 

 

Figure 13. Suppose f(z) = λz with  , and let S be the sector 

between γ0 and γ1 = f(γ0). Let ψ: S → C be the gluing map identifying 

γ0 and γ1 dynamically. If = 1, then ψ(γ0) does not land at 0 at a 

well-defined angle. 

Lemma 4.1. By restricting R to a smaller neighborhood of f, the following is true. 

Suppose f0 is renormalizable n ≥ 1 times. Then the map 

Φn := φ1 ◦ φ2 ◦ ··· ◦ φn 

admits a conformal extension from a neighborhood of c1(fn) (where Φn is defined 

canonically) to V \ γ1. The map Φn: V \ γ1 → V embeds the prepacman Fn (4.1) to the 

dynamical plane of f0; we denote the embedding by 

, 

where the numbers an,bn are the renormalization return times satisfying (A.4). 

Let Δn be the triangulation obtained by spreading around  and ; see §2.3 and 

Figure 7. In the dynamical plane of f0 we have 

, 

Δ1(f0) is close in the Hausdorff topology to , and moreover . 

γ 0 

γ 1 = f ( γ 0 ) 

S 

ψ 

ψ ( γ 0 ) 

= ψ ( γ 1 ) 
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We call Δn the nth renormalization triangulation. Examples of Δ0,Δ1,Δ2 are shown in 

Figures 14 and 15. We say that Δn(f0) is the full lift of Δn−1(f1). Similarly (i.e., by lifting 

and then spreading around), a full lift will be defined for other objects. 

In the proof of Lemma 4.1 we need to deal with the fact that ψ1(γ1) can spiral 

around α; see Figure 13 for illustration. We will first show in Lemma 4.2 that Lemma 

4.1 holds in a neighborhood of  . By the topological robustness of 

antirenormalization (Theorem B.8), Lemma 4.1 holds also inside Z. 

4.1.1. Combinatorics of triangles. Before giving the proof of Lemma 4.1, let us 

 
introduce additional notation. For consistency, we set Φ0 := id; then Δ0 = U0 is a 

triangulation consisting of two closed triangles—the closures of the connected 

components of U0 \ (γ0 ∪ γ1). We denote these triangles by Δ0(0) and Δ0(1) so that 

int(Δ0(0)),γ0,int(Δ0(1)) have counterclockwise orientation around α; see Figure 14. 

The triangulation Δ0(fn) is defined similarly. 

Let Δn(0,f0),Δn(1,f0) be the images of Δ0(0,fn),Δ0(1,fn) via the map Φn from Lemma 

4.1. By definition, Δn is a triangulated neighborhood of α obtained by spreading 

around Δn(0,f0),Δn(1,f0). We enumerate in counterclockwise order these triangles as 

Δn(i) with i ∈ {0,1,...,qn−1}. By construction, Δ c1(fn). 

We remark that f0 | Δn is an antirenormalization of fn: Un → V in the sense of 

Appendix A. Moreover, there is a pn such that 

(4.2) f0 : Δn(i) → Δn(i + pn) 

is conformal for allwith the index taken modulo qn. For the 

exceptional triangles, we have an almost two-to-one map 

(4.3) . 

We will show in Theorem 4.6 that if f0 is close to f, then ) approximates

 dynamically and geometrically. 

By construction, for every triangle Δn(i,f0) there exist t ≥ 0 and j ∈ {0,1} such that a 

certain branch of f0−t maps conformally Δn(i,f0) to Δn(j,f0). We define Ψn,i on Δn(i,f0) by 

(4.4) Ψn,i := Φn−1 ◦ f0−t: Δn(i,f0) → Δ0(j,fn). 

4.1.2. Walls. Let A be a closed annulus, and let O be the bounded component of C\A. 

We say that A is a univalent N-wall if the restriction f0 | O∪A is univalent and for all z 

∈ O and all j with |j| ≤ N we have 

(f0 | O ∪ A)j(z) ⊂ O ∪ A. 

More generally, we say that A is an N-wall if A contains a univalent N-wall A such that 

O is in the bounded component of C . 
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Fix a small r > 0 and denote by   the open subdisk of Z bounded by the 

equipotential at height r. Set  . It is a closed annulus enclosing α. We 

decompose Π0 into two closed rectangles Π0(0) = Π0∩Δ0(0) and Π0(1) = Π0∩Δ0(1); 

they are the closures of the connected components of Π0 \ (γ0 ∩ γ1). The following 

lemma proves that the wall of Δn exists. 

Lemma 4.2 (The wall of Δn). Suppose all f0,f1,...,fn are sufficiently close to f. Then there 

exists a wall Πn(f0) with the following properties: 

(1) The map Φn extends from a neighborhood of c1(fn) to Π0 \ γ1. 

(2) Let Πn(0,f0) and Πn(1,f0) be the images of Π0(0,fn) and Π0(1,fn) under Φn. Then, 

by spreading around Πn(0,f0) and Πn(1,f1), we obtain an annulus Πn enclosing 

α. We enumerate counterclockwise rectangles in Πn as Πn(i) with i ∈ {0,1,...,qn − 

1}. 

(3) We have  with Π0(f0) close to . 

(4) For every Πn(i), there is a t ≥ 0 such that a certain branch of fn−t maps Πn(i) onto 

Πn(j) with j ∈ {0,1}. Then 

(4.5) Ψn,i := Φn−1 ◦ f0−t: Πn(i,f0) → Π0(j,fn) 

is conformal. If n is sufficiently big, then all the Ψn,i expand the Euclidean metric 

and the expanding constant is at least ηn for a fixed η > 1. In particular, the 

diameters of the rectangles in Πn tend to 0. 

(5) The wall Πn(f0) approximates  in the following sense:  is a concatenation 

of arcs J0J1 ···Jqn−1 such that Πn(i) and Ji are close in the Hausdorff topology. 

As in the case of renormalization triangulation, we say that Πn(f0) is the full lift of 

Πn−1(f1). 

Proof. The proof follows from the robustness of the renormalization change of 

variables in a neighborhood of  . Such 

change of variables is eventually expanding. 

Consider first the case. It follows from the improvement of the domain that the wall 

) is well defined and, moreover, the diameters of the rectangles in ) tend 

to 0 as n increases. Choosing a sufficiently big k and applying the Schwarz lemma 

(after a slight enlargement of the rectangles), we obtain that all the Ψ

) expand the Euclidean metric. 

By continuity and the assumption that f0,f1,...,fn are sufficiently close to f, the maps 

Ψk,i: Πk(i,fs) → Π0(j,fs+k) also expand the Euclidean metric. Decomposing Ψn,i: Πn(i,f0) → 

Π0(j,fn) into a composition of  maps of the form Ψk,t and one remaining map, we see 

that Ψn,i : Πn(i,f0) → Π0(j,fn) is a required expanding map. This implies claim (4); other 

claims are consequences of claim (4). 
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4.1.3. Proof of Lemma 4.1. We will now apply Theorem B.8 to show that the full lift 

Δn(f0) of Δ0(fn) exists. 

Let  be the closed annulus bounded by the equipotentials at heights r and 

2r. Then Q0 ⊂ Π0 and we decompose Q0 into two rectangles Q0(0) = Π0
(0)∩Q0 and Q0(1) 

= Π0(1)∩Q0. Let Qn(0,f0) and Qn(1,f0) be the images of Q0(0,fn) and Q0(1,fn) under Φn. 

By spreading around Qn(0,f0) and Qn(1,f0), we obtain (by Lemma 4.2) an annulus Qn 

enclosing α. We enumerate counterclockwise rectangles in Qn as Qn(i) with i ∈ {0,1,...,qn 

− 1}. We have Qn(i) ⊂ Πn(i). 

Denote by Ωn the open topological disk enclosed by Qn. Then f0 | Ωn ∪Qn is an 

antirenormalization of f1 | Ωn−1 ∪Qn−1 (in the sense of Appendix B) with respect to the 

dividing pair of curves γ0,γ1. 

By induction, we will now extend the wall Πn to the triangulation Δn. Suppose the 

statement is verified for n − 1. In the dynamical plane of f1, we denote by  the 

lift of γ0(fn) under the (n − 1)-antirenormalization specified so that  crosses Qn−1 

at Qn−1(0) ∩ Qn−1(1). Note that Qn(0) ∪ Qn(1) is in a small neighborhood of c1 because 

Φn is contracting. Therefore,   is uniformly close to γ0 ∩ Qn−1. We can 

slightly adjust γ0 in a neighborhood of Qn−1, such that the new   crosses Qn−1 at 

Qn−1(0) ∩ Qn−1(1). Let  and γ1new be the images of  and γ0new, respectively. 

Since a wall contains a fence (see Remark B.11), by Theorem B.8 the 

antirenormalization of f1 | Ωn−1 ∪ Qn−1 with respect to   is naturally 

conjugate to the corresponding antirenormalization of f1 | Ωn−1∪Qn−1 with respect to
 new. Therefore, the full lift Δn(f0) of Δn−1(f1) exists; Δn(f0) is a required 

triangulation of Πn ∪ Ωn. 

By (3.6) combined with continuity, we have f0(Δ1) ⊂ Δ0. Applying induction on n, 

we obtain . 

We can now define  as the lift of Fn (see (4.1)) to the 

dynamical plane of f0, where 

Sn(0) := f0 (Δn(−pn) ∪ Δn(−pn + 1)) 

(compare with (4.3)).  

4.1.4. Changing γ1. In fact, the exact behavior of γ1 in a small neighborhood of α is 

irrelevant in the proof of Lemma 4.1. We have 

Lemma 4.3. Let  be a new pair of curves in the dynamical plane 

of fn such that 

 and ; and 

• γ0new and γ1new are disjoint away from α. 

Then Lemma 4.1 still holds after replacing γ0,γ1 with . More precisely, let 

  be the closures of the connected components of 

 in the dynamical plane of fn. As in Lemma 4.1 the map Φn 
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extends from a neighborhood of c1(fn) to V \ γ1new; let Δnewn (0,f0),Δnewn (1,f0) be the 

images of  under the new Φn. By spreading around 

Δnewn (0,f0),Δnewn (1,f0) we obtain a new triangulated neighborhood Δnewn of α. 

 Note that Δnewn and Δn triangulate the same neighborhood of α. 

Proof. Since γ1new,γ0new coincide with γ1,γ0 outside Zr, the wall Πn is unaffected; thus we 

can repeat the proof of Lemma 4.1 for .  

4.1.5. Siegel triangulations. We will also consider triangulations that are perturbations 

of Δn. Let us introduce appropriate notation. Consider a pacman f ∈ B. A Siegel 

triangulation Δ is a triangulated neighborhood of α consisting of closed triangles, each 

with a vertex at α, such that 

• triangles of Δ are {Δ(i)}i∈{0,...,q} enumerated counterclockwise around α so that 

Δ(i) is attached to Δ(i − 1) (on the right) and to Δ(i + 1) (on the left); all other 

pairs of triangles are disjoint away from α; 

• there is a p > 0 such that f maps Δ(i) to Δ(i+p) for allp+1}, while 

f(Δ(−p,−p + 1)) ∩ Δ = Δ(0,1); 

• Δ has a distinguished 2-wall Π enclosing α and containing ∂Δ such that each 

Π(i) := Π ∩ Δ(i) is connected and f maps Π(i) to Π(i + p) for all i p + 

1}; and 

• Π contains a univalent 2-wall Q such that each Q(i) := Q∩Π(i) is connected and 

f maps Q(i) to Q(i + p) for all . 

The nth renormalization triangulation is an example of a Siegel triangulation. 

Similar to Lemma 4.2(5), we say that Π approximates is a concatenation 

of arcs J0J1 ···Jq−1 such that Π(i) and Ji are close in the Hausdorff topology. 

Lemma 4.4. Let f ∈ B be a pacman such that all f,Rf,...,Rnf are in a small neighborhood 

of f. Let Δ(Rnf) be a Siegel triangulation in the dynamical plane of Rnf such that Π(Rnf) 

approximates . Then Δ(Rnf) has a full lift Δ(f) which is again a Siegel triangulation. 

Moreover, Π(f) also approximates . 

Proof. The proof is similar to the proof of Lemma 4.1. Suppose first n = 1. Since all 

Π(i,Rf) are small, the arc γ0 can be slightly adjusted3 in a neighborhood of 

Π so that γ0 crosses Π along Π(i,Rf) ∩ Π(i + 1,Rf) with . This allows us 

to construct a full lift Π(f) of Π(Rf). By Corollary B.14, the annuli Π(f) and Q(f) are 

again 2-walls. Applying Theorem B.8 from Appendix B we construct a full lift Δ(f) of 

 
3 The lift of the triangulation will depend on this adjustment. 
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Δ(Rf). Lemma 4.2(4) allows us to apply induction on n: for big n, the wall Π(f) 

approximates  better than Π(Rnf) approximates .  

 

Figure 14. Renormalization tiling. Right: triangles Δ0(0),Δ0(1) are the 

closures of the connected components of Uf \(γ0∪γ1). They form a 

renormalization tiling of level 0. Left: the triangles labeled by 0 and 

1, i.e., Δ1(0,f) and Δ1(1,f), respectively, are antirenormalization 

embeddings of Δ0(0,f1),Δ0(1,f1); the forward orbit of Δ1(0,f),Δ1(1,f) 

triangulates a neighborhood of α. Together with A0(0) ∪ A0(1), this 

gives a tiling of Uf of level 1. 

4.2. Renormalization tilings. In this subsection we will show the robustness of 

renormalization triangulations. Along these lines we will also extend Δn(f) to a tiling 

of Uf. 

Let  be the preimage of  under f : ¯γ0 → γ¯1; see Figure 14. In other words,

 is the subcurve of ¯γ0 consisting of points that escape Uf after one iteration. Set Γ(

 

Lemma 4.5. For every i we have 

Ψ1,i(∂Δ1(f0) ∩ ∂Δ1(i,f0)) ⊂ Γ(f). 

Moreover, there is an i such that . The set Γ(f) is disjoint 

from Δ0(f). 

There are disjoint arcs β0 and β1 = f(β0) such that 

• the concatenation of  and β0 connects ∂Δ0 to ∂Δ1; and 

• β1 connects ∂Δ0 to ∂Δ1. 

In a small neighborhood of f the curves β0,β1 can be chosen so that there is a holomorphic 

motion of 

(4.6) [  

that is equivariant with the following maps: 

(1) f0 : β0(f0) → β1(f0); 

; 

γ ◦ 
0 

Γ( f ) 

Δ 0 (0) 
Δ 0 (1) 

Γ( f ) 

γ ◦ 
0 

β 0 

β 1 = f ( β 0 ) 

1 

3 

0 

2 
4 

A 0 (0) 

A 0 (1) 
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i ∈{−  n , −  n +1 } 

i ∈{−  m , −  m +1 } and m<n 

f  | Z  

Proof. Each triangle Δ1(i) has three distinguished closed sides; we denote them by λ(i), 

ρ(i), and ) such that λ(i) and ρ(i) are the left and right sides meeting at the α-fixed 

point while ) is the side opposite to α. We have: 

, 

whereλ(i) and ρ(i + 1). Note that Ψ  and, moreover, . 

Let us analyze + 1). We assume that + 1). Then one of the 

curves in {λ(i),ρ(i+1)} is a Ψ-preimage of γ0(f1) while the other is a preimage of γ1(f1). 

We have: 

. 

It is clear (see Appendix A) that + 1) for at least one i. 

The property Γ(f) ∩ ∂Δ1(f) = ∅ follows from ∂Δ0 ∩ f(Δ1) = ∅; see Lemma 4.1. Since 

Γ(f)∩∂Δ1(f) = ∅, we can find β0 such that  is in a small neighborhood of γ0 and

 connects ∂Δ0 to ∂(Δ1\(Δ1(−p1)∪Δ1(−p1−1))). Then β1 = f(β0) is disjoint from γ0◦ 

∪ β0 and β1 connects ∂Δ0 to ∂Δ1. 

In a small neighborhood of f we have a holomorphic motion of ∂Δ0(f0). Applying the 

λ-lemma, we obtain a holomorphic motion of the triangulation Δ0 that is equivariant 

with f0 | γ0. Lifting this motion via Ψ1,i, we obtain a holomorphic motion of Δ1 ∪ Γ 

equivariant with (2) and (3). Applying again the λ-lemma, we extend the latter motion 

to the motion of (4.6) that is also equivariant with (1). 

Let A0 be the closed annulus between ∂Δ0 and ∂Δ1. The arcs  split 

A0 into two closed rectangles A0(0),A0(1) (see Figure 14) enumerated such that int(

 have counterclockwise orientation. 

Let An be the closed annulus between ∂Δn and ∂Δn+1. Define 

An(0,f0) := Φn(A0(0,fn)) and An(1,f0) := Φn(A0(1,fn)) 

and spread An(0,f0),An(1,f0) dynamically (compare with the definition of Δn(i) in §4.1); 

we obtain the partition of An(f0) by rectangles {An(i,f0)}0≤i<qn enumerated 

counterclockwise. Similar to (4.5) we define the map Ψn,i : An(i,f0) → A0(j,fn) with j ∈ 

{0,1}. 

The nth renormalization tiling is the union of all the triangles of Δn and the union of 

all the rectangles of all Am for all m < n. The nth renormalization tiling is defined as 

long as f0,...,fn are in a small neighborhood of f. 

A qc combinatorial pseudoconjugacy of level n between f0 and f is a qc map 

 that is compatible with the nth renormalization tilings as follows: 

• h maps Δn(i,f0) to Δ ) for all i; 

• h maps ) for all i and m < n; 

• h is equivariant on Δn(i,f0) for all ; and • h is equivariant on Am(i,f0) for all. 
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The following theorem says that f | Δn(f) approximates both dynamically and 

geometrically. 

Theorem 4.6 (Combinatorial pseudoconjugacy). Consider an nth renormalizable 

pacman f and set 

. 

If d is sufficiently small, then there is a qc combinatorial pseudoconjugacy h of level n 

between f and f and, moreover, the following properties hold. The qc dilatation and the 

distance between h | Δn(f) and the identity on Δn(f) are bounded by constants K(d),M(d), 

respectively, with K(d) → 1 and M(d) → 0 as d → 0. 

Proof. By Lemma 4.5, the set (4.6) moves holomorphically with f in a small 

neighborhood of f. Applying the λ-lemma, we obtain a holomorphic motion τ of the 

first renormalization tiling with f in a small neighborhood . 

 

Figure 15. Renormalization tiling of level 2; tilings of smaller levels 

are depicted on Figure 14. There are q2 = 12 triangles in Δ2 with 

rotation number p2/q2 = 5/12. Geometry of triangles in Δ2 is 

simplified. The image of Δ2(8)∪Δ2(9) is a sector slightly bigger than 

Δ2(0) ∪ Δ2(1); compare with Figure 7. 

A 0 (1) 

A 1 (1) 

A 1 (3) 
A 0 (0) 

A 1 (0) 

A 1 (2) 

A 1 (4) 

0 1 
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Suppose now that d is so small that all fi := Rif are in U. For every Δn(i) of f0 or of f 

consider the map Ψn,i: Δn(i) → Δ0(j), where Δ0(j) is the corresponding triangle of fn or 

of f. Then h on Δn(i,f0) is defined by applying first 

Ψn,i: Δn(i,f0) → Δ0(j,fn) (see (4.4)), then applying the motion τ from Δ0(j,fn) ), 

and then applying Ψ  

Similarly, for every consider the map Ψm,i: Am(i) → A0(j), where 

A0(j) is the corresponding rectangle of fm or of f. Then h on Am(i,f0) is defined by 

applying first Ψm,i: Am(i,f0) → A0(j,fm), then applying the motion τ from

), and then applying Ψ  

Observe now that h is well defined for all the points on the boundaries of all the 

rectangles and all the triangles because τ is equivariant with (1), (2), (3) of Lemma 

4.5. Therefore, all points have well-defined images under h. 

The qc dilatation of h is bounded by the qc dilatation of τ at fi with i ∈ {0,1,...,n}. This 

bounds the qc dilatation of h by K(d) as above with K(d) → 1 as d → 0. 

If n = 1, then since τ is continuous, the distance between h | Δ1(f0) and the identity 

on Δ1(f0) is bounded by M(d) as required. If n > 1, then   and the claim 

follows from the compactness of qc maps with bounded dilatation.  

 

Figure 16. If Dj intersects S = Δ(0)∪Δ(1) and S is disjoint from Δ(I), then 

Dj−1 may intersect Δ\Δ(f−1(I)) because f(Δ) = Δ∪S. 

Corollary 4.7. There is an ε > 0 with the following property. Suppose that f ∈ B is 

infinitely renormalizable and that all Rnf for n ≥ 0 are in the ε-neighborhood of f. Then 

there is a qc map  such that h−1 is a conjugacy on . 

Therefore, a certain restriction of f is a Siegel map and   are hybrid conjugate on 

neighborhoods of their Siegel disks. 

S 

 

D j D j − 1 

f 

I 

f 
− 1 ( I ) 
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Proof. If ε is sufficiently small, then by Theorem 4.6, for every n ≥ 0 there exists qc 

combinatorial pseudoconjugacy hn of level n between f and f such that the dilation of 

hn is uniformly bounded for all n. By compactness of qc maps, we may pass to the limit 

and construct a qc map   such that h−1 is a conjugacy on   and

). It follows, in particular, that f is a Siegel map. By 

Theorem 3.6, the maps   are hybrid conjugate on neighborhoods of their Siegel 

disks.  

4.3. Control of pullbacks. Recall from Lemma 4.1 that an,bn denote the closest 

renormalization return times computed by (A.4). By definition, an + bn = qn. We now 

restrict our attention to f ∈ Wu. 

Key Lemma 4.8. There is a small open topological disk D around  and there is a 

small neighborhood  such that the following property holds. For every 

sufficiently big n ≥ 1, for each t ∈ {an,bn}, and for all f ∈ R−n(U), we have c1+t(f) := ft(c1) ∈ 

D and D can be pulled back along the orbit c1(f),c2(f),...,c1+t(f) ∈ D to a disk D0 such that 

ft: D0 → D is a branched covering; moreover, D0 ⊂ Uf \ γ1. 

Proof. The main idea of the proof is to block the forbidden part of the boundary ∂frbUf 

from the backward orbit of D. The proof is split into short subsections. We start the 

proof by introducing conventions and additional terminology. The central argument 

will be presented in Claim 10(4). 

4.3.1. The triangulated disk Δ approximates . Throughout the proof we will often say 

that a certain object is small if it has small size independently of n. Choose a big 0 

and choose a small neighborhood  such that every f ∈ R−n(U) is at least m := n 

+ s renormalizable and each fi := Rif with i ∈ {0,1,...,m} is close to f. 

Consider the mth renormalization triangulation Δm(i) of f. Let h be a qc 

combinatorial pseudoconjugacy of level m as in Theorem 4.6. To keep notation simple, 

we sometimes drop the subindex m and write Δ(i),Δ,q,p for Δm(i),Δm,qm,pm. 

Since fi with i ∈ {0,1,...,m} are close to f, the map h | Δ is close to the identity 

(by Theorem 4.6). In particular, )) approximates . Since s is big and 

since ai,bi have exponential growth with the same exponent (A.4), we have (4.7) t/qm 

∈ {an/qn+s ,bn/qn+s} is arbitrary small. 

4.3.2. Disks . For convenience, we will write ) and  

). Let us show that ). Consider first the dynamical plane of f. Since n is 

big, we see that ) are arbitrarily close to ; i.e., ). It follows 

from (4.7) that 

(4.8) min{am,bm} − 1 > max{an,bn} ≥ t. 

This shows that ) do not visit triangles Δ( as 
it takes either am − 1 or bm − 1 iterations for a point in Δ(0  ) to visit 
them. Since h is a conjugacy away from Δ(−p) ∪ Δ(−p + 1), we obtain that h−1 maps

). Since h is close to the identity, ft(c1) is close to
. 
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Let D0,D1,...,Dt = D be the pullbacks of D along the orbit c1,..., ft(c1) ∈ D; i.e.,

) and Di is the connected component of f−1(Di+1) containing fi(c1). Our 

main objective is to show that the Di do not intersect ∂frbUf; this will imply that the 

maps f : Di → Di+1 are branched coverings for all i ∈ {0,...,t−1}. 

4.3.3. Sectors Δ(I) and Λ(I). An interval I of Z/qZ is a set of consecutive numbers i,i + 

1,...,i + j taken modulo q. We define the sector parametrized by I as 

). Furthermore, we let 

 ⎧⎪I −−p∪ {− −  } if I ∩ 

{0,1,p,p + 1} = ∅, 

(4.9) f−1(I) :=(I p) p, p + 1 if, 

 ⎪⎩(I − p) ∪ {0,1} − if − − . 

In other words, we require that if I p contains one of p, p + 1, then it also contains 

the other number; and similarly with the pair 0,1. By (4.2) and (4.3) the following 

holds. 

Claim 1. The preimage of Δ(I) under f | Δ is within Δ(f−1(I)).  

Unfortunately, we do not have the property that 

if Dj ∩ Δ ⊂ Δ(I), then Dj−1 ∩ Δ ⊂ Δ(f−1(I)) 

because the image of Δ(−p) ∪ Δ(−p + 1) is slightly bigger than Δ(0) ∪ Δ(1); see (4.3). 

To handle this issue, we will adjust Δ to a slightly smaller triangulated neighborhood 

Λ such that 

(4.10) Λ ⊆ fi(Λ) ⊆ Δ for all i ∈ {0,1,...,min{am,bm}}. 

Consider the dynamical plane of fm = Rmf and let Λ0(0,fm) and Λ0(1,fm) be the 

closures of the connected components of fm−1(Um)\(γ1 ∪γ0) attached to α such that 

Λ0(0,fm) ⊂ Δ0(0,fm) and Λ0(1,fm) ⊂ Δ0(1,fm); see Figure 17. Writing Λ0(fm) = Λ0(0,fm) ∪ 

Λ1(1,fm) we obtain a shrunken version of Δ0(fm). The map Φm embeds Λ0(0,fm) and 

Λ1(1,fm) to the dynamical plane of f0; spreading 

⎨ 
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Figure 17. Right: Λ0(0,fm) and Λ0(1,fm) are shrunken versions of 

Δ0(0,fm) and Δ0(1,fm). Left: by transferring Λ0(0,fm) and Λ0(1,fm) to 

Λm(0,f0) and Λm(1,f0) by Φm,0, and spreading these triangles 

dynamically, we obtain the triangulated neighborhood Λm of α such 

that Λm is a slightly shrunken version of Δm; compare with Figures 

14 and 15. 

around the embedded triangles, we obtain a triangulated neighborhood Λ of α such 

that (4.10) holds. 

Let us also give a slightly different description of Λ. Recall (4.4) that Ψm,i maps each 

Δm(i,f0) conformally to some Δ0(j,fm). Then Λ(i) = Λm(i,f0) ⊂ Δm(i,f0) is the preimage of 

Λ0(j,fm) under that map. We define 

 ) and Λ(  . 
0≤i<q 

For the same reason as for ), the triangulation ) approximates . And since 

h | Δ is close to the identity, Λ(f) also approximates  in the sense of Theorem 4.6. 
For the same reason as for Claim 1, we have the following. 

Claim 2. We have Λ(i) = Λ ∩ Δ(i) for every i. The preimage of Λ(I) under f | Λ is within 

Λ(f−1(I)).  

The following claim is a refinement of (4.10). This will help us to control the 

intersections of Dk with Λ. 

Claim 3. Let I be an interval. Consider z ∈ Λ. If fi(z) ∈ Δ(I) for i < min{a,b}, then z ∈ 

Λ(f−i(I)). 

As a consequence, if T ∩ Δ ⊂ Δ(I) for an interval I and a set T ⊂ V , then 

f−i(T) ∩ Λ ⊂ Λ(f−i(I)) 

for all i < min{a,b}. 

Proof. Since fi(z) ∈ Δ(I), every preimage of fi(z) under the ith iterate of f | Δ is within 

Δ(f−1(I)) by Claim 1. By Claim 2, z ∈ Δ(f−i(I)) ∩ Λ ⊂ Λ(f−i(I)). 

Λ 0 (0) 
Λ 0 (1) 
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The second statement follows from the first because points in Λ do not escape Δ 

under fi for all i < min{a,b}; see (4.10).  

4.3.4. Truncated sectors Sk and disks . Let It be the smallest interval 

containing {0,1} such that Δ(It,f) ⊃ Dt ∩ Δ(f) for all f subject to the condition of the Key 

Lemma. Set It−j := f−j(It). By Claim 3 we have Dk ∩ Λ ⊂ 

Λ(Ik). 

 

Figure 18. The rectangle Sk is an appropriate truncation of Λ(Ik) such that 

Sk ⊃ Dk ∩ Λ and Sk ⊃ (f | Λ)−1(Sk+1). 

Recall that the intersection of each Δ( ) with  is a closed sector of bounded 

by two closed internal rays of . Let us fix p > 1 which will be specified in §4.3.5 as a 

certain period. Since Dt is small, we obtain the following. 

Claim 4. (1) All |Ik|/q are small. All  have a small angle at the α-fixed point. 

(2) For every j ≤ t − 3 − p, the intervals Ij,Ij+1,...,Ij+p+3 are pairwise disjoint. 

(3) Moreover, the intervals I0,I1,...,Ip+1 are disjoint from {−p,−p + 1}. 

Proof. It is sufficient to prove the statement for f; the map h transfers the result to the 

dynamical plane of f. 

All Δ( ) have comparable angles (see Lemma A.3): there are x < y independent 

of n such that the angle of Δ(i) at α is between x/q and y/q. 

Let χ be the angle of Δ(It) at α. The angle χ is small because D = Dt is small. By 

definition of Ik = f−1(Ik+1) (see (4.9)) the angle of Δ(Ik+1) at α is bounded by the angle of 

Δ(Ik) at α plus y/q. Therefore, the angle at α of every Δ(Ik) is bounded by χ +(2+t)y/q, 

where the number (2+t)y/q is still small by (4.7). We obtain that all Δ(Ik) have small 

angles. 

Since is an irrational rotation and |Ik|/q are small, we see that Ij,Ij+1,..., Ij+p+3 

are disjoint. Since I0 contains {0,1} we see that I0,I1,...,Ip+1 do not intersect {−p,−p + 1} 

⊂ f−1(I0).  

Recall from §3 that the Siegel disk   is foliated by equipotentials 

parametrized by their heights ranging from 0 (the height of α) to 1 (the height of 

We denote by  the open subdisk of Z bounded by the equipotential at height r. 

Next we will construct a rectangle Sk by truncating Λ(Ik) by a curve in 

D k 

S k 

Λ( I k ) 



 PACMEN 701 

Licensed to Stony Brook Univ. Prepared on Fri Oct  6 12:49:18 EDT 2023 for download from IP 129.49.88.178. 
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 

 Sk is backward invariant in the following 

sense: Sk ⊃ (f | Λ)−1(Sk+1) for all k ∈ {0,1,...,t−1}; see Figure 18. Assume that r < 1 is close 

to 1 and choose ε > 0 such that 1−r is much bigger than ε. Consider an interval Ik for k 

≤ t and consider i ∈ Ik. 

• If for all   we have  p + 1}, then 

define 

); 

• otherwise define 

. 

Set ). Since Λ( ) has a small angle at α (see Claim 4) and the 

truncation level r is close to 1, we have the following. 

Claim 5. All Sk are small.  

Claim 6. For every k ≤ t, the preimage of Sk+1 under f | Λ is within Sk. 

Proof. By Claim 2 we only need to check that the truncation is respected by backward 

dynamics. The proof is based on the fact that points in Sk pass at most once through 

the critical sector Λ(−p)∪Λ(−p+1) under the iteration of f,f2,...,ft−k. 

The sector Sk consists of subsectors Sk(i), where , then 

f : Sk(i) → Sk+1(i + p) 

is a homeomorphism. Suppose i ∈ {−p,  

because i+p,...,i+p(t−k) are disjoint from {−p,−p+1} by (4.8). On the other hand, by 

definition of Sk, 

 . 

Since h is close to identity (see §4.3.1), the preimage of Sk+1(i + p) under f | Λ is within 

Sk(i) ⊂ Sk.  

We can assume that Dt is so small that it does not intersect ). Then Dt ∩ Λ ⊂ 

St; using Claims 3 and 6 we obtain Dk ∩ Λ ⊂ Sk. 

Next let us inductively enlarge Dk as D . Set 

 Dt tt 

and define Dk to be the connected component of f−1(Dk+1) containing Dk. We define Dk 

to be the filled-in ; i.e., D  plus all of the bounded components 

of C  

Claim 7. For all k≤t the intersection Dk∩Λ is connected and we have . Proof. 

The claim follows from Dk ∩Λ ⊂ Sk, Claim 6, and the definition of Dk.  
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4.3.5. Bubble chains. Below we will separate the forbidden part of the boundary ∂frbUf 

from all Dj by external rays and bubble chains (see Figure 19). Recall from §3.1 that 

for f a bubble chain is a sequence of iterated lifts of  the role of   will be 

played by Λ. 

Consider first the dynamical plane of f. Recall from Theorem 3.12 that the non-

escaping set K  is locally connected and that K has at most finitely many limbs 

(and bubbles) with diameter at least ε for every ε > 0. Let Za and Zb be two bubbles 

attached to  such that Za and Zb are close to γ− and γ+, respectively. Let  be the 

iterate of f such that . Recall from 

Definition 3.1 that γ1, as well as γ0, is a concatenation of an external ray and an internal 

ray. We also recall from §3.6 that we normalized γ0 to pass through the critical value. 

Therefore, the critical point   is the landing point of two external rays R−,R+; we 

denote by W the open wake of  : the connected component of V \ (R− ∪ R+) 

containing . Let Wa be the univalent pullback of W under 

. Then Wa is the wake of Za and we have . By the Schwarz 

lemma, the map  has a unique fixed point; we call it x. 

 

Figure 19. Separation of ∂frbUf from α. Disks Λ and Λ approximate  

and  . Iterated lifts of Λ form periodic bubble chains Bx and By 

landing at periodic points x and y. Together with external rays Rx,Ry 

the bubble chains Bx,By separate ∂frbUf from the critical value. The 

configuration is stable because of the stability of local dynamics at x 

and y. Disks Dk may intersect Λ but, by Claim 10, they do not intersect

. 

Set Z2 := Za and for i ≥ 2 define Zi+1 to be the unique preimage of Zi under 

. By the expansion of , the Zi shrink to x. We have 

constructed the bubble chain Bx 

(4.11)  

landing at x. Write px := pa and denote by  the subchain obtained by removing

. Then px is the minimal period of Bx because . 

f 
p a 
 ( Z a )= Z   

D 0 

 
  

R x 

R y 
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Similarly, we define y to be the unique fixed point of  and 

By to be the bubble chain landing at y. The minimal period of By is py. We have 

(4.12) ) and . 

We denote by p the least common period of Bx and By. Let Rx and Ry be the external rays 

landing at x, y. 

Since f is close to f, by Lemma 2.6, periodic rays Rx,Ry exist in the dynamical plane 

of f and are close to the corresponding rays in the dynamical plane of f. 

Set Λ to be the closure of the connected component of f−1(Λ) \ Λ that has a non-

empty intersection with Λ. Then Λ is connected and 

(4.13) + 1) and . 

We say that Λ is attached to Λ, or more specifically that Λ is attached to Λ(−p)∪ Λ(−p 

+ 1). 

Observe also that Λ approximates  because Λ is close to  and f is close to f. 

A bubble of generation e + 1 ≥ 1 for f is an fe-lift of Λ. Fix a big  

We assume that the neighborhood U ⊂ Wu in the statement of Key Lemma 4.8 is 

selected sufficiently small, depending in particular on M. Since Λ is close to , the 

map f is close to f, and ∂Λ ∩ (Λ(0) ∪ Λ(1)) is small, we obtain the following. 

Claim 8. Every bubble  of generation up to M is approximated by a bubble Λδ of 

f such that 

(1) Λδ is close to Zδ and f | Λδ is close to ; 

(2) if Zδ is attached to Zγ, then Λδ is attached to Λγ; and 

(3) if Zδ is attached to Z, then Λδ is attached to Λ \ (Λ(0) ∪ Λ(1)). . 

Using Claim 8, we approximate the bubbles Zk in Bx (see (4.11)) with k ≤ M by the 

corresponding bubbles Λk. We can assume that the remaining ZM+j are within the 

linearization domain of x. Taking pullbacks within the linearization domain of x, we 

construct the bubble chain Bx(f) landing at x as a sequence . Similarly, 

By(f) is constructed. The chains Bx ∪By(f) are close to  ) in the following 

sense: there are continuous maps 

) and  

close to the identities. Equation (4.12) holds in the dynamical planes of f. Thus we 

have constructed (Rx ∪ Bx ∪ By ∪ Ry)(f) that is close to (  

Assume that D is so small that it is disjoint from the forward orbit of Rx ∪ Ry. As a 

consequence, we obtain the following. 

Claim 9. All Dk are disjoint from Rx ∪ Ry. 

Proof. We proceed by induction on k ∈ {t,t−1,...,0}. Since Dk+1 is disjoint from the 

forward orbit of Rx ∪ Ry, so is D ); the latter surrounds Dk.  
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4.3.6. Control of Dk. 

Claim 10. For all k ∈ {0,1,...,t} the following hold: 

(1) Dk intersects Λ if and only if Ik ⊃ {−p,−p + 1}. 

(2) If Dk intersects Λ, then 

D  

is contained in a small neighborhood of c0. 

(3) If Dk intersects , then k < t − 1 − p and Dk+1, Dk+2,..., 

Dk+p+1 are disjoint from Λ. 

(4) If Dk intersects Bx∪By, then the intersection is within Λ and, in particular, Ik ⊃ 

{−p,−p + 1}. 

(5) Dk is an open disk disjoint from ∂frbUf; in particular,is a branched covering (of 

degree one or two) for k < t. 

Proof. We proceed by induction. Suppose that all of the statements are proven for 

moments {t,...,k + 2,k + 1}; let us prove them for k. 

If Ik ⊃ {−p,  4.3.4). Since 

  contains either  k+1 k ) 

intersects 

Suppose Ik∩{−p,−p+1} = ∅. Then Dk+1 does not contain c1. Hence every point in Dk+1 

has at most one preimage under . Since Dk+1∩Λ is connected, every preimage of 

Dk+1 ∩ Λ under  . By (4.13), Dk has empty intersection with Λ. Since 

, we also obtain D . This proves part (1). 

 

 k +3 

 k 

 k ∩  2 

 2 

f 2 (  2 ) 
f (  2 ) f 

  2 

 
  

= f 3 (  2 ) 

= f 3 (   2 ) 
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Figure 20. Illustration to the proof of Claim 10, part (4), in case px = 

3. Suppose that f3 maps the bubble   and suppose 

that D . Let  be the lift of f(Λ2) attached to Λ. 

Since f(Λ2) is attached to  and since Dk+1 ∪Sk+1 does 

not surround the critical value, we obtain that the pullback of f(Λ2) 

along  is attached to Sk, contradicting 

D . 

Part (2) follows from Dk+1 ∩ Λ ⊂ Sk+1 (see Claim 7), the definition of Dk, and the fact 

that Sk+1 is a small neighborhood of c1; see Claim 5. 

Part (3) follows from part (1) combined with Claim 4 (part (2)). 

Let us now prove part (4); see Figure 20 for illustration. By continuity, part (4) 

holds for k ∈ {t,...,t−p}. Below we assume that k < t−p. Assume that part (4) 

does not hold; let Dk  x k

 y is similar. Write 

where Λi is a bubble attached to Λi−1. Then there is a Λi with i ≥ 2 such that 

D . 

We assume thatx i ≥ 2 is minimal and we claim that i = 2. Recall from §4.3.5 that fp maps 

Λj+1 to Λj, where px ≤ p is the minimal period of x. Suppose i > 2 and consider 

. Since D  and (D  

Rx = ∅ (the latter follows from Claim 9), we obtain that D  ; hence 

. Applying induction we obtain D  

 , contradicting the induction assumption that part (4) holds for k+px. 
Consider the bubbles 

. 

By Claim 8, part (3), they are attached to Λ \ (Λ(0) ∪ Λ(1)). Observe that 

Dk+px intersects Λ. Indeed, since   is disjoint from Rx, the disk Dk intersects 

; hence D . Applying induction we obtain 

D  . Therefore, D   because Dk+px is 

disjoint from  by the induction assumption that part (4) holds for k + px. 

Since D  we have . Therefore, each fj(Λ2) 

with j ∈ {1,...,px} is attached to Sk+j ⊂ Dk+j. Moreover, every point in Dk+j has at most one 

preimage under  because 

Dk+j ∩ Λ ⊂ Sk+j does not contain c1. 

Let  be the lift of f(Λ2) attached to Sk. We note that  and  

(by (4.12)). Recall that every point in Dk+1 has at most one preimage under . We 

claim that the lift of f(Dk ∩ Λ2) under  and not in Λ2. 
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Indeed, since Dk+1 ∪ f(Λ2) neither contains nor surrounds the critical value, the lift of 

f(Dk ∩Λ2) under  agrees with the lift of f(Dk ∩Λ2) under . This proves part 

(4). 

By part (2) Dk+1 is disjoint from ∂frbUf because Dk+1 can intersect Bx ∪ By only in a 

small neighborhood of c0. Therefore,   is a branched covering.

  

This shows ft: D0 → Dt is a branched covering. Observe next that D0 ∩
Λ 

⊂ S0 is a 

small neighborhood of c1 that is disjoint from γ1. We can easily separate D0 \Λ from 

γ1 \Λ using Λ and finitely many backward iterated lifts of Bx ∪By ∪Rx ∪Ry. 

This finishes the proof of the Key Lemma.  

5. Maximal prepacmen 

Let g : X → Y be a holomorphic map between Riemann surfaces. Recall that g is 

• proper, if g−1(K) is compact for each compact K ⊂ Y ; 

• σ-proper (see [McM2, §8]) if each component of g−1(K) is compact for each 

compact K ⊂ Y ; or equivalently if X and Y can be expressed as increasing 

unions of subsurfaces Xi, Yi such that g : Xi → Yi is proper. 

A proper map is clearly σ-proper. 

A prepacman F = (f− ,f+) of a pacman f is called maximal if both f− and f+ extend to σ-

proper maps f− : X− → C and f+ : X+ → C. We will usually normalize 

−1(critical value), where ψF is a quotient map from F to f; F such 

that 0 = ψF 

see §2.3. Under this assumption F is defined uniquely up to rescaling. 

Theorem 5.1 (Existence of maximal prepacmen). Every f ∈ Wu sufficiently close to f 

has a maximal prepacman F that depends analytically on f. 

A refined statement will be proven as Theorem 5.5. The analytic dependence 

means that the restriction of a map to a disk compactly contained in the domain 

depends analytically on f in the associated Banach space. Note that analytic 

dependence is sufficient to check for one-parameter families. In the proof, we will 

show that F is obtained from f by an analytic change of variables. 

5.1. Linearization of ψ-coordinates. Consider again [f0 : U0 → V ] ∈ Wu close to f. By 

definition of Wu, the map f0 can be antirenormalized infinitely many times. We define 

the tower of antirenormalizations as 

t(f0) = (Fk)k≤0 . 
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Figure 21. Left: each pacman fi• embeds as a prepacman to the 

dynamical plane of  via φ•i . Right: sectors Si• after linearization 

of ψ-coordinates. Note that Si• can intersect   in a small 

neighborhood of α• = Ti(α). 

Each fk embeds to the dynamical plane of fk−1 as a prepacman  such that  

are iterates of fk−1. 

Let us specify the following translation: 

Tk : z → z − c1(fk). 

Let us now translate each fk so that c1(fk) = 0. We mark the translated objects with “•”. 

For k ≤ 0, set 

φ 
• 
− 2 

γ 
• 
1 

S 
• 
− 1 

φ 
• 
− 1 

f 
• 
− 2 

h 
• 
− 2 S − 2 

z → μ  z 

γ 
• 
1 

S 
• 
0 

φ 
• 
0 

f • 
− 1 

h 
• 
− 1 S − 1 

z → μ  z 

γ 
• 
1 f 

• 
0 

h 
• 
0 S 0 

z → μ  z 
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φ•k(z) := Tk−1 ◦ φk ◦ Tk−1 

so that (0) = 0. Similarly, define ) and ), and conjugate 

all fk and all ; the resulting maps are denoted by and by 

Fk• = (fk,• ± : Uk,• ± → Sk•). 

We also write ). The tower (Fk•)k≤0 is illustrated on Figure 21. Denote 

by 

, 

the self-similarity coefficient of 

Lemma 5.2 (Linearization). For every f0 ∈ Wu sufficiently close to f, the limit 

(5.1)  

is a univalent map on a certain neighborhood of 0 (independent on f0). 

We remark that the linearization is normalized in such a way that ( if

. 

Proof. The proof follows from a standard linearization argument. Write φ•i (z) = μiz + 

O(z2); since φ•i tends exponentially fast to φ•∗ we see that μi tends exponentially fast 

to μ and that the constant in the error term does not depend on i. For 

∗ 

z in a small neighborhood of 0, we have 

)i|z| 

for some constants 1. Write 

. 

Then 

 

tends exponentially fast to 1 in some neighborhood of 0. This implies that h(i)(z) 

converges to a univalent map in some neighborhood of 0.  

Let us write h•i = hfi. We will use bold symbols for objects in the linearizing 

coordinates. By construction (5.1), the maps h•i satisfy the linearization equation (see 

Figure 21) 

(5.2) . 

For i ≤ 0, set 

(5.3) . 
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It follows from (5.2) that 

(5.4) . 

We will usually use “#” to mark linearized objects rescaled by . 

Lemma 5.3 (Extension of . Under the above assumptions  extends to a univalent 

map . 

Proof. By Lemma 4.1 the map  extends to a conformal map defined on 

int( ). Since  is contracting, for every ) there is an i 

< 0 such that ) is within a neighborhood of 0 where h•i is defined (this 

is easily true if  ; applying Theorem 4.6 we obtain this property for all  ). 

Therefore, (5.4) extends  dynamically to int(   

We set ). Let us now conjugate every map ; we define 

F  . We construct the tower in the linearizing coordinates 

(5.5) t#  , 

where 

(5.6) int , 

and other objects marked by “#” are similarly defined. 

The next lemma follows from (A.4). 

Lemma 5.4. There are numbers m1,1,m1,2,m2,1,m2,2 such that for k < 0 we have 

f , f

. 

 

Note also that 

 1 k 

(5.7)  fk, . 
∗ 

5.2. Global extension of prepacmen in Wu. Using Key Lemma 4.8 we deduce the 

following. 

Theorem 5.5 (Existence of a maximal prepacman). If f0 ∈ Wu is sufficiently close to f, 

then every pair F   in the tower t#(F0) (see (5.5)) extends to σ-proper 

branched coverings 

fk,#±: X#k,± → C, 

where X#k,± are open connected subsets of C. 

Note that the case  follows from [McM2, Theorem 8.1]. 

Proof. Let 

F0 = (f0,± : U0,± → S := V \ (γ1 ∪ O)) 
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be a commuting pair obtained from\ F0 = (f0,± : U0,± → V−,±1\(γO1)) fromby removing 

aU0,±. By small neighborhood O of α from V γ1 and by removing f0 

Lemma 4.1 the map φk−1 ◦ ··· ◦ φ0 embeds F0 to the dynamical plane of fk as a 

commuting pair denoted by 

(5.8) F . 

Since φk is contracting at the critical value, the diameter of 

c1(fn) tends to 0. By Key Lemma 4.8, for a sufficiently big k < 0 there is a small open 

topological disk D around the critical value of fk such that the pair (5.8) extends into a 

pair of commuting 

branched coverings 

(5.9) 

with 

Conjugating (5.9) by  we obtain the commuting pair 

. 

Since for a sufficiently big t and all m ≤ 0 the modulus of the annulus D(tm−t) \ D(tm) is 

uniformly bounded from 0 we obtain  C. Setting 

(5.10) X , X  

we obtain# σ-proper maps f0,± : X0,± → C, where X0,± are connected. Similarly, 

(fk,±) extends to a pair of σ-proper maps.  

6. Maximal parabolic prepacmen 

Since the multiplier of the α-fixed point is expanded under (by Lemma 3.18), 

we can consider a parabolic pacman f0 ∈ Wu close to f such that Theorem 5.5 

applies forRnf0fwith0. As inn ≤ §05and bywe denote byF#n the rescaled version ofFn = 

(fn,±) the maximal prepacmen ofFn so that F0 is an fn = iteration of F#n ; see Lemma 5.4. 

6.1. The post-critical set of a maximal prepacman. The forward orbit of z ∈ C 

under Fn is 

orbz(Fn) := {fn,s − ◦ fn,r +(z) | s,r ≥ 0}; 

we do not require that fn,s − ◦ fn,r +(z) is defined for all pairs s,r. A finite orbit of z is orb

. 
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Similarly, orbz(F#n ) and orb≤z q(F#n ) are defined. Since F0 is an iteration of Fn# , there is 

a k > 1 such that 

orb  

for all n ≤ 0 and z ∈ C. 

An orbit path of Fm is a sequence x0,x1,...,xn such that either#, an orbit path ofxi+1 = 

fFm,0−(is axi) 

or xi+1 = fm,+(xi). Since F0 is an iteration of Fn “suborbit” path of F#n . 

Let us denote by 

) = 0 or f k, 

the set of critical points of Fk; its post-critical set is 

. 

Similarly P(F#n ) is defined. Clearly, 

. 

Recall that 0 is a critical value of F#n for all n ≤ 0; we denote by o#n the critical point 

of F#n such that o#n is identified with the critical point c0(fn) under the 

homeomorphism intS ; see (5.6). 

Lemma 6.1 (Every critical orbit “passes” through 0). For any critical point x0 of f0,ι with 

ι ∈ {− ,+} the following holds. For all sufficiently big n < 0 there is an orbit path of F#n 

(6.1) x0,x1,x2,...,xk; xi = fn,j# (i)(xi−1) 

such that 

• f0,ι = fn,j# (k) ◦ fn,j# (k−1) ◦ ··· ◦ fn,j# (1), in particular xk = f0,ι(x0); 

• xi = o#n and xi+1 = 0 for some i. 

Therefore, 

 . 

Proof. Clearly, the second statement follows from the first. We will use notation from 

the proof of Theorem 5.5. Suppose for definiteness ι = “−”. Recall (5.10) that 

; thus  for Domf

map f  is conformally some n < 0. The 
conjugate to(see (5.9)) after identifying W with − 

. This shows that x0,f0,−(x0) is within an actual orbit x0,x1,...,xk of 

, 
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which is a prepacman of fn. We deduce that one of xi is o#n and xi+1 = 0.  

6.2. Global attracting basin of a parabolic pacman. Since f0,± : Domf0,± → C are σ-

proper commuting maps with maximal domain we have 

(6.2) Dom(f0,− ◦ f0,+) = Dom(f0,+ ◦ f0,−) ⊂ DomF0 := Domf0,− ∩ Domf0,+. 

Note that for every q ≥ 1 we have  = id in any small neighborhood of α(f0) 

because, otherwise, considering a lift f  we would obtain f  = id 

in C which is impossible. Therefore, there is a small open attracting parabolic flower 

H0 around the α-fixed point of f0. Each petal of H0 lands at α at a well-defined angle. 

Assume H0 is small enough so that H0 ⊂ V \ γ1, possibly up to a slight rotation of γ1. By 

Lemma 4.3 the flower H0 lifts to the dynamical plane of F0 via the identification

 intS0; we denote by H0 the lift. 

Let e = 1 be the multiplier of the α-fixed point of f0. Since f0 is close to f, 

we have q0 > 1. By replacing H0 with its subflower we can assume that there are exactly 

q0 connected components of H0 with combinatorial rotation number p0/q0. We 

enumerate them counterclockwise as . Then f0 maps 

. We will show in Corollary 6.4 that H0 is in fact unique; i.e., f0 has exactly 

q0 attracting directions at α. Denote by Hi0 the lift of  to the dynamical plane of F0. 

Lemma 6.2. There are r,s ≥ 1 with r + s = q0 such that 

f . 

The set H0 is in Dom(f  for all a,b ≥ 0. 

It will follow from Proposition 6.5 that f   is the first return 

map. 

Proof. We have . Cutting the prepacman f0 along γ1 we see that there are 

r,s ≥ 1 with r + s = q0 such that . This implies the first claim. As a 

consequence, H0 is in Dom(f ) for all j ≥ 0. Combined with (6.2), we obtain the 

second claim. 

As a consequence, all of the branches of f  with a,b ∈ Z are well defined for 

points in H0. Set 

H :  
a,b∈Z 

to be the full orbit of H0. Since f0,−, f0,+ commute and H0 is forward invariant under f

, the set H is an open fully invariant subset of C within Domf0,− ∩ Domf0,+. We 

call H the global attracting basin of the α-fixed point. 

A connected component H of H is periodic if there are s,r ∈ N>0 such that f

. A pair (s,r) is called a period of H. We will show in Corollary 6.6 

that there is no component H of H such that f  or f  for some 

r > 0. 
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By Lemma 6.2, the components of H intersecting H0 are (r,s)-periodic. Observe next 

that for any periodic component H and any component H of H there are a,b ≥ 1 with f

; i.e., H and H are dynamically related. Indeed, by definition there 

are Z such that a certain branch of f  maps H to H. Applying f  
with  1, we obtain the required a,b ≥ 1. As a consequence, all the periodic 

components have the same periods; in particular they are (r,s)-periodic. 

6.3. Attracting Fatou coordinates. It is classical that   admits 

attracting Fatou coordinates: a univalent map C such that 

) + 1; and 

• there is an L > 1 such that 

(6.3) . 

There is a unique dynamical extension h: H0 → C such that 

(6.4) h ◦ f0(z) = h(z) + 1/q0. 

Lifting h to the dynamical plane of F0 we obtain h: H0 → C. 

Lemma 6.3 (Fatou coordinates of H). The map h: H0 → C extends uniquely to a map h: 

H → C satisfying 

(6.5) h ◦ f0,±(z) = h(z) + 1/q0 

for any choice of “±”. For every component H of H, the map h  -proper. The 

singular values of h are exactly the h-images of the critical points of F0 and their iterated 

preimages. 

Moreover, components of H0 are in different components of H. The set H is a proper 

subset of C. By postcomposing h with a translation we can assume that 

(6.6) h(0) = 0. 

 

Figure 22. A parabolic pacman f0 with rotation number 1/3 embeds 

as a prepacman into the dynamical plane of a parabolic 

pacfman=f−f12 with rotation number 3. /8. We have f0,− = f−31 and 

f 0 f − 1 

f 0 , − f 0 , + 
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 0,+ −1 

Proof. On H0 equation (6.5) is just a lift of(6.4). Applying f0−,±1 and using commutativity 

of f0,−,f0,+, we obtain a unique extension of h to H such that (6.5) holds. 

Since f0,−,f0,+ are σ-proper maps, so is h | H. Indeed, suppose that H ⊂ H is a periodic 

component intersecting H0; the other cases follow by applying a certain branch of f

, where a,b ∈ Z. Recall from Lemma 6.2 that H is (r,s)periodic. Consider a 

compact set K ⊂ C. We denote by K a connected component of the preimage of K under 

h . Then for a sufficiently big 1, we have Re(K + i) > L and K

) intersects H0, where L is a constant from (6.3). Then K2 ⊂ H0 and K2 is compact as a 

connected component of the preimage of K + i under H0. We obtain that K 

 ) is compact because f  -proper. This also shows that 

singular values of h are the h-images of either critical points of F0 or their iterated 

preimages. (We recall a σ-proper map has no asymptotic values.) 

Let Hx0 and Hy0 be two different components of H0, and let Hx and Hy be the periodic 

components of H containing Hx0 and Hy0. Since all points in Hx and Hy escape eventually 

to  and Hy0 under the iteration of f  we have H . 

As a consequence H = C. The claim concerning (6.6) is immediate.  

From now on we assume that (6.6) holds. Denote by Hper ⊂ H the union of periodic 

components of H. 

Corollary 6.4 (Critical point). The set Hper contains P(F0) and at least one critical point. 

In particular, 0 ∈ Hper. All the critical points of F0 are within H. In the dynamical plane 

of f0 the flower H0 is unique: f0 has exactly q0 attracting directions at α cyclically 

permuted by f0. 

Proof. Since h: Hper → C is not a covering map, Hper contains at least one critical point 

of F0. Since Hper is forward invariant, Hper contains o#n for all sufficiently big n < 0; see 

Lemma 6.1. Therefore, Hper contains all of the critical values of F0. Since H is fully 

invariant, it contains all of the critical points. As a consequence, H0 
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Figure 23. The maximal prepacman F0 = (f0,±) of a parabolic pacman 

f0 with rotation number 1/3; see Figure 22. The map f0,− shifts 

periodic components of H to the left while f0,+ shifts the periodic 

components of H to the right. We have fn,− = fn2−1,− ◦ 

 andfn−1,f+0,and+fn,2+in Figure 22).= fn−1,−◦fn−1,+ for all n (obtained from  

= f1 

is unique because the global attracting basin of another flower would also contain 0. 

 

6.4. Dynamics of periodic components. It follows from Lemma 6.2 that 

H  
a,b∈Z 

for all n ≤ 0. It is also clear that Hper is the union of F#n -periodic components. 

Let Hn be a small parabolic attracting flower of fn admitting a lift to the dynamical 

plane of F#n ; we denote this lift by H#n → Hn. We denote by pn/qn the combinatorial 

rotation number of fn. 

Let In be an index set enumerating clockwise the connected components of Hn 

starting with the component closest to γ1. Since Hn embeds naturally to the dynamical 

plane of fn−1 (see Figure 22), we have a natural embedding of In to 

In−1. 

Let us write 

I0 = {−a0,−a0 + 1,...,b0 − 1,b0} 

with a0,b0 > 0 and a0 +b0 +1 = q0. The component of H0 indexed by i+1 follows in 

clockwise order the component of H0 indexed by i. Then f0 maps the component of H0 

indexed by i to the component of H0 indexed by either i − p0 or i + q0 − p0 depending on 

whether i − p0 ≥ −a0. 

f 0 , − 

f 0 , + 

f 
# 
− 1 , − 

f 0 , − 
f 0 , − 

f 0 , + 

f 0 , − 

f 
# 
− 1 , − 

f 
# 
− 1 , + 

f 
# 
− 2 , − 
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For every n < 0, choose a parameterization In = {−an,−an + 1,...,bn − 1,bn} so that the 

natural embedding of In to In−1 is viewed as In ⊂ In−1. Set I−∞ := 

. 

Recall (see §6.2) that a connected component H of H is periodic if f

 for some s,r ∈ N>0. 

Proposition 6.5 (Parameterization of Hper). The connected components of Hper are 

uniquely enumerated as (Hi)i∈Z so that for every sufficiently big  the component 

Hi contains the image of the component of Hn indexed by i under H#n ⊂ Hper. 

The actions of fn,#± on (Hi)i∈Z are given (up to interchanging fn,#− and fn,#+) by 

(6.7) fn,#−(Hi) = (Hi−pn) and fn,#+(Hi) = Hi+qn−pn. 

Moreover, by re-enumerating components of H0 we can assume that H0 contains 0. 

Proof. By construction,   Z enumerates all of the periodic components of H 

intersecting   with actions given by (6.7). Since  ZHi is forward invariant 

and since every periodic component is in the forward orbit of H0 (see §6.2), we obtain

ZHi = Hper. We can re-enumerate (Hi)i∈Z in a unique way so that 

H   

Corollary 6.6. There is no component H of H such that f   or f

 for some r > 0. 

Proof. Suppose the converse and consider such H, say f . Choose a,b ∈ Z 

such that a certain branch of f  maps H to H0. Recall that (r,s) is a period of H0. 

By postcomposing f  with an iterate of f  we can assume that a,b ≥ 0. 

It now follows from Proposition 6.5 that applying first f  H and then f  is 

different from applying f  and then f0r,−. This is a contradiction. 

Corollary 6.7. For a,b,c,d ≥ 0 and n ≤ 0, 

if and only if  

Proof. It is sufficient to prove it for n = 0. Suppose f   (0). It 

follows from (6.5) that a+b = c+d. If (a,b) is not equal to (c,d), then f0a,−◦f0b,+(0), f (0) 

are in different connected components of Hper; see (6.7). Therefore, 

a = c and = .  

6.5. Valuable flowers of parabolic pacmen. This subsection is a preparation for 

proving the Scaling Theorem (§8); it will not be used in proving the Hyperbolicity 

Theorem (§7). 
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Definition 6.8 (Valuable flowers). Let f be a parabolic pacman with rotation number 

p/q. A valuable flower (see Figure 26) is an open forward invariant set H such that 

(A) H ∪ {α(f)} is connected; 

(B) H has q connected components H0,H1,...,Hq−1, called petals, enumerated 

counterclockwise at α; every Hi is an open topological disk with a single 

access to α; 

(C) f(Hi) ⊂ Hi+p; 

(D) all of the points in H are attracted by α; (E) H−p contains the critical point of f. 

We remark that a local flower (see §6.2) satisfies (A)–(D). 

We say a Siegel triangulation (see §4.1.5) Δ respects a flower H if every petal of H 

is within a triangle of Δ. 

Theorem 6.9 (Parabolic valuable flowers). Let f0 ∈ Wu be a parabolic pacman. Then 

for all sufficiently big  the pacman fn = Rnf0 has a valuable flower Hn and a Siegel 

triangulation Δ(fn) respecting Hn such that: 

• Δ(fn) has a wall Π(fn) approximating ; • Δ(fn−1) 

and Hn−1 are full lifts of Δ(fn) and Hn. 

Moreover, for a given closed disk D ⊂ H0 the flower Hn with  can be constructed 

in such a way that D projects via int ) to a subset of H0n. 

Proof. Let us recall (see §6.2) that a local flower H0 was chosen sufficiently small such 

that H0 ⊂ V \ γ1, possibly up to a slight rotation of γ1 in a small neighborhood of α. We 

denote by Δnew0 the triangulation obtained from Δ0 by this slight adjustment of γ1. By 

Lemma 4.3, the triangulation≤ Δnew0 admits a full liftnew, the flowerΔnew−n to the 

dynamical plane of fn for all n 0. Since H0 is respected by Δ0 

H0 also admits a full lift Hn to the dynamical plane of fn such that Hn is respected by 

Δnew−n . 

6.5.1. Valuable petals. Recall that pn/qn denotes the rotation number of fn. A valuable 

petal Hjn of fn is an open connected set attached to α such that 

• fn
qn extends analytically from a neighborhood of α to fn

qn : Hjn → 

Hjn (in particular, Hjn is fn
qn-invariant); 

• fn
qn : Hjn → Hjn has a critical point; and all points in Hj are 

attracted to α under fq . 

• n nn 
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Claim 1. For  the map fn has a valuable petal H0n containing the critical value 0 

such that H0n = Hn0 ∪ D, where Hn0 is a petal of Hn and D is a small neighborhood of c1 

containing the projection of D via (5.6). Moreover, there is an M > 0 such that fn
qnM(H0n) 

⊂ Hn. 

Proof. In the dynamical plane of F0 consider the petal H  0. Recall from §6.4 that H#n 

denotes the lift of Hn to the dynamical plane of 0 is sufficiently big, then H0 

contains a unique connected component of H#n , call it (H#n )0. Note also that (H#n )0 = 

(H#m)0 for all sufficiently big  0; see Proposition 6.5. 

Enlarge D to a bigger closed disk D ⊂ H0 such that 

• (H#n )0 ∪ D is forward invariant under the first return map f

  (see Lemma 6.2); and 

− 

Since D is compact, we have D ⊂ S#n for all sufficiently big 0. For such n we can 

project D to the dynamical plane of fn; we denote this projection by 

 . By construction,n D ∪ Hn0 is fn
qn-invariant: fn

qn : Hn0 → Hn0 has an analytic 

extension to fn
q : D∪Hn0 → D∪Hn0. For 0, the disk D is a small neighborhood of c1. 

For 0, we enumerate petals of Hn counterclockwise so that Hn0 ⊂ H0n. Choose a 

big K (we will specify K in §6.5.3). For k ∈ {0,1,...,K} we define Dk to be the image of D0 

= D under fnk, and for k ∈ {−n K,−K +1,...,−1} we define Dk to be the lift of D0 along the 

orbit of fn−k : Hn
p k → Hn0. Then 

(6.8) Hpnk := Hnpnk ∪ Dk n 

is a valuable petal extending Hn
pnk for all k ∈ {−K,...,K}. For 0, all Hp

nnk are in a small 

neighborhood of . 

6.5.2. Walls respecting Hn. Set N := M + 3, where M is defined in Claim 1. Let us consider 

the dynamical plane of f0. In a small neighborhood of α we can choose a univalent (N 

+ 1)q0-wall A0 respecting H0 in the following way: 

(a) α is in the bounded component O0 of C \ A0 while the critical point and the 

critical value of f0 are in the unbounded component of C \ A0; 

(b) each petal  intersects A0 at a connected set; and by enlarging H0, we can also 

guarantee 

(c) H0 contains all z ∈ A0 ∪ O0 with forward orbits in A0 ∪ O0. 

We can also assume that the intersection of A0 with each triangle of Δnew0 is a closed 

topological rectangle. Lifting these rectangles to the dynamical plane of fn and 
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spreading around them, we obtain a full lift An of A0. Then An is a univalent Nqn-wall 

(see Lemma B.13) enclosing an open topological disk  such that An respects Hn 

as above (see (a)–(c)). Naturally, An consists of closed topological rectangles: each 

rectangle is in a certain triangle of Δnewn . 

Claim 2.  , the wall An approximates   (compare to Lemma 4.2, part 

 is a concatenation of arcs J0J1 ···Jm−1 such that Ji is close to the ith rectangle of 

An counting counterclockwise. 

Proof. By Theorem 4.6, it is sufficient to prove such a statement in the dynamical plane 

of   is an annulus bounded by two equipotentials of Z, then a full lift An 

approximates for a big n. Since the antirenormalization change of variables for f is 

conjugate to z → zt with t < 1, the claim follows.  

Consider the dynamical plane of f. Recall thatis a homeomorphism. For 

k ∈ Z, we define 

. 

Consider now the dynamical plane of fn. For k ∈ {−K,−K +1,...,K}, we define ck(fn) ∈ 

fnk{c0} to be the closest point to k n) is well defined as long as fn 

is in a small neighborhood of f. 

Claim 3. For k ∈ {−K,−K + 1,...,K}, we have 

• ck+1(fn) ∈ Hpnnk; and 

• Hp
nn

k \ On is in a small neighborhood of ck+1 

Proof. The first statement follows from ck−1(fn) ∈ Dk ⊂ Hq
nnk; see (6.8). The second 

statement follows from the improvement of the domain. 

Claim 4. Let P be a connected component of On \Hn. Then fn
qni | P is univalent for all i ∈ 

{1,...,N}. Moreover, 

fn
qni(P) ⊂ fn

qnj(P) for all i < j in {0,1,...,N}. 

Proof. The first claim follows from the assertion that An is an Nqn-wall. The second 

claim follows from (c).  
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Figure 24. Separation of  . Co-Siegel disk  together with its 

iterated lifts form two periodic bubble chains landing at periodic 

points x and y. The bubble chains together with external rays Rx and 

Ry separate  from α. 

6.5.3. Julia rays in . Consider the dynamical plane of . By Theorem 3.12, 

we can choose (see Figure 24) two periodic points   together with two 

periodic external rays Rx,Ry landing at x, y and two periodic bubble chains Bx,By landing 

at x,y so that x and y are close to  and Rx ∪ Bx ∪ By ∪ Ry separates  from c1 as 

well as from all the remaining points in the forward orbits of x,y. Let p be a common 

period of x,y. Set K := 4p. 

A Julia ray  is a simple arc in J starting at a point in . 

Claim 5. There are Julia rays Jx ⊂ Bx and Jy ⊂ By such that Jx and Jy start at the critical 

point c0 and land at x and y, respectively. Moreover, Jx and Jy are periodic with period p: 

the rays Jx and Jy decompose as concatenations Jx1Jx2Jx3 ··· and Jy1Jy2Jy3 ··· such that  maps 

Jxk and Jyk to Jxk−1 and Jyk−1, respectively. 

Proof. Write Bx = (Z1,Z2,...); since x is close to  we see that . Since x is 

periodic with period p, there is an a > 0 such that fp maps Za+i to Zi for all i. 

Let be a simple arc in ∂Z1 ∪∂Z2 ∪···∪∂Za connecting the critical point c0 to 

the point where ∂Za+1 is attached to ∂Za. We inductively define Jxj to be the iterated lift 

of Jxj−1 such that Jxj starts where Jxj−1 terminates. This constructs 

Jx = Jx1Jx2Jx3 ···; Jy = Jy1Jy2Jy3 ··· is similarly constructed.  

6.5.4. Julia rays for fn. Recall that in Claim 5 we specified Julia rays ) and 

). Since f0 is sufficiently close to f, the periodic points x,y exist in the dynamical 

plane of f0 and are close to those of f. For 0 let us now construct Julia rays Jx(fn) = 

Jx1Jx2Jx3 ··· and Jy(fn) = Jy1Jy2Jy3 ··· such that 

(1) fnp maps  (compare with Claim 5); 

Z  Z   

R x 

R y 
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(2) Jxk(fn) and Jyk(fn) are in small neighborhoods of Jxk(f∗) and Jyk(f∗), respectively; 

 

Figure 25. Illustration to the proof of Claim 6. If Y intersects 

, then applying fn we obtain that P ∪fn(Yn) encloses H0n. Since P is 

surrounded by the walln n An, the set fn
q M (P ∪ fn(Y )) also enclosesn 

H0n. Then fn
q | fn

q M (P ∪ fn(Y )) has degree one while fn
q | H0n has degree 

2; this is a contradiction. 

(3) for z ∈ Jx1 ∪ Jx2 ∪ Jy1 ∪ Jy2 there is a q ≤ 2p such that either fnq(z) ∈ On 

. In the former case we can assume that  

. 

Construction of Jx and Jy. We will use notation from the proof of Claim 5. By stability of 

periodic points, x,y exist for fn and are close to ). The curve 

Jx1 is a simple arc in ∂Z1 ∪ ∂Z2 ∪ ··· ∪ ∂Za. We split J1 as the concatenation 

 with . Let  be the smallest iterate mapping Zj 

to . Since , the curve 

  

is a simple arc in  connecting c . 

approximate each ) Using Claims 2 and 3, we 

by a curve ) within 

On ∪ Hn
pn(t(j)−1) ∪ H0n. Lifting ) along the branch of fnd(j) that is close to 

), we construct ) that is close to ). Assembling all j, we 

construct Jx1(fn). By continuity, pulling back Jx1(fn) we construct finitely many 

 ) approximating  ) such that the remaining curves  ) are within the 

linearization domain of x. Taking pullbacks within the linearization domain of x, we 

construct a ray Jx(fn) landing at x. Similarly, Jy is constructed. Property (3) follows from 

|t(j)| ≤ p.  

6.5.5. Blocking ∂frbUn. Recall from Claim (1) that fn
qnM(H0n) ⊂ Hn0. For t ∈ {M,M − 1,M − 

2,...,0} we set Hn(t) to be the forward fn-orbit of fn
qnt(Hn0). 

O n 

O  n 

f n 

 −  n 
n 

Y  0 
n 

f n ( Y ) 

P 

O n 
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Claim 6. The flower Hn(t) does not intersect ∂frbUn for all t ∈ {M,...,0}. 

As a consequence, Hn extends to a required H  

Proof. Recall that valuable petals H  with |k| ≤ K are already constructed. 

Set 

(6.9) . 

Let us show that  does not hit Rx ∪ Jx ∪ Jy ∪ Ry; this would imply that 

Hn(t) does not intersect ∂frbUn. Suppose the converse; since  does not intersect 

Rx ∪ Ry, we can consider the first moment t (i.e., t is the closest to M) when  hits 

Jx ∪ Jy. Denote by X a petal of  intersecting Jx ∪ Jy. Choose z ∈ X ∩(Jx ∪ Jy); we can 

assume that z ∈ Jx1 ∪Jx2 ∪Jy1 ∪Jy2, otherwise t is not the first moment when

 . By property (3) from §6.5.4, there is a q ≤ 2p such that either

. The latter would imply that 

X is a petal in ; this contradicts (6.9). Therefore, fnq(z) ∈ On. 

Write 

 
and set Y := fq−1(X). We have ); see Figure 25. Since H−n

pn contains a 

critical point, we see that fnq(z) is within a connected component P of On \ (Hn ∪ {α}) 

and, moreover,n P ∪ fn(Y ) surrounds H0n. 

Let us apply fn
q M to fn(Y ) ∪ P. By Claim 4 (recall thatn N > M + 1; see §6.5.2), we have 

fn
q

nM(P) ⊂ (An ∪ On) \ Hnn and fn
q M(P) does not contain a critical point of fn

q
n. On the 

other hand, fn
q M+1(Y ) does not contain a critical point of fn

qn as a subset ofn Hn. Note 

thatn fn
qnM (P ∪ fn(Y )) still surroundsn Hn0. This is a contradiction: fn

q | fn
q M (P ∪ fn(Y )) 

has degree one while fn
q | H0n has degree 2. 

6.5.6. Siegel triangulation. It remains to construct a Siegel triangulation Δ(fn) 
respecting H  0. In the dynamical plane of fn, let us choose a curve 
connecting ∂V to α such that 1 enters , then reaches ∂H−n

pn, then travels 
to α within ∂H−n

pn. We can assume that  is disjoint from γ1 \ On. Observe that
 1 is liftable to the dynamical planes fm for all m ≤ n. Indeed,  is liftable 
because so is ∂H−n

p
n, while  is liftable because it is disjoint from γ1. 

Let us slightly perturb 1 so that the new 1 is disjoint from Hn. Define 0 to be 

the preimage of 1 connecting ∂Un to α. Then  splits Un into two closed sectors; 

they form the triangulation denoted by Δ(fn). We can assume that 1 was chosen so 

that  are connected. We define the wall Π(fn) to be the closures of 

two connected components of . 
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For m ≤ n we define Δ(fm) and Π(fm) to be the full lifts of Δ(fn) and Π(fn). Then Δ(fm) 

is a required triangulation for . 

7. Hyperbolicity Theorem 

Recall that by λ we denote the multiplier of the α-fixed point of f. For λ close to λ set 

F(λ) := {f ∈ Wu | the multiplier of α is λ} 

to be the analytic submanifold of Wu obtained by fixing the multiplier at α. Then F(λ) 

forms a foliation of a neighborhood of f. 

7.1. Holomorphic motion of P(F0). Let U ⊂ Wu be a small neighborhood of f such that 

every f ∈ U has a maximal prepacmen; see Theorem 5.5. 

Lemma 7.1 (Holomorphic motion of the critical orbits). For every p/q, the set 

 
moves holomorphically with f0 ∈ F(e(p/q)) ∩ U. 

Recall from Lemma 6.1 that   orb0(F#n ); thus P(F0) also moves 
holomorphically with f0 ∈ F(e(p/q)) ∩ U. 

Proof. By Corollary 6.7, points in orb0(F#n ) do not collide with each other when f0 ∈ 

F(e(p/q)) ∩ U is deformed. This gives a holomorphic motion of orb0(F0) ⊂ orb0(F#1 ) 

⊂ orb0(F#2 ) ⊂ ··· and we can take the union.  

Let  be a neighborhood of f such that every non-empty  has radius 

at least three times less than those of F(λ) ∩ U. 

Corollary 7.2 (Extended holomorphic motions). For   there is 

dynamics of (F#n )n) on  

a holomorphic motion τ(f0) of C such that τ(f0) is equivariant (with respect to the 

. 

Proof. The proof follows by applying the λ-lemma to the holomorphic motion from 

Lemma 7.1.  
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Corollary 7.3 (Passing to the limit of holomorphic motions). For there 

is a holomorphic motion τ(f0) of C such that τ(f0) is equivariant on 

. 

Proof. Choose a sequence pn/qn such that e ). By passing to the limit in 

Corollary 7.2 we obtain the desired property.  

Corollary 7.4. The dimension of . 

Proof. Suppose the dimension of ) is greater than 0. Consider the space 

. By Corollary 7.3 the set ) moves 

holomorphically with . Projecting this holomorphic motion to 
the dynamical plane of f0, we obtain a holomorphic motion of the post-critical set of 

. Therefore, there is a small neighborhood of  

consisting of Siegel maps. But all such maps must be in the stable manifold of f by 

Theorem 7.5.  

7.2. The exponential convergence. The following theorem follows from [McM2, 

Theorem 8.1]. 

Theorem 7.5. Let f ∈ B be a Siegal pacman with the same rotation number as f which 

is sufficiently close to f. Then Rnf converges exponentially fast to f. 

Remark 7.6. The proof of [McM2, Theorem 8.1] is based on a “deep point argument”. 

Alternatively, the exponential convergence follows from a variation of the Schwarz 

lemma following the lines of [L1,AL1]. 

7.3. The hyperbolicity theorem. 

Theorem 7.7 (Hyperbolicity of R). The renormalization operator R: B → B is 

hyperbolic at f with one-dimensional unstable manifold Wu and codimension-one stable 

manifold Ws. 

In a small neighborhood of f the stable manifold Ws coincides with the set of pacmen 

in B that have the same multiplier at the α-fixed point as f. Every pacman in Ws is Siegel. 

In a small neighborhood of f the unstable manifold Wu is parametrized by the 

multipliers of the α-fixed points of f ∈ Wu. 

Proof. It was already shown in Corollary 7.4 that the dimension of Wu is one. Let us 

show that Ws has codimension one. Denote by B∗ the submanifold of B consisting of 

all the pacmen with the same multiplier at the α-fixed point as f. Then R naturally 
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restricts to R: B∗ → B∗. Consider the derivative Diff(R | B∗); by Corollary 7.4 the 

spectrum of Diff(R | B∗) is within the closed unit disk. Suppose that the spectrum of 

Diff(B∗) intersects the unit circle. By [L1, Small orbits theorem] R | B∗ has a small slow 

orbit: there is an f ∈ B∗ such that f is infinitely many times renormalizable but 

. 

Moreover, it can be assumed thatof f. By Corollary 4.7, f is a Siegel pacman and by 

Theorem 7.5,{Rnf}n≥0 is in a sufficiently small neighborhoodRnf converges 

exponentially fast to f. This is a contradiction. Therefore, the spectrum of R is 

compactly contained in the unit disk, and all of the pacmen in B∗ are infinitely 

renormalizable and thus are Siegel (Corollary 4.7). The submanifold B∗ coincides with 

Ws in a small neighborhood of f.  

7.4. Control of Siegel disks. The following lemma follows from [McM2, Theorem 

8.1] combined with Theorem 3.6 and Lemma 3.4. 

Lemma 7.8. Every Siegel map f has a pacman renormalization R2f such that 

R2f is in B and is sufficiently close to f.  

We say that a holomorphic map f : U → V is locally Siegel if it has a distinguished 

Siegel fixed point. The following corollary follows from Theorem 7.7 combined with 

Lemma 7.8. 

Corollary 7.9. Let f : U → W be a Siegel map with rotation number θ ∈ Θper, and let N(f) 

be a small Banach neighborhood of f. Then every locally Siegel map 

g ∈ N(f) with rotation number θ is a Siegel map. Moreover, the Siegel disk  

depends continuously on g.  

8. Scaling Theorem 

In this section we prove a refined version of Theorem 1.3. Consider per and 

let f be a Siegel map with rotation number θ. Let   be a small Banach 

neighborhood of f, and let W ⊂ U be a one-dimensional slice containing f such that W 

is transverse to the hybrid class of f; i.e., in a small neighborhood of f ∈ W all maps 

have different multipliers at their α-fixed points. 

We say a map g ∈ U is satellite if it has a satellite valuable flower. 
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Definition 8.1 (Satellite valuable flowers). A satellite valuable flower of g is an open 

forward invariant set H such that (see Figure 26) 

 

Figure 26. A satellite valuable flower (red) of the 5/13 Rabbit approximates 

the golden Siegel disk (also red). 

(A) H ∪ {α(g)} is connected; 

(B) H has q connected components H0,H1,...,Hq−1, called petals, enumerated 

counterclockwise at α; every Hi is an open topological disk with a single 

access to α; 

(C) g(Hi) ⊂ Hi+p, where p is coprime to q; 

(D) there is an attracting periodic cycle γ = (γ0,γ1,...,γq−1) with γi ∈ Hi attracting all 

points in H; 

(E) H−p contains the critical point of g. 

The number p/q is called the combinatorial rotation number of H. The multiplier of H 

is the multiplier of γ. 

For convenience, let us say that a parabolic valuable flower (see Definition 6.8) 

with rotation number p/q is a satellite valuable flower with rotation number p/q and 

multiplier 1. 

By Lemma 3.18, R acts on the rotation numbers of indifferent pacmen as Rprm
k for 

a certain k ≥ 1; see also Remark 3.19. 

Theorem 8.2. Suppose a sequence  converges to θ so that  

= pn+1/qn+1. Fix λ1 ∈ D1 and a small neighborhood of . Then there is a continuous path 

λt ∈ D1 ∪ {1} with t ∈ [0,1] emerging from 1 = λ0 such that for every sufficiently big 

 there is a unique path gn,t ∈ W, where t ∈ [0,1], with the following properties: 

• gn,t has a valuable flower Hn,t with rotation number pn/qn; moreover for  

the multiplier of the corresponding attracting cycle γn,t is equal to λt; 

• all Hn,t are contained in the given small neighborhood of   and depend 

continuously on t; and 
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• dist(  for every t. 

Note that the path gn,t starts at a unique parabolic map in W with rotation number 

pn/qn. 

8.1. Proof of Theorem 8.2. The proof is split into short subsections. Consider a 

pacman hyperbolic renormalization operator   around a fixed point 

) with rotation number θ. As before, Wu denotes the unstable manifold 

8.1.1. Perturbation of parabolic pacmen. By shifting the sequence (pn/qn)n we can 

assume that p0/q0 is close to θ. Then there is a unique parabolic pacman f0 ∈ Wu with 

rotation number p0/q0. Then fn := Rnf0,n ≤ 0, has rotation number pn/qn. 

By Theorem 6.9 and possibly by further shifting (pn/qn)n, we can assume that 

• each fn has a valuable flower H(fn) at the α-fixed point; 

• each fn has a triangulation Δ(fn) respecting H(fn): every petal of H(fn) is within 

a triangle of Δ(fn); 

• Δ(fn) has a wall Π(fn) approximating ; 

• Δ(fn) and H(fn) are the full lifts of Δ(fn+1) and H(fn+1). 

Let g0 ∈ Wu be a slight perturbation of f0 that splits α into a repelling fixed point α 

and an attracting cycle γ(g0) such that α is on the boundary of the immediate 

attracting basin of γ(g0). Then Δ(f0), Π(g0), H(f0) are perturbed to Δ(g0), Π(g0), H(g0) 

such that all points in H(g0) are attracted by γ(g0). We can assume that the 

perturbation is sufficiently small such that Π(g0) still approximates . By Lemma 

4.4, there are full lifts Δ(gn), H(gn) of Δ(g0), H(g0). 

As before, we denote by Fn and Gn the maximal prepacmen of fn and gn and we 

denote by G#n the rescaled version of Gn such that G0 = G#0 is an iteration of G#n . Recall 

from §6.2 that H(f0) admits a global extension H(F0) in the dynamical plane of F0. 

Similarly, we now define the maximal extension H(Gn) of H(gn). 

Each H(gn) lifts to the dynamical plane of G#n ; denote by H(g0) the lift of H(g0). 

Similar to (6.2), we set 

H  
a,b∈Z 

to be the full orbit of H(g0). The same argument as in the proof of Lemma 6.2 shows 

that H(G0) is fully invariant and is within DomG0,− ∩ DomG0,+. 

Denote by Hper(G0) the union of periodic components of H(G0). The same argument 

as in the proof of Proposition 6.5 shows the following. 

Proposition 8.3 (Parameterization of Hper(G0)). The connected components of 

Hper(G0) are uniquely enumerated as (Hi)i∈Z such that H  and such that the 
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actions of gn,#0± i)i∈Z are given (up to interchanging gn,− and gn,+) by on (H 

(8.1) gn,#−(Hi) = (Hi−pn) and gn,#+(Hi) = Hi+qn−pn.  

8.1.2. QC-deformation of gn. Suppose first that = 0. Denote by λ0 the multiplier of 

γ(g0). Let g  ) be the first return map (compare with 

Lemma 6.2). There is a semiconjugacy h: H0(G0) → C from g  to the linear 

map z → λ0z. Choose a continuous path of qc maps τt: C → C with t ∈ [0,1] such that 

τ0 = id and τt conjugates z → λ0z to z → λtz. 

Lifting τt under h and spreading the associated Beltrami form dynamically, we 

obtain a qc map τt: C → C conjugating G0 to a maximal prepacman G0,t; similarly τt 

conjugates G#n,t to a maximal prepacman G#n,t for n ≤ 0. 

Define now τn,t to be the projection of τt to the dynamical plane of gn via intS

 (see (5.6)); we normalize τn,t to preserve α(gn) and c1(gn). By compactness 

of qc-maps, there is a small T > 0 such that all gn,t are in B for t ≤ T. For m ≤ 0 consider 

the sequence R−n+m(gn,t). All pacmen in this sequence are qcconjugate with uniform 

dilatation. Moreover, the conjugacies preserve the critical value and the α-fixed point 

because of the normalization for renormalization change of variables; see §2.5. By 

compactness of qc-maps, R−n+m(gn,t) has an accumulated point qm,t ∈ B, and, moreover, 

we can assume that Rqm,t = qm+1,t; i.e., qm,t ∈ Wu and qm,t tends to  tends to −∞. 

We define Δ(qn,t),Π(qn,t),H(qn,t) to be the images of Δ(gn,t),Π(gn,t),H(gn,t) via the qc-

conjugacy from  . By improvement of the domain, Δ(qn,t) is in a small 

neighborhood of Z and Π(qn,t) approximates 0. By shifting the sequence 

(pn/qn)n we can assume that this already occurs for n = 0. We can now repeat the above 

argument and construct qn,t for t ∈ [T,2T]. After finitely many repetitions, we construct 

qn,t for all t in [0,1]. 

8.1.3. QC-surgery towards the center. Suppose now λ1 = 0. In this case we apply a qc-

surgery. As in §8.1.2 we denote by λ0 the multiplier of γ(g0). 

Consider the first return map 

w . 

It has a unique attracting fixed point γ0 and a unique critical value at 0. Thus w0 also 

has a unique critical point. We can choose a small disk D around γ0 such that 

• 0 ∈ w0(D)  D; 

• w0 : H0(G0) \ D → H0(G0) \ w0(D) is a 2-to-1 covering map. 

By Theorem 6.9, we can project D to a disk within H(g0). We claim that there is a 

continuous path of qc maps  ) and a continuous path wt: 

H0(G0
) → H0(G0) such that  is equivariant (with respect to the actions of w0 and 

wt) on H0(G0)\D; 

• wt has a unique critical value at 0 and a unique attracting fixed point at γ0,t; 
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• 
γ

0,1 = 0; i.e., 0 is a supperattracting fixed point of w1. 

Indeed, it is sufficient to construct wt | D and  D equivariant on ∂D; pulling back 

the Beltrami differential of  D via the covering map w0 | H0(G0)\D gives the 

Beltrami differential for  

Applying G0, we spread the Beltrami form of  dynamically to obtain a global qc 

map τt: C → C which is unique up to affine rescaling. Spreading the surgery 

dynamically, we obtain a continuous path of maximal prepacmen G#n,t. Define now τn,t 

to be the projection of τt to the dynamical plane of gn via intS#n ; similarly, gn,t 

is the projection of G#n,t. The argument now continues in the same way as in §8.1.2. 

8.1.4. Lamination around 8.1.1, 8.1.2, and 8.1.3 we constructed continuous 

paths  0, with R(qn,t) = qn+1,t so that each qn,t has a valuable flower 

H(qn,t) with multiplier λt, where λ0 = 1. Moreover, H(qn,t) is within a triangulation 

Δ(qn,t) respecting H(qn,t) such that the wall Π(qn,t) approximates . 

For a big 0, we define Fm,t to be the set of all pacmen close to qm,t such that the 

multiplier of γ(qm,t) is λt
. Locally (Fm,t)t is a codimension-one lamination of B. Since Fm,t 

is in a small neighborhood of qm,t, every pacman g ∈ Fm,t has a valuable flower H(g) 

and a triangulation Δ(g) respecting H(g) such that Δ(g) and H(g) depend 

continuously on g. The wall Π(g) approximates . For n ≤ m, we define 

Fn,t := {g ∈ B | Rm−n(g) ∈ Fm,t}. 

Since R is hyperbolic, 

(8.2) F := {Fn,t}n,t ∪ {Ws} 

forms a codimension-one lamination in a neighborhood of f. A pacman g ∈ Fn,t has 

H(g) and Δ(g) having the same properties as above. In particular, all the pacmen in 

Fn,t are hybrid conjugate in neighborhoods of their valuable flowers. 

8.1.5. Scaling. By Corollary 3.7, the Siegel map f can be renormalized to a pacman. By 

Lemma 7.8 we can assume that the renormalization of f is within a small 

neighborhood of f. This allows us to define an analytic renormalization operator 

from a small neighborhood of f to a small neighborhood of f. Since 

maps in W have different multipliers, the image of W under R2 is transverse to the 

lamination F; see (8.2). 

We define fn,t to be the unique intersection of Fn,t with the image of W under R2, and 

we define gn,t ∈ W to be the preimage of fn,t via R2. Since Π(fn,t) approximates , the 

triangulation Δ(fn,t) and the valuable flower H(fn,t) have full lifts Δ(gn,t) and H(gn,t); see 
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Lemma 4.4. Since the holonomy along F is asymptotically conformal [L1, Lemma 7.3], 

we obtain the scaling result for gn,t. 

8.1.6. Uniqueness of gn,t. Recall (Theorem 7.7) that Wu is parametrized by the 

multipliers of the α-fixed points. Therefore, parabolic pacmen with rotation numbers 

p  0, are unique. As a consequence the paths of satellite pacmen emerging 

from these parabolic pacmen are unique. Similarly, parabolic maps gn,0 ∈ W with 

rotation numbers pn/qn are unique; thus the paths gn,t are unique.  

Appendix A. Sector renormalizations of a rotation 

Consider θ ∈ R/Z and let 

L  

be the corresponding rotation of the closed unit disk by angle θ. 

A.1. Prime renormalization of a rotation. Assume that = 0 and consider 

D1. A fundamental sector Y  of Lθ is the smallest a closed internal ray I of 

closed sector bounded by I and Lθ(I). If θ = 1/2, then I ∪ Lθ(I) is a diameter and 

 
both sectors of D1 bounded by I∪Lθ(I) are fundamental. The angle ω at the vertex of 

Y is θ if θ ∈ [0,1/2] or 1 − θ if 1 − θ ∈ [0,1/2]. 

A fundamental sector is defined uniquely up to rotation; let us first rotate it such 

that 1 Y. Set 
Y

− := L−θ 1(Y) and set Y+ to be the closure of D1 \ (
Y 

∪ 
Y

−); see 

Figure 27. Then 

(A.1) (Lθ | Y+,L2θ | Y−) 

is the first return of points in Y back to Y− ∪Y+. The prime renormalization of 

Lθ is the rotation L  obtained from (A.1) by applying the gluing map 
ψprm : Y− ∪ Y+ → D1,z → z1/(1−ω). 

Lemma A.1. We have 

if  , (A.2)
 2 −1 if. 

θ 
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Figure 27. Left: the prime renormalization deletes a fundamental sector 

Y and projects (L2θ | Y− ,Lθ | Y+) to a new rotation. 

Right:  is the first return map to a fundamental sector 

Y = X− ∪ X+. 

Present θ using continued fractions in the following ways: 

θ = [0;a1,a2,...] = 1 − [0;b1,b2,...] 

with ai,bi ∈ N>0. Then 

if a1 > 1, if 

a1 = 1, 

and 

if b1 > 1, 

 prm − 1

 2,... 

 [0;b2,b3,...] if b1 = 1. 

As a consequence, θ is periodic under Rprm if and only if there is a θ with periodic 

continued fraction expansion such that ) for some n ≥ 0. 

Proof. The proof follows by routine calculations. If θ ∈ [0,1/2], then projecting z → 

e(θ)z by ψprm we obtain 

If θ ∈ [1/2,1], then projecting

we obtain 

 

Observe that 0]; adding +1 we obtain . 

 − 

 

 + 

L θ 

( delete ) 

L θ 

L θ 

1 

 + 

 − 

( delete ) 

L θ 

L θ 

L θ 
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Write 

 

and observe that θ ∈ [0,1/2] if and only if a1 > 1 (with the exception θ = [0;1,1]). If a1 

> 1, then 

. 

If a1 = 1, then 

. 

Similarly Rprm(1 − [0;b1,b2,...]) is verified.  

A.2. Sector renormalization. A sector renormalization R of Lθ is 

• a renormalization sector X presented as a union of two subsectors X− ∪X+ 

normalized so that 1 ∈ X− ∩ X+; 

• a pair of iterates, called a sector pre-renormalization, 

(A.3)  

realizing the first return of points in X− ∪ X+ back to X; and 

• the gluing map 

, 

projecting (A.3) to a new rotation Lμ, where ω is the angle of X at 0. 

We write RLθ = Lμ, and we call a and b the renormalization return times. We allow one 

of the sectors X± to degenerate, but not both. Note that the assumption 1 ∈ X− ∩ X+ 

can always be achieved using rotation. 

The prime renormalization is an example of a sector renormalization. 

Suppose two sector renormalizations R1(Lθ) = Lμ and R2(Lμ) = Lν are given. The 

composition R2 ◦ R1(Lθ) = Lν is obtained by lifting the pre-renormalization of R2 to the 

dynamical plane of Lθ. 

Lemma A.2. A sector renormalization is an iteration of the prime renormalization. 

Proof. Suppose R is a sector renormalization with renormalization return times a and 

b as above. Proceed by induction on a + b. If a + b = 3, then R is the prime 

renormalization. Otherwise, we project the pre-renormalization of R to the dynamical 

plane of Rprm(Lθ) and obtain the new sector renormalization R of Rprm(Lθ) so that 
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. 

The renormalization return times  satisfy .  

Consider again the fundamental sector Y bounded by I and Lθ(I). There is a 

minimal a > 0 such that L−a(I) ⊂ Y. Up to rotation, we can assume that L−a(I) lands at 

1. We define X+ to be the subsector of Y bounded by I and L−a(I) and we define X− to 

be the subsector of Y bounded by L(I) and L−a(I). Then 

 

is a sector pre-renormalization, called the first return to the fundamental sector; see 

Figure 27. We denote by Rfast the associated sector renormalization and we write μ = 

Rfast(θ) if Rfast(Lθ) = Lμ. 

 By Lemma A.2, for every = 0 there is a unique n(θ) such that Rfast(θ) = 

). We note that if θ ∈ {1/m,1 − 1/m} with m > 1, then n(θ) = m − 1. (In 

this case the sector X− is degenerate.) 

A.3. Renormalization triangulation. Given a sector pre-renormalization (A.3), the 

set of sectors 

 

is called a renormalization triangulation of D1. Alternatively, consider the associated 

renormalization Lμ = R(Lθ). The internal rays towards 1 and Lμ(1) split D1 into two 

closed sectors T0 and T1
. We call {T−,T+} the basic triangulation of Lμ. Lifting the 

sectors T−,T+ via the gluing map, and spreading them dynamically we obtain the 

renormalization triangulation. We also say that the renormalization triangulation is 

the full lift of the basic triangulation. 

Let ΘN be the set of angles θ such that θ = [0;a1,a2,...] with |ai| ≤ N or θ = 1 − 

[0;a1,a2,...] with |ai| ≤ N. By Lemmas A.1 and A.2, the set ΘN is invariant under any 

sector renormalization. 

Lemma A.3. For every N there is a t > 1 with the following property. Consider the 

renormalization triangulation associated with some sector renormalization of Lθ, 

where θ ∈ ΘN. Then any two triangles have comparable angles at 0: the ratio of the 

angles is between 1/t and t. 

Proof. There is a neighborhood U of 1 such that for all θ ∈ ΘN we have L  . 

Therefore, both sectors in the basic triangulation have comparable angles at 0 

uniformly on θ ∈ ΘN. Since a renormalization triangulation is the full lift of a basic 

triangulation, the lemma is proven.  
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A.4. Periodic case. It follows from Lemmas A.1 and A.2 that Lθ is a fixed point of some 

sector renormalization if and only if θ ∈ Θper. Suppose θ ∈ Θper and choose a sector 

renormalization R1 such that R1(Lθ) = Lθ. Write  and denote by an,bn, and ψn 

the renormalization return times and the gluing map of Rn. Then  and there is 

a matrix M with positive entries such that 

(A.4) . 

As a consequence, an,bn have exponential growth with the same exponent. We also 

note that 

(A.5) a1,b1 ≥ 2 

because R1 = Rtprm with t > 1. 

Appendix B. Lifting of curves under antirenormalization 

In this appendix we give a sufficient condition for liftability of arcs under a sector 

antirenormalization. This implies that the sector antirenormalization is robust with 

respect to a particular choice of cutting arcs; see Theorem B.8. 

B.1. Robustness of antirenormalization. Consider a closed pointed topological disk 

(W,0) and let U,V be two closed topological subdisks of W such that 0 ∈ int(U∩V ). A 

homeomorphism f : U → V fixing 0 is called a partial homeomorphism of (W,0) and is 

denoted by   (W,0). If U = V = W, then f is an actual self-

homeomorphism of (W,0). 

 

Figure 28. Left: a homeomorphism f : W → W and a dividing pair γ0,γ1. 

Right: the 1/3 antirenormalization of f (with respect to the 

clockwise orientation). 

B.1.1. Leaves over . Let γ0,γ1 be two simple arcs connecting 0 to 

points in ∂W such that γ0 and γ1 are disjoint except for 0 and such that γ1 is the image 

γ 0 

γ 1 = f ( γ 0 ) 

B 

A 

B 

A 

A 

f 

id 
f 

γ 0 
γ 0 

γ 1 γ 1 

γ 0 
γ 1 
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of γ0 in the following sense:   and  are simple closed 

curves such that f maps . Such a pair γ0,γ1 is called dividing. Then γ0 ∪ γ1 splits 

W into two closed sectors A and B denoted so that intA,γ1,intB,γ0 are clockwise 

oriented around 0; see the left side of Figure 28. 

We say that ) is the left boundary of A and the right boundary of B 

and we say that ) is the right boundary of A and the left boundary of 

B. 

Let X,Y be topological spaces, and let be a partially defined continuous 

map. We define 

(Dom . 

Consider a (finite or infinite) sequence (Sk)k, where each Sk is a copy of either 

A or B. Define the partial map ) by 

if (Sk,Sk+1) =∼ (A,B), if 

(Sk,Sk+1) =∼ (B,A), 

(B.1) if (Sk,Sk+1) =∼ (A,A), if (Sk,Sk+1) =∼ 

(B,B). 

The dynamical gluing of (Sk)k is 

The jump ι(k) from S k to Sk+1 ,0,− ) 

is a copy of 

(A,B), (B,A), (A,A), (B,B), respectively. 

For a sequence s = (ai)i∈I we denote by s[i] the ith element in s; i.e., s[i] = ai. 

Definition B.1 (Leaves of . Suppose s ∈ {A,B}Z. Set Ws[i] to be a copy of 

the closed sector s[i]. The leaf Ws is the surface obtained by the dynamical 

gluing of (Ws[i])i∈Z. → \ − −,i1 : s[i] → 

The projection π: Ws W maps each Ws[i] ρ(Ws[i 1]) to s[i]. By πs Ws[i] 

we denote the corresponding inverse branch. 

Note that if s[i] = s[i + 1], then π is discontinuous at Ws[i] ∩ Ws[i + 1]. As z 

approaches Ws[i] ∩ Ws[i + 1] from intWs[i], respectively, intWs[i + 1], its image π(z) 

approaches ρ(s[i]), respectively,  

For every⊆ s, there is a unique point 0 ∈ Ws such that π(0) = 0. By construction, 

 is topologically a closed half-plane. 

 For J Z we write ]. To keep notation simple, we write 

Ws[≥ i] = Ws[{k | k ≥ i}] and similarly for “>”,“≤”, “<”. 
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B.1.2. Lifts of curves. Let α: [0,1] → W \ {0} be a curve in W. A lift of α to Ws is a curve

s such that 

• for every t ∈ [0,1], there is an n(t) ∈ Z such that 

π(α(t)) = fn(t)(α(t)); 

(0) = 0; n(t) is constant for all t for which ) is 

within some 1]); and 

 ] while + 1], then ) is equal to 

the jump from Ws[i] to Ws[i + 1]. 

In other words, whenever α crosses the boundary of s[i], the lift of α is adjusted to 

respect the dynamical gluing. A lift of a curve parametrized by [0,1) is similarly 

defined. Note that π(α) is, in general, discontinuous. 

 For every curve α as above, there is at most one lift of→ α starting at a given 

preimage of α(0) under π: Ws W. It is easy to see that there is an ε > 0 such that all lifts 

(specified by the starting points) of α: [0,ε] → W exist, and are thus unique. The main 

question we address is the existence of the global lifts. 

If α: [0,1) → W \ {0} is such that α(1) = limt→1 α(t) = 0, then we say that 

a lift α of α lands at 0 if π(α(t)) → 0 as t → 1. 

B.1.3. Antirenormalizations. We will now show that for every p/q there is a unique 

antirenormalization with rotation number p/q. 

Lemma B.2. For every q ∈ N>2 and every p ∈ {1,2,...,q − 1} coprime with q there exists a 

unique q-periodic sequence s ∈ {A,B}Z such that 

• s[0] = A and s[−1] = B; 

• for every , we have s[j + p] = s[j]; 

• s[−p − 1] = A and s[−p] = B. 

Proof. Since p and q are coprime, there are unique a,b ∈ {1,2,...,q−1} such that 

pa = −1 mod q, pb = 

1 mod q. 

Note that a + b = q. We have 

• s[ip + jq] = A for all i ∈ {0,1,...,a − 1} and all j ∈ Z; and 

• s[−1 + ip + jq] = B for all i ∈ {0,...,b − 1} and all j ∈ Z.  

The numbers a,b appearing in the proof of Lemma B.2 are called the 

renormalization return times. 
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For a sequence s as in Lemma B.2, let 

s/q ∈ {A,B}Z/qZ,(s/q)[i] := s[i + Zq] 

be the quotient sequence, and let Ws/q be the quotient of the leaf Ws by identifying 

each Ws[k] with Ws[k + q]. We denote by π: Ws/q → W the natural projection. 

Then the p/q-antirenormalization f−1 : Ws/q  Ws/q is defined as follows (see Figure 28): 

• for every p − 1,−p}, the map f−1 : Ws/q[j] → Ws/q[j + p] is the natural 

isomorphism; 

• the map . 

Note that p/q is the clockwise rotation number. 

By construction, (f−
a

1 | Ws/q[0],f−
b

1 | Ws/q[−1]) is the first return of f−1 back 

 0]. After appropriate gluing of arcs in 

s  q , the map 

−a1 | Ws/q[0],f−b1 | Ws/q[− . 

Denote by 

(B.2) q 

the left boundaries of Ws/q[0] and Ws/q[p], respectively. Then  q is a dividing 

pair for f−1 : Ws/q  Ws/q and the antirenormalization procedure can be iterated. 

Let β be a curve in W, and let β be a lift of β to Ws. The image of β in 

 is called a lift of β to W s/q. For example, q is a lift of γ0.  

B.1.4. Prime antirenormalization. The 1/3 and 2/3-antirenormalizations are called 

prime. It is easy to check that 

• if p/q = 1/3, then s/q = (A,A,B); • if p/q = 2/3, then s/q = (A,B,B). 

Lemma B.3 (Compare with Lemma A.2). Any antirenormalization is an iteration of 

prime antirenormalizations. 

Proof. We proceed by induction on q. Assume q > 3, define (see 

(A.2)), and observe that . 

• If 0 < p < q/2, then the p/q-antirenormalization is the 1/3-

antirenormalization of the -antirenormalization. 

• If q/2 < p < q, then the p/q-antirenormalization is the 2/3-

antirenormalization of the -antirenormalization.  

Denote by s := (A,B)Z the sequence in {A,B}Z with even entries equal to A 
• 

and odd entries equal to B. Simplifying notation, we write Ws• = W•. 
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Suppose that f : W → W is a homeomorphism. In this case antirenormalizations of 

f can be defined canonically (i.e., independent of the choice of γ0,γ1) as follows. 

Observe first that 

(B.3)  

is a universal cover. Let ( Z be all the lifts of γ0 and 

γ1 enumerated from left to right such that W [i] is 

betweenand; in particular,is a lift of 
• 

γi mod 2. Let 

f− , f+ : W• → W• 

be the lifts of f : W → W specified so that 

 f and

. 

Observe 

that f

 and f 

− τ := f−−1 ◦ f+ : W• → W•; 

and f−1,+ : W•[0,1] → W•[1,2] become the 

1/3-antirenormalization of 0 ; see also Figure 28. 

then ) is a deck transformation of W and we can rewrite (B.3) as 

. 

We also write 

W • [ − 1] W • [0] W • [1] W • [2] W • [3] 

f − 1 , − 

f − 1 , + 

f − 1 , + 

 γ 
• 
− 1  γ • 0  γ • 1  γ • 2  γ • 3 

f + (  γ • 1 ) 

 IllustrationtoLemmaB.3: f − 1 , − : W • [2] → W • [0] 
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Lemma B.4 (The 1/3-antirenormalization). Suppose f : W → W is a 

selfhomeomorphism. Set 

f−1,+ :=f+, f−1,− :=τ−1 = f− ◦ f+−1, τ 1 

:=f−11,− ◦ f−1,+ = f−−1 ◦ f+2. 

 − − 

Then τ−1 acts properly discontinuously on . We view 

 

as a punctured closed topological disk and we view   as a closed topological 

disk. 

Let f−1 : W−1 → W−1 be the 1/3-antirenormalization of f. Then f−1 is conjugate to 

 
by the conjugacy 

mapping 

respectively to 
 − − − 

which are copies of A,A,B. 

Proof. Clearly, W•[0,1,2] is a fundamental domain for τ−1. It is easy to see (see 

Figure 29) that h identifies 

• f−1 : W−1[0] → W−1[1] (which is id: A → A) with 

f−1,− = τ−1: W•[2] → W•[0]; 

• f−1 : W−1[1,2] → W−1[2,0] (which is f : W \ γ0 → W \ γ1) with 

f−1,+ : W•[0,1] → W•[1,2]. 

 

Remark B.5. The proof of Lemma B.4 shows also that h is uniquely characterized by 

the following properties: 

• h maps(see (B.2)); 

• if  is a curve starting at  is the unique lift 

, then is the of starting at some point of
unique lift of starting at . 

Similar to Lemma B.4 we have 
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Lemma B.6 (The 2/3-antirenormalization). Suppose f : W → W is a self-

homeomorphism. Set 

f−1,+ :=τ = f+ ◦ f−−1, f−1,− :=f−, τ 1 

:=f−11,− ◦ f−1,+ = f−−2 ◦ f+. 

 − − 

Then τ−1 acts properly discontinuously on  . We view 

as a punctured closed topological disk and we view  as a closed topological 

disk. 

Let f−1 : W−1 → W−1 be the 2/3-antirenormalization of f. Then f−1 is conjugate to 

 

by the conjugacy 

 

mapping 

W−1[0],W−1[1],W−1[2] 

respectively to 

 

which are the copies of A,B,B.  

B.1.5. Fences. Consider again a partial homeomorphism  and let s be an 

antirenormalization sequence from Lemma B.2. We view W as a subset of C. 

A fence is a simple closed curve Q ⊂ Domf ∩ Imf such that 

• 0 is in the bounded component Ω of C \ Q; and 

• Q intersects γ0 at a single point x and Q intersects γ1 at f(x). 

Let q be an antirenormalization of f−1 
as in §B.1.3. We denote 

by Qs the lift of Q to Ws and we denote by Qs/q the projection of Qs to Ws/q. 

Lemma B.7. The curve Qs/q is again a fence respecting q; see (B.2). 

Proof. Every Qs/q ∩ Ws/q[i] is an arc connecting a point on the left boundary of Ws/q[i] 

to a point on the right boundary of Ws/q[i]. Moreover, Qs/q∩Ws/q[i] meets 

Qs/q∩Ws/q[i+1] because ) (see (B.1)) respects the intersection of 

Q with γ0,γ1. 

B.1.6. Robustness of antirenormalization. 
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Theorem B.8. Let   be a partial homeomorphism, let γ0,γ1 ⊂ W be a 

dividing pair of arcs, let Q ⊂ Domf be a fence respecting γ0,γ1 and enclosing , and 

let 

f−1 : W−1  W−1 

be the p/q-antirenormalization of f; see §B.1.3. 

Assume that γ0new,γ1new is another pair of dividing arcs such that ,  

coincides with γ0 \ Ω,γ1 \ Ω. Denote by 

f−1,new : W−1,new  W−1,new 

the p/q-antirenormalization of f relative to the pair . Then f−1 and f−1,new are 

naturally conjugate by h: W−1 → W−1,new uniquely specified by the following properties: 

(1) π ◦ h(z) = π(z) for every z ∈ W−1 \ Ω−1, where Ω−1 is the topological disk 

enclosed by Q−1 (see Lemma B.7); and  is a lift of a curve β ⊂ W, 

then  is a lift of β to W−1,new. 

Proof. Since the pair  Ω coincides with γ0 \ Ω,γ1 \ Ω, condition (1) 

uniquely specifies h | W−1 \ Ω−1. 

Let us now extend  to a homeomorphism f : W → W mapping γ0 to γ1. 

The extension changes f−1 | W−1 \Ω−1 and f−1,new | W−1,new \Ω−1,new but does not affect f−1 

| Ω−1 and f−1,new | Ω−1,new. Therefore, it is sufficient to prove the theorem under the 

assumption that f : W → W is a homeomorphism. 

Since every antirenormalization is an iteration of prime antirenormalizations (see 

Lemma B.3), we can further assume that f−1 and f−1,new are prime antirenormalizations. 

By Lemmas B.4 and B.6 both f−1 and f−1,new are naturally conjugate to 

 − − − −

 − − − 
, 

which is independent of the choice of γ0,γ1. It remains to observe that the conjugacy 

between f−1 and f−1,new satisfies condition (2); see Remark B.5.  

Corollary B.9 (Lifting condition). The curves γ0,new and γ1,new have unique lifts 

(B.4)  

(see (B.2)) such that the pair (B.4) coincides with  . Moreover, 

(B.4) is a dividing pair. 

Remark B.10 (General lifting condition). Suppose that s is a sequence such that (A,B) 

or (B,A) appears infinitely many times in both s[≥ 0] and s[≤ 0]. In the arXiv version 

of the paper we proved that if β0,β1 = f(β0) is a pair of curves respecting (Q,γ0,γ1), then 
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all lifts of β0,β1 in Ws exist, are pairwise disjoint, and land at 0. In particular, this 

implies Corollary B.9 and Theorem B.8. 

B.1.7. Walls. Let us view W as a subset of C. A wall around 0 respecting γ0,γ1 is either a 

closed annulus or a simple closed curve Q ⊂ U ∩ V such that 

(1) C \ Q has two connected components, and, moreover, denoting by Ω the 

bounded component of C \ Q, we have 0 ∈ Ω; 

(2) γ0 ∩ Q and γ1 ∩ Q are connected; 

(3) if x ∈ Ω, then f±1(x) ∈ Q ∪ Ω. 

In other words, points in W do not jump over Q under the iteration of f. If Q is a simple 

closed curve, then f restricts to an actual homeomorphism f : Ω → Ω. 

Remark B.11. Note that a wall contains a fence; see §B.1.5. Therefore, in the statement 

of Theorem B.8 we can replace a fence with a wall. 

For a sequence s ∈ {A,B}Z we denote by Qs[i] the closure of the preimage of Q under 

π: Ws[i] → W; we set s[i]. 

Lemma B.12. The set Qs is connected. The closure of the connected component of Ws \ 

Qs containing 0 is Ωs. 

Proof. The proof follows from the definition: since points in Ω do not jump over Q 

every Qs[i] intersects Qs[i+1], therefore Qs is connected and the claim follows.  

Suppose f−1 : Ws/q → Ws/q is an antirenormalization of f and suppose W has a wall Q 

(respected by γ0,γ1,f) enclosing Ω. The image of Qs in Ws/q is called the full lift Qs/q of Q. 

Similarly, we denote by Ωs/q the image of Ωs in Ws/q. We say that Q is an N-wall if it takes 

at least N iterates of f±1 for points in Ω to cross Q. The next lemma follows by definition. 

Lemma B.13. If Q is an N-wall, then Qs/q is an (N − 1)min{a,b}-wall.  

Since for a periodic combinatorics min{a,b} ≥ 2 (see (A.5)), we have the following. 

Corollary B.14. Suppose f−1 : Ws/q → Ws/q is an antirenormalization of f associated with 

a periodic combinatorics; see §A.4. Then a lift of a 2-wall (respected by γ0,γ1,f) is again 

a 2-wall.  



 PACMEN 743 

Licensed to Stony Brook Univ. Prepared on Fri Oct  6 12:49:18 EDT 2023 for download from IP 129.49.88.178. 
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 

Remark B.15. Antirenormalization can easily be defined for a partial branched 

covering f0 : (W,0)  (W,0) of any degree. In this case it is natural to assume that γ0 does 

not contain a critical point of f. To apply Theorem B.8, it is sufficient to assume that 

there is a univalent fence Q (respected by γ0,γ1,f) enclosing Ω such that f | Q ∪ Ω has 

degree one. The antirenormalization is robust with respect to replacing γ0,γ1 with a 

new pair 1new as above. 

 

Figure 30. Possible local dynamics at the α-fixed point. 

Appendix C. The Molecule Conjecture 

Let us denote by Mol the main molecule of the Mandelbrot set; i.e., the smallest 

closed subset of M containing the main hyperbolic component as well as all hyperbolic 

components obtained from the main component via parabolic bifurcations; see 

[DH1,L2] for the background on the Mandelbrot set. In this appendix we write fc(z) = 

z2 + c. 

C.1. Branner-Douady maps. Let us denote by Lp/q the primary p/q-limb of the 

Mandelbrot set, and let us denote by Mp/q ⊂ Lp/q the p/q-satellite small copy of M. We 

also write L0/1 = M0/1 = M. 

In [BD] Branner and Douady constructed a partial surjective continuous map 

Rprm : L1/3 
 
L1/2 such that its inverse R  is an embedding. 

This construction could be easily generalized to a continuous map Rprm 
: Lp/q 

LRprm(p/q), where (compare to (A.2)) 

 q−p if 0 , 

Rprm (p/q) = 

 if q , 

as follows. Recall that c ∈ Lp/q if and only if in the dynamical plane of fc there are exactly 

q external rays landing at the α-fixed point and the rotation number of these rays is 

α α 

delete 

delete 

γ 0 

γ 0 

γ 1 
γ 1 

γ 2 

γ 2 
f 2 

c 

f 2 
c 

S 1 

S 1 
S 0 

S 0 

f c f c 

⎨ 
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p/q; i.e., if γ is a ray landing at α, then there are p − 1 rays landing at α between γ and 

fc(γ) counting counterclockwise. 

Choose an external ray γ0 landing at α in the dynamical plane of fc with c ∈ Lp/q. 

Define γ1 = fc(γ0) and γ2 = fc(γ1). Denote by S0 the open sector between γ0 and γ1 not 

containing γ2; see Figure 30. Similarly, let S1 be the open sector between γ1 and γ2 not 

containing γ0. We assume that γ0 is chosen such that S1 does not contain the critical 

value; thus S1 has two conformal lifts, one of them is S0 and we denote by  the other. 

If , then replace  by its unique lift in C \ S1. 

Let us delete S1, glue γ1 and γ2 dynamically so  , and iterate fc 

twice on S0. We obtain a new map denoted by  C. The filled-in Julia 

 is the set of points with bounded orbits that do not escape to . The set

  is connected if and only if 0 does not escape to  ; in this case the new local 

dynamics of f¯c at α has rotation number Rprm(p/q) and, moreover, f¯c is hybrid 

equivalent to a quadratic polynomialL  L prm fRprm(c) with c ∈ LL Rprm(p/Lq). This defines 

theM 

map Rprm : p/q R (p/q). Note that Rprm : 1/2 0/1 =

 becomes the Douady-Hubbard straightening map M1/2 → M of the basilica satellite 

copy of the Mandelbrot set. 

In general, Rprm : Lp/q 
 
LRprm(p/q) depends on the choice of γ0. However, if c ∈ Mp/q, then 

Rprm(c) ∈ MRprm(p/q) and Rprm : Mp/q → MRprm(p/q) coincides with the canonical 

homeomorphism between small copies of the Mandelbrot set. 

Remark C.1. The Branner–Douady surgery has also been studied by Riedl [R]; he 

showed, in particular, that every dyadic Misiurewicz parameter is connected through 

a simple arc (vein) in the Mandelbrot set to the origin. 

C.2. The molecule and the fast molecule maps. Denote by Δ the main hyperbolic 

component of M. Recall that a parameter c ∈ ∂Δ is parametrized by the multiplier 

e(θ(c)) of its non-repelling fixed point. We define the molecule map 

Rprm : such that 

• Rprm : Lp/q 
 
LRprm(p/q) is the Branner–Douady renormalization map for p  1 

and for some choice of γ0; and • if c ∈ ∂Δ, then Rprm(c) is such that 

if 0, 
− 

 if θ(Rprm(c)) = 

. 

⎨ 
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Siegel parameters of periodic type are exactly periodic points of Rprm | ∂Δ (Lemma 

A.2). Furthermore, for a satellite copy of the Mandelbrot set Ms, there is an n ≥ 1 such 

that Rnprm : Ms → M is the Douady-Hubbard straightening map. 

The map Rprm : is combinatorially modeled by Q(z) := z(z +1)2; see Figure 

31. The latter map has a unique parabolic fixed point at 0. The attracting basin of 0 

contains exactly one critical point of Q. The second critical point is a preimage of 0. 

Denote by F the invariant Fatou component of Q. We can 

extend Rprm to Δ so that Rprm  is conjugate, say by π, to Q | F. Then π extends 

uniquely to a monotone continuous map π : Mol → KQ semiconjugating Rprm | Mol and 

Q | KQ, where KQ is the filled-in Julia set of Q: 

 

If the MLC-conjecture holds, then π is a homeomorphism. 

For every c ∈ ∂Δ \ {cusp} define n(c) := n(θc), where θc is the rotation number of fc 

and n(θ) is specified by ); see §A.2. For every c ∈ Lp/q define n(c) := 

n(cp/q), where cp/q is the root of Lp/q. The fast Molecule map is a partial map on M 

defined by 

Rfast(c) = Rnprm(c)(c). 

The restriction Rfast | ∂Mol \ {cusp} is continuous but it does not extend continuously 

to the cusp: Rfast(∂M1/n) = ∂M. 

 

Figure 31. Left: the Mandelbrot set. Right: the filled Julia set of Q(z) = 

z(z + 1)2. 

    

K Q K Q 

 prm 

π π 

Q 
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C.3. The molecule conjecture. Given a renormalization operator R: B  B, its 

renormalization horseshoe is the set of points in B with bi-infinite precompact orbits. 

We conjecture that there is a pacman renormalization operator Rfast: BMol → BMol with 

the following properties. The operator Rfast is hyperbolic and piecewise analytic with 

one-dimensional unstable direction such that its renormalization horseshoe Rfast : 

HMol → HMol is compact and combinatorially associated with Rfast | Mol \ {cusp} as 

follows. 

There is a continuous surjective map ρ: HMol → Mol that is a semiconjugacy away 

from the cusp: 

HMol \ ρ−1(cusp)  HMol \ ρ−1(cusp) 

ρρ 

∂Mol \ {cusp}  ∂Mol \ {cusp} 

Denote by ∂irrMol the set of non-parabolic parameters in ∂Mol. Conjecturally, Rfast | 

HMol is the natural extension of Rfast | ∂Mol \ {cusp} compactified by adding limits to 

parabolic parameters at all possible directions. Such a construction is known as a 

parabolic enrichment; see [La,D2]. 

all pacmen inThe space BFMsolare hybrid conjugate tohas a codimension-one stable 

lamination (fc in neighborhoods of their “motherFcs)c∈Mol such that 

c 

hedgehogs”; see §C.4. For every f ∈ HMol, the leaf  is a stable manifold of Rfast at f. 

The unstable manifold of Rfast at f is parametrized by a parabolic enrichment of a 

neighborhood of ρ(f). Locally, Rfast can be factorized as an iterate 

Mol; however, the latter operator has parabolic behavior at 

The Molecule Conjecture contains both Theorem 7.7 (for periodic type parameters 

from ∂Δ) and the Inou-Shishikura theory [IS] (for high type parameters from ∂Δ). It 

also implies the local connectivity of the Mandelbrot set for all parameters on the 

main (and thus any) molecule. 

C.4. Conjecture on the upper semicontinuity of the mother hedgehog. A closely 

related conjecture is the upper semicontinuity of the mother hedgehog. For a Siegel 

parameter c ∈ ∂Δ, consider the closed Siegel disk  has a Cremer point, 

then let  contains a critical point, then we set 

. Otherwise, fc has a hedgehog (see [PM]): a compact closed connected filled-

in forward invariant set such that  is a homeomorphism. 

R fast 

 fast 
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We define Hc to be the mother hedgehog (see [Chi]): the closure of the union of all of 

the hedgehogs of fc. 

Recall that the filled-in Julia set Kg of a polynomial depends upper 

semicontinuously on g. Viewing Hc as an indifferent-dynamical analogue of Kg, we 

conjecture the following. 

Conjecture C.2. The mother hedgehog Hc depends upper semicontinuously on c. 

For bounded type parameters (i.e., when Hc is a Siegel quasidisk) Conjecture C.2 

follows from the continuity of the Douady-Ghys surgery. 

Conjecture C.2 can be adjusted for parabolic parameters c ∈ Δ as follows. Let Ac be 

the immediate attracting basin of the parabolic fixed point α. Then there is a choice of 

a valuable flower Hc with   such that Hc depends upper 

semicontinuously on c ∈ ∂Δ. In particular, Hc contains the union of all limiting mother 

hedgehogs for perturbations of fc. 

Similarly, Conjecture C.2 can be adjusted for all parameters in ∂Mol. Our result on 

the control of the valuable flower (see Theorem 8.2) can be thought of as a step 

towards this general conjecture. 

Conjecture C.2 and its generalizations describe in a convenient way how an 

attracting fixed point bifurcates into repelling. An important consequence is control 

of the post-critical set: if a perturbation of fc is within Mol, then the new postcritical 

set is within a small neighborhood of Hc. A statement of this sort (for parabolic 

parameters approximating a Siegel polynomial) was proven by Buff and Ch´eritat; see 

[BC, Corollary 4]. This was a key ingredient in constructing a Julia set with positive 

measure. 
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