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Abstract: In this paper we continue to explore infinitely renormalizable Hénon maps
with small Jacobian. It was shown in a previous paper by the authors, joint with A. de
Carvalho, (J Stat Phys 121(5/6):611–669, 2005) that contrary to the one-dimensional
intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the
one-dimensional Cantor attractor is at most 1/2-Hölder. Another formulation of this
phenomenon is that the scaling structure of the Hénon Cantor attractor differs from its
one-dimensional counterpart. However, in this paper we prove that the unique invariant
measure on the attractor assigns a weight to these bad spots which tends to zero on
microscopic scales. This phenomenon is called Probabilistic Universality. It implies,
in particular, that the Hausdorff dimension of the invariant measure on the attractor is
universal. In this way, universality and rigidity phenomena of one-dimensional dynamics
assume a probabilistic nature in the two-dimensional world.
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1. Introduction

Renormalization ideas have played a central role in Dynamics since the discovery of
the Universality and Rigidity phenomena by Feigenbaum [11], and independently by
Coullet and Tresser [6], in the mid 1970s. Roughly speaking, it means that different
systems in the same “universality class” have the same small scale geometry. In the one-
dimensional setting this phenomenon has been viewed from many angles (statistical
physcis, geometric function theory, Teichmüller theory, hyperbolic geometry, infinite-
dimensional complex geometry) and by now has been fully and rigorously justified, see
[8,10,14,15,19,20,22] and references therein.

In [6] Coullet and Tresser also conjectured that these phenomena would also be valid
in higher dimensional systems, even in infinite dimensional situations. Indeed, computer
and physical experiments that followed suggested that universality and rigidity hold in
much more general context. The simplest test case for it is the dissipative Hénon family
which can be viewed as a small perturbation of the one-dimensional quadratic family.
However, it was shown in [7] that Universality and Rigidity break down already in
this case. This puts in question the relevance of one-dimensional models for higher
dimensional problems.

In this paper we provide a resolution of this unsatisfactory situation: namely, we
show that for dissispative Hénon maps, small scale universality is actually valid in
probabilistic sense, almost everywhere with respect to the invariant measure on the
attractor. Probabilistic universality and probabilistic rigidity phenomena may be valid
for higher dimensional (including infinite dimensional) systems which are contracting
in all but one direction.

Let us now formulate our results more precisely. We consider a class of dissipative1

Hénon-like maps on the unit box B0 = [0, 1] × [0, 1] of form
F(x, y) = ( f (x) − ε(x, y), x), (1.1)

where f (x) is a unimodal map with non-degenerate critical point and ε is small. It maps
B0 on a slightly thickened parabola x = f (y). Such a map is called renormalizable if
there exists a smaller quadrilateral box B1 ⊂ B0 around the tip of of the parabolawhich is
mapped into itself under F2. The renormalization for F is the map RF = �−1 ◦F2 ◦�,
where� : B0 → B1 is an explicit non-linear change of variable (“rescaling”) that brings
F2 to the normal form of type (1.1).

If RF is in turn renormalizable then F is called twice renormalizable, etc. In this paper
wewill be concernedwith infinitely renormalizableHénon-likemaps. Such amap admits
a nest of 2n-periodic quadrilateral boxes B0 ⊃ B1 ⊃ B2 ⊃ . . . shrinking to the tip τ of
F . The nth-renormalization level is the orbitBn = {Bn

i = Fi (Bn), i = 0, 1, . . . 2n −1}.
The quadrilateral boxes Bn

i are, for given n, pairwise disjoint topological disks. We
obtain a hierarchy of such levels shrinking to the Cantor attractor

OF =
∞⋂

n=0

2n−1⋃

i=0

Bn
i

on which F acts as the dyadic adding machine. In particular, the dynamics on OF is
uniquely ergodic, so we obtain a unique invariant measure μ supported on the attractor

1 A map is called dissipative if the jacobian is nonnegative and smaller than 1 in each point of the domain.
The map is strongly diisipative if the Jacobian is small enough such that the results from [7] can be applied.
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OF . We define the average Jacobian of F as follows:

bF = exp
∫

OF

ln Jac Fdμ.

Consider a strongly dissipative infinitely renormalizable Hénon-like map. The attrac-
tor of such amap is topologically conjugate to the attractor of the one-dimensional period
doubling renormalization fixed point f∗. The geometry of a piece B ∈ Bn can be very
different from the geometry of the corresponding piece I of the one-dimensional renor-
malization fixed point f∗. The pieces of the one-dimensional system are small intervals.
Take a piece B ∈ Bn and the two pieces B1, B2 ∈ Bn+1 with B1, B2 ⊂ B. Let I, I1, I2
be the corresponding pieces of f∗. The piece B of F has ε−precision if after applying
one affine map A : R

2 → R
2 we have that the (Hausdorff) distance between I and

A(B), I1 and A(B1), I2 and A(B2) is at most ε · diam(I ). The triples B1, B2 ⊂ B and
I1, I2 ⊂ I are geometrically almost the same. Indeed, most pieces of a given renormal-
ization level are exponentially close to their one-dimensional counterpart. This is the
content of Theorem 1.1 and Theorem 1.2.

Collect the pieces of the nth-level with ε−precision in

Sn(ε) = {B ∈ Bn|B has ε − precision}.
Definition 1.1. The geometry of the Cantor attractorOF of a dissipative infinitely renor-
malizable Hénon-like map is probabilistically universal if there exists θ < 1 such that

μ(Sn(θ
n)) ≥ 1 − θn .

Theorem 1.1 (Probabilistic universality). The geometry of the Cantor attractor of a
strongly dissipative infinitely renormalizable Hénon-like map is probabilistically uni-
versal.

Definition 1.2. TheCantor attractorOF of a dissipative infinitely renormalizableHénon-
like map is probabilistically rigid if the conjugation h : OF → O f∗ to the attractorO f∗
of the one-dimensional renormalization fixed point f∗ has the following property. There
exist β > 0, and a sequence X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ OF such that h : XN → h(XN ) ⊂
O f∗ is (1 + β)-differentiable, and μ(XN ) → 1.

Theorem 1.2 (Probabilistic Rigidity). The Cantor attractor of a dissipative infinitely
renormalizable Hénon-like map is probabilistically rigid.

The Cantor attractor OF is not part of a smooth curve, see [7]. However, large parts
of it, the sets

XN =
⋂

n≥N

Sn(θ
n)

where θ < 1 is close enough to 1, satisfy

Theorem 1.3. Each set XN ⊂ OF is part of a smooth C1+β−curve.

Let μ∗ be the invariant measure on O f∗ , the attractor of the one-dimensional renor-
malization fixed point. A consequence of probabilistic rigidity is

Theorem 1.4. The Hausdorff dimension is universal:

HDμ(OF ) = HDμ∗(O f∗).
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The theory of universality and rigidity became a probabilistic geometric theory for
Hénon dynamics.

We prove the above results by introducing the so-called pushing-upmachinery. This
method locates the pieces in the nth-renormalization level that have exponential preci-
sion. The difficulty is that the orbit between two such good pieces may pass through
poor pieces, so one cannot recover all good pieces by simple iteration of the original
map. Instead, the pushing-up machinery relates pieces in the same renormalization level
by means of the diffeomorphic rescalings built into the notion of renormalization. The
distortion of these rescalings can be controlled if the two pieces under consideration,
viewed from an appropriate scale, do not lie “too deep” (in the sense precisely defined
below). This machinery might have applications beyond the present situation.

For the reader’s convenience, the pushing-up machinery will be informally outlined
in Sect. 2. Also, more special notations are collected in the Nomenclature. For a sur-
vey on Hénon renormalization see [17]. For early experiments and results on Hénon
renormalization see [3,5,12].

2. Outline

This section will give an outline of the proof of probabilitic universality, Theorem 1.1
(and Theorem 2.3 in this outline). From a distant viewpoint the main ideas involved are
as follows.

The renormalization process analysis the geometry at one specific point of the Cantor
set, i.e. the tip. It shows universal small scale geometry at this point. Unfortunately one
can not reconstruct universal geometry in other areas of Cantor set by iteration, applying
the map to small universal neighborhoods of the tip. Some of these iterates will have
strong distortion. There will be areas in the Cantor with strongly distorted geometry.
This is the non-rigidity explained in [7].

The (k + 1)th-renormalization Fk+1 = Rk+1F is obtained by a nonlinear rescaling
ψk

v from the kth-renormalization Fk = Rk F . The domain of Fk contains two dynamical
pieces defining Fk+1. One is the image of the rescaling ψk

v and the other is the image of
ψk
c = Fk ◦ ψk

v , see Fig. 14. The Cantor set is not reconstructed by iteration but it seen
as the invariant set of the iterated function system generated by the rescaling maps ψk

c
and ψk

v , k = 1, 2, · · · , as illustrated in Fig. 14. In particular, given n ≥ 1 the iterated
function system is used to generated the n-dynamical partion Bn consisting of pieces

Bn
ω = Im(ψ1

ω1
◦ ψ2

ω2
◦ · · · ◦ ψn

ωn
),

with ω = (ω1, ω2, · · · , ωn) ∈ {c, v}n .
The renormalizations Fk have a universal asymptotic form, see (2.5). Also the rescal-

ing maps ψk
v have a universal from. And hence ψk

c = Fk ◦ ψk
v is well controlled. Even

long compositions of the form

�l
k = ψk

v ◦ ψk+1
v ◦ · · · ◦ ψ l

v (2.1)

are well controlled, see (2.6). However, compositions of maps in the iterated function
system of the form

ψk
c ◦ ψk+1

v ◦ · · · ◦ ψ l
v
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with

l − k > α2k − A

might distort strongly. This is a “deep jump”. The part of the Cantor set with universal
geometric properties correspondswith the part obtained by applying the iterated function
systems avoiding these “deep jumps” with l − k > α2k − A. This mechanism is the
pushing-up regime.

Unfortunately, applying the iterated function system avoiding all deep jumps would
not reach a full measure subset of the Cantor set. The remedy is to apply the pushing-up
regime only on the scales

ln n ≤ k ≤ (1 − q0) · n,

with q0 > 0 small.
In the regime (1 − q0) · n < k ≤ n one applies all maps from the iterated func-

tion system. This corresponds to reconstruction of the Cantor set by iteration of the
renormalization F(1−q0)n . This map is exponentially close to the one-dimensional renor-
malization fixed point. The number of iterated one needs is very small. Namely, 2q0n .
This few iterated can not lead to large distortion. This is the one-dimensional regime.

In the regime k ≤ ln n one applies all maps from the iterated function system. This
corresponds to reconstruction of the Cantor set by iteration of the original map F . In
this regime the number of iterates is proportional to n. The pieces of the Cantor set are
exponentially small and these n iterates can not build up distortion too much. This is the
brute-force regime.

By organizing the iterated function system in these three regimes one reached a subset
of full measuer in the Cantor set with universal small scale geometry, i.e. probabilistic
universality.

The main technical aspects are the control of distortion during the pushing-up regime
on one hand. And on the other hand the probabilistic aspect of avoiding deep jumps.
There is is also classical one-dimensional dynamics to control distortion in the one-
dimensional regime. The brute-force regime does not require delicate analysis. It is
brute force after all.

2.1. Infinitely renormalizable Hénon-like maps. We will start with outlining the set-up
developed in [7,16]—see Sect. 3 for details.

We consider a classH = H(ε̄) of Hénon-like maps of the form

F : (x, y) �→ ( f (x) − ε(x, y), x),

acting on the unit box B0 = [0, 1] × [0, 1], where f (x) is a unimodal map subject of
certain regularity assumptions, and ‖ε‖ < ε̄ is small (for an appropriate norm). If the
unimodal map f is renormalizable then the renormalization F1 = RF ∈ H is defined
as (�1

0 )
−1 ◦ (F2|B1) ◦ �1

0 , where B1 is a certain piece around the tip, a point which
plays the role of the “critical value”, and �1

0 : Dom(F1) → B1 is an explicit non-linear
change of variables.

Inductively, we can define n times renormalizable maps for any n ∈ N, and conse-
quently, infinitely renormalizable Hénon-like maps. For such a map the n-fold renor-
malization Fn = RnF ∈ H is obtained as (�n

0 )−1 ◦ (F2n |Bn ) ◦ �n
0 , where Bn is an
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appropriate renormalization piece, �n
0 : Dom(Fn) → Bn is a non-linear change of

variables.
These pieces Bn form a nest around the tip τ of F :

B0 ⊃ B1 ⊃ · · · ⊃ Bn ⊃ · · · 
 τ

Taking the iterates Fk Bn , k = 0, 1, . . . , 2n − 1, we obtain a family Bn of 2n pieces
{Bn

ω}, called the nth renormalization level, that can be naturally labelled by strings
ω ∈ {c, v}n in two symbols, c and v, with Bn

vn ≡ Bn . See Sect. 3 for details. Then

OF =
⋂

n

⋃

ω

Bn
ω

is an attracting Cantor set on which F acts as the dyadic adding machine. This Cantor
set carries a unique invariant measure μ. This allows us to introduce the most important
geometric parameter attached to F , its average Jacobian

bF = exp
∫

OF

ln Jac F dμ.

Usually, we will denote the average Jacobian with b.
The size of the pieces decays exponentially:

diam Bn � σ n, diam Bn
ω ≤ Cσ n, (2.2)

where σ ∈ (0, 1) is the universal scaling factor (coming from one-dimensional dynam-
ics) while C = C(ε̄) depends on F .

A surprising phenomenon discovered in [7] is that unlike its one-dimensional coun-
terpart, the Cantor set OF does not have universal geometry: it depends in an essential
way on the average Jacobian b. However, the difference appears only in the scales much
smaller than b: if the pieces Bn of level n have diameter much larger than b then the
geometry of the pieces Bn

ω is controlled by one-dimensional dynamics: the pieces are
aligned along the parabola x = f (y) with thickness of order b. According to (2.2), this
happens when

ασ n ≥ b (2.3)

with sufficienty small universal2 α > 0, i.e., when

n ≤ c| ln b| − A, where c = 1

| ln σ | , A = ln α

ln σ
. (2.4)

Wewill call these levels safe. Compare (4.3). It turns out that the pieces in these levels are
safe from being deformed by the dynamics, i.e. they are essentially very thin rectangles.
However, some pieces in deeper levels have a shape far from a rectangle, they can be
U -shaped or even worse.

2 The constant α > 0 can be chosen for a given compact family of Hénon-like maps. Renormalizations of
strongly dissipative Hénon-like maps in the boundary of chaos eventually will be in such a compact set. In
this sense, α is universal.
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E0

E1

E2F

F 2 F 4

B1

B2

Fig. 1. An infinitely renormalizable Hénon-like map

2.2. Random walk model. The pieces of the nth-renormalization level Bn are obtained
by the iteration of the renormalization piece Bn that contains the tip. However, in this
way it is difficult to control their geometry. Instead we apply a geometric analysis of the
renormalization levels based upon different rescalings involved in the renormalization
scheme. Combinatorially we describe it in terms of a natural random walk model that
gives a concise way of understanding probabilistic aspects of universality. “Very long
jumps” in this model correspond to unsafe levels introduced above (2.4) that cause
difficulties in the geometric analysis: they have to be avoided. We quantify this situation
by a notion of s−controlled orbits in this random walk context (in this section) and by
an equivalent notion of not too deep pieces in the geometric context (see Sect. 4 and in
particular (4.3); see also Sect. 2.4 of this outline). This allows us to control geometry of
the pieces almost everywhere leading to the Probabilistic Universality.

The depth of a piece and its backward closest approaches to the tip contain the
essential combinatorial information needed for the analysis.

To any point x ∈ O ≡ OF we can assign its depth

depth(x) ≡ k(x) = sup{k : x ∈ Bk} ∈ N ∪ {∞}.
Compare to Sect. 4. Here the tip is the only point of infinite depth. If depth(x) = k then
x ∈ Ek ≡ F2k (Bk+1) (see Figs. 1, 2).

We say that a point x ∈ O is combinatorially closer to τ than y ∈ O if k(x) > k(y).
We will now encode any point x ∈ O by its closest approaches to τ in backward
time. Namely, let us consider the backward orbit {F−t x}∞t=0, and mark the moments tm
(m = 0, 1, . . . ) of closest approaches, i.e., at the moment tm the point xm := F−tm x is
combinatorially closer to τ than all previous points F−t x , t = 0, 1, . . . , tm − 1. Since
the dynamics of F on O is the dyadic adding machine, this is an infinite sequence of
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moments for any point x �∈ orb(τ ), i.e. any point not in the forward orbit of the tip. If
x = Ft (τ ), we terminate the code at the moment t . The encoding of a point x ∈ O is
given by

km(x) = k(xm), m = 0, 1, . . . ,

be the sequence of the corresponding depths. Obviously, both sequences, t̄ = {tm} and
k̄ = {km} are strictly increasing.

For any depth k, let us consider the first return map (see Figs. 1, 2).

Gk : Bk+1 → Bk, Gk = F2k ,

and the first landing map in backward time

Lk :
2k−1⋃

m=0

Fm(Bk) → Bk, Lk(x) = F−mx, for x ∈ Fm(Bk).

Then we have by definition:

xm = Gkm (x)(xm+1), xm = Lkm (x)(x)

Let � stand for the space of strictly increasing sequences k̄ = {km} of symbols
km ∈ N ∪ {∞} that terminate at moment m if and only if km = ∞. Endow � with a
weak topology and the measure ν corresponding to the following random walk on N:
the transition probability of jumping from k ∈ N to l ∈ N is equal to νkl = 1/2l−k if
l > k, and it vanishes otherwise. The initial distribution on N is given by ν{k} = 1/2k+1.
In particular, the measure given to a cylinder/path is

ν([k0, k1, k2, · · · kn]) = ν(k0)
n−1∏

i=0

νki ki+1 .

We let jm := km+1 − km be the jumps in our random walk.

Lemma 2.1. The coding x �→ k̄(x) establishes a homeomorphism between O and �

and a measure-theoretic isomorphism between (O, μ) and (�, ν).

Proof. The first entry k0 = k0(x) of a sequence k̄ determines the piece Bk0+1
i0

of level

k0 + 1 containing x , the second entry k1 determines the piece Bk1+1
i1

of level k1 + 1,

etc, so the sequence k̄ determines x . It is also clear that all monotonic sequences k̄ are
realizable, so the coding is one-to-one. Moreover, the conditional probability of passing
from km to km+1 is equal to

ν(Bkm+1
im+1

)/ν(Bkm
im

) = 2−(km+1−km ),

so ν induces the desired random walk distribution on �. ��
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We can also consider the random walk that stops on depth n. This means that we
consider the orbit F−t x only until the moment it lands in Bn . The corresponding (finite)
coding sequence {k̃m}Tm=0 is defined as follows: k̃m = km whenever km < n (m =
0, 1 . . . , T − 1), while k̃T = n. (In what follows we will skip “tilde” in the notation as
long as it would not lead to confusion.)

Fix an increasing control function s : N → Z+. We say that a sequence k̄ = {km}∞m=0
is s-controlled after a moment N if jm ≤ s(km) for all km ≥ N . We say that a point
x ∈ O is s-controlled after moment N if its code k̄(x) is such. The set of these points is
denoted by KN .

The points in KN correspond to path of the random walk which do not have too long
jumps. These are the paths along which a geometric analysis can be performed. Indeed,
these controlled paths constitute most of the paths. The following lemma is at the heart
of Probabilistic Universality.

Lemma 2.2. Under the summability assumption
∞∑

k=0

1

2s(k)
< ∞

we have

ν(KN ) ≥ 1 − O(

∞∑

k=N

1

2s(k)
).

Proof. It follows immediately from the definition of the random walk, using the mono-
tonicity of the control function, that

ν(KN ) ≥
∞∏

k=N

(1 − 1

2s(k)
),

which implies the Lemma. ��

2.3. Geometric estimates. Our analysis depends essentially on the geometric control of
the renormalizations and changes of variables established in [7].

The renormalizations have the following nearly universal shape:

RnF = ( fn(x) − b2
n
a(x) y (1 + O(ρn)), x ), (2.5)

where the fn converge exponentially fast to the universal unimodal map f∗, a(x) is a
universal function, and ρ ∈ (0, 1) is universal.

The changes of variables �l
k : Dom(Fl) → Dom(Fk) have the following form:

�l
k = Dl

k ◦ (id +Slk), (2.6)

where

Dl
k =

(
1 tk
0 1

) (
(σ 2)l−k 0
0 (−σ)l−k

)
(1 + O(ρk)). (2.7)

is a linear map with tk � b2
k

F , while id +Slk : (x, y) �→ (x + Slk(x, y), y) is a horizontal
non-linear map with

|∂x Slk | = O(1), |∂y Slk | = O(ε̄2
k
).
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2.4. Regular pieces. The main goal is to show that many pieces are essentailly very
thin rectangular strips. For examples the pieces Bn surrounding the tip are as such, see
Fig. 1. The first step towards understanding the shape of pieces, Sect. 4, is to show that
some are contained in well-controlled rectangles. In this section we outline the results
of Sect. 4.

For any x ∈ O, we let Bn(x) be the piece Bn
ω ∈ Bn containing x (in particular,

Bn(τ ) = Bn). Let Bn∗ = Bn
� {Bn} stand for the family of pieces Bn

ω that do not contain
the tip.

Notice that the depth of all points x in any piece B ∈ Bn∗ is the same, so it can be
assigned to the piece itself. In other words,

depth(B) = sup{k : B ⊂ Bk} ∈ {0, 1, . . . n − 1}.
Let Bn[l], l < n, be the family of all pieces of level n whose depth is l. Note that Bn[l]
contains 2n−l−1 boxes.

Wecanview the piece B in the renormalization coordinates onvarious scales.Namely,
to view B from scale k ≤ n means that we consider its preimage B under the (nonlinear)
rescaling �k

0 : Dom(Fk) → Bk . The main scale from which B will be viewed is its
depth k, so from now on B := (�k

0 )
−1(B) will stand for the corresponding piece (see

Fig. 3). This seemingly minor ingredient plays a crucial role in the estimates. The reason
is as follows. A piece B = �k

0 (B) is a strongly distorted image of B. The cause of this is
the form of the linear part of �k

0 which contracts much more strongly horizontally than
vertically, see (2.7). In particular, the geometry of the piece B will degenerate when k
increases. However, the domain B might have a bounded geometry. In particular, one
should not expect a bounded control of the geometry of B. On the other hand one might
see bounded control of the geometry of B, i.e. B seen from the scale k.

A piece B as above is called regular if the horizontal and vertical projections of B are
K -comparable, where K > 0 is a universal constant, to be specified in the main body
of the paper, see Sect. 4. In other words, modB (the ratio of the length of the vertical
and horizontal projections of B) is of order 1.

Indeed, there are pieceswhich are not regular. For example there are pieces B such that
the horizontal projection of B ⊂ Dom(Fk) is much smaller than its vertical projection.
The renormalization Fk contracts strongly the vertical direction and might result in a
strongly distorted piece Fk(B).

A key ingredient to control distortion is the followingmechanism, formally described
in Proposition 4.1. If a regular piece B, i.e. mod(B) � 1, is not too deep then F2k (B) is
also regular, i.e. mod(Fk(B)) � 1. The notion of not too deep is discussed in the next
paragraphs.

We will control depth by the control function

s(k) = a2k − A where a = ln b

ln σ
, A = ln α

ln σ
, (2.8)

with a sufficiently small universal α > 0 to be specified in the main body of the paper.
With this choice, we have:

ασ l−k ≥ b2
k
. (2.9)

The outline of the proof of Proposition 4.1 will show why (2.9) is a sufficient criterium
to control distortion.
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We say that the piece B ∈ Bn[l] is not too deep in scale Bk if

l − k ≤ s(k),

with k < l < n. Compare to (4.3). Pieces which are too deep in scale Bk might be
distorted a lot when one applies Fk to push them up to higher levels. This notion of
control is at the heart of the analysis. In [1], Benedicks and Carleson have the notion
of deep returns. These are excluded to avoid moments of very strong contraction. The
deep pieces in this work are excluded to avoid strong distortion. The relation is that both
situations are discussed to avoid undesirable behavior, i.e. in the case of [1], the authors
were constructing expanding orbits, contraction was the enemy and in the present work
the goal is to find as many pieces which have the right universal geometry. In this case,
distortion is the enemy.

There are a number of constants which have to be chosen appropriately, for example
α and K . In the main body of this paper it will be shown how to choose these constants
carefully such that all Lemmas and Propositions hold. From now on we will assume in
this outline that the constants are chosen appropriately and will not mention this matter
any more.

We will number the Lemmas and Propositions in this outline as the corresponding
statements in the main body. However, the version in the outline should be viewed as an
informal version of the actual statements.

Renormalizations are rescaled versions of iterates F2k restricted to the domains Bk

containing the tip. If a piece is not too deep, i.e. not too close to the tip, then the branch
F2k : Bk+1 → Bk applied to this piece will keep it regular. Namely,

Proposition 4.1. For all sufficiently big levels k, the following is true. If a regular piece
B ∈ Bn∗ , n > k, is not too deep in scale Bk then Gk(B) is regular.

Outline of the proof. A piece B ∈ Bn[k] of depth k can be rescaled to a piece in the
domain of the kth renormalization Fk , namely B = �k

0 (B). Recall, the fact that a piece
is regular refers to a geometric property ofB, i.e. a geometric property of B viewed from
the scale k, see Fig. 3.

Let B ∈ Bn[l], n > l > k. This piece has depth l and hence we should view B from
scale l, i.e. consider the piece B of level n − l for the renormalization Fl ,

B = �l
0(B) = �k

0 ◦ �l
k(B),

see Fig. 4. As the piece B̃ = Gk(B) has depth k, it should be viewed from the scale k.
So, we consider the corresponding piece B̃ of level n − k for the renormalization Fk .,

B̃ = �k
0 (B̃),

see Fig. 4. Then, because �k
0 is a conjugacy between F2k and Fk ,

B̃ = Fk ◦ �l
k(B).

Using geometric estimates for factorization (2.6) we show that

mod�l
k(B) � σ l−k modB,

provided B is regular. So �l
k(B) is highly stretched in the vertical direction. The nearly

universal map Fk , see (2.5), will contract the vertical size by a factor of order b2
k
where
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b2
k

<< σ l−k since the piece is not too deep. This implies that the image under Fk is
essentially the image of the horizontal side. We obtain a piece B̃, which is essentially a
curve, that gets roughly aligned with the parabola, which makes its modulus of order 1.

��

2.5. Universal sticks. Given a piece B ∈ Bn[l] of a map F , let O(B) := OF ∩ B be
the part of the Cantor set OF contained in B. Respectively, O(B) = OFl ∩ B, where B
is the rescaled piece (rescaled by �l

0) corresponding to B, i.e. B = �l
0(B).

The main goal is to show that many pieces are essentially very thin rectangular strips,
not necessarily horizontal or vertical. As if they are skinny sticks. The formal way to
describe the geometry of a piece is illustrated in Fig. 6 and is discussed in the following
paragraph.

The associated rectangle of a piece is the smallest rectangle with horizontal and
vertical sides which contains the piece. A natural quantification to describe the geometry
of a piece is to the measure how far a piece is from the diagonal of its associated
rectangle. We say that a piece B ∈ Bn[l] is a δ-stick if the Cantor setO(B) is contained
in a diagonal strip � of thickness δ, relatively the horizontal size of B. The minimal
thickness is denoted by δB. See Fig. 6.

Let us consider the pieces B1 and B2 of level n + 1 contained in B. The scaling
number of the piece B1 is the ratio of the vertical sizes of the associated rectangles of
B1 and B, see Fig. 7. Similarly, one defines the scaling number of B2.

Let σ ∗
B1

and σ ∗
B2

be the scaling numbers of the corresponding two pieces for the
degenerate renormalization fixed point F∗. Let �σB be the maximal difference between
the two corresponding scaling numbers, see Sect. 6 for the precise definitions. A piece
B ∈ Bn is called ε-universal if δB ≤ ε and �σB ≤ ε. Given a piece B let B∗ be
the corresponding piece of the renormalization fixed point F∗. Observe, if a piece B
is ε−universal one can rescale B and B∗ conformally to unit scale such that both are
precisely containe in the rectangle [0, 1] × [0, δ]. Morever, the corresponding rescaled
pieces of B1,2 are ε−close in Hausdorff distance to the corresponding rescaled pieces
of B∗

1,2.
Choose q0 > 0 small. The pieces B ∈ Bn[k], with (1 − q0) · n ≤ k ≤ n, at the

scale n − k are said to be very deep. Consider a very deep piece B ∈ Bn[k] and view it
from scale k, say B = �k

0 (B) with B ∈ Bn−k(Fk). Then B is in the orbit of Bn−k
v (Fk)

under Fk , i.e. B = Ft
k (B

n−k
v (Fk)) with 0 < t < 2n−k . The exponential convergence of

renormalization implies that Fk is at a distance O(ρk) to the degenerate renormalization
fixed point F∗, see (2.5). When q0 > 0 is small enough, these few iterates, 2n−k = 2q0·n ,
with a map O(ρ(1−q0)·n) close to the renormalization fixed can be well approximated by
iterates of the renormalization fixed point. At this scale, one-dimensional dynamics is a
good geometric model. We call this the one-dimensional regime. In the one-dimensional
regime one has the following exponential small unversality.

Proposition 7.2. There exist θ < 1, 0 < q0 < q1 such that every piece in Bn[k], with
(1 − q1) · n ≤ k ≤ (1 − q0) · n, is O(ρn)-universal.

We are going to refine Proposition 4.1, in the sense that we are estimating how ε-
universality is distorted (or even improved!) when we apply maps Gk to regular pieces
which are not too deep in scale Bk . Figure 4 illustrates the following proposition.
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Proposition 5.1 and 6.1 If B ∈ Bn[l] is regular and not too deep in Bk then

δB̃ ≤ 1

2
· δB + O(σ n−l),

and

�σB̃ = �σB + O(δB + σ n−l),

where B̃ = Gk(B) ∈ Bn[k] and B̃ = Fk(�l
k(B)).

Outline of the proof.From (2.6) and (2.7)we have the factorization B̃ = Fk(�l
k(B)) =

Fk ◦Dl
k ◦(id +Slk)(B).We consecutively estimate, using geometric estimates of Sect. 2.3,

the thickness of the pieces Bdiff = (id +Slk)(B), Baff = Dl
k(Bdiff) and B̃ = Fk(Baff), see

Fig. 5. The thickness of Ddiff is comparable with the thickness of B, up to an error of
order σ n−l , since the horizontal map id +Slk has bounded derivatives and diamB ≤ σ n−l .

Let us now represent the affine map Dl
k as a composition of the diagonal part � and

the shear part T , see (2.7). The diagonal map � preserves the horizontal thickness, so
the thickness is only affected by the shear part T , which has order tk � b2

k
. Using this

estimate and that B is not too deep in Bk , we show that δ(Baff) = O(δBdiff).
Finally, we show that the map Fk , being strongly vertically contracting, improves

thickness again using that B is not too deep in Bk .
The diffeomorphisms�l

k map horizontal lines to horizontal lines. From this property
one obtains that themaps�l

k do not distort the scaling numbers at all as a consequence of
the definition of scaling numbers. The piece B̃ is the image under Fk of Baff = �l

k(B). A
geometric observation implies that�σB̃ = �σB+O(δ(Baff)) = �σB+O(δ(B)+σ n−l).

��
The pieces B ∈ Bn can be reconstructed by applying iterates of F to Bn = Bn

vn , i.e.
each piece is of the form Fi (Bn) with 0 ≤ i < 2n . However, it is not possible to control
the distortion of the maps Fi |Bn . In fact the distortion of those iterates is not unformly
bounded. The nonrigidty of the Cantor set OF is a consequence of this, see [7].

Recall that we describe the geometry of a piece B ∈ Bn[k] in terms of the geometry
of the piece viewed from the scale k, denoted by B. These pieces are in the domain
of Fk . In particular, each piece B can be reconstructed by applying Fk to Bn−k

v (Fk),
i.e. B = Ft

k (B
n−k
v (Fk)) with 0 < t < 2n−k . When the piece is very deep, in the one-

dimensional regime, we can control the distortion of the iterates Ft
k |Bn−k

v (Fk)), see
Proposition 7.2.

For pieces which are not very deep we reconstruct the pieces by applying rescaling
maps �k′

k and the renormalization Fk to pieces obtained in the one-dimensional regime.
In particular, for every B ∈ Bn[k] there is a sequence k < k1 < k2 < · · · < kt =
(1 − q1) · n such that

B = Fk ◦ �
k1
k ◦ Fk1 ◦ �

k2
k1

◦ · · · ◦ Fkt−1 ◦ �
kt
kt−1

(B ′),

with B ′ ∈ Bq1·n(F(1−q1)·n) from the one-dimensional regime. Consider the piece

Bki = Fki ◦ �
ki+1
ki

◦ · · · ◦ Fkt−1 ◦ �
kt
kt−1

(B ′).

This piece is the piece�
ki
0 (Bki ) viewed from scale ki . In particular, we are reconstructing

the piece B by pushing-up the piece B ′, obtained in the one-dimensional regime, along
a sequenec of pieces Bki which are pushed-up in scale from ki to ki−1. Compare Fig. 4.
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Observe, the maps Fki and �
ki+1
ki

are very well controlled, see (2.5) and (2.6). Nev-
ertheless, a map Fki might distort a piece Bki+1 to produce

Bki = Fki (�
ki+1
ki

(Bki+1)).

However, if the piece �
ki+1
ki

(Bki+1) is not too deep, according to Proposition 5.1 and 6.1,

Fki will distrort a regular piece of the form �
ki+1
ki

(Bki+1) by a small amount. According
to Proposition 5.1 and 6.1 the newly created pieces will have an improved thickness and
their scaling numbers are essentially not distorted.

One can control the geometry of a piece if it is obtained by pushing up avoiding pieces
which are too deep. The starting pieces are from the one-dimensional regime and have
good precision. If one avoids pieces �

ki+1
ki

(Bki+1) which are too deep one can preserve
the good precision. This process is called the pushing-up regime.

The pieces created by the combined one-dimensional and pushing-up regimes are
O(ρn)-universal. This can be seen as follows. Proposition 7.2, states that the pieces from
the one-dimensional regime are exponentially universal. These pieces are the starting
pieces of the pushing-up regime. Propositions 5.1 and 6.1, state that the error in scaling
ratios caused by pushing-up is of order of the sum of the ticknesses observed during the
pushing-up process. Moreover, the thicknesses are essentially contracted each pushing-
up step.

Unfortunately, the pieces generated by the combination of the one-dimensional and
pushing-up regimes, do not have a total measure which tends to 1. In particular, Propo-
sition 8.2 states that asymptotically, these pieces will be missing a fraction of the order
O(2k(bγ )2

k
) of Bk , where γ > 0. This is an immediate consequence of the fact that

during the pushing-up regime we only pushed-up pieces which are not too deep.
The solution to this problem is to stop the pushing-up regime at the level κ(n) � ln n.

Then Bκ(n) will be filled except for an exponentially small fractionwith O(ρn)-universal
pieces. After level κ(n) we start the brute-force regime, push-up all pieces without
considering whether they are too deep or not. In other words, just apply the original
map F for 2κ(n) steps. But under these iterates the O(ρn)-universal sticks get spoiled at
most by factor O(Cκ(n)) = O(nc)with some c > 0. Hence, they are O(ncρn)-universal
sticks, and we still see O(θn)-universality, for some θ < 1.

Denote the pieces in Bn generated by combining these three regimes by Pn . These
pieces are θn-universal. The Sects. 6 and 7 are devoted to the precise proof.

2.6. Probabilistic universality. We say that the geometry of O is probabilistically uni-
versal if there exists a θ ∈ (0, 1) such that the total μ-measure of pieces B ∈ Bn which
are θn-universal sticks is at least 1 − O(θn).

Theorem 2.3. The geometry of O is probabilistically universal.

Proof. Let n ≥ 1. The pieces in Pn are θn-universal. Left is to estimate μ(Pn).
The one-dimensional regime deals with the pieces ofBn in Bk with (1−q1) ·n ≤ k ≤

(1−q0) ·n. They occupy a fraction 1−O( 1
2(q1−q0)·n ) of theμ-measure of B(1−q1)·n . Push

them up until B0 without restriction whether they are too deep or not. They will occupy
Bn except for an exponentially small fraction. Let Rn be the corresponding set of paths
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of the random walk. These are the paths which hit the interval [(1− q1) · n, (1− q0) · n]
at least once but are not necessarily s-controlled. So

ν(Rn) = 1 − O(
1

2(q1−q0)·n ).

Recall, the set Kκ(n) consists of the paths which are s-controlled after depth κ(n) �
ln n. Lemma 2.2 gives

ν(Kκ(n)) = 1 − O(

∞∑

k=κ(n)

1

2s(k)
) = 1 − O

(
1

2a2κ(n)

)
= 1 − O(ρn)

for some ρ ∈ (0, 1).
Observe, the set of paths corresponding to Pn is Rn ∩ Kκ(n). Hence,

μ(Pn) = ν(Rn ∩ Kκ(n)) = 1 − O(θn),

for some θ ∈ (0, 1). ��

3. Preliminaries

A complete discussion of the following definitions and statements can be found in part
I and part II, see [7,16], of this series on renormalization of Hénon-like maps.

Let �h,�v ⊂ C be neighborhoods of [−1, 1] ⊂ R and � = �h × �v . The set
H�(ε) consists of maps F : [−1, 1]2 → [−1, 1]2 of the following form.

F(x, y) = ( f (x) − ε(x, y), x),

where f : [−1, 1] → [−1, 1] is a unimodal map which admits a holomorphic extension
to �h and ε : [−1, 1]2 → R admits a holomorphic extension to � and finally, |ε| ≤ ε.
The critical point c of f is non degenerate, D2 f (c) < 0. A map in H�(ε) is called a
Hénon-like map. Observe that Hénon-like maps map vertical lines to horizontal lines.

A unimodal map f : [−1, 1] → [−1, 1] with critical point c ∈ [−1, 1]
is renormalizable if f 2 : [ f 2(c), f 4(c)] → [ f 2(c), f 4(c)] is unimodal and
[ f 2(c), f 4(c)]∩ f ([ f 2(c), f 4(c)]) = ∅. The renormalization of f is the affine rescaling
of f 2|[ f 2(c), f 4(c)], denoted by R f . The domain of R f is again [−1, 1]. The renor-
malization operator R has a unique fixed point f∗ : [−1, 1] → [−1, 1]. The introduction
of [8] presents the history of renormalization of unimodal maps and describes the main
results.

The scaling factor of this fixed point f∗ is

σ = |[ f 2∗ (c), f 4∗ (c)]|
|[−1, 1]| .

A Hénon-like map is renormalizable if there exists a domain D ⊂ [−1, 1]2 such
that F2 : D → D. The construction of the domain D is inspired by renormalization
of unimodal maps. In particular, it should be a topological construction. However, for
small ε > 0 the actual domain A ⊂ [−1, 1]2, used to renormalize as was done in [7],
has an analytical definition. The precise definition can be found in Sect. 3.5 of part I.
If the renormalizable Hénon-like maps is given by F(x, y) = ( f (x) − ε(x, y)) then
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the domain A ⊂ [−1, 1]2, an essentially vertical strip, is bounded by two curves of the
form

f (x) − ε(x, y) = Const.

These curves are graphs over the y-axis with a slope of the order ε > 0. The domain A
satisfies similar combinatorial properties as the domain of renormalization of a unimodal
map:

F(A) ∩ A = ∅,

and

F2(A) ⊂ A.

Unfortunately, the restriction F2|A is not a Hénon-like map as it does not map vertical
lines into horizontal lines. This is the reason why the coordinated change needed to
define the renormalization of F is not an affine map, but it rather has the following form.
Let

H(x, y) = ( f (x) − ε(x, y), y)

and

G = H ◦ F2 ◦ H−1.

The map H preserves horizontal lines and it is designed in such a way that the map
G maps vertical lines into horizontal lines. Moreover, G is well defined on a rectangle
U ×[−1, 1] of full height. HereU ⊂ [−1, 1] is an interval of length 2/|s| with s < −1.
Let us rescale the domain of G by the affine s-dilation �, such that the rescaled domain
is of the form [−1, 1] × V , where V ⊂ R is an interval of length 2|s|. Define the
renormalization of F by

RF = � ◦ G ◦ �−1.

Notice that RF is well defined on the rectangle [−1, 1] × V . The coordinate change
ψ = H−1 ◦ �−1 maps this rectangle onto the topological rectangle A of full height.

The set ofn-times renormalizablemaps is denotedbyHn
�(ε) ⊂ H�(ε). If F ∈ Hn

�(ε)

we use the notation

Fn = RnF.

The set of infinitely renormalizable maps is denoted by

I�(ε) =
⋂

n≥1

Hn
�(ε).

The renormalization operator acting on H1
�(ε), ε > 0 small enough, has a unique

fixed point F∗ ∈ I�(ε). It is the degenerate map

F∗(x, y) = ( f∗(x), x).



Probabilistic Universality in Two-Dimensional Dynamics 1311

This renormalization fixed point is hyperbolic and the stable manifold has codimension
one. Moreover,

Ws(F∗) = I�(ε).

If we want to emphasize that some set, such as A, is associated with a certain map F
we use notation like A(F).

The coordinate change which conjugates F2
k |A(Fk) to Fk+1 is denoted by

ψk+1
v = (�k ◦ Hk)

−1 : Dom(Fk+1) → A(Fk). (3.1)

Here Hk is the non-affine part of the coordinate change used to define Rk+1F and �k is
the dilation by sk < −1. Now, for k < n, let

�n
k = ψk+1

v ◦ ψk+2
v ◦ · · · ◦ ψn

v : Dom(Fn) → An−k(Fk), (3.2)

where

Ak(F) = �k
0 (Dom(Fk)) ∩ B.

The renormalizations Fk = Rk F are obtained by nonlinear rescalings �k
0 of the first

return map F2k to the domain Ak . Notice, that each Ak ⊂ [−1, 1]2 is an almost vertical
strip of exponential small width and of full vertical height and �k

0 conjugates Rk F to

F2k |Ak . Furthermore, one has Ak+1 ⊂ Ak because the strips Ak are the renormalization
domains of consecutive renormalizations.

The change of coordinates conjugating the renormalization RF to F2 is denoted by
ψ1

v := H−1 ◦ �−1. To describe the attractor of an infinitely renormalizable Hénon-like
map we also need the mapψ1

c = F ◦ψ1
v . The subscripts v and c indicate that these maps

are associated to the critical value and the critical point, respectively.
Similarly, let ψ2

v and ψ2
c be the corresponding changes of variable for RF , and let

ψ2
vv = ψ1

v ◦ ψ2
v , ψ2

cv = ψ1
c ◦ ψ2

v , ψ2
vc = ψ1

v ◦ ψ2
c , ψ2

cc = ψ1
c ◦ ψ2

c .

and, proceeding this way, for any n ≥ 0, construct 2n maps

ψn
w = ψ1

w1
◦ · · · ◦ ψn

wn
, w = (w1, . . . , wn) ∈ {v, c}n .

The notation ψn
w(F) will also be used to emphasize the map under consideration, and

we will letW = {v, c} andWn = {v, c}n be the n-fold Cartesian product. The following
Lemma and its proof can be found in [7, Lemma 5.1].

Lemma 3.1. Let F ∈ I�(ε̄). There exist C > 0 such that for w ∈ Wn, ‖Dψn
w‖ ≤ Cσ n,

n ≥ 1.

Let F ∈ I�(ε) and consider the domains

Bn
ω = Imψn

ω.

These form a family Bn = {Bn
ω} of 2n pieces, called the nth renormalization level.

The first return maps to the domains

Bn
vn = Im�n

0 = Imψn
vn
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correspond to the different renormalizations. Notice,

Bn+1
vn+1

⊂ Bn
vn .

An infinitely renormalizable Hénon-like map has an invariant Cantor set:

OF =
⋂

n≥1

2n−1⋃

i=0

Fi (Bn
vn ) =

⋂

n≥1

⋃

ω∈Wn

Bn
ω.

The dynamics on this Cantor set is conjugate the dyadic adding machine. Its unique
invariant measure is denoted by μ. The average Jacobian

bF = exp
∫

ln Jac Fdμ

with respect to μ is an important parameter that influences the geometry of OF , see [7,
Theorem 10.1].

The critical point (and critical value) of a unimodal map plays a crucial role in its
dynamics. The counterpart of the critical value for infinitely renormalizable Hénon-like
maps is the tip

{τF } =
⋂

n≥1

Bn
vn .

3.1. One-dimensional maps. Recall that f∗ : [−1, 1] → [−1, 1] stands for the one-
dimensional renormalization fixed point normalized so that f∗(c∗) = 1 and f 2∗ (c∗) =
−1, where c∗ ∈ [−1, 1] is the critical point of f∗. The renormalization fixed point f∗ has
a nested sequence of renormalization cycles Cn , n ≥ 1. A cycle consists of the following
intervals. The critical point of f∗ is c∗ and the critical value v∗ = f∗(c∗)

I ∗
j (n) = [ f j∗ (v∗), f j+2n∗ (v∗)] ∈ Cn,

with j = 0, 1, 2, · · · , 2n − 1. The collection Cn consists of pairwise disjoint intervals.
Notice, for j = 0, 1, 2, . . . , 2n − 2

f∗(I ∗
j (n)) = I ∗

j+1(n),

and

f∗(I ∗
2n−1(n)) = I ∗

0 (n).

The interval in Cn which contains the critical point is denoted by

Un = I ∗
2n−1(n) 
 c∗.

The nonlinearity of a C2-diffeomorphism φ : I → φ(I ) ⊂ R, I ⊂ R, is

ηφ = D ln Dφ. (3.3)

The Distortion of a diffeomorphism φ : I → J between intervals I, J ⊂ R is defined
as

Dist(φ) = max
x,y

ln
Dφ(y)

Dφ(x)
.
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If η is the nonlinearity of φ then

Dist(φ) ≤ ‖η‖C0 · |I |. (3.4)

The distortion of a map does not change if we rescale domain and range.
Given r > 0. The r -neighborhood T ⊃ I of an interval I ⊂ R is the interval such

that both components of T \ I have length r |I |.
Lemma 3.2. There exist r > 0 and D > 1 such that the r-neighborhoods Tj (n) ⊃ I ∗

j (n)

have the following property. For all n ≥ 1 the following holds. Let ζ j ∈ Tj (n) then

k2−1∏

l=k1

|Df∗(ζ j )|
|I ∗

j+1(n)|
|I ∗

j (n)|
≤ D.

with 0 ≤ k1 < k2 < 2n.

Proof. The a priori bounds on the cycles Cn are described in [9], see also [4]. The a priori
bounds state that for some r > 0 the gap between I ∗

j (n + 1) and I ∗
j+2n+1

(n) satisfies

|I ∗
j (n) \ (I ∗

j (n + 1) ∪ I ∗
j+2n+1(n))| ≥ 5r · |I ∗

j (n)|.
Hence, we have Tj (n + 1) ∩ Tj+2n+1(n + 1) = ∅ and

|Tj (n + 1)| + |Tj+2n+1(n)| ≤ (1 − r) · |Tj (n)|.
Let η j (n) be the nonlinearity, see (3.3), of the rescaling of f∗ : I ∗

j (n) → I ∗
j+1(n). The

rescaling turns domain and range into [−1, 1]. Lemma 3.1 in [19] says that

‖η j (n + 1)‖C0 ≤ |Tj (n + 1)|
|Tj (n)| · ‖η j (n)‖C0 ,

‖η j+2n+1(n + 1)‖C0 ≤ |Tj+2n+1(n + 1)|
|Tj (n)| · ‖η j (n)‖C0 .

Hence,

‖η j (n + 1)‖C0 + ‖η j+2n+1(n + 1)‖C0 ≤ (1 − r) · ‖η j (n)‖C0 ,

for j = 0, 1, 2, · · · , 2n − 2. The a priori bounds also imply a universal bound

‖η2n−1(n + 1)‖C0 ≤ K .

Inductively, this gives a universal bound

2n−2∑

j=0

‖η j (n)‖C0 ≤ K0.

Use (3.4) and observe,

ln
|Df∗(ζ j )|

|I ∗
j+1(n)|

|I ∗
j (n)|

= O(‖η j (n)‖C0).

The Lemma follows. ��
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Proposition 3.3. There exists ρ < 1, independent of n, such that the following holds.
Let 0 < q0 < 1 and I ∈ Cn and I ⊂ Uk \ U(1−q0)·n, with k < (1 − q0) · n. Let tI = 2k

be the first return time to Uk. Then for every j ≤ tI

Dist( f j∗ |I ) = O(ρq0·n).

Proof. Let sI ≥ tI be the first return time of I to U(1−q0)·n . There exists J0 ⊂ Uk with
I ⊂ J0 such that f sI∗ : J0 → U(1−q0)·n diffeomorphically, [18]. Let Jk = f k∗ (J0) and
Ik = f k∗ (I ). The a priori bounds on the geometry of the cycles Cn imply

|Ik |
|Jk | = O(ρq0·n).

This estimate hold because the intervals Jk are in C(1−q0)·n and the intervals Ik are in Cn .
The nonlinearity of the rescaled map f∗ : Jk → Jk+1 which has the unit interval as

its domain and range, is denoted by ηk . As in the proof of Lemma 3.2 we obtain

sI−1∑

k=0

‖ηk‖C0 ≤ K0.

The nonlinearity of the rescaled version of the map f∗ : Ik → Ik+1 which has the unit
interval as its domain and range, is denoted by ηI

k . Lemma 3.1 in [19] says that the
nonlinearity of the restriction f∗ : Ik → Ik+1 of f∗ : Jk → Jk+1 satisfies

‖ηI
k‖C0 ≤ |Ik |

|Jk | · ‖ηk‖C0 .

Hence,

sI−1∑

k=0

‖ηI
k‖C0 = O(ρq0·n).

The distortion of a map f t∗ : Ik → Ik+t is bounded as follows.

Dist( f s∗ |Ik) ≤
k+t−1∑

j=k

Dist( f∗|I j )

≤
sI−1∑

j=0

‖ηI
j‖C0 = O(ρq0·n).

This finishes the proof of the Lemma. ��
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3.2. Geometric properties of the Cantor attractor.

Theorem 3.4 (Universality). For any F ∈ I�(ε̄) with sufficiently small ε̄, we have:

RnF = ( fn(x) − b2
n
a(x) y (1 + O(ρn)), x ),

where fn → f∗ exponentially fast, b is the average Jacobian, ρ ∈ (0, 1), and a(x) is a
universal function. Moreover, a is analytic and positive.

Corollary 3.5. There exists a universal d1 > 0 such that for k ≥ 1 large enough

1

d1
≤ |∂Fk

∂x
(z)| ≤ d1,

for every z ∈ B1
v (Fk).

Let τn be the tip of Fn = RnF and τ ∗ be the tip of F∗.
Lemma 3.6. There exists ρ < 1 such the conjugations

hn : OF∗ → OFn

with hn(τ∗) = τn satisfy

|hn(z) − z| = O(ρn),

for every z ∈ OF∗ .

Proof. Choose z∗ ∈ OF∗ and let z = hn(z∗). There are unique sequencewn+1, . . . , wm, . . . ,
and zn, zn+1, . . . , zm, . . . , and z∗n, z∗n+1, . . . , z∗m, . . . with wk ∈ {c, v}, zk ∈ OFk , and
z∗k ∈ OF∗ such that z = zn , z∗ = z∗n and for k ≥ n

zk = ψk+1
wk+1

(zk+1)

z∗k = (ψk+1
wk+1

)∗(z∗k+1).

This follows from the construction of OF in [7].
Theorem 3.4 implies

|ψk+1
w − (ψk+1

w )∗| = O(ρk)

for someρ < 1. The proof ofLemma5.6 in [7] gives that (ψk+1
w )∗ = ψ∗

w are contractions,
|Dψ∗

w| ≤ σ < 1. Then for k ≥ n

|zk − z∗k | = |ψk+1
wk+1

(zk+1) − (ψk+1
wk+1

)∗(z∗k+1)|
≤ |ψk+1

wk+1
(zk+1) − (ψk+1

wk+1
)∗(zk+1)|+

|(ψk+1
wk+1

)∗(zk+1) − (ψk+1
wk+1

)∗(z∗k+1)|
≤ O(ρk) + σ · |zk+1 − z∗k+1|

Then for every m > n we have

|zn − z∗n| ≤
m∑

k=n+1

O(ρk) · σ k−n−1 + σm−n · |zm − z∗m |.

Observe, |zm − z∗m | ≤ 1 and the Lemma follows by taking m > n sufficiently large. ��
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3.3. Analytical properties of the coordinate changes. This section collects the main
estimates for the coordinate changes used to define the renormalizations. Observe, the
coordinate changes are not affine. However, they have a universal asymptotic shape.
These estimates will play a role throughout the manuscript.

Fix an infinitely renormalizable Hénon-like map F ∈ I�(ε̄) to which we can apply
the results of [7,16], ε̄ > 0 is small enough. For such an F , we have a well defined tip:

τ ≡ τ(F) =
⋂

n≥0

Bn
vn

Consider the tips of the renormalizations, τk = τ(Rk F). To simplify the notations, we
will translate these tips to the origin by letting

�k = ψ0
v (Rk F) (z + τk+1) − τk .

Denote the derivative of the maps �k at 0 by Dk and decompose it into the unipotent
and diagonal factors:

Dk =
(
1 tk
0 1

) (
αk 0
0 βk

)
. (3.5)

Let us factor this derivative out from �k :

�k = Dk ◦ (id +sk),

where sk(z) = (sk(z), 0) = O(|z|2) near 0. Lemma 7.4 in [7] states

Lemma 3.7. There exists ρ < 1 such that for k ∈ Z+ the following estimates hold:

(1) αk = σ 2 · (1 + O(ρk)), βk = −σ · (1 + O(ρk)), tk = O(ε̄2
k
);

(2) |∂x sk | = O(1), |∂ysk | = O(ε̄2
k
);

(3) |∂2xx sk | = O(1), |∂2xysk | = O(ε̄2
k
), |∂2yysk | = O(ε̄2

k
).

Lemma 3.8. The numbers tk quantifying the tilt satisfy

tk � −b2
k

F .

We will use the following notation

Bn−k
vn−k (Fk) = Im�n

k .

Consider the derivatives of the maps �n
k at the origin:

Dn
k = Dk ◦ Dk+1 ◦ · · · Dn−1.

We can reshuffle this composition and obtain:

Dn
k =

(
1 tk
0 1

) (
(σ 2)n−k 0
0 (−σ)n−k

)
(1 + O(ρk)). (3.6)

Factoring the derivatives Dn
k out from �n

k , we obtain:

�n
k = Dn

k ◦ (id +Snk ), (3.7)

where Snk (z) = (Snk (z), 0) = O(|z|2) near 0.
The following Lemma is Lemma 7.6 in [7]
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Lemma 3.9. For k < n, we have:

(1) |∂x Snk | = O(1), |∂y Snk | = O(ε̄2
k
);

(2) |∂2xx Snk | = O(1), |∂2yy Snk | = O(ε̄2
k
), |∂2xy Snk | = O(ε̄2

k
σ n−k).

Lemma 3.10. There exists a universal d0 > 0 such that for k ≥ 1 large enough

1

d0
≤ |∂(id +Snk )

∂x
| ≤ d0

Proof. According to proposition 7.8 in [7], the diffeomorphisms id +Snk stay wihin a
compact family of diffeomorphisms. This gives the upperbound on the derivative. The

partial derivative
∂(id +Snk )

∂x can not be zero in a point because otherwise the derivative
of the diffeomorphism would become singular in point. This gives the positive lower
bound on the partial derivative. ��
Lemma 3.11. There exists ρ < 1 such that

|�n
k − (�n

k )∗|C0 = O(ρk).

Proof. The proof is a small modification of the proof of Lemma 3.6. Use the same
notation: wl = v for all l ≥ k. We have to incorporate the translation which center the
maps around the tips. The estimates in the proof of Lemma 3.6 become

|�n
k (z) − (�n

k )∗(z)| ≤ O(ρk) +
n∑

l=k+1

O(ρl) · σ l−k−1 + σ n−k · |zn − z∗n|,

where zn = z + τn and z∗n = z + τ ∗. From Lemma 3.6 we get that |zn − z∗n| = O(ρn)

and the Lemma follows. ��

3.4. General notions. We will use the following general notions and notations through-
out the text.

Let X ⊂ R
2 and Q = [a, a + h] × [b, b + v] be the smallest rectangle containing X .

Then h ≥ 0 is the horizontal size of X and v ≥ 0 the vertical size.
Q1 � Q2 means that C−1 ≤ Q1/Q2 ≤ C , where C > 0 is an absolute constant or

depending on, say F . Similarly, we will use Q1 � Q2.

4. Regular Pieces

By saying that something depends on the geometry of F , we mean that it depends on
the C2-norm of F . Below, all the constants depend only on the geometry of F unless
otherwise is explicitly said.

The piece Bk ≡ Bk
vk

of level k ∈ N, a neighborhood of the tip, contains two pieces

of level k + 1, Bk+1, which is a smaller neighborhood of the tip, and the lateral one

Ek = Bk+1
vkc .

They are illustrated in Fig. 1, and more schematically, in Fig. 2.
For n ≥ k ≥ 0, let

Bn[k] ≡ Bn(F)[k] = {B ∈ Bn| B ⊂ Ek}.
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E0
E1

E2

F

F 2

F 4
τ

Fig. 2. An infinitely renormalizable Hénon-like map

We call k the depth of any piece B ∈ Bn[k]. A piece Bn
ω belongs to Bn[k] if and only if

ω = vkcωk+2 . . . ωn .

Observe

μ

⎛

⎝
⋃

B∈Bn [k]
B

⎞

⎠ = μ(Ek) = 1

2k+1
,

where μ is the invariant measure on OF . Let

Gk = F2k :
⋃

l>k

El → Ek, k ≥ 0.

Given a piece B ∈ Bn[k], there is a unique sequence
k = k0 < k1 < · · · < kt = n, ki = ki (B)

such that

B = Gk0 ◦ Gk1 ◦ · · · ◦ Gkt−1 ◦ Gkt (B
n).

To see this, consider the backward orbit {F−mB} that brings B to the tip piece Bn . Let
F−mi (B) be the moments of its closest combinatorial approaches to the tip, in the sense
of the nest B0 ⊃ B1 ⊃ . . . . Then ki is the depth of F−mi (B). Thus, F−mi (B) ∈ Eki ,
while F−m(B) ∩ Bki = ∅ for all m < mi , compare with Sect. 2.2. The pieces

B(i) := F−mi (B) = Gki ◦ · · · ◦ Gkt−1 ◦ Gkt (B
n) ∈ Bn[ki ],

with i = 1, 2, · · · , t , are called predecessors of B. Let us view a piece B =
Bn

vkcωk+2···ωn
∈ Bn[k] from scale k, i.e., let us consider the following piece B of depth 0

for the renormalization Fk ≡ Rk F :

B = Bn−k
cωk+2···ωn

(Fk) ∈ Bn−k(Fk)[0], so B = �k
0 (B), (4.1)

see Fig. 3.
Below, a “rectangle” means a quadrilateral with horizontal and vertical sides. Given a

piece B = Bn
ω ∈ Bn , let us consider the smallest rectangle Q = Qn

ω containing B∩OF .
We say that Q = Q(B) is associated with B.
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Ek

B
B

F Fk

Ψk
0

v

h
Fig. 3. A regular piece

Remark 4.1. We are primarily interested in the geometry of the Cantor attractor OF .
For this reason we consider rectangles Q superscribed around OF ∩ B rather than the
ones superscribed around the actual pieces B. However, our results apply to the latter
rectangles as well.

Given B ∈ Bn[k], let us consider the rectangleQ associated to B ∈ Bn−k(Fk). Let h
and v be its horizontal and vertical sizes of Q respectively. We also call them the sizes
of B viewed from scale k.

The pieces of the nth-renormalization level Bn are defined as the iterations of the
renormalization box Bn . In first instance these pieces are studied by using the iterates
F2k . These high iterates correspond to the respective renormalizations. These renormal-
izations are very well understood and have an universal asymptotic shape. Hence, by
considering pieces as they appear in the domain of the renormalizations one can study
very precisely their shape. This is the reason why the pieces are viewed from their proper
scale.

We say that the piece B ∈ Bn[k] is regular if these sizes are comparable, or, in other
words, if modB := h/v is of order 1:

1

C0
≤ modB ≤ C0, (4.2)

with C0 = 3d1, where d1 > 0 is the bound on ∂Fk/∂x from Corollary 3.5 (see Fig. 33).
Notice that in the degenerate case, F(x, y) = ( f (x), x), where f is an infinitely

remormalizable unimodal map, every piece is regular since the slope of f in E0 is
squeezed in between d1 and 1/d1.

Next, we will specify an exponential control function s(k) = sα(k) = a2k − A, see
(2.8). Namely, we let

a = ln b

ln σ
, A = ln α

ln σ
,

where α > 0 is a small parameter. The actual choice of α = α(ε̄) > 0 depending only
on the geometry of F will be made in the course of the paper (see Propositions 4.1, 5.1,
etc.).

3 The rectangles in Figs. 3, 4 and 5 with solid lines are rectangles. The rectangles with dashed lines are
essentially rectangles.
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Ek

B

B
B̃

B̃

F FlFk

Fk

F 2k

Ψk
0 Ψl

k

Fig. 4. Pieces B and B̃ viewed from appropriate scales

Let l(k) = lα(k) = s(k) + k. If k ≤ l ≤ l(k) we say that the pieces B ∈ Bn[l] are
not too deep in Bk . The choice of the control function is made so that

b2
k ≤ α σ l−k for l ≤ lα(k). (4.3)

Proposition 4.1. There exists k∗ ≥ 0 and α∗ > 0 such that for α < α∗ and k ≥ k∗ the
following holds. If B ∈ Bn[l] is regular and not too deep in Bk, k < l ≤ lα(k), then

B̃ = Gk(B) ∈ Bn[k]

is regular as well.

Proof. We should view B from scale l, i.e., consider the piece B ∈ Bn−l(Fl)[0] defined
by (4.1). As the puzzle piece B̃ = F2k (B) has depth k, it should be viewed from this
depth. So, we consider

B̃ ∈ Bn−k(Fk)[0], such that �k
0 (B̃) = B̃. (4.4)

Observe: B̃ = Fk ◦ �l
k(B) (see Fig. 4).

As above, let (h, v) be the sizes of B, and let (h̃, ṽ) be the sizes of B̃. Since B is
regular, bound (4.2) holds for modB = h/v. We want to show that the same bound hold
for mod B̃ = h̃/ṽ.

The map �l
k factors into a non-linear and an affine part as described in Sect. 3:

�l
k = Dl

k ◦ (id +Slk).

Figure 5 shows4 details of this factorization for the map �l
k from Fig. 4. Let hdiff and

vdiff be the sizes of the rectangle Qdiff associated with the piece (id +Slk)(B), see Fig. 5.
Lemmas 3.9(1) and 3.10 imply for k big enough:

hdiff ≤ d0 · h + O(ε2
k
) · v ≤ 2d0 · h,

4 The diagonals in the boxes in Fig. 5 refer to the sticks introduced in Sect. 5.
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BB̃

FlFk

Dl
k

id +Sl
k

vaff

haff

vdiff

hdiff

ṽ

h̃

v

h

Fig. 5. Factorization of the map �l
k into horizontal and affine parts

where the last estimate takes into account (4.2). Similarly,

hdiff ≥ 1

2d0
h. (4.5)

Moreover, since the map id +Slk is horizontal, we have

vdiff = v ≤ C0 · h. (4.6)

Let haff and vaff be the sizes of the rectangle Qaff associated with the piece Baff =
�l

k(B) = Dl
k ◦ (id +Slk)(B) (which is the piece B viewed from scale k). Incorporating

the above estimates into decomposition (3.6) and using Lemma 3.8, we obtain for large
k (with s = l − k):

haff ≤ (hdiff · σ 2s + vdiff · |tk | · σ s) · (1 + O(ρk))

≤ [3d0 · σ s + O(b2
k
)] · σ s · h.

Similarly, we obtain a lower bound for haff:

haff ≥ [ 1

3d0
· σ s − O(b2

k
)] · σ s · h.

If B is not too deep for scale k, then b2
k ≤ α σ s , and we obtain:

haff � σ 2s · h, (4.7)

as long as α is small enough (depending on the geometry of Fk).
Bounds on vaff are obtained similarly (in fact, easier):

vaff = vdiff · σ l−k · (1 + O(ρk)) = v · σ s · (1 + O(ρk)) � v · σ s . (4.8)

Thus,

mod Baff = mod�l
k(B) � σ s modB. (4.9)
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it gets roughly aligned with the parabola-like curve inside Ek , which makes its modulus
of order 1. Furthermore, Theorem 3.4 and Corollary 3.5 imply, for k large enough, the
following bounds on the sizes of B̃:

1

2d1
haff − A0b

2k · vaff ≤ h̃ ≤ 2d1 · haff + A0b
2k · vaff,

ṽ = haff,

where A0 > 0 is an upper bound for a(x) (1 + O(ρk)) which controls the vertical
derivative of Fk . Hence

mod B̃ ≤ 2d1 +
A0b2

k

mod�l
k(B)

≤ 2d1 +
A0b2

k

σ s modB
≤ 2d1 + A0C0α ≤ 3d1,

as long as α is small enough. Notice that modB appears only in the residual term of the
last estimate. The main term (2d1) depends only on the geometry of F , which makes
the bound for mod B̃ as good as that for B.

The lower estimate, mod B̃ ≥ (3d1)−1, is similar. ��

5. Sticks

Let us consider a piece B ∈ Bn[l] and the corresponding piece B ∈ Bn−l(Fl)[0], see
(4.1) and Fig. 3. In the degenerate case the pieces B∩OFl get squeezed in a narrow strip
around the diagonal of the associated rectangle Q (except a few pieces directly near the
tip where the pieces are small bended curves and the renormalization box which is a
rectangle).Wewill show that this is also the case formany pieces ofHénon perturbations.
To this end, let us quantify the thickness of the pieces in question.

Let us first introduce two standard strips of thickness δ:

�±
δ = {(x, y) ∈ [0, 1]2 | |y ± x | ≤ δ

2
}

(oriented “north-west” and “north-east” respectively.)
Given a piece B ∈ Bn and the associated rectangle Q = Q(B), let L : [0, 1]2 → Q

be the orientation preserving diagonal surjective affinemap. Let�(B) = L(�±
δ ), where:

• we select the “+”-sign if B comes from the upper branch of the parabola x = f (y),
and “−”-sign otherwise.

• δ = δB is selected to be the smallest one such that �(B) ⊃ B ∩ O.

This δB is called the (relative) thickness of B. The horizontal size hδB of �(B) is
called the absolute thickness of B. �(B) is called the associated diagonal strip. We let
� ≡ �B and call it the regular stick associated with B, see Fig. 6.

Proposition 5.1. There exists k∗ ≥ 0 and α∗ > 0 such that for α < α∗ and k∗ ≤ k the
following holds. If B ∈ Bn[l] is regular and not too deep in Bk, k < l ≤ lα(k), then

δB̃ ≤ 1

2
· δB + O(σ n−l),

where B̃ = Gk(B) ∈ Bn[k] and B̃ = Fk(�l
k(B)).
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OFl
∩ B

v

h

hδB

Fig. 6. Regular stick

Proof. Wewill use the notation fromSect. 4. Let δ ≡ δB, and letw = δ ·h be the absolute
thickness of B. The relative thickness of B̃ is denoted by δ̃ ≡ δB̃. To estimate δ̃, we will
decompose�l

k as in §4. Letwdiff be the absolute thickness of Bdiff ≡ (id +Slk)(B). Then

wdiff = O(w + h · σ n−l). (5.1)

Indeed, let �y be the horizontal section of (id +Slk)(�B) on height y, i.e. the intersection
with the horizontal straight line at height y, and let �y = (id +Slk)

−1(�y). Then

|�y | ≤ |�y | · ‖ id +Slk‖C1 = O(w),

where the last estimate follows from Lemma 3.9(1).
Furthermore, let us consider a boundary curve of (id +Slk)(�B). Its horizontal devi-

ation from any of its tangent lines is bounded by

1

2
‖ id +Slk‖C2 · (diamB)2 = O(σ n−l) · h, (5.2)

where the last estimate follows from Lemma 3.9 (2), bounded modulus of B (4.2), and
Lemma 3.1. Hence

wdiff ≤ max
y

|�y | + O(σ n−l) · h,

and (5.1) follows. Together with (4.5), it implies:

δdiff = O(δ + σ n−l). (5.3)
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Let us now consider the piece Baff ≡ �l
k(B) = Dl

k(Bdiff), see Fig. 5. Let Dl
k = T ◦ �,

where� = �l
k and T = T l

k are the diagonal and sheer parts of D
l
k respectively, see (3.6).

Let us consider a box Bdiag = �(Bdiff), and let hdiag = σ 2(l−k)hdiff and vdiag = σ l−kvdiff
be its horizontal and vertical sizes. Since diagonal affine maps preserve the horizontal
thickness, the thickness is only effected by the sheer part T l

k , which has order tk � b2
k
,

see Lemma 3.8, namely:

δaff ≤ δdiff · 1

1 − vdiag
hdiag

· tk
= δdiff · 1

1 − vdiff
hdiff

· σ−(l−k) · tk
= O(δdiff) = O(δ + σ n−l).

(5.4)

where the passage to the last line comes from (4.3), (4.5), (4.6) and Lemma 3.8. Let us
also consider the absolute vertical thickness uaff of Baff, i.e., the vertical size of the stick
�(Baff). From triangle similarity, we have:

uaff
vaff

= waff

haff

So

uaff = waff

mod Baff
� waff

σ s modB
� σ−s · waff, s = l − k, (5.5)

where the last estimate follows from regularity of B while the previous one comes from
(4.9).

We are now prepared to apply the map Fk : (x, y) �→ ( fk(x) − εk(x, y), x), where
‖εk‖C2 = O(2b

k
), see Theorem 3.4. Let w̃ be the absolute thickness of B̃. By (4.7)–(4.8),

the rectangle Qaff associated with Baff has sizes

vaff � σ sv and haff � σ 2sh.

Let us use affine parametrization for the diagonal Z of Baff:

x = x0 + t, y = y0 +
C

σ s
t, 0 ≤ t ≤ haff,

where x0, y0 is its corner where the stick �aff begins. Restrict Fk to this diagonal:

Fk(x(t), y(t)) = (A + Bt + E(t), x0 + t),

where E(t) is the second order deviation of Fk(Z) from the straight line. We obtain:

E(t) = O(‖∂2( fk − εk)

∂x2
‖ + ‖∂2εk

∂xy
· σ−s‖ + ‖∂2εk

∂y2
‖ · (σ−s)2)) · h2aff

= O(haff + b2
k
σ−shaff + (b2

k
σ−s) · (σ−shaff)) · haff.

From Lemma 3.1 we have haff = O(σ n−k). Hence,

E(t) = O(σ n−k + b2
k
σ−(l−k)+n−k + α · σ−(l−k)+n−k)) · haff

= O(σ n−l) · haff
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where we used that l is not too deep for k, i.e. b2
k
σ−s ≤ α. It follows that

w̃ = O(σ n−l · haff + b2
k · uaff)

= O(σ n−l · haff + b2
k
σ−s · waff)

= O(σ n−l · haff + α · waff),

where we used (5.5).
From the regularity of B̃ we get h̃ � ṽ = haff. Thus,

δ̃ = O(σ n−l + α · δaff)

= O(α · δ + σ n−l)

where we used (5.4). The Proposition follows as long as α is sufficiently small. ��

6. Scaling

Let B ∈ Bn[k] and B̂ ∈ Bn−1[k] with B ⊂ B̂. Say,

B = Bn
ων ⊂ B̂ = Bn−1

ω ⊂ Ek .

Let B and B̂ be the corresponding rescaled pieces, so B = �k
0 (B) and B̂ = �k

0 (B̂).
The horizontal and vertical sizes of the associated rectangles are called h, v > 0 and
ĥ, v̂ > 0 respectively (Fig. 7).

The scaling number of B is

σB = v
v̂
.

Remark 6.1. The scaling number can be expressed directly in terms of the original pieces
B and B̂. Indeed, since the diffeomorphism �k

0 is a horizontal map, we have σB = v/v̂,
where v and v̂ are the vertical sizes of B and B̂. We will use the notation σB when we
refer to the corresponding measurement in the domain of F . This formal distinction will
only play a role in (7.20).

Remark 6.2. There are many possible ways to define the scaling number. The proof
of the probabilistic universality will show that the relative thickness of most pieces
asymptotically vanishes. Because of this, most definitions of the scaling number become
equivalent.

For B = Bn
ων(F) as above, let B∗ = Bn

ων(F∗) be the corresponding degenerate piece
for the renormalization fixed point F∗. The proper scaling for B is

σ ∗
B = σBn

ων(F∗).

The function

σ : B �→ σB

is called the scaling function of F . The universal scaling function σ ∗ of F∗ is injective,
as was shown in [2].
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OFk
∩ B

OFk
∩ B̂

v̂

ĥ

v = σBv̂

h

δB̂ĥ

Fig. 7. The scaling number

Remark 6.3. Given a piece B ∈ Bn+1(F∗). Let B̂∗ ∈ Bn(F∗) which contains B. For
some ı̂ < 2n we have

π1(B̂
∗) = I ∗

ı̂ (n) ∈ Cn .
Similarly, π1(B∗) = I ∗

i (n + 1) ∈ Cn+1, for i = ı̂ or i = ı̂ + 2n . The scaling ratios σB
are vertical measurements of pieces. Using that Hénon like maps take vertical lines to
horizontal lines, y′ = x , we have

σ ∗
B = |I ∗

i−1(n + 1)|
|I ∗
ı̂−1(n)| .

Proposition 6.1. There exists k∗ ≥ 0 and α∗ > 0 such that for α < α∗ and k ≥ k∗ the
followingholds. If a piece B ∈ Bn[l] is regular andnot toodeep for Ek, i.e. k < l ≤ lα(k),
then

σB̃ = σB + O(δB̂ + σ n−l),

where B̃ = Gk(B) ∈ Bn[k] and B ⊂ B̂ = �l
0(B̂) ∈ Bn−1[l].

Proof. As above in Sect. 4, let haff stand for the horizontal length of Baff = �l
k(B), see

Fig. 5.Wewill use the similar notation ĥaff and ŵaff for the correspondingmeasurements
of the piece B̂aff := �l

k(B̂).
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OFk
∩ B̂aff

v̂aff

ĥaff

vaff = σBv̂aff

haff

σBĥaff

|σB̃ − σB|ĥaff

ŵaff

Fig. 8. Illustration for the proof of Proposition 6.1

Since Fk maps vertical lines to horizontal lines, we have

σB̃ = haff

ĥaff
.

Let γ be the angle between the diagonal of B̂aff and the vertical side, so tg γ = mod B̂aff.
Then

vaff · tg γ = ĥaff
vaff

v̂aff
= ĥaff · σB,

Now Fig. 8 shows:

|haff − vaff · tg γ | ≤ ŵaff.

Dividing by ĥaff (taking into account the two previous formulas and definition of the
relative thickness δ̂aff = ŵaff/ĥaff), we obtain:

|σB̃ − σB| ≤ δ̂aff.

Now the Proposition follows from (5.4). ��
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l

δl

σ1l

σ2l
σ∗
B1

l

σ∗
B2

l

OF ∩ B2

Fig. 9. ε-universal stick

7. Universal Sticks

7.1. Definition and statement. Let us consider a piece B ∈ Bn and the two pieces
B1, B2 ∈ Bn+1 of level n + 1 contained in B. Rotate it to make it horizontal and then
rescale it to horizontal size 1; denote the corresponding linear conformal map by A. Let
δ, σB1 , σB2 ≥ 0 be the smallest numbers such that:

(1) A(B ∩ OF ) ⊂ [0, 1] × [0, δ],
(2) A(B1 ∩ OF ) ⊂ [0, σB1 ] × [0, δ],
(3) A(B2 ∩ OF ) ⊂ [1 − σB2 , 1] × [0, δ],
for the optimal choice of A. The numbers σB1 , and σB2 are called scaling factors of B1
and B2.

Remark 7.1. The scaling factor σB of a piece B is a measurement of the corresponding
B. The scaling factor σB of B reveres to measurements of the actual piece in the domain
of F . The difference between the scaling factors σB and σB is estimated in Proposition
7.7.

We say that B is ε-universal if

|σB1 − σ ∗
B1

| ≤ ε, |σB2 − σ ∗
B2

| ≤ ε, and δ ≤ ε.

The precision of the piece B is the smallest ε > 0 for which B is ε-universal. The
optimal A−1([0, 1] × [0, δ]) is called the ε-stick for B (Fig. 9). We will revere to the
(relative) length and (relative) height of such a stick. Let Sn(ε) ⊂ Bn be the collection
of ε-universal pieces.

Definition 7.1. The Cantor attractorOF of an infinitely renormalizable Hénon-like map
F ∈ H�(ε) is probabilistically universal if there is θ < 1 such that

μ(Sn(θn)) ≥ 1 − θn, n ≥ 1.

Now we can formulate the main result of this paper:
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Theorem 7.1. The Cantor attractor OF is probabilistically universal.

After careful choices of θ < 1, q0 < q1 and κ(n) = −Const+ ln n, one distinguishes
three regimes where pieces in Sn(θ

n) ∩ Ek are discovered by different techniques.
The one-dimensional regime: all the pieces in Bn[k] with (1 − q1) · n ≤ k ≤ (1 −

q0) · n are in Sn(θ
n). These very deep pieces are controlled by the one-dimensional

renormalization fixed point: they are perturbed versions the corresponding pieces of F∗
and their relative displacements are exponentially small, see Lemma 7.3 and Proposition
7.2. We have to exclude the pieces in Bn[k] with k > (1 − q0) · n because they do not
have a small thickness. Viewed from their scale k, they are relatively large pieces close
to the graph of f∗. The curvature of the graph of f∗ causes this pieces to have a large
thickness.

The pushing-up regime: the pieces from the one-dimensional regime can be pushed
up without being distorted too much, using the Propositions 5.1 and 6.1, as long as they
are not too deep. The resulting pieces have exponentially small precision, see Proposition
7.7. In this way one finds pieces in Sn(θ

n)∩ Ek for 0 ≤ k < (1−q1) · n. Unfortunately,
the relative measure of these pieces in Sn(θ

n) ∩ Ek obtained by pushing up, is only
exponentially close to 1, for k ≥ κ(n) � ln n, see Proposition 8.2. That is why the
pushing-up regime is restricted to κ(n) ≤ k < (1 − q1) · n where these pieces occupy
Ek except for an exponential small relative part.

The brute-force regime: the pieces obtained in the one-dimensional and pushing-up
regimes are in Bκ(n). They will be spread around by brute-force iteration of the original
map until returning. The time to go from Bκ(n) and return by iterating the original map
is 2κ(n). The depth κ(n) is the largest integer such that 2κ(n) ≤ Kn ln 1/θ . The pieces in
the one-dimensional and pushing-up regime have exponentially small precision. Each
of the brute-force return steps used to spread around the pieces from the deeper regimes,
will distort their exponential precision θn , see Proposition 7.8. The total distortion along
such a return orbit can be bounded by O(r2

κ(n)
) = O(r Kn ln 1/θ ), with r � 1/b >> 1.

However, this distortion can not destroy the exponential precision when θ < 1 is chosen
close enough to 1.

The pushing-up regime is split into two parts. Let κ0(n) be the smallest integer such
that l(κ0(n)) ≥ n. As long as κ0(n) ≤ k < (1 − q1) · n the pieces in Bn[l], l > k, are
not too deep and can be pushed up into Ek . Indeed, κ0(n) � ln n is uniquely defined
and can not be adjusted. Unfortunately, we can not use κ(n) = κ0(n) because the
corresponding return time 2κ0(n) used to fill the brute-force regime might be too large.
Too large in the sense that it might build up too much distortion, which is of the order
O(rn0 ) for some definite r0 > 1. We have to choose κ(n) � ln n much smaller than
κ0(n) to get an arbitrarily slow growing rate for the distortion during the brute-force
regime. The rate should be small enough such that the exponential decaying precision
in the deeper regimes can not be destroyed. In the regime κ(n) ≤ k < κ0(n) we have
l(k) < (1 − q1) · n which means that we can not push up all previously recovered
pieces in Bn[l] with l > l(k). This is responsible for the super-exponential loss term in
Proposition 8.2.

7.2. Universal sticks created in the one-dimensional regime.

Proposition 7.2. There exist ρ < 1, q∗ > 0 with the following property. For every
0 < q0 < q1 ≤ q∗ there exists n∗ > 0 such that for n ≥ n∗ and (1 − q1) · n ≤ k ≤ n

(1) every B ∈ Bn[k] is regular.
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(2) for every B ∈ Bn+1[k]
|σB − σ ∗

B| = O(ρq1·n),

where B = �k+1
0 (B).

(3) for every B ∈ Bn[k] with (1 − q1) · n ≤ k ≤ (1 − q0) · n
δB = O(ρq0·n),

where B = �k
0 (B).

Choose, (1 − q1) · n ≤ k ≤ n and B ∈ Bn[k]. Let B ∈ Bn−k(Fk) be such that
B = �k

0 (B). Let τn be the tip of Fn and τ∗ the tip of F∗. In the next part we will have to
compare the maps �n

k related to F and the maps (�n
k )∗ corresponding to F∗. Let

B0 = Bn−k
vn−k (Fk) = �n

k (Dom(Fn))

and

B∗
0 = Bn−k

vn−k (F∗) = (�n−k
0 )∗(Dom(F∗)).

where (�n−k
0 )∗ is the changeof coordinates used to construct Rn−k F∗. ThenB = F j

k (B0)

for some 0 ≤ j < 2n−k and j is odd. Let B j = F j
k (B0) and B∗

j = F j∗ (B∗
0) for

0 ≤ j < 2n−k . We will analyse the relative positions of B j and B∗
j . Let

I j = π1(B j ) and J j = π2(B j ).

The intervals in the nth level of f∗ are denoted by I ∗
j (n), see Sect. 3.1. Observe,

I ∗
j ≡ I ∗

j (n − k) = π1(B∗
j ), 0 ≤ j < 2n−k .

and

J ∗
j = π2(B∗

j ) = I ∗
j−1(n − k), 0 < j < 2n−k .

Consider the conjugations

hn : OF∗ → OFn

with hn(τ∗) = τn . These conjugations allow us to label the points inOFn . Choose, z
∗ ∈

OF∗ and let z = hn(z∗). Let (x0, y0) = �n
k (z) ∈ B0 and (x∗

0 , y
∗
0 ) = (�n

k )∗(z∗) ∈ B∗
0.

The points in the orbits are

(x j , y j ) = F j
k (x0, y0) and (x∗

j , y
∗
j ) = F j∗ (x∗

0 , y
∗
0 ),

with 0 ≤ j < 2n−k . The first estimates will be on the relative displacements
�x j
|I ∗

j | and
�y j
|J∗

j | where �x j = x j − x∗
j and �y j = y j − y∗

j .

Lemma 7.3. There exist ρ < 1, q∗ > 0 with the following property. For every 0 < q ≤
q∗ there exists n∗ > 0 such that for n ≥ n∗, (1 − q) · n ≤ k ≤ n, and 0 ≤ j < 2n−k

|�x j |
|I ∗

j |
= O(ρq·n), and

|�y j |
|J ∗

j |
= O(ρq·n).
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Proof. Recall, y j+1 = x j . Hence,

|�y j+1|
|J ∗

j+1|
= |�x j |

|I ∗
j |

,

we only have to estimate the displacements�x j and�y0. Since, Fk → F∗ exponentially
fast controlled by some ρ < 1, see Theorem 3.4, we have

x j+1 = f∗(x j ) + O(ρk)

= f∗(x∗
j ) + Df∗(ζ j )�x j + O(ρk).

Hence,

�x j+1 = Df∗(ζ j )�x j + O(ρk).

There exists K > 1 such that

|�x j+1|
|I ∗

j+1|
≤ Df∗(ζ j )

|I ∗
j+1|

|I ∗
j |

· |�x j |
|I ∗

j |
+ K

ρk

ρn−k
0

, (7.1)

where we used the a priori bounds: |I ∗
j+1| ≥ ρn−k

0 for some ρ0 < 1.
We will use (7.1) repeatedly but to do so we first need to estimate |�x0|. Let �z =

z − z∗ and use the Lemmas 3.11, 3.1, and 3.6 in the following estimate

|(x0, y0) − (x∗
0 , y

∗
0 )| ≤ |�n

k (z) − (�n
k )∗(z∗)|

≤ |�n
k − (�n

k )∗| + |(�n
k )∗(z) − (�n

k )∗(z∗)|
≤ O(ρk) + |D(�n

k )∗| · |�z|
= O(ρk + σ n−k · ρn)

= O(ρk).

Thus,

|�x0|
|I ∗
0 | = O(

ρk

ρn−k
0

) (7.2)

and

|�y0|
|J ∗

0 | = O(
ρk

ρn−k
0

). (7.3)

Let r > 0 and D > 1 be given as in Lemma 3.2 and K > 1 as defined above. For
q > 0 small enough and n ≥ 1 large enough we have

|�x0|
|I ∗
0 | = O(

ρk

ρn−k
0

) = O((
ρ1−q

ρ
q
0

)n) = O(ρq·n) ≤ r

2D
. (7.4)

and

DK (
2

ρ0
)n−k · ρk = O((

ρ1−q

(ρ0/2)q
)n) = O(ρq·n) ≤ r

2
. (7.5)

One has to be careful when applying (7.1) repeatedly. The points ζ j should not be
too far from I ∗

j to be able to control distortion.
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Claim 7.4. For q > 0 small enough and n > 1 large enough

|�x j |
|I ∗

j |
≤ DK (

2

ρ0
)n−k · ρk + D

|�x0|
|I ∗
0 | ,

for 0 ≤ j < 2n−k .

Proof. The proof is by induction: the statement holds for j = 0 because D > 1. Suppose
it holds up to j < 2n−k − 1. The r−neighborhoods Ul(n) ⊃ I ∗

l were introduced in
Lemma 3.2. The induction hypothesis together with (7.4) and (7.5) imply that

ζl ∈ Ul(n − k)

for l ≤ j . Now repeatedly apply (7.1) and Lemma 3.2 to get

|�x j+1|
|I ∗

j+1|
≤

j+1∑

l=1

(

j∏

k=l

D f∗(ζk)
|I ∗
k+1|

|I ∗
k |

) · K ρk

ρn−k
0

+ (

j∏

k=0

Df∗(ζk)
|I ∗
k+1|

|I ∗
k |

) · |�x0|
|I ∗
0 |

≤ ( j + 1)DK
ρk

ρn−k
0

+ D
|�x0|
|I ∗
0 |

≤ DK (
2

ρ0
)n−k · ρk + D

|�x0|
|I ∗
0 | .

This estimate finishes the induction step. ��
Now incorporate the estimates (7.4), (7.5) in the Claim and together with (7.3),

Lemma 7.3 follows. ��
Proof of Proposition 7.2. Let (1 − q1) · n ≤ k ≤ n and assume that the conditions of
Lemma7.3 are satisfied. Choose B ∈ Bn[k]. LetB ∈ Bn−k(Fk) be such that B = �k

0 (B),
say B = B j with 0 < j < 2n−k odd.

The pieces B∗
j ∈ Bn−k(F∗), 0 < j < 2n−k odd, are curves on the graph of f∗

contained in B1
c (F∗), that is, they have a bounded slope. This bounded slope implies

that

|I ∗
j | � |J ∗

j |.
This bound and Lemma 7.3 imply that the Hausdorff distance between B j and B∗

j is

O(ρq0·n · |I ∗
j |). We get that Bj = �k

0 (B j ) is regular, which proves Proposition 7.2(1).

Let B ∈ Bn+1[k], say B = �k
0 (B) with B ∈ Bn−k+1(Fk) and B ⊂ B j ∈ Bn−k(Fk),

for some 0 < j < 2n−k . Recall that the scaling ratio of B ∈ Bn+1[k] is a measurement in
vertical direction in the domain of Fk . The relative displacement of every point z∗ ∈ OF∗
is estimated in Lemma 7.3. These bounds imply

|σB − σB∗ | = O(ρq0·n).

This finishes the proof of Proposition 7.2(2).
To control the thickness associated to B ∈ Bn[k] we have to restrict ourselves to

(1 − q1) · n ≤ k ≤ (1 − q0) · n. The piece B ≡ B j , which determines the relative
thickness of B = �k

0 (B) has a Hausdorff distance O(ρq0·n · |I ∗
j |) to B∗

j , Lemma 7.3.
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This pieceB∗
j is a curve in the graph of f∗ contained in B1

c (F∗). This curve has a bounded
slope. Hence, its relative thickness is proportional to its diameter, which is of the order
σ n−k ≤ σ q0·n , see Lemmas 3.1. The control of the Hausdorff distance and the small
relative thickness of B∗

j implies

δB = O(ρq0·n)

We finished the proof of Proposition 7.2(3). ��

7.3. Universal sticks created in the pushing-up regime.

Definition 7.2. Given 0 < q0 < q1, the collection Pn(k; q0, q1) of (q0, q1)-controlled
pieces consists of B ∈ Bn[k] with the following property. If B(i), i = 0, 1, 2, · · · , t , are
the predecessors of B = B(0) with

k = k0(B) < k1(B) < k2(B) < · · · < kt−1(B) < kt (B) < n.

then

(1) ki+1 ≤ l(ki ), i = 0, 1, 2, 3, . . . , t − 1,
(2) there exists 0 ≤ s ≤ t such that (1 − q1) · n ≤ ks(B) ≤ (1 − q0) · n, and
(3) ks−1(B) ≤ (1 − q1) · n.

Remark 7.2. The definition of controlled pieces is a combinatorial definition. It does not
depend on F but only on the average Jacobian bF which is a topological invariant, [16].
If B is a (q0, q1)-controlled piece of F then the corresponding piece B∗ is (q0, q1)-
controlled piece of F∗.

The definition of controlled pieces implies

⋃

k<l≤l(k)

Gk(Pn(l; q0, q1)) = Pn(k; q0, q1). (7.6)

Proposition 7.2 introduced the constants ρ < 1, and q∗ > 0. The constants α∗ > 0
and k∗ > 0 are the optimal choice given by the Propositions 4.1, 5.1 and 6.1. Now
Proposition 4.1 and Proposition 7.2(1) imply

Lemma 7.5. Let α < α∗. For every q∗ > q1 > q0 > 0 there exists n∗ ≥ 1 such that
every B ∈ Pn(k; q0, q1) and all its predecessors are regular when n ≥ n∗ and k ≥ k∗.

Lemma 7.6. Let α < α∗. For every q∗ > q1 > q0 > 0 there exists n∗ ≥ 1 such that for
every B̂ ∈ Pn(k; q0, q1) and B ∈ Bn+1[k] with B ⊂ B̂

δB̂ = O(ρq0·n)

and

|σB − σ ∗
B| = O(ρq0·n)

when n ≥ n∗ and k ≥ k∗.
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Proof. Let us call the predecessors of B̂ and B

B(i) ⊂ B̂(i),

i = 0, 1, 2, . . . , t . Let ki = ki (B̂) = ki (B) and δi the relative thickness of B̂(i), where
B̂(i) = �

ki
0 (B̂(i)), andσi = σB(i) , the scalingnumber of B(i)�

ki
0 (B(i)), i = 0, 1, 2, . . . , t .

Observe, the piece B might have one predecessor more than B̂.
Apply Propositions 5.1 and 6.1. In particular,

δi−1 ≤ 1

2
δi + O(σ n−ki ) (7.7)

and

|σi−1 − σi | = O(δi + σ n−ki ) (7.8)

for i = 1, 2, . . . , t .
Iterating estimate (7.7) we obtain

s∑

i=0

δi ≤ 2δs + O(σ n−ks )

= O(ρq0·n) + O(σ q0·n),
(7.9)

where we used Proposition 7.2(3) and property (2) of Definition 7.2. We may assume
σ < ρ < 1. The first estimate of the Lemma follows:

δB̂ = δ0 ≤
s∑

i=0

δi = O(ρq0·n).

To establish the second estimate of the Proposition, first observe that

σB(0) = σB(s) +
s−1∑

i=0

(σB(i) − σB(i+1) ).

Hence, by using (7.8) and (7.9),

|σB(0) − σB(s) | ≤
s−1∑

i=0

|σB(i) − σB(i+1) |

= O(

s∑

i=1

(δi + σ n−ki ))

= O(ρq0·n + σ n−ks ) = O(ρq0·n).

If B ∈ Pn(k, q0, q1) and B∗ is the corresponding piece of F∗, then B∗ is also controlled.
Namely, each l(k) = ∞ because bF∗ = 0. Hence, we have the same estimate for the
proper scaling

|σ ∗
B(0) − σ ∗

B(s) | = O(ρq0·n).
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This finishes the proof. Namely, B(s) ∈ Bn+1[ks] with (1− q1) · n ≤ ks ≤ n and we can
apply Proposition 7.2(2),

|σB − σ ∗
B| = |σB(0) − σ ∗

B(0) |
≤ |σB(0) − σB(s) | + |σB(s) − σ ∗

B(s) | + |σ ∗
B(s) − σ ∗

B(0) |
= O(ρq0·n).

��
The measurements of the pieces, such as scaling and thickness, are geometric quan-

tities observed when viewing a piece from its scale, they are geometric measurements
of B and not B itself. The next Proposition states that the actual pieces B inherit expo-
nentially small estimates for their precision. The Proposition is also a preparation for
the brute-force regime which concerns iteration of the original map.

Proposition 7.7. Let α < α∗. For every q∗ > q1 > q0 > 0 there exists n∗ ≥ 1 such
that

Pn(k; q0, q1) ⊂ Sn(O(ρq0·n))

when n ≥ n∗ and k ≥ k∗.

The estimates in the proof of this Proposition are like the estimates used to prove the
Propositions 4.1, 5.1, and 6.1.

Proof. Let B̂ ∈ Pn(k; q0, q1) and B ∈ Bn+1[k] with B ⊂ B̂. Let B and B̂ be such that
B = �k

0 (B) and B̂ = �k
0 (B̂). The horizontal and vertical size of the smallest rectangle

which contains B̂ are h, v > 0. Let δ > 0 be the relative thickness of B̂, the absolute
thickness of B̂ is w = δ · h. From Lemma 3.1 we get

h, v = O(σ n−k).

Moreover, the regularity of B̂ gives

h � v.

The situation allows to apply Lemma 7.6:

δ = O(ρq0·n) and |σB − σ ∗
B| = O(ρq0·n). (7.10)

We have to show that B̂ ∩ OF = �k
0 (B̂ ∩ OFk ) is contained in a O(ρq0·n)-stick. As

before we will decompose�k
0 into its diffeomorphic part (id +Sk0) and its affine part. Let

hdiff, vdiff > 0 be the horizontal and vertical size of the smallest rectangle containing the
image of B̂ under (id +Sk0) and wdiff > 0 the absolute thickness of its stick and σdiff > 0
the scaling factor of the image of B under the same diffeomorphism. Then we have

σdiff = σB,

vdiff = v

and, by recalling (5.1),

wdiff = O(w + σ n−k · h),

hdiff � h.
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vaff

haff

σaffl

waff

Δl

l

w

σ l

σBvaff

B ∩ OF

Fig. 10. Illustration for the proof of Proposition 7.7

The last two estimates rely on v � h. The term h ·σ n−k reflects the distortion of (id +Sk0)
on B̂ determined by the diameter of B̂which is of the order σ n−k . The next step is to apply
the affine part of�k

0 . Denote the measurements after this step by haff, vaff, waff, σaff > 0
resp. Equation (3.6) and Lemma 3.8 yield

waff � σ 2kwdiff,

σaff = σdiff = σB,

haff � σ 2khdiff + σ kvdiff,

(7.11)

Use the above estimates in the following

waff

haff
= O(

σ 2k · [w + σ n−k · h]
σ 2k · h + σ k · v ) = O(σ k · δ + σ n) = O(ρq0·n). (7.12)

Consider the smallest conformal image of a rectangle aligned along the diagonal of
the rectangle containing B̂ = �k

0 (B̂), see Fig. 10. The precision of B̂ will be better than
the precision based on the measurements of this approximation of the stick. Let l ′ > 0
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be the length, w′ > 0 be the absolute thickness and σ ′ > 0 be the scaling factor of
B ⊂ B̂ within this rectangle. Then

l ′ =
√
h2aff + v2aff, (7.13)

and

w′ ≤ waff. (7.14)

First we will estimate the precision of σ ′. Let γ be the angle between the diagonal of
the rectangle and the horizontal. Observe,

cos γ = haff√
h2aff + v2aff

,

see Figure 10. The projection �l ′ of the horizontal interval of length waff onto the
diagonal has length

�l ′ = waff · cos γ.

Observe,

|σ ′ · l ′ − σaff · l ′| ≤ �l ′ = waff · haff√
h2aff + v2aff

.

Then, by using (7.12) and (7.13),

|σ ′ − σaff| ≤ waff

haff
· h2aff
h2aff + v2aff

≤ waff

haff
= O(ρq0·n). (7.15)

Use (7.10), (7.11), and (7.15) to estimate the precision of σ ′

|σ ′ − σ ∗
B| ≤ |σ ′ − σaff| + |σaff − σ ∗

B| = O(ρq0·n). (7.16)

The estimate (7.14) says that the height of the stick containing B̂ is at most waff. The
relative height is estimated by

w′

l ′
≤ waff√

h2aff + v2aff

≤ waff

haff
= O(ρq0·n), (7.17)

where we used (7.12) and (7.13). The estimates (7.16) and (7.17) confirm that B̂ ∈
Sn(ρ

q0·n)), which finishes the proof of the Proposition. ��
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7.4. Universal sticks created in the brute-force regime. The one-dimensional regime
and pushing-up regime do not create enough universal pieces. On the highest level the
universal pieces are iterated around with the original map.

Proposition 7.8. There exists ε∗ > 0, and q∗ > 0 such that the following holds. Let
ε < ε∗, and 0 < q0 < q1 < q∗ then there exists n∗ ≥ 1 such that if for 0 ≤ j < 2(1−q1)·n

F j (B) ∈ Sn(ε),

with B ∈ Bn[k], (1 − q1) · n ≤ k ≤ (1 − q0) · n, and n ≥ n∗, then

F j+1(B) ∈ Sn(O(ε + ρq0·n)).

Proof. Choose B̂ ∈ Bn[k] with (1 − q1) · n ≤ k ≤ (1 − q0) · n and B ∈ Bn+1

with B ⊂ B̂. The iterates under the original map are denoted by Bj = F j (B) and
B̂ j = F j (B̂), j ≤ 2(1−q1)·n . Assume that for some j ≤ 2(1−q1)·n

B̂ j ∈ Sn(ε).

The piece B̂ j is contained in an ε-stick. Say B̂ j ∩ OF is contained in a rectangle of
length l > 0 and height w ≤ εl. The smaller rectangle which contains Bj ∩ OF has
length σ j l, where σ j = σBj and |σ j − σ ∗

B j
| ≤ ε. Notice that we have to estimate the

scaling factor σBj and not σB j , compare remark 6.1.

Apply F to the rectangle which contains B̂ j . The stick which contains B̂ j+1 has
length l ′ > 0 and height w′ > 0. The relevant scaling factor of Bj+1 is σ j+1 = σBj+1 .

Choose, M,m > 0 such that

m|v| ≤ |DF(x, y)v| ≤ M |v|.
This is possible because F is a diffeomorphism onto its image. However, m = O(b).
Let K > 0 be the maximum norm of the Hessian of F . The diameter of B̂ j ∩OF , which
is proportional to l, is of the order σ n , see Lemma 3.1. We can estimate the sizes l ′, w′
and σ ′ by applying the derivative of F and correcting for distortion which is bounded
by Kl2. Let D be the absolute value of the directional derivative of F in the direction
of the rectangle containing B̂ j , measured in a corner of the rectangle. Then

l ′ ≥ Dl − 2Kl2 − 2Mw,

w′ ≤ Mw + 2Kl2,

Observe,

|σ j+1 · l ′ − D · σ j · l| ≤ 2Mw + 2Kl2.

Let us first estimate the relative height of the stick of B̂ j+1. Use w ≤ εl,

w′

l ′
≤ Mεl + 2Kl2

ml − 2Kl2 − 2Mεl

≤ M

m − 2Kl − 2Mε
· ε + 2

K

m − 2Kl − 2Mε
· l

= O(ε + σ n) = O(ε + ρq0·n),

(7.18)
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when ε < ε∗, q0 < q∗
1 small enough, and n ≥ n∗ large enough. Similarly,

|σ j+1 − σ j | = O(ε + ρq0·n). (7.19)

Use remark 6.3 and apply Proposition 3.3 to get

|σ ∗
Bs

− σ ∗
B| = O(ρq0·n), (7.20)

with 0 ≤ s < 2(1−q1)·n .
We need to estimate the scaling factor σ j+1 of Bj+1. Use (7.19) and (7.20) and and

the notation σ ∗
j = σ ∗

B j
. Then

|σ j+1 − σ ∗
j+1| ≤ |σ j+1 − σ j | + |σ j − σ ∗

j | + |σ ∗
j − σ ∗

j+1|
≤ O(ε + ρq0·n) + ε + O(ρq0·n)
= O(ε + ρq0·n),

(7.21)

for ε ≤ ε∗, 0 < q0 < q∗ small enough and n ≥ n∗ large enough. The estimates (7.18)
and (7.21) together finish the proof. ��

8. Probabilistic Universality

In this section we are going to estimate the measure of the pieces created in the three
regimes, see Proposition 8.6. Let α = α∗, ε∗ > 0, and 0 < q∗

1 < 1/3 small and k∗ ≥ 1
large enough to allow the use of the Propositions 7.7, and 7.8.

For each n ≥ 1, let κ0(n) � ln n be the smallest integer such that

l(κ0(n)) ≡ 2κ0(n) · ln b
ln σ

− ln α

ln σ
+ κ0(n) ≥ n.

For n ≥ 1 large enough we have

κ0(n) ≤ ln n

ln 2
. (8.1)

Lemma 8.1. Given q0 < q1. There exists n∗ ≥ 1 such that for n ≥ n∗ and κ0(n) ≤ k <

(1 − q0) · n,

μ(Pn(k; q0, q1)) ≥ [1 − 1

2(q1−q0)·n+1 ] · μ(Ek).

Proof. Let βn(k; q0, q1) = μ(Ek \ Pn(k; q0, q1)) be the measure of the uncontrolled
pieces. The construction implies immediately

βn(k; q0, q1) = μ(Ek), (1 − q0) · n < k ≤ n, (8.2)

and

βn(k; q0, q1) = 0, (1 − q1) · n ≤ k ≤ (1 − q0) · n, (8.3)

every piece in the one-dimensional regime is controlled. The Lemma holds for (1 −
q1) · n ≤ k ≤ (1 − q0) · n. This implies that the fraction of the uncontrolled part in
∪l≥(1−q1)·n El is

∑n
l=(1−q1)·n βn(l; q0, q1)

μ(B(1−q1)·n)
≤ 1

2(q1−q0)·n+1 . (8.4)
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Observe,

l((1 − q1) · n − 1) = 2(1−q1)·n−1 · ln b
ln σ

− ln α

ln σ
+ (1 − q1) · n − 1

� 2(1−q1)·n−1 ≥ n,

holds when n ≥ 1 is large enough. All pieces in Bn[k], with k ≥ (1− q1) · n are not too
deep for level (1 − q1) · n − 1. Hence, equation (7.6) reduces to

Pn((1 − q1) · n − 1; q0, q1) =
⋃

(1−q1)·n≤l≤n

G(1−q1)·n−1(Pn(l; q0, q1)).

Hence, using (8.4),

βn((1 − q1) · n − 1; q0, q1) =
n∑

l=(1−q1)·n
βn(l; q0, q1)

≤ 1

2(q1−q0)·n+1 · μ(B(1−q1)·n)

= 1

2(q1−q0)·n+1 · μ(E (1−q1)·n−1).

Now we finish the proof by induction. The Lemma is proved for k = (1 − q1) · n − 1.
Assume the Lemma holds from (1−q1) ·n−1 down to k +1 ≤ (1−q1) ·n−1. Because
k ≥ κ0(n)we have l(k) ≥ n. Hence, again by using (7.6), (8.2), (8.3), andμ(El) = 1

2l+1
,

l ≥ 0, we get

μ(Pn(k; q0, q1)) = μ(

n⋃

l=k+1

Gk(Pn(l; q0, q1)))

=
(1−q1)·n−1∑

l=k+1

μ(Pn(l; q0, q1))) +
(1−q0)·n∑

l=(1−q1)·n
μ(El)

≥ (1 − 1

2(q1−q0)·n+1 ) · [
(1−q1)·n−1∑

l=k+1

μ(El) +
1

2(1−q1)·n ]

= (1 − 1

2(q1−q0)·n+1 ) · [
(1−q1)·n−1∑

l=k+1

μ(El) +
∞∑

l=(1−q1)·n
μ(El)]

= (1 − 1

2(q1−q0)·n+1 ) · μ(Ek).

��
Proposition 8.2. Given q0 < q1 < q∗

1 . There exists n
∗ ≥ 1 such that for n ≥ n∗ and

k ≤ (1 − q0) · n

μ(Pn(k; q0, q1)) ≥ [1 − 1

2(q1−q0)·n+1 − 2
ln ασ
ln σ

∞∑

l=k

2l(bγ )2
l ] · μ(Ek),

where γ = − ln 2
ln σ

∈ (0, 1).
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Proof. According to Lemma 8.1, the Proposition holds for κ0(n) ≤ k ≤ (1 − q0) · n.
The proof for the lower values of k < κ0(n) is by induction. Assume by induction

βn(k; q0, q1)) ≤ [ 1

2(q1−q0)·n+1 + 2
ln ασ
ln σ

κ0(n)−1∑

l=k

2l(bγ )2
l ] · μ(Ek),

which holds for k = κ0(n). Suppose it holds from κ0(n) down to k+1 ≤ κ0(n). Observe,

1

2l(k)
= 2

ln α
ln σ · 2−[ k

2k
+ ln b
ln σ

]·2k ≤ 2
ln α
ln σ · 2− ln b

ln σ
·2k .

Hence,

1

2l(k)
≤ 2

ln α
ln σ · (bγ )2

k
. (8.5)

Use (8.1) and observe,

lκ0(n)−1 = 2κ0(n)−1 · ln b
ln σ

− ln α

ln σ
+ κ0(n) − 1

= 1

2
(n +

ln α

ln σ
− κ0(n)) − ln α

ln σ
+ κ0(n) − 1

≤ 1

2
n(1 +

κ0(n)

n
) + O(1)

≤ 1

2
n(1 +

ln n

n ln 2
) + O(1)

< (1 − q1) · n,

holds when n ≥ n∗ large enough because q∗
1 < 1

3 . Hence, for n ≥ 1 large enough, we
have

l(k) ≤ l(κ0(n) − 1) < (1 − q1) · n. (8.6)

Use (7.6), the induction hypothesis, (8.5), and (8.6) in the following estimates.

βn(k; q0, q1)) ≤
l(k)∑

l=k+1

βn(l; q0, q1) + μ(Bl(k)+1)

≤ [ 1

2(q1−q0)·n+1 + 2
ln ασ
ln σ

κ0(n)−1∑

l=k+1

2l(bγ )2
l ] ·

l(k)∑

l=k+1

μ(El) +
1

2l(k)

≤ [ 1

2(q1−q0)·n+1 + 2
ln ασ
ln σ

κ0(n)−1∑

l=k+1

2l(bγ )2
l ] · μ(Ek) + 2

ln α
ln σ (bγ )2

k

= [ 1

2(q1−q0)·n+1 + 2
ln ασ
ln σ

κ0(n)−1∑

l=k

2l(bγ )2
l ] · μ(Ek),

where the last equality uses μ(Ek) = 1
2k+1

. ��
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For each K > 0 and θ < 1, let κ(n) be the largest integer such that

2κ(n) ≤ Kn ln 1/θ.

Lemma 8.3. There exists K > 0 such that for every θ < 1 there exists n∗ ≥ 1 such that
κ(n) ≥ k∗ for n ≥ n∗ and

2
ln ασ
ln σ

∞∑

l=κ(n)

2l(bγ )2
l ≤ 1

3
θn .

Proof. Observe,

∞∑

l=κ(n)

2l(bγ )2
l = O(2κ(n)(bγ )2

κ(n)

).

To achieve the property of the Lemma it suffices to satisfy

ln 2κ(n) + 2κ(n) ln bγ + O(1) ≤ n ln θ.

In turn, this holds when

n ln 1/θ · [1
2
K ln bγ + 1] + O(1) ≤ 0.

This holds for large n ≥ 1 when K > 0 is chosen large enough. ��
In the sequel we will fix K > 0 according to the previous Lemma. For each Q > 0

and θ < 1, define q0 by

q0 = Q ln 1/θ.

and

q1 = [Q +
3

2 ln 2
] · ln 1/θ.

Lemma 8.4. For every θ < 1 there exists n∗ ≥ 1 such that for Q > 0 and n ≥ n∗

1

2(q1−q0)·n+1 ≤ 1

3
θn .

The brute-force regime consists of iterates of
⋃(1−q0)·n

l=κ(n) Pn(l; q0, q1) up to just one

step before the moment of return to Bκ(n) ≡ ⋃∞
l=κ(n) E

l . The return uses exactly 2κ(n)

steps. Thus we obtain for each choice Q > 0 and θ < 1, the collection

Pn =
2κ(n)−1⋃

j=0

F j (

(1−q0)·n⋃

l=κ(n)

Pn(l; q0, q1)) (8.7)

Proposition 8.5. There exist Q > 0 and θ∗ < 1 such that the following holds. For
θ∗ ≤ θ < 1 there exists n∗ ≥ 1 such that for n ≥ n∗

Pn ⊂ Sn(θ
n).
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Proof. Take B ∈ ⋃(1−q0)·n
l=κ(n) Pn(l; q0, q1). According to Proposition 7.7 there exists

C > 0 such that

B ∈ Sn(Cρq0·n), (8.8)

when θ < 1 close enough to 1 and n ≥ 1 large enough (Recall that q0 depends on θ ).
Now consider an image F j (B) with j ≤ 2κ(n) − 1 < 2(1−q1)·n . Denote its precision by
ε j . This is a piece in the brute-force regime. If θ < 1 close enough to 1 and n ≥ 1 large
enough we can apply Proposition 7.8: there exists r > 1 such that if ε j ≤ ε∗ then

ε j+1 ≤ r · (ε j + ρq0·n). (8.9)

Choose Q > 0 large enough such that

Q ln ρ + K ln r +
3

2
≤ 0.

This choice implies

ρq0·n · r2κ(n) ≤ (θ
3
2 )n . (8.10)

Now we can repeatedly apply (8.9): for n ≥ 1 large enough and 0 ≤ j < 2κ(n)

ε j ≤ Cρq0·n · r j + ρq0·n ·
j−1∑

i=0

r j−i

≤ (C +
r

r − 1
) · ρq0·n · r2κ(n) ≤ θn ≤ ε∗.

Every piece in Pn is θn-universal. ��
In the sequel we will fixed Q > 0 according to the previous Proposition.

Proposition 8.6. There exists θ∗ < 1 such that the following holds. For θ∗ ≤ θ < 1
there exists n∗ ≥ 1 such that for n ≥ n∗

μ(Pn) ≥ 1 − θn .

Proof. For θ < 1 close enough to 1 we have

1

2
1
2−Q ln 1/θ

≤ θ.

Hence, for n ≥ 1 large enough

Kn ln 1/θ

2(1−Q ln 1/θ)·n+1 ≤ 1

3
· θn . (8.11)
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For θ < 1 close enough to 1, and n ≥ 1 large enough we can apply Proposition 8.2,
Lemmas 8.3, 8.4, and (8.11) to obtain

μ(Pn) = 2κ(n) · μ(

(1−q0)·n⋃

l=κ(n)

Pn(l; q0, q1))

≥ 2κ(n) · (1 − 2

3
θn) ·

(1−q0)·n∑

l=κ(n)

μ(El)

= (1 − 2

3
θn) · (1 − 2κ(n)

2(1−q0)·n+1 )

≥ (1 − 2

3
θn) · (1 − Kn ln 1/θ

2(1−Q ln 1/θ)·n+1 )

≥ 1 − θn .

��
The Propositions 8.6 and 8.5 confirm probabilistic universality, Theorem 7.1.

9. Recovery

The pieces in Bn which are contained in θn-sticks can be determined by pure combina-
torial methods. In [7], it has been shown that there are pieces which are not contained
in θn-sticks. Probabilistic universality says that these bad spots will be filled on deeper
levels with pieces contained in sticks with exponential precision. Although a bad spot
might have very non-universal geometry, the dynamics on deeper levels forgets this bad
geometry and recovers, filling the bad spot withmostly universal pieces on deeper levels.
This recovery process has a combinatorial description.

A piece B ∈ Bn has an associated word ω = w1w2 . . . wn , with letters wk ∈ {c, v},
such that

B = Imψ1
w1

◦ ψ2
w2

◦ . . . ψn
wn

where ψk
v is the non-affine rescaling used to renormalize Rk F , and to obtain Rk+1F and

ψk
c = Rk F ◦ψk

v . If B1, B2 ∈ Bn+1 are the two pieces contained in B then the associated
words for B1 and B2 are wc and wv. This discussion defines a homeomorphism

w : OF → {c, v}N.

The relation between the ki (B), i = 0, 1, 2, . . . , t , which define the predecessors of
B ∈ Bn and the word ω = w1w2 . . . wn is as follows. If i ∈ {k0(B), k1(B), . . . , kt (B)}
then wi = c, otherwise wi = v.

In the previous section we constructed the collection Pn ⊂ Sn(θ
n), see (8.7). The

word ω = w1w2 . . . wn of a piece B ∈ Pn is characterized by

(1) If k ≥ κ(n) and wk = c then there exists k < i ≤ l(k) with wi = c.
(2) There exits n − q1 · n ≤ k ≤ n − q0 · n with wk = c.

Remark 9.1. Recall, q0, q1, and the function l(k), depend only on the average Jacobian,
which is a topological invariant, see [16]. The characterization of the pieces in Pn is
purely topological.
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n0 Nx ki

κ(n)

lki

n − q0 · nn − q1 · n

Fig. 11. Controlled points

Definition 9.1. A point x ∈ OF is eventually controlled if there exists Nx ≥ 1 such that
for all n ≥ Nx there exists n − q1 · n ≤ k ≤ n − q0 · n with

wk = c,

where w(x) = w1w2w3 . . . . The collection of eventually controlled points is denoted
by CF ⊂ OF .

Lemma 9.1. The set of eventually controlled points satisfies μ(CF ) = 1 and

CF =
⋃

N≥1

⋂

n≥N

Pn .

Proof. There exists k∗ ≥ 1 such that (1−q1) · l(k) > k for k ≥ k∗. Let x ∈ CF . Choose
n ≥ 1 large enough such that n ≥ κ(n) ≥ Nx and κ(n) ≥ k∗. The piece Bn(x) ∈ Bn

contains x . Then Bn(x) satisfies property (2).
Choose k ≥ κ(n). Then l(k) > (1−q1) · l(k) > k ≥ κ(n) ≥ Nx . Hence, there exists

wi = c with (1−q1) · l(k) ≤ i ≤ (1−q0) · l(k). Now, i ≥ (1−q1) · l(k) > k. Moreover,
i ≤ (1 − q0) · l(k) < l(k). The piece Bn(x) satisfies property (1). We proved,

x ∈
⋂

κ(n)≥max{Nx ,k∗}
Pn . (9.1)

Choose x ∈ ⋂
n≥N Pn . Then property (2) implies that for every n ≥ N there exists

n − q1 · n ≤ k ≤ n − q0 · n with

wk = c.

We proved that
⋂

n≥N Pn ⊂ CF , for N ≥ 1. The statement on the measure of CF
follows from Proposition 8.6. This finishes the proof of Lemma 9.1 ��

The recovery process can be described by using Proposition 8.5 and (9.1)

Proposition 9.2. If x ∈ OF is controlled then and κ(n) ≥ Nx then Bn(x) ∈ Sn(θ
n).

Remark 9.2. Given a conjugation h : OF1 → OF2 then bF1 = bF2 , see [16], and
h(CF1) = CF2 . The set of controlled points is a topological invariant (Fig. 11).
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l σ1l

O(θnl)

O(θn)

Fig. 12. θn -stick

10. Probabilistic Rigidity

The geometry of large parts of OF resemble that of the geometry of OF∗ , see Theorem
7.1, probabilistic universality. The large parts are

XN =
⋂

k≥N

Sk(θ
k), (10.1)

where θ < 1 is given by Theorem 7.1, with

μ(XN ) ≥ 1 − O(θN ).

Let

X =
⋃

N≥1

XN

and note μ(X) = 1.
As a consequence of a result from [7] we known that there is no continuous line field

on OF consisting of tangent lines to OF . However, the first step towards describing the
geometry ofOF will be the construction of tangent lines toOF in all points of X ⊂ OF .
Choose N ≥ 1 and define for n ≥ N

Tn : XN → P
1

as follows. Let x ∈ XN and let Bn(x) ∈ Bn , n ≥ N , be the piece with x ∈ Bn(x). The
partOF ∩ Bn(x) is contained in a θn-stick see Fig. 12. The direction of the longest edge
of this stick is denoted by Tn(x) ∈ P

1.
The a priori bounds give that the scaling σ1 of Bn+1(x) is strictly away from zero.

Namely, σ1 = σBn+1(x) ≥ σ ∗
Bn+1(x)

− θn ≥ a > 0.
The angle between Tn(x) and Tn+1(x) is of the order θn , see Fig. 12. The piecewise

constant functions Tn form a Cauchy sequence,

dist(Tn+1(x), Tn(x)) = O(θn). (10.2)
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for n ≥ N and x ∈ XN . The limit is denoted by

T = lim
n→∞ Tn : XN → P

1.

The construction implies that we get in fact a map

T : X → P
1.

The actual line through x ∈ X ⊂ OF with direction T (x) is denoted by Tx ⊂ R
2.

Definition 10.1. The Cantor set OF is almost everywhere (1 + β)-differentiable if for
each N ≥ 1 there exists CN > 0 such that

dist (x, Tx0) ≤ CN |x − x0|1+β

when x ∈ OF , x0 ∈ XN .
The tangent line field of OF is weakly β-Hölder if for each N ≥ 1 there exists

CN > 0 such that

dist(T (x0), T (x1)) ≤ CN |x0 − x1|β,

with x0, x1 ∈ XN .

Remark 10.1. The objects we consider have Hölder estimates on the growing sets XN .
Although, the increasing sequence of sets X1 ⊂ X2 ⊂ X3 ⊂ · · · is intrinsically related
to the notion of being almost everywhere Hölder we will suppress it in the notation,
instead of using almost everywhere Hölder with respect to the sequence {XN }.
Theorem 10.1. The Cantor set OF is almost everywhere (1 + β)-differentiable, where
β > 0 is universal. The tangent line field is weakly β-Hölder.

Proof. Choose N ≥ 1. Let

dN = min
B∈BN

diam(B ∩ OF ) > 0.

Choose, x0, x1 ∈ XN . We will find a uniform Hölder estimate for the function T |XN
in these two points. Let n ≥ 1 such that x1 ∈ Bn(x0) and x1 /∈ Bn+1(x0). To prove a
Hölder estimate we may assume that n ≥ N . The a priori bounds for the Cantor set of
the one-dimensional map f∗ and the probabilistic universality of OF observed in the
sets XN , see (10.1), give a ρ < 1 such that

|x1 − x0| ≥ ρn−N · dN .

Estimate (10.2) implies

dist(T (x1), T (x0)) ≤ dist(T (x1), Tn(x1)) + dist(Tn(x0), T (x0))

= O(θn)

≤ CN |x1 − x0|β.

where CN = O( θN

(dN )β
) and β > 0 is such that

ρβ = θ. (10.3)
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The estimate only holds when x0 and x1 are in the same piece of BN . To get a global
estimate we might have to increase the constant to obtain

dist(T (x1), T (x0)) ≤ CN |x1 − x0|β,

for any pair x0, x1 ∈ XN .
Choose x ∈ OF to prove that Tx0 , x0 ∈ XN , is a β−Hölder tangent line to OF .

Again let n ≥ 1 such that x ∈ Bn(x0) and x /∈ Bn+1(x0). The distance between x0 and
x is bounded from below when n < N . To find the Hölder estimate for the distance
between x and Tx0 we may assume that n ≥ N . Recall, dist(T (x0), Tn(x0)) = O(θn)

and |x − x0| ≥ ρn−N · dN . Denote the length of the stick which contains OF ∩ Bn(x0)
by l > 0. The a priori bounds imply

l = O(|x − x0|).
Then

dist(x, Tx0) = O(θn) · l
= O((ρn)β |x − x0|)
≤ CN |x − x0|1+β.

(10.4)

This estimate holds when x0, x are in the same piece of BN . We might have to increase
the constant CN to get a global Hölder estimate. ��

In [7] it has been shown that the Cantor attractors OF , with bF > 0, can not be part
of a smooth curve.

Theorem 10.2. Each set XN ⊂ OF is contained in a C1+β -curve.

Proof. The proof will not use the specific structure of the set XN described by the pieces
in Bn . The proof holds for every closed set in the plane with tangents line to each point
with Hölder dependence on the point.

We will construct a C1+β -curve through every set XN ∩ B with B ∈ BN+K and
K ≥ 0 large enough. This suffices to prove the Theorem.

Choose B ∈ BN+K with XN ∩ B �= ∅. For each x0 ∈ XN ∩ B consider the cusps

Sx0 = {x ∈ B|dist(x, Tx0) < CN |x − x0|1+β}.
Note XN ∩ B ⊂ Sx0 . Thus

S ≡
⋂

x∈XN

Sx ⊃ XN ∩ B.

Fix K ≥ 0 large enough such that each Sx \ {x} has two components. This defines
already an order on XN ∩ B. Write

Sx \ {x} = S+x ∪ S−
x ,

where S±
x are the connected components. We may assume that the assignment of con-

nected components preserves the order in the following sense. If x1 ∈ S+x0 then

S+x1 ∩ XN ⊂ S+x0 .
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Fig. 13. Illustration for the proof of Theorem 10.1

A point x ∈ XN is a boundary point of XN if S+x ∩ XN = ∅ or S−
x ∩ XN = ∅. A

connected component G ⊂ S \ XN , see Fig. 13, is called a gap of XN . For every gap
there exist two boundary points x0, x1 ∈ XN such that

G ⊂ S+x0 ∩ S−
x1 .

Consider a gap between two boundary points x0 and x1 and the graph over the tangent
line Tx0 of a cubic polynomial γG which passes through x0 and x1 and is tangent to the
tangent lines Tx0 and Tx1 . Denote the graph of γG also by γG . A calculation shows that

|γG |0 ≤ 7CN |x0 − x1|1+β

and if DγG(x) ∈ P
1 is the direction of the tangent line to the graph γG at a point x ∈ γG

then

|DγG(y) − DγG(x)| ≤ 21CN |y − x |β.

In particular, the distance between the tangent directions along the curve and the direction
at the boundary points shrink to zero as the diameter of the gap shrinks. This implies
that the closure of the union of the curves γG

γ = XN ∪
⋃

G

γG

is a C1 curve.
Left is to show that the tangent direction Dγ is Cβ . Choose x0, x1 ∈ γ . Let a0 ∈

γ ∩ XN be the closest point to x0 on the line segment between x0 and x1. Similarly, let
a1 be the closest point to x1. If x0 ∈ G then a0 is a boundary point of the gap G, See
Fig. 13. For K ≥ 0 large enough, the distances between these points are, up to a factor
close to 1, equal to the corresponding distances of the projections of these points to the
tangent line through a0. We may assume that |x1−a1|, |a1−a0|, |a0− x0| ≤ 2|x1− x0|.
Then

|Dγ (x1) − Dγ (x0)| ≤ CN · {21|x1 − a1|β + |a1 − a0|β + 21|a0 − x0|β}
≤ 86CN |x1 − x0|β.

The curve γ is C1+β and contains XN ∩ B. ��
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Fig. 14. Illustration for the proof of Theorem 10.3

The following Theorem is an answer to a question posed by J.C. Yoccoz.

Theorem 10.3. The Cantor attractor OF is contained in a rectifiable curve without
self-intersections.

Proof. Let Fn : [0, 1]2 → [0, 1]2 be the nth-renormalization of F . The piece
B1

v (Fn) ⊂ Dom(Fn) is strip bounded between two horizontal line segments and
B1
c (Fn) ⊂ Dom(Fn) is strip bounded between two vertical line segments. Let γn be

a collection of three line segments which connects the two pieces and each piece with
the horizontal boundaries of Dom(Fn) = [0, 1]2, see Fig. 14.

For each n ≥ 1 we will construct inductively a curve �n in the domain of F which
passes through all pieces B ∈ Bn of the nth-cycle of F . Let �n

n consists of γn and curves
in the boundaries of B1

v (Fn) and B1
c (Fn) connecting the end points of γn , see Fig. 14.

Suppose �n
k+1 is defined and its end point are in the two horizontal boundary part of

the domain of Fk+1, see Fig. 14. Let �n
k be the curve connecting the top and bottom of

the domain of Fk consists of the curves

�n
k = ψk

v (�n
k+1) ∪ ψk

c (�n
k+1) ∪ γk ∪ gnk ,

where gnk consists of the two shortest horizontal line segments connecting the endpoints
of ψk

v (�n
k+1) with the end points of γk and the two vertical line segments connecting the

endpoints of ψk
v (�n

k+1) with the end points of γk , see Fig. 14. Let �n = �n
0 .

The curve �n+1 is obtained from �n by changing it inside the pieces of Bn . Hence,

�n+1 \ Bn = �n \ Bn .

This refinement process induces natural parametrizations of the curves �n where the
parametrization of �n+1 is obtained from the one of �n by only adjusting only inside
the pieces of Bn . In each piece B ∈ Bn , the curve �n+1 is partitioned into five sub-
curves, see Fig. 14. The refinement of the parametrization of �n spends equal time in
each of these five sub-curves. The diameter of the pieces in Bn decay exponentially fast,
supB∈Bn

diam(B) = O(σ n). The construction and this decay imply that the parametriza-
tion have a uniform Hölder bound. This bound allows us to take a limit. Let � be the
limiting Hölder curve. It contains OF .

The maps ψk
v and ψk

c are contracting distance by at least 1
2.5 , for k ≥ 1 large enough,

see Lemma 3.1. Denote the length of �n
k by |�n

k |. Then,

|�n
k | ≤ 2

2.5
· |�n

k+1| + |γk | + |gnk |

≤ 2

2.5
· |�n

k+1| + 4.
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The curves �n
k have a bounded length. In particular, the limiting curve � is rectifiable.

Outside the pieces B ∈ Bn the curve � coincides with �n which consists of non-
intersecting curves. A self-intersection has to be a point x ∈ OF . Let Bn(x) ∈ Bn

the piece which contains this self-intersection. The interval of parameter values which
correspond to points in Bn(x) is an interval of length O(1/5n). This means that the
parametrization is injective. There are no self-intersections. ��
Remark 10.2. The curve � for the degenerate maps follows the same combinatorial
construction as for a non-degenerate maps. This implies that the order of the pieces
B ∈ Bn in the curve � is the same order as observed in one-dimensional maps.

Remark 10.3. The relative height (or thickness) of a piece B ∈ Bn coincides with the
number β(B) ≤ 1 introduced by P. Jones. In [13], Jones characterizes sets which are
contained in rectifiable curves. A set O is contained in a rectifiable curve if and only if
its diadic covers Bn satisfy the summability condition

∑

n≥1

∑

B∈Bn

β2(B) · diam B < ∞.

In the present case ofOF , one can use the dynamical coversBn instead of the diadic ones.
Since diam(B) = O(σ n) with 2σ < 1, the set OF satisfies the summability condition
with respect to these covers. The diameter of the pieces decay fast enough so that we do
not have to consider actual geometric information of the pieces: the bound β(B) ≤ 1
suffices. For completeness we include a direct proof for rectifiability using the strongly
contracting rescalings ψk

c and ψk
v .

The sets XN have better geometric properties. The relative height (or thickness) of
the pieces covering XN and the corresponding numbers β(B) decay exponentially fast.
This is responsible for the smooth curves containing these sets.

The tangent bundle over OF is defined by

T X = {(x, v) ∈ X × R
2|v ∈ Tx }.

If Y ⊂ X then the tangent bundle over Y is denoted by

TY = {(x, v) ∈ T X |x ∈ Y }.
We identify Tx ⊂ R

2, {x} × T (x) ⊂ T X with the tangent space at x ∈ X ⊂ OF . Let
πx : R

2 → Tx be the orthogonal projection.
Let Y ⊂ OF1 . A map h : Y → h(Y ) ⊂ OF2 is differentiable at x0 ∈ Y if x0 and

h(x0) have a tangent line, and there exists a linear Dh(x0) : Tx0 → Th(x0) such that for
x ∈ Y

h(x) = h(x0) + Dh(x0)(πx0(x) − x0) + o(|x − x0|).
We will identify Dh(x0) with a number.

A bijection h : X → h(X) ⊂ OF2 is almost everywhere a (1 + β)-diffeomorphism if
for each N ≥ 1 the restriction h|XN is differentiable at each x ∈ XN and

Dh : T XN → Th(XN )

and its inverse are β-Hölder homeomorphisms.
Let OF∗ be the Cantor attractor of the fixed point of renormalization, the degenerate

map F∗. Its invariant measure is denoted by μ∗. In [16] it has been shown that every
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Fig. 15. Illustration for the proof of Theorem 10.4

conjugation which extends to a homeomorphism between neighborhoods of OF and
OF∗ respects the orbits of the tips. We will only consider conjugations

h : OF → OF∗

with h(τF ) = τF∗ .

Definition 10.2. The attractor OF of an infinitely renormalizable Hénon map F ∈
H�(ε) is probabilistically rigid if there exists β > 0 such that the restriction h : X →
h(X) of the conjugation h : OF → OF∗ , is almost everywhere a (1+β)-diffeomorphism.

Theorem 10.4. The Cantor attractor OF is probabilistically rigid.

Proof. Fix N ≥ 1 and choose B0 ∈ SN (θN ) which intersects XN . Consider the stick
which contains B0. Call one of the long edges of this stick the bottom and choose an
orientation of this line segment. It suffices to show the differentiability of the conjugation
restricted to such a piece.

We will construct a curve containing XN ∩ B0. This curve will be the closure of a
countable collection of pairwise disjoint line segments. These line segments are called
gaps. This piecewise affine curve is better adapted to the problem at hand than the curve
of Theorem 10.2. Let

XN (k) = {B ∈ Sk(θ
k)|B ∩ XN �= ∅ and B ⊂ B0}.

Given B ∈ XN (k). Let δ > 0 be the relative height of the stick of B and σ1, σ2 > 0
the scaling factors of the two pieces B1, B2 ∈ Bk+1 contained in B. The stick of B has
three parts. Two rectangles of relative length σ1 and σ2 containing respectively B1 and
B2 and the complement within the stick. This last part does not intersect XN . It could
be that one of the other parts also does not intersect XN . At least one of the parts does
intersect XN . Let E be the union of the parts which do not intersect XN and H− and H+
be the vertical boundaries of E , see Fig. 15.

The gap of B will be a line segment GB connecting H− with H+. Let Bl ∈ XN (l)
which intersect H+, l = k, . . . , L . Choose

x+B ∈ H+ ∩ OF ∩
L⋂

l=k

Bl .
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The point x+B is uniquely defined when L = ∞. In fact, it will be a point of XN . When
L < ∞ we have some freedom choosing x+B . Choose it to be the closest point to the
bottom of B0. Similarly, choose a point x−

B ∈ H−. The gap of B, denoted by GB , is the
line segment (x−

B , x+B).
The length of a gap is defined by

|GB | ≡ |x+B − x−
B |.

Remark 10.4. The gaps are pairwise disjoint. For B1 ∈ XN (k + 1) and B ∈ XN (k) it
might happen that GB1 and GB have a common endpoint. The angle between the gap
GB and the bottom of B ∈ XN (k) is of order θk . This is a consequence of δ = O(θk)

and the a priori bounds on σ1 and σ2.

There is a natural order on XN ∩ B0 and the collection of gaps. It coincides with the
order of the projections of XN and the gaps onto the bottom of B0. Let us define the
order between some x ∈ XN ∩ B0 and a gap GB1 . Let k ≥ N be maximal such that
there is B ∈ XN (k) with x ∈ B and GB1 ∩ B �= ∅. The stick of B has three parts as
described above. Observe, x and GB1 cannot be in the same part of the stick of B. The
angle of the axis of B with the bottom of B0 is of order θN . This defines an order on the
three parts of this stick. Accordingly, this defines whether x > GB1 , or, x < GB1 .

The gap-distance between x, y ∈ XN ∩ B0 is

|x − y|g =
∑

x<GB<y

|GB |.

The gaps between x, y ∈ XN ∩ B0 form a curve

[x, y]g ≡
⋃

x<GB<y

GB .

It is a graph over the tangent line of x .

Claim 10.5. If x, y ∈ B ∩ XN with B ∈ XN (k) then

|x − y|g
|x − y| = 1 + O(θk).

Proof. Let πx be the projection onto the tangent line Tx of x . Then

|x − πx (y)| =
∑

x<GB′<y

|πx (GB′)|. (10.5)

The angle between each gap GB′ between x and y, and the tangent line of x is of order
θk , see (10.2) and remark 10.4. This implies that

|πx (GB′)|
|GB′ | = 1 + O(θk). (10.6)

The Cantor setOF is almost everywhere differentiable, see Theorem 10.1. In particular,
use (10.4) to obtain

|x − πx (y)|
|x − y| = 1 + O(θk). (10.7)

The estimates (10.5), (10.6), and (10.7) prove the Claim. ��
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Given a piece B of F , the corresponding piece of F∗ is denoted by B∗ = h(B).

Claim 10.6. Let Bl ∈ XN (l) with Bl ⊂ Bk ∈ XN (k). Then

ln
|GBl |
|GBk |

· |GB∗
k
|

|GB∗
l
| = O(θk).

Proof. The Claim holds for l = k + 1 because the relevant pieces are in Sk(θ
k) and

Sk+1(θ
k+1). In general, there is a unique sequence of pieces Bj ∈ XN ( j), k ≤ j ≤ l

with Bl ⊂ Bl−1 ⊂ . . . Bk+1 ⊂ Bk . Then

ln
|GBl |
|GBk |

· |GB∗
k
|

|GB∗
l
| =

l−1∑

j=k

ln
|GBj+1 |
|GBj |

·
|GB∗

j
|

|GB∗
j+1

| =
l−1∑

j=k

O(θ j ) = O(θk).

��
Claim 10.7. Let x, y, z ∈ XN ∩ B with B ∈ XN (k) and x∗, y∗, z∗ ∈ h(XN ) the corre-
sponding images under h. Then

ln
|x − y|g
|x − z|g · |x∗ − z∗|g

|x∗ − y∗|g = O(θk).

Proof. Claim 10.6 gives for every piece B̃ ⊂ B

|GB̃ | = |GB̃∗ | · |GB |
|GB∗ | · (1 + O(θk)).

This implies

|x − y|g
|x − z|g =

∑
x<B̃<y |GB̃ |

∑
x<B̃<z |GB̃ |

=
∑

x∗<B̃∗<y∗ |GB̃∗ |
∑

x∗<B̃∗<z∗ |GB̃∗ | · (1 + O(θk))

= |x∗ − y∗|g
|x∗ − z∗|g · (1 + O(θk)).

This finishes the proof of the Claim. ��
A reformulation of this Claim is the following. Let x, y, z ∈ XN ∩B with B ∈ XN (k).

Then

| ln |h(y) − h(x)|g
|y − x |g − ln

|h(z) − h(x)|g
|z − x |g | = O(θk). (10.8)

This implies that for x, y ∈ XN ∩ B0 the following limit exists.

Dh(x) = lim
y→x

|h(y) − h(x)|g
|y − x |g .

Moreover, the limit depends continuously on x .
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Claim 10.8. There exists a universal β > 0, independent of N , such that Dh : XN → R

is β-Hölder.

Proof. Choose x0, x ∈ XN ∩ B0 to prove a Hölder estimate for ln Dh. Let k ≥ N be
maximal such that x ∈ Bk(x0). Observe, as before in the proof of Theorem 10.1,

|x − x0| ≥ ρk−N · diam(B0)

where ρ < 1. Choose β > 0 such that ρβ = θ . Then

θk = O(|x − x0|β). (10.9)

Hence, using (10.8) and (10.9),

| ln Dh(x) − ln Dh(x0)| = O(θk) = O(|x − x0|β).

This suffices to show the Hölder bound for Dh. ��
Wewill identify Dh(x)with a linear map Dh(x) : Tx → Th(x). The positive function

Dh is bounded. This bound, (10.8), and Claim 10.5, imply that for x, x0 ∈ XN

|h(x) − h(x0)| = O(|x − x0|). (10.10)

Claim 10.9. For x, y ∈ XN ∩ B0

|h(y) − h(x)| = Dh(x) · |x − y| · (1 + O(|x − y|β)).

Proof. Let k ≥ N be maximal such that y ∈ Bk(x). Apply Claim 10.5, (10.8), and
(10.9), in the following estimate

|h(y) − h(x)| = |h(y) − h(x)|
|h(y) − h(x)|g · |h(y) − h(x)|g

= (1 + O(θk)) · Dh(x) · |y − x |g
= (1 + O(|y − x |β)) · Dh(x) · |y − x |.

��
Now we are prepared to show the differentiability of h. Choose x, x0 ∈ XN ∩ B0.

Let k ≥ N be maximal such that x ∈ Bk(x0). Let � = Dh(x0)(πx0(x) − x0) ∈ Th(x0).
Claim 10.9, (10.7), and (10.9), imply

|�| = |h(x) − h(x0)| · (1 + O(|x − x0|β)). (10.11)

Let J = πh(x0)(h(x))−h(x0) ∈ Th(x0) and V = h(x)−πh(x0)(h(x)). The image h(OF )

is contained in a smooth curve, the image of the degenerate map F∗. Hence,

|J | = |h(x) − h(x0)| · (1 + O(|h(x) − h(x0)|2))
= |h(x) − h(x0)| · (1 + O(|x − x0|β))

(10.12)

and

|V | = O(|h(x) − h(x0)|2). (10.13)
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Apply (10.11), (10.12), (10.13), and (10.10), in the following estimate

h(x) = h(x0) + � + (J − �) + V

= h(x0) + � + O(|h(x) − h(x0)| · |x − x0|β) + O(|h(x) − h(x0)|2)
= h(x0) + Dh(x0)(πx0(x) − x0) + O(|x − x0|1+β).

This finishes the proof of the differentiability and the Theorem. ��
Remark 10.5. The conjugation h : OF → OF∗ satisfies

h(x) = h(x0) + Dh(x0)(πx0(x) − x0) + O(|x − x0|1+β)

in almost every point x0 ∈ OF . Observe, that the Hölder exponent is universal. The
Hölder constant tends to infinity when h is restricted to larger and larger sets XN , when
N → ∞.

The Cantor attractorOF has two characteristic exponents, [21]. One is zero the other
is ln bF , see [7]. The function T : X → P

1 constructed before defines a measurable line
field, with respect to μ, on OF .

Proposition 10.10. The line field

T : OF → P
1

is the invariant line field of zero characteristic exponent.

Proof. For each point x0 ∈ X we have, see Theorem 10.1,

dist (x, Tx0) ≤ Cx0 |x − x0|1+β

with x ∈ OF . The map F is a diffeomorphism which preserves OF . Hence,

dist (x, DF(x0)Tx0) = O(|x − F(x0)|1+β)

with x ∈ OF . For almost every x0 ∈ X we have F(x0) ∈ X . Hence, T is an invariant
line field, i.e. for almost every x0 ∈ OF we have

DF(x0)Tx0 = TF(x0).

The map F has only two invariant lines fields, the two characteristic directions, [21].
Left is to show that T (x) corresponds to the zero exponent.

Choose N ≥ 1. For almost every x0 ∈ XN there are tn → ∞ such that

Ftn (x0) ∈ XN .

This is because the ergodic measure μ assigns positive measure to XN . Let v ∈ Tx0 and
v∗ ∈ Th(x0) be unit vectors. Apply the chain rule

|DFtn (x0)v| = |Dh−1(F∗(h(x0)))| · |DFtn∗ (h(x0))Dh(x0)v| · |Dh(x0)|
� |DFtn∗ (h(x0))v∗|.

Observe, v∗ ∈ Th(x0) which is a tangent line to the graph of f∗. The degenerate Hénon
map F∗ has zero exponential contraction along this curve. Hence,

lim
t→∞

1

t
ln |DFt (x0)v| = lim

n→∞
1

tn
ln |DFtn (x0)v| = 0

On a set of full measure in XN there is no exponential contraction along the direction
T (x). The line field T has exponent zero. ��
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The Hausdorff dimension of a measure μ on a metric space O is defined as

HDμ(O) = inf
μ(X)=1

HD(X).

Theorem 10.11. The Hausdorff dimension of the invariant measure is universal

HDμ(OF ) = HDμ∗(OF∗).

Proof. Let h : OF → OF∗ be a conjugation which exchanges the orbits of the tips.
According to Theorem 10.4 there are sets XN ⊂ OF with μ(XN ) ≥ 1− O(θN ) and on
which h is a (1 + β)-diffeomorphism. The continuity of the derivative gives upper and
lower bounds of the derivative. This implies

HD(h(XN )) = HD(XN ).

Hence, for X = ⋃
N≥1 XN and every Z ⊂ OF

HD(h(X ∩ Z)) = HD(X ∩ Z).

Let ZN ⊂ OF with μ(ZN ) = 1 and limN→∞ HD(ZN ) = HDμ(OF ) then

HDμ(OF ) ≥ lim
N→∞ HD(ZN ∩ X)

= lim
N→∞ HD(h(ZN ∩ X))

≥ HDμ∗(OF∗),

where the last inequality holds becauseμ∗(h(ZN ∩X)) = μ(ZN ∩X) = 1. The opposite
inequality HDμ∗(OF∗) ≥ HDμ(OF ) is obtained in the same way. ��
Remark 10.6. We can identify the Hausdorff dimension of the measure on the Cantor
attractor. Namely,

HDμ(OF ) = ln 2∫
ln |Dr∗|dμ∗

.

where r∗ is the analytic expanding one dimensional map constructed such that π1(OF∗)
is its invariant Cantor set, see for example [2] and references therein. The measure μ∗
is the projected measure from OF∗ .
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Appendix: Open Problems

Let us finish with some questions related to the previous discussion.
Problem I: The collections Pn , see (8.7), of good pieces that we have constructed are
determined by the average Jacobian of the map. Observe that Sn(θ

n) might be slightly
larger than Pn . It was suggested by Feigenbaum’s experiment, mentioned in the intro-
duction, that the statistics of the remaining bad pieces, might be governed by some
universality law. This problem is also related to one of the open problems in [7] on the
regularity of the conjugation h : OF → OG when bF = bG .
Problem II:Do wandering domains exist? This question was already formulated in [16].
It is included again because its solution might be obtained by using the techniques
developed in this paper.

List of Symbols

bF Average Jacobiannoalign

Bn
ω A piece of the nth-renormalization levelnoalign

Bn Collection of pieces in the nth-renormalization levelnoalign

Bn[k] Pieces of Bn in Eknoalign

Bn(x) The piece in Bn containing x ∈ OFnoalign

B The piece B viewed from its proper scalenoalign

Dist(φ) Distortionnoalign

Dk Derivative of ψk
v at the tipnoalign

δB Thickness of Bnoalign

�B Absolute thickness of Bnoalign

Ek Part of a dynamical partitionnoalign

f∗ Unimodal renormalization fixed pointnoalign

Gk Return map related to the partition by Eknoalign

ki (B) Depth of the i th-predecessor of Bnoalign

κ0(n) Minimal depth to safely push-upnoalign

κ(n) Upper bound of the brute-force regimenoalign

l(k) Maximal allowable depthnoalign

ηφ Nonlinearitynoalign

OF Invariant Cantor set of Fnoalign

ψk
c,v Coordinate changes related to the renormalization R(Rk F)noalign

ψn
ω Coordinate changenoalign

�n
k Coordinate change relating Rn−k(Rk F) to Rnnoalign

Pn(k; q0, q1) Collection of q0, q1-controlled piecesnoalign

Pn Pieces obtained by applying the three regimesnoalign

q0, q1 Boundary one-dimensional regimenoalign

σ Scaling factor of the unimodal renormalization fixed pointnoalign

σB Scaling factor of Bnoalign

Sn(ε) Collection of pieces in Bn with ε precisionnoalign
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tk Tilt of the derivative of ψk
v at the tipnoalign

T Tangent line field to OFnoalign

τF Tipnoalign

X The differentiable part of OFnoalign

References

[1] Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133(1), 73–169 (1991)
[2] Birkhoff, C., Martens, M., Tresser, C.P.: On the scaling structure for period doubling. Asterisque 286,

167–186 (2003)
[3] Collet, P., Eckmann, J.P., Koch, H.: Period doubling bifurcations for families of maps on R

n . J. Stat.
Phys. 25, 1–15 (1980)

[4] Chandramouli, V.V.M.S., Martens, M., de Melo, W., Tresser, C.P.: Chaotic period doubling. Ergod.
Theory Dyn. Syst. 29, 381–418 (2009)

[5] Cvitanovic, P.: Universality in Chaos, 2nd edn. Adam Hilger, Bristol (1989)
[6] Coullet, P., Tresser, C.: Itération d’endomorphismes et groupe de renormalisation. J. Phys. Colloque C

539, C5-25 (1978)
[7] de Carvalho, A., Lyubich, M., Martens, M.: Renormalization in the Hénon family, I: universality but

non-rigidity. J. Stat. Phys. 121(5/6), 611–669 (2005)
[8] de Faria, E., de Melo, W., Pinto, A.: Global hyperbolicity of renormalization forCr unimodal mappings.

Ann. Math. 164(3), 731–824 (2006)
[9] de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)
[10] Epstein, H.: New proofs of the existence of the Feigenbaum functions. Commun. Math. Phys. 106,

395–426 (1986)
[11] Feigenbaum, M.J.: Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19,

25–52 (1978)
[12] Gambaudo, J.-M., van Strien, S., Tresser, C.: Hénon-like maps with strange attractors: there exist C∞

Kupka–Smale diffeomorphisms on S2 with neither sinks nor sources. Nonlinearity 2, 287–304 (1989)
[13] Jones, P.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102(1), 1–16 (1990)
[14] Lanford, O.E., III.: A computer assited proof of the Feigenbaum conjectures. Bull. Am. Math. Soc. New

Ser. 6, 427–434 (1982)
[15] Lyubich, M.: Feigenbaum–Coullet–Tresser Universality andMilnor’s Hairiness Conjecture. Ann. Math.

149, 319–420 (1999)
[16] Lyubich, M., Martens, M.: Renormalization in the Hénon family, II. The Heteroclinic Web, IMS Stony

Brook preprint 08-2 and accepted for publication in Invent. Math
[17] Lyubich, M., Martens, M.: Renormalization of Hénon maps. In: M.M. Peixoto, A.A. Pinto, D.A. Rand

(Eds.) Dynamics, Games and Science I, Springer Proceedings in Mathematics 1, pp. 597–618 (2011)
[18] Martens, M.: Distortion results and invariant cantor sets for unimodal maps. Ergod. Theory Dyn. Syst.

14, 331–349 (1994)
[19] Martens, M.: The periodic points of renormalization. Ann. Math. 147, 543–584 (1998)
[20] McMullen, C.: Renormalization and 3-manifolds which fiber over the circle. Annals of Mathematics

Studies, vol. 135. Princeton University Press, Princeton (1996)
[21] Oseledec, V..I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical sys-

tems. Trans. Moscow. Math. Soc. 19, 197–231 (1969)
[22] Sullivan, D.: Bounds, quadratic differentials, and renormalization conjectures. AMS Centennial Publi-

cations. 2: Mathematics into Twenty-first Century (1992)

Communicated by C. Liverani


	Probabilistic Universality in Two-Dimensional Dynamics
	Abstract:
	1 Introduction
	2 Outline
	3 Preliminaries
	4 Regular Pieces
	5 Sticks
	6 Scaling
	7 Universal Sticks
	8 Probabilistic Universality
	9 Recovery
	10 Probabilistic Rigidity
	Acknowledgements
	References




