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Abstract—We present a novel gated recurrent neural network
to detect when a person is chewing on food. We implemented the
neural network as a custom analog integrated circuit in a 0.18 µm
CMOS technology. The neural network was trained on 6.4 hours
of data collected from a contact microphone that was mounted on
volunteers’ mastoid bones. When tested on 1.6 hours of previously-
unseen data, the analog neural network identified chewing events
at a 24-second time resolution. It achieved a recall of 91% and an
F1-score of 94% while consuming 1.1µW of power. A system for
detecting whole eating episodes—like meals and snacks—that is
based on the novel analog neural network consumes an estimated
18.8µW of power.

Index Terms—Analog LSTM, eating detection, neural networks,
wearable devices.

I. INTRODUCTION

MONITORING food intake and eating habits are impor-
tant for managing and understanding obesity, diabetes

and eating disorders [1], [2], [3]. Because self-reporting is
unreliable, many wearable devices have been proposed to au-
tomatically monitor and record individuals’ dietary habits [4],
[5], [6], [7]. The challenge is that these devices store or transmit
raw data for offline processing. This is a power-consumptive
approach that requires a bulky battery or frequent charging,
which intrudes on the user’s normal daily activities and is thus
prone to poor user adherence and acceptance [8], [9], [10], [11].

We recently addressed this problem with a long short-term
memory (LSTM) neural network for eating detection that can
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Fig. 1. Block diagram of proposed eating detection system. From the con-
tact microphone output, the ZCR and RMS blocks extract features based on
zero-crossing rate and root-mean-square. The analog neural network (labelled
‘AFUA’) processes these features and produces a one-hot encoded output that
predicts the presence or absence of a chewing event. The microcontroller (‘µC’)
merges and filters the individual chewing events into whole eating episodes.
The analog signal processing chain up to the AFUA block consumes 1.8µW
of power. The microcontroller is active only 9% of the time, during which it
consumes 180 µW of power.

be embedded on the wearable device [12], [13]. However, that
approach required a power-consumptive analog-to-digital con-
verter (ADC). It also required the microcontroller unit (MCU)
to unnecessarily spend power processing irrelevant data.

Analog LSTM neural networks have been proposed as a way
to eliminate the ADC and also to minimize the microcontroller’s
processing of irrelevant data. Unfortunately, the state-of-the-art
analog LSTMs [14], [15], [16], [17], [18] are implemented
with operational amplifiers (opamps), current/voltage convert-
ers, Hadamard multiplications and internal ADCs and digital-
to-analog converters (DACs). These peripheral components rep-
resent a significant amount of overhead cost in terms of power
consumption, which diminishes the benefits of an analog LSTM
(see Table I).

In this paper, we present the design, implementation, analysis
and measurement results of a novel analog integrated circuit
LSTM for embedded eating event detection that eliminates
the need for a power-consumptive ADC. Unlike previous ana-
log LSTM implementations, our solution contains no internal
DACs, ADCs, opamps or Hadamard multiplications. Our novel
approach is based on a current-mode adaptive filter, and it
eliminates over 90% of the power requirements of a more
conventional solution.

II. EATING DETECTION SYSTEM

Fig. 1 shows our proposed Adaptive Filter Unit for Analog
(AFUA) long short-term memory as part of a signal processing
system for detecting eating episodes. The input to the system

1932-4545 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Dartmouth College Library. Downloaded on October 13,2023 at 20:15:01 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8519-2392
https://orcid.org/0000-0002-7748-5013
https://orcid.org/0000-0003-0638-516X
https://orcid.org/0000-0001-7411-2783
mailto:kofi.m.odame@dartmouth.edu
mailto:maria.t.nyamukuru.th@dartmouth.edu
mailto:david.f.kotz@dartmouth.edu
mailto:mohsen.shahghasemi.th@dartmouth.edu
mailto:shengjie.bi@dartmouth.edu
https://doi.org/10.1109/TBCAS.2022.3218889


ODAME et al.: ANALOG GATED RECURRENT UNIT NEURAL NETWORK 1107

TABLE I
THE PROPOSED LSTM (‘AFUA’) HAS THE FEWEST PERIPHERAL COMPONENTS AND HENCE THE LOWEST POWER CONSUMPTION OVERHEAD (SEE SECTION IV-A

DERIVATION). m AND n ARE NUMBER OF HIDDEN STATES AND INPUTS, RESPECTIVELY

Fig. 2. Typical time series data for chewing and talking events. (a) Data from
contact microphone shows that chewing (time < 0 s) is characterized by quasi-
periodic bursts. No quasi-periodicity is observed during talking (time ≥ 0 s).
(b) Duration between signal bursts (‘Tperiod’). For the chewing event (time
< 0 s), Tperiod is relatively constant. In contrast, Tperiod varies widely during
the talking event. (c) Features extracted from microphone output.

is produced by a contact microphone that is mounted on the
user’s mastoid bone. Features are extracted from the contact
microphone signal and input to the AFUA neural network, which
infers whether or not the user is chewing. The AFUA’s output is
a one-hot encoding ((2, 0) = chewing; (0, 2) = not chewing) of
the predicted class label. Finally, a microcontroller processes the
predicted class labels and groups the chewing events into discrete
eating episodes, like a meal, or a snack [4], [5]. Following is a
detailed description of the feature extraction and neural network
components of the system.

A. Feature Extraction

As demonstrated in Fig. 2, chewing is characterized by quasi-
periodic bursts of large amplitude, low frequency signals that
can be measured by a contact microphone or accelerometer that
is mounted on the head [5], [12]. We can use the root mean
square (RMS) and the zero-crossing rate (ZCR) to capture the

signal’s amplitude and frequency, respectively. A second ZCR
operation applied to the RMS and the initial ZCR will produce
information about the signal’s periodicity. The RMS block is
simply an envelope detector [20]. The ZCR block comprises a
zero-crossing detector [21] followed by a bandlimited transcon-
ductance amplifier that integrates the detected zero crossings
over time.

B. Analog LSTM

Fundamentally, an LSTM is a neuron that selectively retains,
updates or erases its memory of input data [22]. The gated recur-
rent unit (GRU) is a simplified version of the classical LSTM,
and it is described with the following set of equations [23]:

rj = σ([Wrx]j + [Urh〈t−1〉]j) (1)

zj = σ([Wzx]j + [Uzh〈t−1〉]j) (2)

h̃〈t〉
j = tanh([Wx]j + [U(r% h〈t−1〉)]j) (3)

h〈t〉
j = zjh

〈t−1〉
j + (1− zj)h̃

〈t〉
j , (4)

where x is the input, hj is the hidden state, h̃j is the candidate
state, rj is the reset gate and zj is the update gate. Also, W∗ and
U∗ are learnable weight matrices.

To implement the GRU in an efficient analog integrated
circuit that contains no DACs, ADCs, operational amplifiers or
multipliers, we can transform (1)-(4) as follows. The σ function
of (2) gives zj a range of (0, 1), and the extrema of this range
reveals the basic mechanism of the update equation, (4). For
zj = 0, the update equation ish〈t〉

j = h̃〈t〉
j . For zj = 1, the update

equation becomes h〈t〉
j = h〈t−1〉

j . Without loss of generality, we
can replace (1− zj) with zj (this merely inverts the logic of the
update gate, and inverts the sign of the Wz and Uz weight
matrices). So, replacing (1− zj) and rearranging the update
equation gives us

(
h〈t〉
j − h〈t−1〉

j

)
/zj + h〈t−1〉

j = h̃〈t〉
j , (5)

which is simply a first-order low pass filter with a continuous-
time form of

τ

zj(t)

dhj

dt
+ hj(t) = h̃j(t), (6)

where τ = ∆T , the time step of the discrete-time system. The
gating mechanics of the continuous- versus discrete-time update
equations are equivalent, modulo the inverted logic: For zj(t) =
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Fig. 3. Simulation results (test set accuracy) for 10-class keyword spotting
task [28], [29]. The simulated neural network architecture comprises: a 16-
unit LSTM input layer, a second 16-unit LSTM layer, a 10-unit dense layer
(ReLU activations) and a 10-unit dense output layer (softmax activations). We
implemented the LSTM layers first with GRU [23], then classical LSTM [22]
and finally AFUA neurons.

0, (6) is a low-pass filter with an infinitely large time constant,
and hj(t) does not change (this is equivalent to h〈t〉

j = h〈t−1〉
j in

discrete time). For zj(t) = 1, (6) is a low-pass filter with a time
constant of τ = ∆T . Since the ∆T time step is small relative
to the GRU’s dynamics, a time constant of τ = ∆T produces
hj(t) ≈ h̃j(t) (equivalent to h〈t〉

j = h̃〈t〉
j in discrete time).

Various studies [13], [24], [25], [26] have found the reset gate
unnecessary with slow-changing signals, and for event detection.
As these scenarios describe our eating detection application, we
can discard the reset gate.

Finally, if we translate the origins [27] of both hj(t) and
h̃j(t), then we can replace the tanh with a saturating function
that has a range of (0, 1). Such a saturating function can easily
be implemented in analog circuitry, by taking advantage of the
unidirectional nature of a transistor’s drain-source current. We
replace both the tanh and the σ with the following saturating
function,

f(y) =
max(y, 0)2

1 + max(y, 0)2
, (7)

translate the origin and discard the reset gate to arrive at the
Adaptive Filter Unit for Analog LSTM (AFUA):

zj = f([Wzx]j + [Uz(h− 1) + bz]j) (8)

h̃j = f([Wx]j + [U(h− 1) + b]j) (9)

τ

zj

dhj

dt
= 2h̃j − hj , (10)

where [·]j is the j’th element of the vector. Also,x is the input, hj

is the hidden state and h̃j is the candidate state. The variable τ is
the nominal time constant, while zj controls the state update rate
in (10). Wz, Uz, W, U are learnable weight matrices, while
bz, b are learnable bias vectors. Simulation results (Fig. 3) for a
multi-class machine learning task show that the AFUA performs
with a comparable level of accuracy as the GRU and classical
LSTM.

Fig. 4. High level architecture of the AFUA neural network, which has a two-
dimensional input feature vector, x = [x0, x1]T. The network keeps a memory
of past inputs by feeding back its hidden states, h0, h1, to the vector matrix
multiplier (VMM). The persistence of the network’s memory depends on the
time constants, z0, z1, of the adaptive low pass filters in the ‘update’ block.
Finally, the ‘activation’ block provides saturating nonlinearities described by
(7).

III. ANALOG LSTM CIRCUIT IMPLEMENTATION

Fig. 4 shows the high-level block diagram of the AFUA neural
network. It comprises two AFUA cells (with corresponding hid-
den statesh0 andh1), and it accepts two inputs,x0 andx1. Unlike
previous LSTMs [14], [15], [16], [17], [18], the AFUA net-
work contains no digital-to-analog converters, analog-to-digital
converters, operational amplifiers or four-quadrant multipliers.
Avoiding these power-consumptive components is what makes
the AFUA implementation so efficient. Following are the circuit
implementation details of the AFUA.

A. Dimensionalization

To realize the AFUA (8), (9), (10) and (7) as an analog circuit,
we first ‘dimensionalize’ each variable and implement it as the
ratio of a time-varying current and a fixed unit current, Iunit
[30], [31]. For instance, we represent the update gate variable,
zj , as Iz/Iunit.

B. Activation Function

The (7) function is implemented as the current-starved current
mirror shown in Fig. 5. Kirchhoff’s Current Law applied to the
source of transistor M3 gives

Iout = I3 = Iunit − I4. (11)

The transistors are all sized equally, meaning that, from
Kirchhoff’s Voltage Law, the gate source voltage of transistor
M3 is

VGS3 = 2VGS1 + VGS4 − 2VGSa, (12)

where we have assumed that the body effect in M2 and Mb

is negligible. If we operate the transistors in the subthreshold
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Fig. 5. Activation function circuit schematic. A version of the input signal, Iin,
is reflected as current Iout. The tail bias current source of the M3-M4 differential
pair limits the output current to Iout < Iunit. Also, the one-sidedness of
the nMOS drain current limits Iout to positive values only. In summary, the
activation function circuit produces 0A ≤ Iout < Iunit.

Fig. 6. Activation function transfer curve. Chip measurements of the Fig. 5
circuit closely match the theoretically-predicted behavior of (15) for Iunit =
10.5 nA. The saturating behavior is analogous to that of the original GRU’s
sigmoid.

region, then (12) implies

Iout = I3 =
I4I21
I2unit

. (13)

Combining (11) and (13) gives us

Iout =
IunitI21

I2unit + I21
. (14)

Now, the current flowing through a diode-connected nMOS is
unidirectional, meaning I1 = max(Iin, 0), and we can write

Iout = Iunit ·
max(Iin, 0)2

I2unit +max(Iin, 0)2
, (15)

which is a dimensionalized analog of (7). The measurement
results in Fig. 6 illustrate the nonlinear, saturating behavior of
this activation function.

Fig. 7. State update circuit schematic. The output Ih is a low-pass-filtered
version of the input, 2Ih̃. The filter’s time constant is inversely proportional to
the value of the current Iz . So, large values of Iz increase the rate at which Ih
updates to 2Ih̃, while small values of Iz slow down this process.

Fig. 8. State update circuit response. Chip measurements of the Fig. 7 circuit
show that the output, Ih follows the input, Ih̃ at a rate that is determined by the
value of current Iz .

C. State Update

The AFUA state update, (10), is implemented as the adaptive
filter shown in Fig. 7. The currents Ih, Ih̃ and Iz represent
the hidden state hj , the candidate state h̃j and the update gate,
zj , respectively. From the translinear loop principle, the Fig. 7
circuit’s dynamics can be written as [30], [32]

CzUT

κIunit︸ ︷︷ ︸
τ

Iunit
Iz

dIh
dt

= 2Ih̃ − Ih, (16)

where κ is the body-effect coefficient and UT is the thermal
voltage [33]. Just as zj does for hj in (10), Iz controls the update
speed of Ih (see Fig. 8).

D. Vector Matrix Multiplication

Fig. 9 depicts the components of our vector-matrix multipli-
cation (VMM) block. These are the soma and synapse circuits
that are common in the analog neuromorphic literature [34].
Crucially, the soma-synapse architecture is current-in, current-
out. This means that, unlike other approaches for implementing
GRU and LSTM networks [15], [16], [17], the VMM does
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Fig. 9. Vector matrix multiplier circuit components. (a) The soma is as a
current-mode buffer. (b) The synapse is a programmable current mirror, with
gain stored in registers wsgn, w0, w1. These represent the neural network’s
3-bit quantized learned weights.

not need power-consumptive operational amplifiers to convert
signals between the current and voltage domains.

IV. ANALOG LSTM CIRCUIT ANALYSIS

The following subsections address various practical aspects
of an actual AFUA implementation.

A. Current Consumption

Since the activation function, (7), has a range of (0, 1), the zj
and h̃j variables are likewise limited to (0, 1). Also, from (10),hj

spans (0, 2). This means that all update gate and candidate state
currents have a maximum value of Iunit, while the hidden state
currents have a maximum value of 2Iunit. With this information,
we can calculate upper-bounds on the current consumption of
each circuit component.

1) Activation Function: Not counting the input current that
is supplied by the VMM, Fig. 5 shows that the only current
consumed by the activation function block is the differential-pair
tail current of Iunit. There are two activation functions per AFUA
cell (one each for zj and h̃j). So, for an m-unit AFUA layer, the
activation function blocks draw a total current of m× 2Iunit.

2) State Update: The total current flowing through the four
branches of the state update circuit (Fig. 7) is 2Ĩh + 2Iz + Ih,
which has a worst-case value of 6Iunit. For our m-unit AFUA
network, the state update circuits consume at most m× 6Iunit.

3) VMM Soma: The soma is a current-mode buffer that drives
a differential signal onto each row of the VMM (see Fig. 9). For
the somas on the input and bias rows, the maximum current
consumption is 2Iunit. The somas driving the hidden state rows
consume at most 4Iunit each. So, with n inputs, m hidden states

and one bias row, the somas will consume a maximum total
current of (n+ 2m+ 1)× 2Iunit.

4) VMM Core: As depicted in Fig. 9, each multiplier element
in the VMM core comprises a number of current sources that
are switched on or off, depending on the values of the weight
bits (wsgn, w0, w1). At worst, all current sources are switched
on, in which case the VMM elements that process state variables
each consume 6Iunit, while those that process input variables or
biases each consume 3Iunit. The maximum current draw of each
VMM column for an n-input AFUA layer with m hidden states
is therefore (n+ 2m+ 1)× 3Iunit. There are 2m columns,
to give a total maximum VMM core current consumption of
m(n+ 2m+ 1)× 6Iunit.

5) Total Current Consumption: From the previous subsec-
tions, we conclude that the worst-case total current consumption
of an n-input AFUA layer with m hidden states is

Itot ≤ (m(14 + 6(n+ 2m))︸ ︷︷ ︸
core

+4m+ 2n+ 2︸ ︷︷ ︸
VMMsoma

)× Iunit, (17)

where ‘core’ includes the activation function, VMM core and
state update current consumption. The VMM soma is peripheral
to the AFUA’s operation and represents overhead cost. For
instance, a 16-input, 10-unit AFUA layer would spend 3% of
its power budget as overhead.

Empirically, we found that the average current consumption
of some of the AFUA blocks is significantly lower than their
estimated worst-case values. In particular, the VMM consumes
only 48Iunit on average. This leads to an average AFUA total
current consumption of 62Iunit. The specific choice of Iunit
depends on the desired operating speed, as we discuss in the
following subsection.

B. Estimated Power Efficiency

The power efficiency of neural networks is conventionally
measured in operations per Watt. But this metric does not apply
directly to a system like the AFUA, since it executes all of
its operations continuously and simultaneously. However, we
can estimate the AFUA’s power efficiency by considering the
performance of an equivalent discrete time system.

To arrive at the discrete-form AFUA unit, we first replace
the state variables of (8), (9) and (10) with their discrete-time
counterparts. This includes the discretization dhj/dt = (h〈t〉

j −
h〈t−1〉
j )/∆T , where ∆T is the sampling period. Then, we set

τ = ∆T to produce the following expression.

zj = f([Wzx]j + [Uz(h− 1) + bz]j)

h̃〈t〉
j = f([Wx]j + [U(h〈t−1〉−1) + b]j)

h〈t〉
j = zj2h̃

〈t〉
j − (1− zj)h

〈t−1〉
j . (18)

For our application, W,Wz are 2× 2 matrices, U,Uz are
1× 2 vectors and zj are scalars. So, each discretized AFUA
unit executes 14 multiply operations per time step. Also, there
are 2 divisions due to the two activation functions (see (7)).
Not counting additions and subtractions, each discretized AFUA
unit executes 16 operations per time step, to make for a total
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Fig. 10. Monte Carlo analysis performed for 250 runs, including mismatch
and process variation, as well as power supply voltage and temperature corners
of {1.6V, 2V } and {0 ◦C, 35 ◦C}, respectively. Nominal power supply voltage
and temperature are 1.8V , 27 ◦C. Median accuracy is 90%.

of 32 operations/step performed by the network. Assuming the
sampling period of ∆T = 2 ms used in our previous eating
detection systems [7], [12], this implies the AFUA performs
the equivalent of 16,000 operations per second.

Now, setting τ = ∆T = 2 ms requires a unit current of

Iunit =
CzUT

κτ
= 500 · CzUT

κ
, (19)

where Cz = 57 fF is the integrating capacitor of the translinear
loop filter, UT = 26 mV at room temperature and κ ≈ 0.42.
This gives Iunit = 1.8 pA. With a total current consumption of
62Iunit, a voltage supply of 1.8 V and 16 K operations per sec-
ond, the AFUA’s equivalent operations per Watt is 76 TOps/W.

C. Mismatch

Due to random variations in doping and geometry, transis-
tors that are nominally identical will exhibit mismatch when
fabricated in a physical ASIC. To understand the effect of
mismatch and other non-idealities on the AFUA neural net-
work’s performance, we performed Monte Carlo analyses with
foundry-provided manufacturing and test data. The Monte Carlo
analyses included mismatch and process variation, as well as
power supply voltage and temperature corners of {1.6V, 2V }
and {0 ◦C, 35 ◦C}, respectively.

Fig. 10 shows the variation in classification accuracy for 250
Monte Carlo runs of one implementation of the AFUA neural
network. The median accuracy across all runs is 0.90. Most of
the variation in accuracy is due to mismatch, and the AFUA
neural network is largely robust to temperature, voltage and
process variation. The neural network is also unaffected by
circuit noise (this is a direct result of the network’s ability to
generalize). To mitigate the effect of mismatch, we can use larger
transistors [35], calibrate the network’s learning algorithm for
each individual chip [34], or incorporate mismatch data into a
fault-tolerant learning algorithm [36].

Fig. 11. Left panel: a contact microphone was used to collect acoustic data
from the mastoid bone as study participants performed various eating and non-
eating tasks [6]. Right panel: prototype of the complete wearable device that we
are developing for dietary monitoring [7].

V. EXPERIMENTAL METHODS

A. Data Collection

Training and testing data was collected from study volun-
teers in a laboratory setting. All aspects of the study protocol
were reviewed and approved by the Dartmouth College Institu-
tional Review Board (Committee for the Protection of Human
Subjects-Dartmouth; Protocol Number: 00030005).

The data used for this study was previously collected in a
controlled laboratory setting from 20 participants (8 females,
12 males; aged 21–30) that were instructed to perform both
eating and non-eating-related activities. During these activities,
a contact microphone (see Fig. 11) was secured behind the ear
with a headband, to measure any acoustic signals present at the
tip of the mastoid bone [6]. The output of the contact microphone
was digitized and stored using a 20 kSa/s, 24-bit data acquisition
device (DAQ).

Participants were asked to eat a variety of foods—including
carrots, protein bars, crackers, canned fruit, instant food, and
yogurt—for at least 2 minutes per food type. This resulted in a
4 h total eating dataset. Non-eating activities included talking
and silence for 5 minutes each and then coughing, laughing,
drinking water, sniffling, and deep breathing for 24 seconds each.
This resulted in 4 hours total of non-eating data. Each activity
occurred separately and was classified based on activity type as
eating or non-eating.

We down-sampled the DAQ data to 500 Hz and applied a high
pass filter with a 20 Hz cutoff frequency to attenuate noise. We
segmented the positive class data (chewing), and negative class
data (not chewing) into 24-second windows with no overlap. The
positive and negative class data were labelled with the one-hot
encoding (2, 0) and (0, 2), respectively. Finally, we extracted the
ZCR-RMS and ZCR-ZCR features of the windows to produce 2-
dimensional input vectors to be processed by the AFUA network.

B. Neural Network Training

For training, the AFUA neural network was implemented in
Python, using a custom layer defined by the discretized system
of (18). Chip-specific parameters were extracted for each neuron
and incorporated into the custom layers. The AFUA network
was trained and validated on the laboratory data (train/valid/test
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Fig. 12. Accuracy and loss training graphs for discretized AFUA neural
network. We performed training in Python using the TensorFlow Keras v2.0
package. Validation set performance tracked that of the training set, indicating
good generalization. The learned weights were quantized and programmed onto
the AFUA ASIC’s on-chip registers.

Fig. 13. Die photo of the AFUA ASIC, implemented in a 0.18µm CMOS
process. The synapse circuits (labelled ‘VMM core’) consume most of the
200µm ×280µ m circuit area.

split: 68/12/20) using the TensorFlow Keras v2.0 package.
Training was performed with the ADAM optimizer [37] and
a weighted binary cross-entropy loss function to learn full-
precision weights. Since the training data had a much higher
sampling rate (500 Sa/s) than the bandwidth of the acoustic
signals of interest (20 Hz), there was negligible information lost
in the training process.

Python training was followed by a quantization step that
converted the full-precision weights to signed 3-bit values
(0,±1,±2,±3). An alternative approach would have been to
directly incorporate the quantization process into the network’s
computational graph [13]. However, we found that such an
approach only slows down training with no improvement in our
network’s classification performance.

C. Chip Measurements

The AFUA was implemented, fabricated and tested as an
integrated circuit in a standard 0.18µm mixed-signal CMOS
process with a 1.8 V power supply. To simplify the measurement
process and associated instrumentation, the ASIC I/O infrastruc-
ture includes current buffers that scale input currents by 1/100
and that multiply output currents by 100.

Fig. 14. AFUA chip measurement response to different input patterns
(Ix1, Ix0) taken from the test dataset. Ix0 is the output of the cascade of an
RMS block and ZCR block. Ix1 is the output of the cascade of two ZCR blocks.
The circuit’s class prediction is encoded as output currents (Ih1, Ih0).

The AFUA neural network was programmed by storing the
3-bit version of each learned weight onto its corresponding on-
chip register in the VMM array.

The network was then evaluated on the test dataset. Specif-
ically, each 24-second long window of 2-dimensional feature
vectors from the test dataset was dimensionalized and scaled to
100× Iunit and input to the ASIC with an arbitrary waveform
generator. We set Iunit ≈ 10 nA with an off-chip resistor. Ac-
cording to (19), this Iunit creates a time constant of τ = 0.36µs,
allowing for faster-than-real-time chip measurements—an im-
portant consideration, given the large amount of test data to be
processed.

Output currents Ih0, Ih1 were each measured from the voltage
drop across an off-chip sense resistor. The ASIC’s steady-state
response was then taken as the classification decision. An output
value of (Ih1, Ih0) = (2Iunit, 0)means that the circuit classified
the input as eating, while (Ih1, Ih0) = (0, 2Iunit) corresponds
to non-eating. From these measurements, we calculated the
algorithm’s test accuracy, loss, precision, recall, and F1-score.

VI. RESULTS AND DISCUSSION

A. Classification Performance

Fig. 14 shows the AFUA chip’s typical response to input data.
The input currents Ix1, Ix0 represent the ZCR-RMS and ZCR-
ZCR features extracted from the contact microphone signal.
Inputting a stream of Ix1, Ix0 patterns produces output currents
Ih1, Ih0, which represent the hidden states of the AFUA neural
network.

According to our encoding scheme, (Ih1, Ih0) = (2Iunit, 0)
means that the circuit classified the input as chewing, while
(Ih1, Ih0) = (0, 2Iunit) corresponds to a prediction of not chew-
ing. But the presence of noise and circuit non-ideality produces
some ambiguity in the encoding: some AFUA output patterns
can be interpreted as either chewing or not chewing, depend-
ing on the choice of threshold used to distinguish between
0A and 2Iunit. Fig. 15 is the receiver operating characteristic
curve (ROC) produced by varying this threshold current. The
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TABLE II
COMPARISON BETWEEN PROPOSED EATING DETECTION SYSTEM AND PREVIOUS SOLUTIONS. THREE OF THE CLASSIFICATION ALGORITHMS [4], [5], [6] WERE

IMPLEMENTED OFFLINE; SINCE THESE ARE NOT EMBEDDED SOLUTIONS, THEIR POWER CONSUMPTION IS NOT REPORTED

Fig. 15. Receiver operating characteristic curve (ROC) from AFUA chip mea-
surements. These results were produced from repeated AFUA chip measurement
responses to 1.6 hours of previously-unseen test data. Circuit noise produces
slightly different performance from one measurement to another, with the area
under ROC (AUROC) ranging from 0.95 to 0.99 (average AUROC=0.97). The
highlighted point corresponds to a sensitivity of 0.91 and a specificity of 0.96.

highlighted point on the ROC is a representative operating
point, where the classifier produced a sensitivity of 0.91 and
a specificity of 0.96. This corresponds to a false alarm rate of
(1−specificity) = 0.039.

B. System-Level Considerations

In this section, we consider the impact of using the AFUA
neural network in a complete eating event detection system.
To process a 500 Hz signal, the ZCR and RMS feature extrac-
tion blocks consume a total of 0.68µW [20]. Also, the AFUA
network consumes 1.1µW, assuming Iunit = 10 nA. Finally, a
microcontroller from the MSP430x series (Texas Instruments
Inc., Dallas, TX) running at 1MHz consumes 180µW when
active and 0.72µW when in standby mode [40].

The feature extraction and AFUA circuitry are always on,
while the microcontroller remains in standby mode until a
potential chewing event is detected. The fraction of time the
microcontroller is in the active mode depends on how often the
user eats, as well as the sensitivity and specificity of the AFUA
network. Assuming the user spends 6% of the day eating [39],
then, using the classifier operating point highlighted in Fig. 15,
the fraction of time that the microcontroller is active is

ACTIVE = EAT × SENS + (1− SPEC)× (1− EAT)

= 0.06× 0.91 + (1− 0.96)× (1− 0.06)

= 0.09. (20)

Fig. 16. Power consumption of eating detection system. The feature extraction
and AFUA circuitry continuously consume 1.8µW of power. The microcon-
troller is active for 9% of the time, during which it consumes 180µW of power.
For the remaining 91% of the time, the microcontoller consumes 0.72µW while
in standby mode. On average (red dashed line), the whole system consumes an
estimated 18.8µW.

So, the microcontroller consumes an average of 180µW ×
0.09 + 0.72µW × (1− 0.09) = 16.9µW. As Fig. 16 shows,
the average power consumption of the complete AFUA-based
eating detection system is 18.8µW.

Table II compares our work to other recent eating detection
solutions. The different approaches all yield generally the same
level of classification accuracy, but our work differs in one
critical aspect: while others depend on offline processing, or
on tens of milliWatts of power to operate, our approach only
requires an estimated 18.8µW.

C. Analog Versus Digital LSTM

The AFUA neural network has a total power consumption
of 1.1µW. Unlike a digital LSTM implementation, the AFUA
network is an analog circuit and does not require a front-end
ADC. If we attempted to implement the system with a digital
LSTM [41], [42], then it would require a 12-bit, 500 Sa/s front-
end ADC [7], [43] and this ADC alone would consume over
3µW of power [44]. Note, the ADC would itself require an
ADC driver, which typically consumes even more power than
the ADC [45]; any power efficiency benefits of a digital LSTM
are overwhelmed by the power demands of the ADC and ADC
driver.

VII. CONCLUSION

We have introduced the AFUA—an adaptive filter unit for
analog long short-term memory—as part of an eating event
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detection system. Measurement results of the AFUA imple-
mented in a 0.18 µm CMOS technology showed that it can
identify chewing events at a 24-second time resolution with a
recall of 91% and an F1-score of 94%, while consuming 1.1µW
of power. The AFUA precludes the need for an analog-to-digital
converter, and it also prevents a downstream microcontroller
from unnecessarily processing irrelevant data. If a signal pro-
cessing system were built around the AFUA for detecting eating
episodes (that is, meals and snacks), then the whole system
would consume less than 20µW of power. This opens up the
possibility of unobtrusive, batteryless wearable devices that can
be used for long-term monitoring of dietary habits.

ACKNOWLEDGMENT

The views and conclusions contained in this document are
those of the authors and do not necessarily represent the official
policies, either expressed or implied, of the sponsors.

REFERENCES

[1] K. Kang, “Nutritional counseling for obese children with obesity-related
metabolic abnormalities in Korea,” Pediatr. Gastroenterol. Hepatol. Nutr.,
vol. 20, pp. 71–78, 2017.

[2] L. O’Connor, M. Lentjes, R. Luben, K. Khaw, N. Wareham, and N.
Forouhi, “Dietary dairy product intake and incident type 2 diabetes: A
prospective study using dietary data from a 7-day food diary,” Diabetolo-
gia, vol. 57, pp. 909–917, 2014.

[3] R. Turton et al., “To go or not to go: A proof of concept study testing food-
specific inhibition training for women with eating and weight disorders,”
Eur. Eating Disord. Rev., vol. 26, pp. 11–21, 2018.

[4] A. Bedri et al., “EarBit: Using wearable sensors to detect eating episodes in
unconstrained environments,” in Proc. ACM Interactive, Mobile, Wearable
Ubiquitous Technol., 2017, vol. 1, pp. 1–20.

[5] M. Farooq and E. Sazonov, “Accelerometer-based detection of food intake
in free-living individuals,” IEEE Sensors J., vol. 18, no. 9, pp. 3752–3758,
May 2018.

[6] S. Bi et al., “Toward a wearable sensor for eating detection,” in Proc.
Workshop Wearable Syst. Appl., 2017, pp. 17–22.

[7] S. Bi et al., “Auracle: Detecting eating episodes with an ear-mounted
sensor,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol.,
2018, vol. 2, pp. 1–27.

[8] A. Canhoto and S. Arp, “Exploring the factors that support adoption and
sustained use of health and fitness wearables,” J. Marketing Manage.,
vol. 33, pp. 32–60, 2017.

[9] Y. Gao, H. Li, and Y. Luo, “An empirical study of wearable technology
acceptance in healthcare,” Ind. Manage. Data Syst., vol. 115, no. 9,
pp. 1704–1723, 2015.

[10] L. Dunne et al., “The social comfort of wearable technology and gestural
interaction,” in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
2014, pp. 4159–4162.

[11] B. Hensel, G. Demiris, and K. Courtney, “Defining obtrusiveness in home
telehealth technologies: A conceptual framework,” J. Amer. Med. Inform.,
Assoc., vol. 13, pp. 428–431, 2006.

[12] M. Nyamukuru and K. Odame, “Tiny Eats: Eating detection on a micro-
controller,” in Proc. IEEE 2nd Workshop Mach. Learn. Edge Sensor Syst.,
2020, pp. 19–23.

[13] J. Amoh and K. Odame, “An optimized recurrent unit for ultra-low-power
keyword spotting,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous
Technol., 2019, vol. 3, pp. 1–17.

[14] I. Jordan and I. Park, “Birhythmic analog circuit maze: A nonlinear
neurostimulation testbed,” Entropy, vol. 22, 2020, Art. no. 537.

[15] K. Adam, K. Smagulova, and A. James, “Memristive LSTM network
hardware architecture for time-series predictive modeling problems,” in
Proc. IEEE Asia Pacific Conf. Circuits Syst., 2018, pp. 459–462.

[16] O. Krestinskaya, K. Salama, and A. James, “Learning in memristive neural
network architectures using analog backpropagation circuits,” IEEE Trans.
Circuits Syst. I: Regular Papers, vol. 66, no. 2, pp. 719–732, Feb. 2019.

[17] J. Han, H. Liu, M. Wang, Z. Li, and Y. Zhang, “ERA-LSTM: An efficient
ReRAM-based architecture for long short-term memory,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1328–1342, Jun. 2020.

[18] Z. Zhao, A. Srivastava, L. Peng, and Q. Chen, “Long short-term memory
network design for analog computing,” ACM J. Emerg. Technol. Comput.
Syst., vol. 15, pp. 1–27, 2019.

[19] Q. Li et al., “NS-FDN: Near-sensor processing architecture of feature-
configurable distributed network for beyond-real-time always-on keyword
spotting,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 68, no. 5,
pp. 1892–1905, May 2021.

[20] M. Baker, S. Zhak, and R. Sarpeshkar, “A micropower envelope detector
for audio applications [hearing aid applications],” in Proc. Int. Symp.
Circuits Syst., 2003, pp. V1–V4.

[21] R. Sarpeshkar, M. Baker, C. Salthouse, J. Sit, L. Turicchia, and S. Zhak,
“An analog bionic ear processor with zero-crossing detection,” in Proc.
IEEE Int. Dig. Techn. Papers Solid-State Circuits Conf., 2005, pp. 78–79.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735–1780, 1997.

[23] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” in Proc. Conf. Empirical
Methods Natural Lang. Process. (EMNLP), Oct. 2014, pp. 1724–1734.

[24] G. Zhou, J. Wu, C. Zhang, and Z. Zhou, “Minimal gated unit for recurrent
neural networks,” Int. J. Automat. Comput., vol. 13, pp. 226–234, 2016.

[25] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Improving speech
recognition by revising gated recurrent units,” in Proc. INTERSPEECH,
2017, pp. 1308–1312.

[26] M. Ravanelli and Y. Bengio, “Speaker recognition from raw waveform with
sincnet,” in Proc. IEEE Spoken Lang. Technol. Workshop, 2018, pp. 1021–
1028.

[27] S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering. Boca Raton, FL, USA: CRC Press,
2018.

[28] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018, arXiv:1804.03209.

[29] K. Odame and M. Nyamukuru, “Analog LSTM for keyword spotting,” in
Proc. IEEE 4th Int. Conf. Artif. Intell. Circuits Syst., 2022, pp. 375–378.

[30] K. Odame and B. Minch, “The translinear principle: A general framework
for implementing chaotic oscillators,” Int. J. Bifurcation Chaos, vol. 15,
pp. 2559–2568, 2005.

[31] K. Odame and B. Minch, “Implementing the Lorenz oscillator with
translinear elements,” Analog Integr. Circuits Signal Process., vol. 59,
pp. 31–41, 2009.

[32] J. Mulder, W. Serdijn, A. Woerd, and A. V. Roermund, “Dynamic translin-
ear RMS-DC converter,” Electron. Lett., vol. 32, pp. 2067–2068, 1996.

[33] C. Enz, F. Krummenacher, and E. Vittoz, “An analytical MOS transistor
model valid in all regions of operation and dedicated to low-voltage and
low-current applications,” Analog Integr. Circuits Signal Process., vol. 8,
pp. 83–114, 1995.

[34] J. Binas, D. Neil, G. Indiveri, S. Liu, and M. Pfeiffer, “Precise deep neural
network computation on imprecise low-power analog hardware,” 2016,
arXiv:1606.07786.

[35] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. B. G. Welbers, “Matching
properties of MOS transistors,” IEEE J. Solid-state Circuits, vol. 24, no. 5,
pp. 1433–1439, Oct. 1989.

[36] A. Orgenci, G. Dundar, and S. Balkur, “Fault-tolerant training of neural
networks in the presence of MOS transistor mismatches,” IEEE Trans.
Circuits Syst. II: Analog Digit. Signal Process., vol. 48, no. 3, pp. 272–281,
Mar. 2001.

[37] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[38] A. Bedri, D. Li, R. Khurana, K. Bhuwalka, and M. G. Fitbyte, “Automatic
diet monitoring in unconstrained situations using multimodal sensing on
eyeglasses,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2020, pp. 1–
12.

[39] J. Stimpson, B. Langellier, and F. Wilson, “Peer reviewed: Time spent
eating, by immigrant status, race/ethnicity, and length of residence in the
United States,” Preventing Chronic Dis., vol. 17, 2020, Art. no. 200122.

[40] “MSP430FR596x, MSP430FR594x mixed-signal microcontrollers
datasheet,” Rev. G, Texas Instruments, Dallas, TX, Sep. 2020.

[41] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 DNPU: An 8.1 TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural net-
works,” in Proc. IEEE Int. Solid-State Circuits Conf., 2017, pp. 240–241.

[42] J. Giraldo and M. Verhelst, “Laika: A 5uW programmable LSTM accel-
erator for always-on keyword spotting in 65 nm CMOS,” in Proc. IEEE
44th Eur. Solid State Circuits Conf., 2018, pp. 166–169.

[43] “CC2640R2F Datasheet,” Rev. C, Texas Instruments, Dallas, TX,
Sep. 2020.

[44] S. Song et al., “A 769 µW battery-powered single-chip SoC with BLE for
multi-modal vital sign monitoring health patches,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 6, pp. 1506–1517, Dec. 2019.

Authorized licensed use limited to: Dartmouth College Library. Downloaded on October 13,2023 at 20:15:01 UTC from IEEE Xplore.  Restrictions apply. 



ODAME et al.: ANALOG GATED RECURRENT UNIT NEURAL NETWORK 1115

[45] M. Takhti and K. A. Odame, “A power adaptive, 1.22-pW/Hz, 10-MHz
read-out front-end for bio-impedance measurement,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 4, pp. 725–734, Aug. 2019.

Kofi Odame (Senior Member, IEEE) is currently an
Associate Professor of electrical engineering with the
Thayer School of Engineering, Dartmouth College,
Hanover, NH, USA. His primary research interests
include analog integrated circuits for nonlinear signal
processing. This work has applications in low-power
electronics for implantable and wearable biomedical
devices, as well as in autonomous sensor systems.

Maria Nyamukuru (Student Member, IEEE) is cur-
rently working toward the Ph.D. with the Thayer
School of Engineering, Dartmouth College, Hanover,
NH, USA. Her research interests include design, op-
timization and implementation of deep learning algo-
rithms in resource constrained environments, with a
focus on biomedical applications.

Mohsen Shahghasemi (Student Member, IEEE) re-
ceived the B.Sc. degree in electronics engineering
from the University of Zanjan, Zanjan, Iran, in 2010,
and the M.Sc. degree in electronics engineering (mi-
croelectronics) from the Amirkabir University of
Technology (Tehran Polytechnic), Tehran, Iran, in
2013. From 2017 to 2022, he was with Dartmouth
College, Hanover, NH, USA, where he conducted
Ph.D. research on circuit and system design for
electrical impedance tomography. He is currently an
Analog/Mixed-Signal Design Engineer with Apple
Inc. (Cupertino, CA).

Shengjie Bi received the B.Sc. degree in electronics
engineering from the University of Electronics Sci-
ence and Technology of China, Chengdu, China, in
2014, and the M.Sc. degree in electrical engineering
from the University of California, Los Angeles, Los
Angeles, CA, USA, in 2016, and the Ph.D. degree in
computer science from Dartmouth College, Hanover,
NH, USA, in 2021 for work on wearable devices
for automatic dietary monitoring. He is currently a
Research Scientist with Meta Platforms, Inc. (Menlo
Park, CA).

David Kotz (Fellow, IEEE) received the A.B. degree
in computer science and physics from Dartmouth
College, Hanover, NH, USA, in 1986, and the Ph.D.
degree in computer science from Duke University,
Durham, NC, USA, in 1991. He is currently a Provost,
and a Pat and John Rosenwald Professor with the De-
partment of Computer Science, Dartmouth College.
In 2019 he was a Visiting Professor with ETH Zürich,
Zürich, Switzerland, His research interests include
security and privacy in smart homes, and wireless
networks. He is an ACM Fellow, a 2008 Fulbright

Fellow to India, and an elected Member of Phi Beta Kappa.

Authorized licensed use limited to: Dartmouth College Library. Downloaded on October 13,2023 at 20:15:01 UTC from IEEE Xplore.  Restrictions apply. 


