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Abstract 
This article proposes a novel causal discovery and inference 
method called GrIVET for a Gaussian directed acyclic graph with 
unmeasured confounders. GrIVET consists of an order-based 
causal discovery method and a likelihood-based inferential 
procedure. For causal discovery, we generalize the existing 
peeling algorithm to estimate the ancestral relations and 
candidate instruments in the presence of hidden confounders. 
Based on this, we propose a new procedure for instrumental 
variable estimation of each direct effect by separating it from any 
mediation effects. For inference, we develop a new likelihood ratio 
test of multiple causal effects that is able to account for the 
unmeasured confounders. Theoretically, we prove that the 
proposed method has desirable guarantees, including robustness 
to invalid instruments and uncertain interventions, estimation 
consistency, low-order polynomial time complexity, and validity of 
asymptotic inference. Numerically, GrIVET performs well and 
compares favorably against state-of-the-art competitors. 
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Furthermore, we demonstrate the utility and effectiveness of the 
proposed method through an application inferring regulatory 
pathways from Alzheimer’s disease gene expression data.  

Keywords: Causal discovery, Gaussian directed acyclic graph, Invalid instrumental 

variables, Uncertain interventions, Simultaneous inference, Gene regulatory network.  

1  Introduction 

Understanding causal relations is part of the foundation of intelligence. A directed 

acyclic graph (DAG) is often used to describe the causal relations among multiple 

interacting units (Pearl, 2009). Unlike classical causal inference tasks where the 

DAG is determined a priori, causal discovery aims to learn a graphical representation 

from data. It is useful for forming data-driven conjectures about the underlying 

mechanism of a complex system, including gene networks (Sachs et al., 2005), 

functional brain networks (Liu et al., 2017), manufacturing pipelines (Kertel 

et al., 2022), and dynamical systems (Li et al., 2020b). In such a situation, 

randomized experiments are usually unethical or infeasible, and unmeasured 

confounders commonly arise in practice. The presence of latent confounders can 

bias the causal effect estimation and even distort causal directions, making causal 

discovery challenging. To treat latent confounders, we use additive interventions as 

instrumental variables (IVs), which are well-developed in conventional causal 

inference (Angrist et al., 1996) yet are less explored in causal discovery of a large-

scale network. In this article, we focus on a Gaussian DAG model with hidden 

confounders and develop methods that integrate the discovery and inference of 

causal relations within the framework of uncertain additive interventions (the targets 

of interventions are unknown).  

Causal discovery has been extensively studied (Zheng et al., 2018; Aragam 

et al., 2019; Gu et al., 2019; Lee and Li, 2022; Zhao et al., 2022; Li et al., 2023b); 

see Drton and Maathuis (2017); Heinze-Deml et al. (2018); Glymour 

et al. (2019); Vowels et al. (2021) for comprehensive reviews. For observational data 

(without external interventions), some methods are able to treat hidden confounding 

by either (a) producing less informative discoveries, like a partial ancestral graph 

(Colombo et al., 2012) rather than a DAG, or (b) employing a certain deconfounding 
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strategy (Frot et al., 2019; Shah et al., 2020) based on the pervasive confounding 

assumption. However, the former may not reveal essential information, such as 

causal directions, while the latter can be inconsistent in low-dimensional situations 

and may not necessarily outperform the naive regression (Grimmer et al., 2020). 

Thus, external interventions are useful to provide more information about causal 

relations while relaxing the requirements on latent confounding.  

As an example of external (additive) interventions, IVs have been well developed in 

conventional causal inference to tackle unmeasured confounding; see 

Lousdal (2018) for a survey. In a classical bivariate setting where the causal 

direction is known, an IV is required to influence the response variable only through 

the cause variable, which is often fragile in practice (Murray, 2006). For instance, 

genetic variants like single nucleotide polymorphisms (SNPs) are used as IVs in 

Mendelian randomization (MR) analysis to discover putative causal genes of 

complex traits, where the IV conditions are commonly violated due to the (horizontal) 

pleiotropy. Remedying these invalid IVs has been the subject of recent work in 

causal inference (Kang et al., 2016; Guo et al., 2018; Windmeijer 

et al., 2019; Burgess et al., 2020). The discussion of IV estimation in graphical 

modeling, however, remains limited. The methods of Oates et al. (2016); Chen 

et al. (2018) estimate the graph given valid IVs, while the work of Li et al. (2023a) 

propose the peeling algorithm to construct the DAG in the case of uncertain 

interventions and invalid IVs. None of these methods permit latent confounding. A 

recent work (Xue and Pan, 2020) discusses causal discovery of a bivariate mixed 

effect graph where confounders and invalid IVs are allowed, but it remains unclear 

how to extend it to a large-scale causal network.  

Moreover, despite the progress in causal discovery, inference about the discovered 

relations is often regarded as a separate task and has received less attention in the 

literature. Notable exceptions include recent advances in graphical modeling 

(Janková and van de Geer, 2018; Li et al., 2020a; Shi et al., 2023; Wang 

et al., 2023) and mediation analysis (Chakrabortty et al., 2018; Shi and Li, 2021; Li 

et al., 2022); however, these methods cannot account for latent confounders. 

Indeed, due to unmeasured confounding, the probability distribution of observed 

variables is no longer locally Markovian with respect to the DAG (Pearl, 2009), 
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rendering these approaches inappropriate. Consequently, there is a pressing need 

for new inference methodologies.  

This article contributes to the following aspects.  

 For modeling, we establish the identifiability conditions for a Gaussian DAG 

with latent confounders utilizing additive interventions. To our knowledge, this 

result is the first of its kind. Importantly, the conditions allow the interventions 

to have unknown and multiple targets, which is suitable for multivariate causal 

analysis (Murray, 2006).  

 For methodology, we develop a novel method named the Graphical 

Instrumental Variable Estimation and Testing (GrIVET), integrating order-

based causal discovery and likelihood-based inference. For causal discovery, 

we estimate the ancestral relations and candidate IVs with a modified peeling 

algorithm to treat unmeasured confounding. On this basis, we propose a 

sequential procedure to estimate each direct effect using IVs, where a 

working response regression is used to separate the direct effect from the 

mediation effects. Regarding inference, we develop a new likelihood ratio test 

of multiple causal effects to account for unmeasured confounders.  

 For theory, we show that GrIVET enjoys desired guarantees. In particular, it 

consistently estimates the DAG structure and causal effects even when some 

interventions do not meet the IV criteria. As for computation, only 

3 2(( | |) lo g ( ) ( ))O p s q n q
     operations are required almost surely, where p 

and q are the numbers of primary and intervention variables, s is sparsity, 

| |  is the size of the ancestral relation set, and n is the sample size. 

Moreover, under the null hypothesis, we establish the convergence of the 

likelihood ratio statistic to the null distribution in high-dimensional situations, 

ensuring the validity of asymptotic inference.  

 The simulation studies and an application to the Alzheimer’s Disease 

Neuroimaging Initiative dataset demonstrate the utility and effectiveness of 

the proposed methods. The implementation of GrIVET is available at 

https://github.com/chunlinli/grivet.  
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The rest of the article is structured as follows. Section 2 introduces a linear structural 

equation model with hidden confounders and establishes its identifiability. Section 3 

presents a novel order-based method for causal discovery and effect estimation. 

Section 4 develops a likelihood ratio test for simultaneous inference of causal 

effects. Section 5 provides theoretical justification of the proposed method. Section 6 

performs simulation studies, followed by an application to infer gene pathways with 

gene expression and SNP data. Finally, Section 7 concludes the article. The 

Appendix contains supporting lemmas, while the Supplementary Materials include 

illustrative examples, technical proofs, and additional simulations.  

2  Causal graphical model with confounders 

2.1  Structural equations with confounders 

We consider a structural equation model with p primary variables 1( , , )pY Y Y  and 

q intervention variables 1( , , )qX X X ,  

, ~ ( , ), C o v ( , ) ,N   U W 0 Σ 0Y Y X ε ε ε X  (1) 

 where p p
U  is a matrix describing the causal influences among Y, q p

W  is a matrix 

representing the interventional effects of X on Y, and ε  is a vector of possibly 

correlated errors. Specifically,  

 The parameter matrix U, which is of primary interest, has a causal 

interpretation in that U 0k j   indicates that Yk is a cause of Yj, denoted by 

k jY Y . Thus, U  represents a directed graph among primary variables. In 

what follows, we will focus on a directed acyclic graph (DAG), where no 

directed cycle is permissible and U  is subject to the acyclicity constraint 

(Zheng et al., 2018; Yuan et al., 2019).  

 The intervention variables X and errors ε  are uncorrelated by 

reparameterization. As a result, W  is associational instead of causal. Here, 

W 0l j   indicates that Xl intervenes on Yj, denoted by l jX Y . As X 

represents external interventions, no directed edge from a primary variable to 

an intervention variable is allowed.  
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 A non-diagonal Σ  indicates the presence of unmeasured confounders. For 

instance,  Φε η e  can be (not uniquely) written as a sum of correlated 

components Φ η  and independent components e so that 

2 2
1D iag ( , , )p   Σ Φ Φ , where r p

Φ  is the matrix of confounding effects, 

~ ( , )r rN


0 Iη  represents r independent confounding sources, and 

2 2
1~ ( , D iag ( , , ))pN  0e  represents p independent errors. Whenever 0jk   

for some distinct (j, k), we have 
1

0
r

jk m j m k
m 

     , implying that some 

confounding variable ηm influences both Yj and Yk.  

As such, ( , )U W  together represents a directed graph of p primary variables and q 

intervention variables, denoted as ( , ; , ) X Y , where { ( , ) : U 0}k jk j   is the 

set of primary variable edges and { ( , ) : W 0}l jl j   is the set of intervention edges. 

In , (a) if k jY Y , then Yk is a parent of Yj, and Yj is a child of Yk, (b) if k jY Y   

(a directed path from Yk to Yj), then Yk is an ancestor of Yj, and Yj is a descendant of 

Yk, and (c) if k m jY Y Y    , then Ym is a mediator of Yk and Yj. In what 

follows, for a graph , denote the parent set of Yj as ( ) { : }k jj k Y Y pa , the 

ancestor set of Yj as ( ) { : }k jj k Y Y  a n , and the intervention set of Yj as 

( ) { : }l jj l X Y in . For (k, j) such that k jY Y  , denote the mediator set as 

( , ) { : }k m jk j m Y Y Y    me .  

2.2  Identifiability and instrumental variables 

The causal parameter matrix U  is generally non-identifiable1 without further 

conditions on the Gaussian errors ε  or the interventions X. Without invoking external 

interventions ( W 0 ), U  can be identified under a certain error-scale assumption 

(Peters and Bühlmann, 2014; Ghoshal and Honorio, 2018; Rajendran et al., 2021), 

which is sensitive to variable scaling such as the common practice of standardizing 

variables (Reisach et al., 2021). To overcome this limitation, interventions are 

introduced to identify the causal parameters. With suitable interventions, U  is 

identifiable if no confounder is present in the model ( Σ  is diagonal) (Oates 

et al., 2016; Chen et al., 2018; Li et al., 2023a). In addition, it is worth mentioning 

that U  can be estimated without intervention if the errors ε  are non-Gaussian 

Acc
ep

ted
 M

an
us

cri
pt



(Shimizu et al., 2006; Zhao et al., 2022); however, such methods are not applicable 

in the case of unmeasured confounding.  

This subsection establishes the identifiability of (1) in the presence of unmeasured 

confounders using uncertain additive interventions (the targets of interventions are 

unknown) as IVs. To proceed, we introduce the notion of IV for our purpose.  

Definition 1. An intervention variable Xl is said to be a valid IV of Yk in  if (IV1) Xl 

intervenes on Yk, namely W 0lk  , and (IV2) Xl does not intervene on any other 

primary variable kY

, namely W 0lk 

  for k k  . Otherwise, Xl is called an invalid IV. 

Denote the valid IV set of Yk as ( ) { : , , }l k l kk l X Y X Y k k


    iv .  

Remark 1. Consider a bivariate case where we are interested in the potential causal 

effect 1 2Y Y . In causal inference literature (Angrist et al., 1996; Kang et al., 2016), a 

valid IV X of Y1 is required to satisfy that (a) X is related to the Y1, referred to as 

relevance, (b) X has no directed edge to Y2, called exclusion, and (c) X is not related 

to unmeasured confounders, called unconfoundedness. In (1), (IV1) is indeed the 

relevance property, (IV2) generalizes the exclusion property for causal discovery, 

and the requirement C o v ( , )  0ε X  corresponds to the unconfoundedness.  

To identify U , two challenges emerge as the confounders arise. First, determining 

causal directions in the graph becomes more challenging. In (1), because of hidden 

confounding, the distribution ( )Y X|  does not admit the causal Markov property 

(Pearl, 2009) according to , that is, Yj is not independent of its non-descendants 

given (\tex t )sc( , )p a jY X . As a result, the existing methods based on this property can 

learn wrong causal directions due to misspecification. To identify causal directions, 

we formalize the concept of unmediated parents to highlight the causal relations that 

are critical in identification.  

Definition 2. A primary variable Yk is an unmediated parent of Yj in  if k jY Y  and 

there is no other directed path from Yk to Yj. In other words, Yk is an unmediated 

parent of Yj if no mediator is between Yk and Yj.  

Another challenge comes from uncertain interventions and invalid IVs. Assigning 

valid IVs for each primary variable can be difficult when the targets of interventions 
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are unknown. Thus, it may be effective to construct a set of candidate IVs (including 

invalid IVs) for each primary variable, on which we estimate the causal parameters 

U . To this end, we define p candidate IV sets, one for each primary variable.  

Definition 3. An intervention variable Xl is said to be a candidate IV of Yk in  if (IV1’) 

Xl intervenes on Yk, and (IV2’) Xl does not intervene on any non-descendant of Yk. 

Denote the candidate IV set of Yk by ( ) { : ,  o n ly  if  ( )}l k l jk l X Y X Y k j   c a a n .  

The candidate IVs of Yk include all valid IVs of Yk, but not vice versa. A candidate IV 

of Yk may be invalid, as it could intervene on descendants of Yk.  

Theorem 1 (Identifiability). Suppose  

(A1) C o v ( )X  is positive definite.  

(A2) {1, , } { }C o v ( , ) 0j l q lY X


X|  whenever Xl intervenes on an unmediated 

parent of Yj.  

(A3) (Majority rule) | ( ) | | ( ) | /2k kiv c a ; 1, ,k p  . 

Then ( , , )U W Σ  in (1) are identifiable in that if ( , , )U W Σ  and ( , , )  U W Σ  encode the 

same probability distribution, then ( , , ) ( , , )   U W Σ U W Σ .  

To our knowledge, Theorem 1 is a new result for Gaussian DAG with hidden 

confounding, establishing the identifiability of all parameters in (1). In fact, if the 

causal parameter U  is identifiable, then so are parameters ,W Σ . Regarding the 

conditions, (A1) states that C o v ( )X  has full rank, which is common in the IV 

literature (Kang et al., 2016; Chen et al., 2018). Note that (A1) permits discrete IV 

variables such as SNPs in data analysis. (A2) requires the interventional effects 

through unmediated parents not to cancel out when an invalid IV has multiple 

targets. (A3) requires valid IVs to dominate invalid ones so that the causal effect can 

be identified in the presence of latent confounders. Such a condition has been used 

in the causal inference literature (Kang et al., 2016; Windmeijer et al., 2019). As 

shown in Supplementary Materials Section 1, when (A3) fails, (1) can be non-

identifiable. By comparison, (A1)–(A2) together with (A4) are used for model 

identification in the absence of unmeasured confounding (Li et al., 2023a).  
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 Each Yk is intervened by at least one valid IV. 

Noting that (A4) is implied by (A3), treating hidden confounding demands stronger 

conditions in view of Theorem 1.  

3  Causal discovery 

This section proposes a novel IV method to learn a DAG with unmeasured 

confounders. First, we introduce the ancestral relation graph (ARG), which, together 

with the candidate IV sets in Section 2.2, constitutes a basis for the proposed 

method.  

Definition 4 (Ancestral relation graph). For a DAG ( , ; , ) X Y , its ancestral 

relation graph is defined as ( , ; , )  
 X Y , where  

( ) { }

( , ) : ( ) , ( , ) : ( ) . { } { }
k j j

k j k j l j l k 

 

   

a n

a n in  

Here,   is a super-DAG of  in that 
  is the set of ancestral relations, 


  is a superset of interventional relations, and   is acyclic. Note that   

defines a partial order for the primary variables Y in that k jY Y  whenever 

( , )k j 
 . Without confounding, U  can be consistently estimated via direct 

regressions according to the known   (Shojaie and Michailidis, 2010), where   

can be recovered by the peeling algorithm (Li et al., 2023a). However, this approach 

no longer applies in the presence of hidden confounders.  

To address this obstacle, Sections 3.1–3.2 modify the peeling algorithm to construct 

the ARG   and the candidate IV sets 1{ ( )} k pk
 

c a , and then Sections 3.3–3.4 

develop a method to estimate U  assuming the ARG and candidate IVs are known.  

3.1  Identification of   and candidate IVs 

In this subsection, we modify the peeling algorithm, originally designed for a model 

without unmeasured confounders (Li et al., 2023a), to uncover   and 1{ ( )} k pk
 

c a  

in the presence of hidden confounders, of which the results can be subsequently 

used as the inputs for identification of U  in Section 3.3. The modified peeling 

Acc
ep

ted
 M

an
us

cri
pt



algorithm essentially requires p regressions to identify the ARG and candidate IVs, 

which is suited for large-scale causal discovery. Moreover, the produced ARG and 

candidate IV sets enjoy desirable statistical properties; see Section 5.  

Let us begin with an observation that (1) can be rewritten as  

1( ) ,
  V I UY X ε  (2) 

 where 1( ) 
 V W I U  and 1

1

V W ( I U ( ) )
p

p
lj lk k j k j k j

k





    U . Intuitively, V 0l j   

implies the dependence of Yj on Xl through a directed path l k jX Y Y   , and 

hence that Xl intervenes on Yj itself (when k = j) or its ancestor Yk (when k j ). In 

cases where Xl intervenes exclusively on one primary variable, the following 

proposition provides insights into the connection between V and  .  

Proposition 1. Suppose Assumptions (A1), (A2), and (A4) are satisfied. There exists 

at least one intervention variable Xl such that V 0lk   and V 0lk 
  for k k   if and 

only if Yk is a leaf node (has no descendant). Moreover, such Xl is a valid IV of Yk in 

.  

Proposition 1 suggests that the leaves and their valid IVs in  can be identified by  

, 0

, 0

, 0
0

, 0
0

 

 

( ) { :  fo r  s o m e  , V 0  a n d  V 0  fo r  a ll }

{ : a rg m a x | V |  fo r s o m e  a rg m in } ,

( ) { : V 0  a n d  V 0  fo r  a ll }

{ : a rg m in  a n d  a rg m a x | V |} ,

l

l

lk lk

lj l
j

lk lk

l l j
j

k l k k

k k l

k l k k

l l k k

















    

  

    

   

V

V

V

V

l e a f

iv

l ( ) .e a f

 (3) 

 After the leaf nodes are learned, we can remove them to obtain a sub-DAG. If Xl is a 

valid IV of a non-leaf Yk in , its validity for Yk is retained in the sub-DAG, implying 

(A4) continues to hold. Moreover, Assumptions (A1)–(A2) are naturally upheld in the 

sub-DAG. Hence, the requirements of Proposition 1 are satisfied in the sub-DAG, 

whose leaf variables and their valid IVs can be learned in the same fashion. As a 

result, we can successively identify and remove (i.e., peel) the leaf nodes from the 

DAG and sub-DAGs. This yields a topological order of primary variables but does not 

recover  .  
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Next, we investigate how V  can be further used to recover   with 1{ ( )} k pk
 

c a . 

Subsequently, we use ( , ; , )    
 X Y  to denote a generic sub-DAG produced 

by peeling, where Y  are the primary variables in   and Y Y  are peeled ones, 

X  are intervention variables on Y ,   is the set of causal relations among Y , 

and   is the set of interventional relations between X  and Y . Then each 

variable in Y  is a non-descendant of each in Y Y . Moreover, ( )l e a f  and 

( ) 
{ ( )}

k
k 

 l e a f
iv  are identified by (3).  

Proposition 2. Suppose Assumptions (A1), (A2), and (A4) are satisfied. Let Yk be a 

leaf node in   and Yj be in Y Y . Then the following statements are true.  

(A) If V 0l j   for all ( )l k iv , we have ( , )k j 
 .  

(B) If Yk is an unmediated parent of Yj, then V 0l j   for all ( )l k iv . 

Proposition 2 outlines a method for identifying edges in   from the leaf variables of 

  to the peeled variables Y Y  by  

{ ( , ) : ( ) ,  a . n d  V 0  fo r  a ll ( )}k j l jk j Y Y l k

 
   Y Yl e a f iv  (4) 

 Specifically, (A) shows that any identified edge must be present in  , so no extra 

edges are identified. Meanwhile, (B) shows that every directed edge from an 

unmediated parent must be correctly discovered. Importantly, the collection of all 

such edges suffices to recover all ancestral relationships, which guarantees that no 

edge in   is overlooked. Upon the identification of  , the candidate IV sets can be 

learned by  

( ) { : ( , )  a n d  ( , ) ,  o n ly  if  ( , ) } , 1 .k l l k l j k j k j k p  
      c a  (5) 

 Consequently, Propositions 1–2 enable the recovery of   and 1{ ( )} k pk
 

c a .  

3.2  Finite-sample estimation of   and candidate IVs 

This subsection implements the modified peeling algorithm delineated in Section 3.1 

to estimate   and 1{ ( )} k pk
 

c a . To proceed, suppose data matrices 

,1 ,( , , )p n n  
 Y Y Y  and ,1 ,( , , )q n n  

 X X X  are given, where , , 1( , ) n
i i i  

Y X  are 
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sampled from (1) independently. We estimate V  by ,1 ,( , , )p  V V V  with sparse 

regressions  

2
, , , 0 j

1

a rg m in ( Y ) s.t .
n

j j i i
i

 



   V X
β

β β  (6) 

 where 1 j q    is tuned by BIC for 1 j p   Moreover, the truncated Lasso 

penalty (TLP) (Shen et al., 2012) is used as the computational surrogate for 0· , 

where TLP is defined as 
1

T L P ( ) m in ( | | / ,1)
r

j
j


 



 β  for 1( , , )r  β , and 0   is a 

hyperparameter in TLP; see Supplementary Materials Section 2 for details. The 

modified peeling algorithm based on Section 3.1 is summarized in Algorithm 1.2  

__________________________________________________________________  

Algorithm 1: Estimation of   and 1{ ( )} k pk
 

c a  

____________________________________________________________________   

Input: Data p n
Y  and q n

X ;  

1 Compute V  via (6);  

2 Initialize , , { ( , ) : V 0}lkl k


    V V ;  

3 Initialize   by , 
 Y Y X X , ,


 
  ;  

4 while Y  is not empty do  

5 Update ( )l e a f  and 
( )

{ ( )}
k

k 
l e a f

iv  via (3);  

6 Update 


 by adding (4);  

7 Update   by removing ( )l e a f  and V  by keeping the columns in Y ; 

8 end  

9 Update { ( , ) :  in  }k jk j Y Y
 

   ;  

10 Update { ( , ) : ( , )  an d  ( , ) }l j l k k j
  

   ;  

11 Update ( )kc a  by (5);  

12 return ,


, and 1{ ( )} k pk
 

c a ; 

_______________________________________  

3.3  Identification of U  

In this subsection, we present a new method for identifying causal effects U , using 

the ARG   and candidate IV sets 1{ ( )} k pk
 

c a  as inputs. Note that 1{ ( )} k pk
 

a n  
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and 
( , )

{ ( , )}
k j

k j 


m e  can be derived from  . Throughout this subsection, the 

subscript  is dropped for brevity and , ,α β γ  denote nuisance parameters in 

regression. Moreover, we assume that ε  and X are independent to simplify the 

derivation; see Lemmas 1–2 in the Appendix for the case with ε  and X being 

uncorrelated.  

  The case with all IVs being valid. 

We begin with a special case of (1) where all IVs are valid, that is, ( ) ( )k kc a iv ; 

1, ,k p  .  

To estimate U , note that U  is supported on  , namely ( , )U U 0 . Here, we 

consider estimating U k j , as well as selecting nonzero U k j  for graph recovery, for 

each ( , )k j 
 , as described in Figure 1 (a).  

To pinpoint the difficulties and motivate our approach, we make the following 

observations. First, regression of Yj on Yk together with covariates ( ) { }( , )j kY Xa n  can 

bias the estimation due to confounder η. Second, in hope of treating confounders 

one might replace Yk with its surrogate ( )( , )k kY Y X| a n  to regress Yj on 

( )( , )k kY Y X| a n  with ( ) { } ( )
( , )cj k k
Y Xa n iv

 being covariates. However, this is also 

problematic. For explanation, note that ( ) { }j ka n  can be partitioned into mediators 

( , )k jm e  and non-mediators  

( , ) ( ) ( ( , ) { } ) .k j j k j k n m a n m e  

In Figure 1 (a), ( )kX iv  can be associated with η given ( ) { } ( , ) ( , )( , )j k k j k jY Y Ya n me n m , 

violating the unconfoundedness of IVs (Remark 1) and causing an estimation bias. 

This is because the mediators ( , )k jY m e  generate additional associations after 

conditioning on them; see the Appendix for technical discussion using the concept of 

d-separation (Pearl, 2009).  

Now, we propose a new method, which eliminates the impact of mediators ( , )k jY m e  by 

introducing the working response ( , ), ( , )j j k j j k jY Y  U Yme me , as depicted in Figure 1 (b). 

Of note, the definition of jY  depends on (k, j), which is dropped for simplicity. As in 

Angrist et al. (1996), we have  
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( , )

( i)

( , ) ( , )
( , ) ( )

( i i)

,

U , U W ,

U ,

( )

( ) ( )

j k j

k j k k j k j k l j l j k j
k k j l k

k j k

Y

Y Y X

Y


 

  

   

 

 

Y X

Y X Y X

γ Z

|

| |

n m

n m n m
n m iv

 (7) 

 where ( , ) ( , ) ( , )( ) ( )
( , ) , ( , ) ( , )c ck k k j k j k jk k

Y Y  Y X Z Y X Y X| n m n m n mc a iv
, equality (i) follows 

from (1), and equality (ii) holds because  ( , ) ,j k j Y X| n m  is a linear combination of 

( , ) ( )
( , )ck j k
Y Xn m iv

 by Lemma 1 in Appendix. Observe that kY  depends on ( )kX iv  while Z 

does not. As a result, the U k j  is identified through the working response regression.  

This approach requires the knowledge of ( , ) ,k j jU me  prior to identifying U k j . Given  , 

we develop a sequential procedure to learn U. First, we identify U k j  for each pair (k, 

j) such that the longest path in   between k and j is equal to d = 1. Then for (k, j) 

such that the longest path in   between k and j is d = 2, the effects of mediators 

( , ) ,k j jU me  are available. Thus, we can identify U k j  in (7). Proceed similarly for 

3, 4 , 5 ,d    until all pairs in   have been identified.  

  The case with invalid IVs. 

In general, ( ) ( )k kc a iv  because of invalid IVs, where ( )kc a  is known but ( )kiv  is 

unknown. Similar to Kang et al. (2016), we have  

( , )

( , ) ( , )
( , ) ( )

( i i i)

( ) ( )

,

U , U W ,

U ,

( )
( ) ( )

j k j

k j k k j k j k lj l j k j
k k j l k

k j k l l
l k k

Y

Y Y X

Y X





 

 



   

  

 



Y X

Y X Y X

γ Z

|

| |

n m

n m n m
n m iv

c a iv

 (8) 

 where ( , ) ( , ) ( )
( , ) , ( , )ck k k j k j k

Y Y Y X Z Y X| n m n m c a
, equality (iii) holds by Lemma 1 in 

Appendix, and W 0l l j    indicates Xl is an invalid IV for Yk. However, since ( )kiv  

has not been identified and kY  depends on ( )kX c a , the representation of (iii) may not 

be unique. When the majority rule (A3) is satisfied by the DAG, the term (iii) admits 

the unique expression as in (8), providing the identification of U k j . This leads to a 

sparse regression for an infinite sample  
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 
2

( ) 0
U , ,
m in U s.t . ,

k j
j k j k kY Y    

β γ
γ Z β X βc a  (9) 

 where 0 | ( ) | /2k  c a  is an integer-valued hyperparameter controlling the sparsity 

of β .  

3.4  Finite-sample estimation of U 

Suppose ( , )p n q n 
Y X  are given. To estimate U k j , noting that kY  is linear in 

( , )( , )k jY Xn m  by Lemma 1, we estimate ,Y k i  by , 1 2, ( ) ,Y k i i k i
 X Yα α n m , where 1 2( , )α α  

solves  

1 2

2
, 1 , 2 ( ), 1 0 2 0 1

,
1

m in Y s.t. + ,( )
n

k i i k i
i






   X Y
α α

α α α αn m  (10) 

 with ν1 being a tuning parameter. Let the final estimate U k j  with ( , )β γ  be the 

solution to the working response regression (provided that ( , ),k j jU me  are available)  

2
,( , ) ,, ( , ) , ( ) ,

U , ,
1

k j 0 0 2

m in Y U Y

s.t . ( U ) + , ,

(( ) )
k j

n

k ik j jj i k j i k j k i i
i

  



   

 

 U Y
β γ

β X γ Z

β γ

me me c a
 (11) 

 where 0 | ( ) | /2k  c a  and 20 | ( , ) | | ( ) |ck j k  n m c a  are tuning parameters. 

Depending on the purpose, ( ·) I ( · 0 )    for graph recovery and ( ·) 0   for effect 

estimation without selection. In (10)–(11), 1 2,   are added to treat possible high-

dimensional situations and the hyperparameters are tuned by BIC. Algorithm 2 

summarizes the procedure. 

 __________________________________________________________________  

Algorithm 2: Estimation of U  

__________________________________________________________________  

Input: Data p n
Y  and q n

X , ARG   and candidate IV sets 1{ ( )} k pk
 

c a ;  

1 Initialize U 0  and 1d  ;  

2 while d   the length of the longest directed path in   do  

3 For ( , )k j 
  so that the length of the longest directed path from Yk to Yj is d, 

estimate U k j  with (10)–(11);  

4 Update 1d d  ;  
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5 end  

6 return U ; 

_______________________________________  

4  Likelihood inference 

This section develops a likelihood ratio test for the presence of multiple directed 

edges. Let { ( , ) : , 1 , }k j k j k j p     be a hypothesized edge set for primary 

variables Y, where ( , )k j   specifies a (hypothesized) directed edge k jY Y  in (1). 

Now consider simultaneous testing of directed edges,  

0 : U 0  fo r a ll ( , )  v e rsu s  : U 0  fo r so m e  ( , ) .k j a k jH k j H k j     (12) 

 The null hypothesis H0 asserts that all hypothesized edges in  are absent in the 

true graph . Rejecting H0 indicates that at least one hypothesized edge in  

presents in .  

  The likelihood ratio. 

Given ( , ; , )  
 X Y , let ( ) ( , )

 U Wθ  encode the coefficient parameters in  , 

where ( , )U U 0  and ( , )W W 0 . As such, the adjacency matrix U  automatically 

meets the acyclicity constraint. Given a random sample , , 1( , ) n
i i i  

Y X , the log-

likelihood is written as (up to an additive constant)  

  
2

1 / 2
, ,

2
1

1
( ( ) , ) lo g d e t( ) ,

2 2

n

i i
i

n
L 

 



    Ω Ω I U Y W X Ωθ  (13) 

 where 1
Ω Σ  is the inverse of Σ  in (1). Then the maximum likelihood estimation 

(MLE) of (1) can be written as  

( , ) ( )
m ax m ax ( ( ), ) .L

 



Ω
Ω

θ
θ  (14) 

 In view of (14), to obtain a likelihood ratio statistic for (12) we need to compute the 

following quantities: (1) a consistent estimate 


 of  , (2) a consistent estimate Ω  

of Ω , and (3) two estimates, 
( 0 )

θ  and 
(1 )

θ , of ( )θ  under H0 and Ha, respectively. 

This leads to the likelihood ratio defined as  
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(1 ) ( 0 )

( , ) ( , ) ,L LΩ Ωθ θ  (15) 

 where   is estimated by Algorithm 1 and Ω  is estimated from the residuals after 

fitting model (1) via Algorithm 2.  

4  Inference subject to acyclicity. 

In classical models, a likelihood ratio of form (15) has a nondegenerate and tractable 

limiting distribution, typically a chi-squared distribution with degrees of freedom | | . 

However, the likelihood ratio for (12) may behave differently from classical ones 

since (15) may be degenerate or intractable, as to be explained.  

First, note that the maximum likelihood subject to a wrong ARG 


  tends to be 

smaller than that subject to the correct  , that is,  

( ) ,( ) ,

m a x m a x ( ( ) , ) m a x ( ( ) , ) ,L L
  







ΩΩ

Ω Ω
θθ

θ θ  

as n    under some regularity conditions for consistency. Thus, we assume 



  in this paragraph. Then 

( 0 )

θ  is the MLE subject to   and U 0 , which is 

equal to the MLE subject to the graph 0 ( , ; , )  
 X Y . Meanwhile, to test 

whether any edge in  exists, 
(1 )

θ  is the MLE subject to an augmented graph 

1 ( , ; , )  
 X Y  with hypothesized edges being added, namely, 

(1 ) (1 )

( , )
U U 0  and 

(1 ) (1 )

( , )W W 0 . Of note, since  is pre-specified by the user, 

1
  is not necessarily acyclic, and thus, not all edges in  could present in 

(1 )

U . 

Furthermore, if a hypothesized edge (k, j) is present in 
(1 )

U , then { ( , )}k j 
  must 

have no directed cycle and (15) is strictly positive (nondegenerate). However, even if 

(15) does not degenerate to zero, its limiting distribution can be complicated when 

there exist multiple ways of augmenting   with the edges in  while maintaining 

the resulting graph as a DAG. Therefore, a regularity condition for  is necessary to 

rule out intractable situations.  

On the ground of the foregoing discussion, we introduce the concepts of 

nondegeneracy and regularity to characterize the behavior of (15) as in Li 

et al. (2023a).  
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Definition 5 (Nondegeneracy and regularity with respect to [INEQ-START).  ]    

(A) An edge ( , )k j   is said to be nondegenerate with respect to an ancestral 

graph ( , ; , )  
 Y X  if { ( , )}k j 

  contains no directed cycle. Otherwise, 

(k, j) is said to be degenerate. Let   be the set of all nondegenerate 

edges with respect to  . A null hypothesis H0 is said to be nondegenerate 

with respect to   if   . Otherwise, H0 is said to be degenerate.  

(B) A null hypothesis H0 is said to be regular with respect to   if 
  contains 

no directed cycle. Otherwise, H0 is called irregular. 

Suppose H0 is nondegenerate and regular. Then 
( 0 )

θ  is the MLE subject to the graph 

0 ( , ; , )  
 X Y  and 

(1 )

θ  is the MLE subject to the graph 

1 ( , ; , )  
 X Y .  

Now, we investigate the limiting distribution of (15) and derive an asymptotic test 

based on it. To this end, define the statistic  

 

 

(1 ) ( 0 )

(1 ) ( 0 )

2 ( , ) ( , ) if  | |  is  f ix e d ,

( )

2 ( , ) ( , ) | | / 2 | | i f  | | .

L L

T

L L





 

     
 

Ω Ω

Ω Ω

θ θ

θ θ

 (16) 

Theorem 2 (Limiting distribution). Assume the null hypothesis H0 is nondegenerate 

and regular. Suppose ( ) 1



   as n   . Then we have ( ) 1  . In 

addition, if 2
2 ( | | lo g ( ) / )O S p n n  Ω Ω  where { ( , ) : 0}k jS k j   , then under H0,  

2
| | , i f  | |  is  f ix e d  a n d  | | lo g ( ) / 0 ,

( )
(0 ,1) , i f  | |  a n d  | | | | lo g ( ) / 0 .

d S p n n
T

N S p n n

  
 

   

 

On the basis of Theorem 2, we conduct inference by substituting | |  by its estimate 

| |  and proceed with the empirical rule: (1) use the chi-squared test when | | 5 0 , 

and (2) use the normal test when | | 5 0 .  

Theorem 2 requires a good estimator Ω  of 1
Ω Σ  to account for the confounding 

effects, where C o v ( )Σ ε . To estimate Ω , let , , ,( )i i i  
  I U Y W Xε ; 1, ,i n   

be the estimated residuals after fitting (1) with Algorithm 2. Here we use the 
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neighborhood selection method (Meinshausen and Bühlmann, 2006) with an 

additional refitting to obtain a positive definite estimate Ω . In Supplementary 

Materials, we include the computational details and show that this estimator satisfies 

2 ( | | lo g ( ) / )F O S p n n  Ω Ω  so that Theorem 2 applies.  

Remark 2. In Theorem 2, we focus on nondegenerate and regular hypotheses. For a 

degenerate case, we define the p-value as one. For an irregular case where 
  

contains a directed cycle, we decompose H0 into sub-hypotheses (1 ) ( )
0 0, , rH H , each 

of which is regular. Then testing H0 is reduced to multiple testing for (1 ) ( )
0 0, , rH H .  

Finally, we discuss two aspects of likelihood estimation and inference in the 

presence of unmeasured confounding. First, when Σ  is non-diagonal, the likelihood 

in (13) cannot be factorized according to  (or  ). This implies that, unlike the case 

without latent confounders (Shojaie and Michailidis, 2010), the parameters of each 

equation in (1) cannot be estimated separately given  . Indeed, the likelihood 

estimation of ( , )U W  in (1) requires a preliminary estimate of Ω  to account for 

correlations arising from hidden confounding. Furthermore, compared to Li 

et al. (2023a), the likelihood ratio (15) is no longer a sum of likelihood ratios of 

equations associated with nondegenerate hypothesized edges, rendering inference 

more challenging in both computation and theory when hidden confounders are 

present. Computationally, the likelihood ratio (15) requires maximization of the full 

likelihood, which is costly for a large-scale graph. Theoretically, estimating Ω  and 

( , )U W  in high-dimensional situations may suffer from the curse of dimensionality.  

Second, to mitigate the challenges in inference, we may conduct inference with 

respect to a sub-DAG to achieve dimensionality reduction. Specifically, let  be the 

nondegenerate edges of H0. Given ARG  , we perform likelihood inference using a 

sub-DAG (of ARG) su b su b su b su b su b( , ; , )  
 X Y , where all edges specified in  are 

among primary variables su bY , and su bY  are non-descendants of su bY Y  in the graph 

su b( , ; , ) , 
X Y X  is the set of intervention variables of su bY , s u b

  is the set of 

ancestral relations among su bY , and su b
  is the set of interventional relations between 

su bX  and su bY  in ARG  . Then the test statistic (16) is computed within the sub-

DAG su b
 , which reduces computation. Furthermore, Theorem 2 holds true when the 

estimator of the smaller precision matrix su bΩ  enjoys the desired convergence rate 
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s u b s u b( | | lo g ( ) / )O S p n n  in operator norm, where the subscript s u b  denotes the 

quantities corresponding to the structural equations of su bY .  

5  Theory 

In this section, we develop a theory to quantify the finite sample performance as well 

as the complexities of Algorithms 1–2 when TLP is used for computation.  

To proceed, we introduce some technical conditions for casual discovery 

consistency. For ( , )k j 
 , let 

( , )k j
Σ  be the covariance matrix of 

( , ) ( , )( ( , ) , , )k k j k jY Y X Y X| n m n m . Moreover, let 2 1 1 , 0( , )
m ax ( , ) m ax k p kk j

s      
   V  

be the maximum sparsity-level in the estimation procedure, where 1 2, ,    depends 

on (k, j) which is dropped for conciseness. Assume there exist constants 

0 1 2 3, , , 0c c c c   such that  

(C1) 
2 1 1 0

( , )

:| | 2 1: 1, 3 lo g ( ) /( , )
m in m in m in ,

c BB

k j

B B s c s p nk j
c    

  
v v v v

v Σ v .  

(C2) V 0 2m in | V | lo g ( ) /
k j k j c q n n


  .  

(C3) U 0 3m in | U | lo g ( ) /
k j k j c p n n


  .  

(C4) 1 , 1m ax { | ( ) |, | ( ) |, } (1)k p kk k O
  

Ua n in , and 

( , )

( , )
m ax ( D iag ( )) (1)

k j

k j
O


Σ . 

Condition (C1) is a restricted eigenvalue condition, which is common in high-

dimensional estimation (Bickel et al., 2009) and can be viewed as a stronger version 

of (A1) in Theorem 1. (C2) and (C3) impose restrictions on the minimal signal 

strengths of V  and U  so that the ARG   and DAG  can be consistently 

recovered, respectively. They are similar to the beta-min condition (Meinshausen 

and Bühlmann, 2006) and the degree of separation condition (Shen et al., 2012) in 

the variable selection literature.  

Theorem 3. Suppose Assumptions (A1)–(A3) in Theorem 1 are satisfied and assume 

X is sub-Gaussian with mean zero and parameter 2
 .  

(A) (Parameter estimation) Suppose (C1), (C2), (C4) are met with sufficiently 

large 0 1 2, ,c c c . Suppose the tuning parameters are suitably chosen such that  
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(I) In Algorithm 1, 2 V 0 , 00 .0 1 lo g ( ) / 0 .4 m in | V |,
k j k j j jc q n n  
 

      V  for 

1 j p  .  

(II) In Algorithm 2, 

3 1 1 2 20 .5 lo g ( ) / , T L P (( , )) , T L P ( )c p n n
 

           α α γ , and 

T L P ( )


    β  for any ( , )k j 
 . 

Then there exists constant 1 0C   such that when n is sufficiently large  

1| U U | lo g ( ) / ,k j k j C p n n    

almost surely under ( , , )U W Σ . Moreover, Algorithms 1 and 2 respectively 

terminate in 3 2( lo g ( ) ( ))O p s q n q    and 3 2(| | lo g ( ) ( ))O s q n q
    

operations almost surely.  

(B) (Graph recovery) Additionally, if (C3) is satisfied with 3 1c C   , then when n 

is sufficiently large we have   almost surely.  

By Theorem 3, the proposed method achieves causal discovery consistency in terms 

of consistent parameter estimation and structure recovery. Moreover, Algorithms 1–2 

enjoy low-order polynomial time complexity almost surely provided that the data are 

randomly sampled from (1).  

6  Numerical examples 

6.1  Simulations 

This subsection investigates via simulations the operating characteristics of GrIVET, 

including the qualities of structure learning, parameter estimation, and statistical 

inference.  

To generate an observation ( , )Y X , we first introduce hidden variables ~ ( , )r rN


0 Iη  

as unmeasured confounders. Then, we sample X from ( , )q qN


0 I  for continuous 

interventions or from { 1,1}q
  with equal probability for discrete interventions. Given X 

and η , we generate Y according to  

  2 2
1, ~ , D ia g , , .pN      U W Φ 0Y Y X η e e  (17) 
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 We conduct simulations with the following settings.  

 Hub graph. Let p = 101, q = 252, and r = 10. For 1, 2, ( U )j j p 
U  are 

independently sampled from { 1,1}  with equal probability, while the rest are 

set to 0. This generates a sparse graph with the dense neighborhood of the 

first node. Let ( , , )q p p p p p  
W I I F  where the entries , 2 , 2 1 1 2( F , F )j j j j j q p   

 are 

set to 1, while other entries of F are zero. Then 2,j jX X  are IVs of Yj for 

1, ,j p   and 2 1 , ,p qX X


  are invalid IVs with two intervention targets. For 

the confounders, 1,1  and 1
1 0 8 1 0 1( ) j r

jk j k j
 

   
  are sampled uniformly from 

( 0 .4 , 0 .6 ) (0 .4 , 0 .6 )   , while other entries of Φ  are zero. We generate 

1( , , )p   uniformly from (0 .4 , 0 .6 ) .  

 Random graph. Let p = 100, q = 250, and r = 10. For U , the upper off-

diagonals ( U )k j k j
 are sampled independently from {0, 1} according to 

B e rn o u lli (1 / 1 0 )p  while other entries are zero. Set ( , , )q p p p p p  
W I I F  

where , 2 1 , 2 1 1 2( F , F )j j j j j p   
 are set to 1, while other entries of F are zero. Then 

2,j jX X  are IVs of Yj for 1, ,j p   and 2 1 , ,p qX X


  are invalid IVs with two 

intervention targets. For the confounders, 1
1 0 9 1 0( ) j r

jk j k j
 

  
  are sampled 

uniformly from ( 0 .4 , 0 .6 ) (0 .4 , 0 .6 )   , while other entries of Φ  are zero. We 

generate 1( , , )p   uniformly from (0 .4 , 0 .6 ) . 

  Structure learning. 

After obtaining ancestral relations from Algorithm 1, we implement Algorithm 2 to 

confirm parental relations but with constraints also imposed on the parameter of 

interest. Four graph metrics are used for evaluation: the false discovery rate (FDR), 

the true positive rate (TPR), the Jaccard index (JI), and the structural Hamming 

distance (SHD). The results in Table 1 demonstrate the strong performance of 

GrIVET in structure learning. Note that a high TPR indicates GrIVET’s capability to 

detect the true existing edges, while the FDR remains low, signifying the high 

specificity of GrIVET. In Supplementary Materials Section 3.3, we further compare 

GrIVET with RFCI (Colombo et al., 2012) and LRpS-GES (Frot et al., 2019) in terms 

of structural learning accuracy. GrIVET compares favorably against the competitors.  
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  Parameter estimation. 

We compare the proposed IV estimation method in Section 3.3 with the regression 

method without any adjustment for confounding (Li et al., 2023a). To evaluate the 

quality of estimation, we consider three metrics, the average maximum absolute 

deviation, the mean absolute deviation, and the mean square deviation between true 

coefficients and estimates over 1000 runs. As demonstrated in Table 2, GrIVET 

enhances parameter estimation by accounting for latent confounding. As anticipated, 

GrIVET’s estimation improves with increasing sample size n, while the naive 

regression method (Li et al., 2023a) remains inconsistent. Furthermore, GrIVET’s 

advantages become more pronounced when stronger confounding effects are 

present, as evidenced by additional simulations in the Supplementary Materials.  

  Inference. 

We now evaluate the empirical performance of the proposed tests in terms of size 

and power. For the empirical size, we calculate the percentage of times H0 is 

rejected out of 1000 simulations when H0 is true. For the power, we consider three 

alternative hypotheses Ha, where all the edges in H0 exist. The empirical power of a 

test is the percentage of times H0 is rejected out of 1000 simulations when Ha is true. 

The adjacency matrix U  is modified according to the null and alternative 

hypotheses.  

 Hub graph, fixed . For the size, consider 

{ ( 2 , 7 )} , { ( 2 , 7 ) , (7 ,1 2 ) , (1 2 ,1 7 )}  , and 

{ ( 2 , 7 ) , (7 ,1 2 ) , (1 2 ,1 7 ) , (1 7 , 2 2 ) , ( 2 2 , 2 7 )} . For the power, consider 

{ (1, 2 )} , { (1, 2 ) , (1,1 2 ) , (1, 2 2 )}  , and { (1, 2 ) , (1,1 2 ) , (1, 2 2 ) , (1, 3 2 ) , (1, 4 2 )} .  

 Random graph, fixed . We consider { (1, 6 )} , { (1, 6 ) , (6 ,1 1) , (1 1,1 6 )}  , 

and { (1, 6 ) , ( 6 ,1 1) , (1 1,1 6 ) , (1 6 , 2 1) , ( 2 1, 2 6 )}  for both size and power.  

 Random graph, random . We also consider testing 50 randomly selected 

edges individually. Here, a random graph is generated so that 20 of these 

selected edges are present in the true DAG (i.e., Ha is valid). As a result, for 

every selected edge, H0 holds in roughly 600 repetitions and Ha holds in 

roughly 400 repetitions.  
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As shown in Table 3 for fixed , empirical sizes are close to the nominal 0 .0 5   

under H0, and the proposed test enjoys desirable power under Ha. Figure 2 presents 

similar results for testing random . The Supplementary Materials display that the 

sampling distribution of the test statistic is close to the derived asymptotic distribution 

in Theorem 2. Additional simulation details and results are also available in 

Supplementary Materials.  

6.2  ADNI data analysis 

In this subsection, GrIVET is applied to analyze the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset (available at https://adni.loni.usc.edu). The 

goal is to infer gene pathways related to Alzheimer’s Disease (AD) in order to 

elucidate the gene-gene interactions in AD/cognitive impairment patients and healthy 

individuals, respectively.  

  Dataset. 

The dataset comprises gene expression levels adjusted for five covariates: gender, 

handedness, education level, age, and intracranial volume. For data analysis, we 

select genes with at least one SNP at a marginal significance level below 1 41 0  , 

resulting in p = 21 genes as primary variables. For these genes, we further extract 

their marginally most correlated two SNPs, yielding q = 42 SNPs as unspecified 

intervention variables for subsequent data analysis. All gene expression levels are 

normalized.  

The dataset initially categorizes individuals into four groups: Alzheimer’s Disease 

(AD), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment 

(LMCI), and Cognitive Normal (CN). For our analysis, we treat 247 CN individuals as 

controls and the remaining 462 individuals as cases (AD-MCI). We then use the 

gene expressions and the SNPs to infer gene pathways for the 462 AD-MCI and 247 

CN control cases, respectively.  

  Hypotheses. 
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We focus on statistical inferences related to genes APP and CASP3 (Julia and 

Goate, 2017; Su et al., 2001). As in Figure 3, for each edge (k, j), we consider testing 

0 : U 0  v e rsu s  : U 0k j a k jH H  .  

  Results. 

Figure 3 displays the p-values and significant results under the level 0 .0 5   after 

the Holm-Bonferroni adjustment for 2  ×  7  =  14 tests. The tests exhibit strong 

evidence for the presence of {L R P 1 C A S P 3, A P P A P O E }   in the AD-MCI group, 

but no evidence in the CN group. Meanwhile, this result suggests the presence of 

connections {C A P N 1 C A S P 3, A T P 5 F 1 C A S P 3}   in the CN group but not so in the 

AD-MCI group. In both groups, we identify directed connection A P P A P B B 1 . 

Figure 4 shows the residual correlation matrices for both groups, suggesting the 

existence of unmeasured confounding. The Supplementary Materials include normal 

Q-Q plots of residuals, demonstrating that the normality assumption is approximately 

satisfied for both groups.  

Some of our discoveries agree with the existing findings. Specifically, our result 

indicates the presence of connection APP → APOE for the AD-MCI group, but not for 

the CN group, which seems consistent with the knowledge that APP and APOE are 

functionally linked in brain cholesterol metabolism (Liu et al., 2017) and the 

contributions of APOE to the pathophysiology of AD (Bu, 2009). The connection 

LRP1 → CASP3 also differs in AD-MCI and CN groups, which may serve to support 

the conclusion that activated CASP3 may be a factor in functional decline and may 

have an important role in neuronal cell death and plaque formation in AD brain (Su 

et al., 2001) given the finding that both APOE and its receptor LRP1 are present in 

amyloid plaques (Poirier, 1996). Moreover, the connection CAPN1 → CDK5R1 

discovered in both groups can be found in the AlzNet database (interaction ID 

24614).  
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7  Discussion 

This article proposes a novel instrumental variable procedure that integrates causal 

discovery and inference for a Gaussian directed acyclic graph with hidden 

confounders. One future research direction is to develop methodologies for 

analyzing discrete/mixed-type (primary variable) data. Additionally, the present work 

uses individual-level data from a single study for causal discovery and inference. In 

many real applications, due to privacy concerns and ownership restrictions, the data 

are only available in the form of summary statistics (e.g., GWAS summary data) or in 

other privatized forms. Extending GrIVET to leverage these data is an important 

topic. Furthermore, multisource/decentralized data are ubiquitous, raising new 

challenges in communication, privacy, and handling of corrupted data. It would be 

promising to employ modern machine learning techniques, such as federated 

learning (Xiong et al., 2021; Gao et al., 2021), to address these challenges and fully 

unleash the potential of large-scale causal discovery and inference.  

Finally, we discuss two limitations of the present work.  

 GrIVET necessitates the availability of valid IVs for each primary variable due 

to the hardness of causal identification in the presence of hidden confounding. 

In genetic research, there is an ample supply of genetic variants (e.g., SNPs) 

serving as IVs. Nonetheless, obtaining valid IVs can be challenging in certain 

applications. It is thus crucial to investigate the potential for causal discovery 

even when faced with an insufficient number of IVs.  

 For inference, Theorem 2 requires that ( ) 1



  , which is guaranteed 

by Condition (C2) in Theorem 3. Fulfilling this requirement can be challenging; 

in such cases, one might turn to the post-selection inference framework (Berk 

et al., 2013) by concentrating on the parameters within the selected model. 

However, the test results should be meticulously interpreted, as these 

parameters cease to be causal or structural (Berk et al., 2013) unless 

( ) 1



  . In essence, (C2) enables the causal meaning of the tested 

parameters to be carried over to finite-sample inference. Exploring ways to lift 

the signal strength condition while preserving the causal interpretation for 
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statistical inference after DAG structure learning (Wang et al., 2023) is an 

important research topic. 

A  Appendix 
  Definition of d-separation (Pearl, 2009). 

Consider a DAG  with node variables 1( , , )dZ Z . Nodes Zk and Zj are adjacent if 

k jZ Z  or k jZ Z . An undirected path between Zk and Zj in  is a sequence of 

distinct nodes ( , , )k jZ Z  such that all pairs of successive nodes in the sequence are 

adjacent. A non-endpoint node Zm on an undirected path 1 1( , , , , , , )k m m m jZ Z Z Z Z
 

   

is called a collider if 1 1m m mZ Z Z
 
  . Otherwise, it is called a non-collider. Let 

{1, , }A d  , where A does not contain k and j. Then AZ  is said to block an 

undirected path ( , , )k jZ Z  if at least one of the following holds: (1) the undirected 

path contains a non-collider that is in AZ , or (2) the undirected path contains a 

collider that is not in AZ  and has no descendant in AZ . A node Zk is d-separated 

from Zj given AZ  if AZ  block every undirected path between Zk and Zj; k j .  

  Additional discussion of Figure 1 (a). 

Let ( , )k j 
  and suppose all IVs are valid. We explain why ( )kX c a  may not be valid 

IVs after conditioning on ( ) { }j kY a n , as mentioned in Section 3.3. Let ( )l k c a  and 

( , )m k j m e  such that Yk is an unmediated parent of Ym. Note that in Figure 1 (a) of 

the main text, whenever mY  , then ( ) { }j kY a n  does not d-separate ( )kX c a  and η, 

since Ym is a collider in the undirected path ( , , , , )l k m jX Y Y Y . As a result, ( )kX c a  and η 

can be associated conditioned on ( ) { }j kY a n .  

  Additional discussion on identification of U . 

We have the following result.  

Lemma 1. In (1), assume X and ε  are independent.  

(A) ( , )( , )k k jY Y X| n m  is a linear combination of ( , )( , )k jY Xn m .  

(B) ( , )( , )j k j Y X| n m  is a linear combination of ( , ) ( )
( , )ck j k
Y Xn m c a

. 

Acc
ep

ted
 M

an
us

cri
pt



Proof. Here, (A) follows directly from (1). For (B), we have  

( , ) ( , ) ( , ) ( , )( , ) ( , ) ( ) ,j k j j k j j k j k j    Y X ε X ε π ε| | |n m n m n m n m  

where the last equality is due to the normality of ε . Finally, in (1), we immediately 

have ( , )k jε n m  is linear in ( , ) ( )
( , )ck j k
Y Xn m c a

. □  

Now, we show that C o v ( , )  0ε X  is sufficient to derive the identification results in 

Section 3.3. Given random variables ζ and ξ , let ( ) ξ|  be the best linear 

approximation of ζ using ξ , namely ( ) ξ ω ξ|  where  

2a rg m in ( ) . 
ω

ω ω ξ  

For random variables ζ,   , and ξ , we have that (a) ( ) ( ) ( )       ξ ξ ξ| | | , 

(b) ( ) ( )c c ξ ξ| |  for c  , (c) ( ) 0 ξ|  if C o v ( , )  0ξ , (d) ( ) ξ|  if 

S p a n ( )  ξ , and (e) ( ) ( )  Aξ ξ| |  for invertible A . Thus, ( · )|  mimics ( · )| , 

and Lemma 2 holds. The proof is similar to that of Lemma 1.  

Lemma 2. In (1), Lemma 1 holds with ( · )|  being replaced by ( · )| .  

As a result, if X and ε  are uncorrelated as in (1), the derivation in Section 3.3 holds 

with ( · )|  being replaced by ( · )| .  

  Supplementary materials 

Supplementary Materials include implementation details, additional simulations, and 

technical proofs.  

ENDNOTES 
1The causal parameter U  is said to be identifiable if for any ( , , )U W Σ  and ( , , )  U W Σ , we 
have , , , ,  U W Σ U W Σ

 implies 
U U . Otherwise, it is said to be non-identifiable. 

2In Algorithm 1 Step 7, the indices of V are kept so that V l j  always represents the effect from 
X l  to Y j  . 
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Fig. 1 Estimation of causal parameter U k j . (a) Display of the relations among 

relevant variables. (b) Display of working response regression. 

 

Fig. 2 The boxplots of the empirical rejection probabilities for testing randomly 

selected edges. The nominal level is 0 .0 5  . 
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Fig. 3 Display of the genes associated with proposed tests. (a) and (b): 

Solid/dashed arrows indicate significant/insignificant edges at 0 .0 5   after 

adjustment for multiplicity by the Bonferroni-Holm correction. 

 

Fig. 4 Display of residual correlation matrices for AD-MCI and CN groups. 
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Table 1 False discovery rate (FDR), true positive rate (TPR), structural Hamming 

distance (SHD), and Jaccard index (JI) of GrIVET for causal discovery over 1000 

simulation replications. To compute the metrics, let TP, RE, FP, and FN be the 

numbers of identified edges with correct directions, those with wrong directions, 

estimated edges not in the skeleton of the true graph, and missing edges compared 

to the true skeleton. Then 

F D R ( R E F P ) / (T P R E F P ), T P R T P / (T P F N ), S H D F P F N R E         , and 

J I T P / (T P S H D )  . 

Graph  Intervention n  FDR(%) TPR(%) SHD JI(%)  

Hub  Continuous  500 0.000  100.000  0.000 100.000 

 
 

400 0.000  99.998  0.002 99.998 

 
 

300 0.000  99.998  0.002 99.998  

 

Discrete  500 0.000  99.999  0.001 99.999 

 
 

400 0.000  99.998  0.002 99.998  

 
 

300 0.000  99.999  0.001 99.999 

Random Continuous  500 0.011  98.600  0.001 98.589  

 
 

400 0.000  98.600  0.000 98.600  

 
 

300 0.018  98.590  0.003 98.575  

 

Discrete  500 0.000  98.600  0.000 98.600  

 
 

400 0.024  98.600  0.002 98.576  

 
 

300 0.000  98.600  0.000 98.600  
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Table 2 Parameter estimation: the average of largest absolute difference (Max 

AD), the average absolute differences (Mean AD), and the average squared 

differences (Mean SqD) between the estimated parameters and the true parameters 

for two competing methods over 1000 simulation replications. 

Graph  Intervention n  GrIVET  

 

Direct regression (Li 

et al., 2023a) 

 
  

(Max AD, Mean AD, Mean 

SqD) 

 

(Max AD, Mean AD, Mean 

SqD) 

Hub  Continuous  500 

(0.06107, 0.01808, 

0.00052)  

 

(0.12817, 0.02448, 0.00142)  

 
 

400 

(0.06863, 0.02037, 

0.00066)  

 

(0.13196, 0.02637, 0.00156)  

 
 

300 

(0.07922, 0.02347, 

0.00087)  

 

(0.13395, 0.02873, 0.00170)  

 

Discrete  500 

(0.06119, 0.01803, 

0.00051)  

 

(0.12770, 0.02434, 0.00141)  

 
 

400 

(0.06932, 0.02030, 

0.00065)  

 

(0.13041, 0.02621, 0.00153)  

 
 

300 

(0.08046, 0.02355, 

0.00088)  

 

(0.13334, 0.02867, 0.00169)  

Random Continuous  500 

(0.02836, 0.01445, 

0.00034)  

 

(0.04254, 0.01791, 0.00076)  

 
 

400 

(0.03245, 0.01660, 

0.00045)  

 

(0.04390, 0.01899, 0.00079)  

 
 

300 

(0.03760, 0.01939, 

0.00060)  

 

(0.04709, 0.02150, 0.00091)  

 

Discrete  500 

(0.02910, 0.01505, 

0.00037)  

 

(0.04287, 0.01808, 0.00075)  

 
 

400 

(0.03272, 0.01686, 

0.00046)  

 

(0.04432, 0.01962, 0.00081)  
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Graph  Intervention n  GrIVET  

 

Direct regression (Li 

et al., 2023a) 

 
 

300 

(0.03619, 0.01879, 

0.00057)  

 

(0.04756, 0.02146, 0.00094)  
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Table 3 Empirical size for GrIVET at nominal level 0 .0 5  , respectively for 

| | 1, | | 3   and | | 5 , over 1000 simulation replications. 

Graph  Intervention n  Size ( | | 1, 3 , 5 ) Power ( | | 1, 3 , 5 ) 

Hub  Continuous  500 (0.028,0.026,0.029)  (1.000,1.000,1.000)  

 
 

400 (0.043,0.038,0.035)  (1.000,1.000,1.000)  

 
 

300 (0.037,0.030,0.034)  (1.000,1.000,1.000)  

 

Discrete  500 (0.036,0.040,0.027)  (1.000,1.000,1.000)  

 
 

400 (0.051,0.040,0.040)  (1.000,1.000,1.000)  

 
 

300 (0.052,0.041,0.035)  (1.000,1.000,1.000)  

Random Continuous  500 (0.038,0.037,0.026)  (1.000,1.000,1.000)  

 
 

400 (0.033,0.031,0.028)  (1.000,1.000,1.000)  

 
 

300 (0.033,0.025,0.030)  (1.000,1.000,1.000)  

 

Discrete  500 (0.040,0.029,0.027)  (1.000,1.000,1.000)  

 
 

400 (0.042,0.034,0.040)  (1.000,1.000,1.000)  

 
 

300 (0.029,0.033,0.034)  (1.000,1.000,1.000)  
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