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Abstract

This article proposes a novel causal discovery and inference
method called GrIVET for a.Gaussian directed acyclic graph with
unmeasured confounders.“GrIVET consists of an order-based
causal discovery method and a likelihood-based inferential
procedure. For causal discovery, we generalize the existing
peeling algorithm_ to estimate the ancestral relations and
candidate instruments in the presence of hidden confounders.
Based.on this, we propose a new procedure for instrumental
variable estimation of each direct effect by separating it from any
mediation effects. For inference, we develop a new likelihood ratio
test of multiple causal effects that is able to account for the
unmeasured confounders. Theoretically, we prove that the
proposed method has desirable guarantees, including robustness
to invalid instruments and uncertain interventions, estimation
consistency, low-order polynomial time complexity, and validity of
asymptotic inference. Numerically, GrlVET performs well and
compares favorably against state-of-the-art competitors.


http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2261658&domain=pdf

Furthermore, we demonstrate the utility and effectiveness of the
proposed method through an application inferring regulatory
pathways from Alzheimer’s disease gene expression data.

Keywords: Causal discovery, Gaussian directed acyclic graph, Invalid instrumental

variables, Uncertain interventions, Simultaneous inference, Gene regulatory network.

1 Introduction

Understanding causal relations is part of the foundation of intelligence. A directed
acyclic graph (DAG) is often used to describe the causal relations among multiple
interacting units (Pearl, 2009). Unlike classical causal inference tasks where-the
DAG is determined a priori, causal discovery aims to learn a graphical representation
from data. It is useful for forming data-driven conjectures about the underlying
mechanism of a complex system, including gene networks (Sachs et al., 2005),
functional brain networks (Liu et al., 2017), manufacturing pipelines (Kertel

et al., 2022), and dynamical systems (Li et al., 2020b). In.such.a situation,
randomized experiments are usually unethical or infeasible, and unmeasured
confounders commonly arise in practice. The presence of latent confounders can
bias the causal effect estimation and even'distort causal directions, making causal
discovery challenging. To treat latent cenfounders, we use additive interventions as
instrumental variables (IVs), which are well-developed in conventional causal
inference (Angrist et al., 1996) yet aredess explored in causal discovery of a large-
scale network. In this article,,we focus on a Gaussian DAG model with hidden
confounders and develop.methods that integrate the discovery and inference of
causal relations within the framework of uncertain additive interventions (the targets

of interventions are unknown).

Causal discovery-has been extensively studied (Zheng et al., 2018; Aragam

et al,, 2019; Gu et al., 2019; Lee and Li, 2022; Zhao et al., 2022; Li et al., 2023b);
see Drton and Maathuis (2017); Heinze-Deml et al. (2018); Glymour

et al. (2019); Vowels et al. (2021) for comprehensive reviews. For observational data
(without external interventions), some methods are able to treat hidden confounding
by either (a) producing less informative discoveries, like a partial ancestral graph

(Colombo et al., 2012) rather than a DAG, or (b) employing a certain deconfounding



strategy (Frot et al., 2019; Shah et al., 2020) based on the pervasive confounding
assumption. However, the former may not reveal essential information, such as
causal directions, while the latter can be inconsistent in low-dimensional situations
and may not necessarily outperform the naive regression (Grimmer et al., 2020).
Thus, external interventions are useful to provide more information about causal

relations while relaxing the requirements on latent confounding.

As an example of external (additive) interventions, IVs have been well developed in
conventional causal inference to tackle unmeasured confounding; see

Lousdal (2018) for a survey. In a classical bivariate setting where the causal
direction is known, an |V is required to influence the response variable only through
the cause variable, which is often fragile in practice (Murray, 2006). For instance,
genetic variants like single nucleotide polymorphisms (SNPs) are used.as Vs in
Mendelian randomization (MR) analysis to discover putative causal,genes of
complex traits, where the IV conditions are commonly violated'due to the (horizontal)
pleiotropy. Remedying these invalid Vs has been the subjectof recent work in
causal inference (Kang et al., 2016; Guo et al., 2018; Windmeijer

et al., 2019; Burgess et al., 2020). The discussion,ofilV estimation in graphical
modeling, however, remains limited. The methods of Oates et al. (2016); Chen

et al. (2018) estimate the graph given valid Vs, while the work of Li et al. (2023a)
propose the peeling algorithm to coenstruct the DAG in the case of uncertain
interventions and invalid IVs. None of these methods permit latent confounding. A
recent work (Xue and Pan,2020) discusses causal discovery of a bivariate mixed
effect graph where confounders and invalid IVs are allowed, but it remains unclear

how to extend it to a large=scale causal network.

Moreover; despite.the progress in causal discovery, inference about the discovered
relations is often regarded as a separate task and has received less attention in the
literature. Notable exceptions include recent advances in graphical modeling
(Jankova and van de Geer, 2018; Li et al., 2020a; Shi et al., 2023; Wang

et al., 2023) and mediation analysis (Chakrabortty et al., 2018; Shi and Li, 2021; Li
et al., 2022); however, these methods cannot account for latent confounders.
Indeed, due to unmeasured confounding, the probability distribution of observed

variables is no longer locally Markovian with respect to the DAG (Pearl, 2009),



rendering these approaches inappropriate. Consequently, there is a pressing need

for new inference methodologies.

This article contributes to the following aspects.

For modeling, we establish the identifiability conditions for a Gaussian DAG
with latent confounders utilizing additive interventions. To our knowledge, this
result is the first of its kind. Importantly, the conditions allow the interventions
to have unknown and multiple targets, which is suitable for multivariate causal
analysis (Murray, 2006).

For methodology, we develop a novel method named the Graphical
Instrumental Variable Estimation and Testing (GrlVET), integrating,order-
based causal discovery and likelihood-based inference. For eausal discovery,
we estimate the ancestral relations and candidate IVs with-a ' modified peeling
algorithm to treat unmeasured confounding. On this basis, we propose a
sequential procedure to estimate each direct effect.using IVs, where a
working response regression is used to separate the direct effect from the
mediation effects. Regarding inference, we develop a new likelihood ratio test
of multiple causal effects to account for.unmeasured confounders.

For theory, we show that GrlIVET. enjoys-desired guarantees. In particular, it
consistently estimates the DAG structure and causal effects even when some
interventions do not meet the' IV criteria. As for computation, only

O((p+ %7 ) x log(s) x(Gw ng’)) operations are required almost surely, where p
and g are the numbers.of primary and intervention variables, sis sparsity,

1€+ | is the size of the ancestral relation set, and nis the sample size.
Moreovers-under the null hypothesis, we establish the convergence of the
likelihood ratio statistic to the null distribution in high-dimensional situations,
ensuring the validity of asymptotic inference.

The simulation studies and an application to the Alzheimer’s Disease
Neuroimaging Initiative dataset demonstrate the utility and effectiveness of
the proposed methods. The implementation of GrIVET is available at

https://github.com/chunlinli/grivet.


https://github.com/chunlinli/grivet

The rest of the article is structured as follows. Section 2 introduces a linear structural
equation model with hidden confounders and establishes its identifiability. Section 3
presents a novel order-based method for causal discovery and effect estimation.
Section 4 develops a likelihood ratio test for simultaneous inference of causal
effects. Section 5 provides theoretical justification of the proposed method. Section 6
performs simulation studies, followed by an application to infer gene pathways with
gene expression and SNP data. Finally, Section 7 concludes the article. The
Appendix contains supporting lemmas, while the Supplementary Materials include

illustrative examples, technical proofs, and additional simulations.

2 Causal graphical model with confounders
2.1 Structural equations with confounders

We consider a structural equation model with p primary variables«¥)= (r..... ,Y,,)T and

g intervention variables x = (x ,... ,Xq)T ,
YU Y+W X+g £~N(0,E), Cov(s,X)=0, (1

where v is a matrix describing the causakinfluences among Y, w,_ is a matrix

representing the interventional effects of Xon Y, and : is a vector of possibly

correlated errors. Specifically,

e The parameter matrix U, which is of primary interest, has a causal
interpretation in that'v , # o indicates that Yk is a cause of Y, denoted by
v, > v,. Thus, U represents a directed graph among primary variables. In
what follows, we will focus on a directed acyclic graph (DAG), where no
directed cycle is permissible and u is subject to the acyclicity constraint
(Zheng et al., 2018; Yuan et al., 2019).

e The intervention variables X'and errors ¢ are uncorrelated by
reparameterization. As a result, w is associational instead of causal. Here,
w, = 0 indicates that X;intervenes on Yj, denoted by x, —» v, . As X
represents external interventions, no directed edge from a primary variable to

an intervention variable is allowed.



« A non-diagonal x indicates the presence of unmeasured confounders. For
instance, ¢ = ® 4 + e can be (not uniquely) written as a sum of correlated
components @ ', and independent components e so that
-0 @+ Diag(c/.....o), Wwhere @ _ is the matrix of confounding effects,
n ~ N (0,1 ) represents rindependent confounding sources, and

e~ N(0,Diag(o;,....c)) represents pindependent errors. Whenever = = 0

# 0, implying that some

k

for some distinct (/; k), we have = =3 o o
=1

confounding variable 7, influences both Y;and Yx

As such, (u,w) together represents a directed graph of p primary variables and ¢
intervention variables, denoted as 9 = (x,v;¢,Z), where € = {(k, j): U g0} isthe
set of primary variable edges and % = {(, j): w, = 0} is the set of intervention edges.
In9,@)if r, > v,, then Ykis a parent of ¥}, and Yjis a child of Yiu(b)if v, > = - v,
(a directed path from Yxto V), then Ykis an ancestor of Yj, and,Y;is a descendant of
Yoand (c)if v, > > v - " > v, then Ynis a mediatonof Yiand Y, In what
follows, for a graph 9 , denote the parent set of Y;as pa,¢j)= (k:v, » v}, the
ancestor set of Yjas an,(j)={k:v, > " - v } y,and the intervention set of Yjas
ing(j)=1{/:X,> v}.For(k ) suchthat v -% "= v , denote the mediator set as

meg(k,j)={m:Y, - """ >Y > - Yj}.

2.2 ldentifiability and instrumental variables

The causal parameter matrix, u. is generally non-identifiable! without further
conditions on the Gaussian errors ¢ or the interventions X. Without invoking external
interventions (w.= 0)), U can be identified under a certain error-scale assumption
(Peters and Buhimann, 2014; Ghoshal and Honorio, 2018; Rajendran et al., 2021),
which is sensitive to variable scaling such as the common practice of standardizing
variables (Reisach et al., 2021). To overcome this limitation, interventions are
introduced to identify the causal parameters. With suitable interventions, v is
identifiable if no confounder is present in the model (= is diagonal) (Oates

et al., 2016; Chen et al., 2018; Li et al., 2023a). In addition, it is worth mentioning

that u can be estimated without intervention if the errors : are non-Gaussian



(Shimizu et al., 2006; Zhao et al., 2022); however, such methods are not applicable

in the case of unmeasured confounding.

This subsection establishes the identifiability of (1) in the presence of unmeasured
confounders using uncertain additive interventions (the targets of interventions are

unknown) as IVs. To proceed, we introduce the notion of IV for our purpose.

Definition 1. An intervention variable X;is said to be a valid IV of Yxin 9 if (IV1) X/
intervenes on Y% namely w, = o, and (IV2) X;does not intervene on any other
primary variable v,., namely w =0 for ' = . Otherwise, X;is called an invalid V.

Denote the valid IV set of Ykxas ivg(k)=1{l1: X, > Y, X, 5 Y, k' = k}.

Remark 1. Consider a bivariate case where we are interested in the potential causal
effect v, » v,. In causal inference literature (Angrist et al., 1996; Kang et al., 2016), a
valid IV X of Y; is required to satisfy that (a) Xis related to the ¥, referred to as
relevance, (b) Xhas no directed edge to Y2, called exclusion, and (c) X'is not related
to unmeasured confounders, called unconfoundedness. In (1), (IV1) is indeed the
relevance property, (IV2) generalizes the exclusion property for causal discovery,

and the requirement cov(e, X) = 0 corresponds'to the unconfoundedness.

To identify u , two challenges emerge-as,the confounders arise. First, determining
causal directions in the graph becomes:more challenging. In (1), because of hidden
confounding, the distribution F'¢(x | x.,)<does not admit the causal Markov property
(Pearl, 2009) according to¥ , that is, Y;is not independent of its non-descendants

given (v, X ) . As aresult, the existing methods based on this property can

extsepag ()2
learn wrong causal directions due to misspecification. To identify causal directions,
we formalize the concept of unmediated parents to highlight the causal relations that

are critical'in identification.

Definition 2. A primary variable Yxis an unmediated parent of Y;in 9 if v, » v, and
there is no other directed path from Y to Y. In other words, Yxis an unmediated

parent of Y;if no mediator is between Yy and Y.

Another challenge comes from uncertain interventions and invalid IVs. Assigning

valid IVs for each primary variable can be difficult when the targets of interventions



are unknown. Thus, it may be effective to construct a set of candidate IVs (including
invalid 1Vs) for each primary variable, on which we estimate the causal parameters

U . To this end, we define p candidate IV sets, one for each primary variable.

Definition 3. An intervention variable X;is said to be a candidate IV of Yxin 9 if (IV1’)
Xjintervenes on Yk, and (IV2') X;does not intervene on any non-descendant of Yx.

Denote the candidate IV set of Ykby cag(k)=1(1:x, > v, x, > Y, only ifk eang(j)}.

The candidate IVs of Yxinclude all valid IVs of Y%, but not vice versa. A candidate IV

of Yk may be invalid, as it could intervene on descendants of Yx.

Theorem 1 (Identifiability). Suppose

(A7) Cov(X) IS positive definite.
(A2) Cov(Y,. X, | X, ,)=0 wheneverX;intervenes on-an unmediated
parent of Y.

(A3) (Majority rule) |iv ; (k) |>|cag(k)|/2 ;) k =14k, p

Then (u,w ,x) in (1) are identifiable in that if Wyw .2y and (u',w ', =" encode the

same probability distribution, then (U, w ,L)=(W."W ', 2').

To our knowledge, Theorem 1 is a new result for Gaussian DAG with hidden
confounding, establishing the identifiability of all parameters in (1). In fact, if the
causal parameter v is identifiable,.then so are parameters w ,x . Regarding the
conditions, (A1) states that c¢ov(x) has full rank, which is common in the IV
literature (Kang et al.,.,2016; Chen et al., 2018). Note that (A1) permits discrete IV
variables such as.SNPs in data analysis. (A2) requires the interventional effects
through unmediated parents not to cancel out when an invalid IV has multiple
targets. (A3)requires valid IVs to dominate invalid ones so that the causal effect can
be identified in the presence of latent confounders. Such a condition has been used
in the causal inference literature (Kang et al., 2016; Windmeijer et al., 2019). As
shown in Supplementary Materials Section 1, when (A3) fails, (1) can be non-
identifiable. By comparison, (A1)-(A2) together with (A4) are used for model
identification in the absence of unmeasured confounding (Li et al., 2023a).



o Each Ykis intervened by at least one valid IV.

Noting that (A4) is implied by (A3), treating hidden confounding demands stronger

conditions in view of Theorem 1.

3 Causal discovery

This section proposes a novel IV method to learn a DAG with unmeasured
confounders. First, we introduce the ancestral relation graph (ARG), which, together
with the candidate IV sets in Section 2.2, constitutes a basis for the proposed

method.

Definition 4 (Ancestral relation graph). Fora DAG 9 - (x,v;¢,7), its ancestral

relation graph is defined as 9* = (x.,v;¢",Z"), where

€ (k,jy:keang(j)}, I {@,jy:le U ing(k)}e

keang ()L}
Here, 9° is a super-DAG of 9 inthat € 5 ¢ is thesset of ancestral relations,
I+ 5 T is a superset of interventional relations, and 9/ is acyclic. Note that ¢ "
defines a partial order for the primary variables. Xin that v, <, v, whenever
(k, j) €. Without confounding, v canibe consistently estimated via direct
regressions according to the known.9%, (Shojaie and Michailidis, 2010), where ¢ -
can be recovered by the peeling algorithm (Li et al., 2023a). However, this approach

no longer applies in the presence of hidden confounders.

To address this obstacle, Sections 3.1-3.2 modify the peeling algorithm to construct
the ARG 9 and.the,candidate IV sets {ca,(k)} ,.,, and then Sections 3.3-3.4

develop aimethod to estimate v assuming the ARG and candidate Vs are known.
3.1 Identification of - and candidate IVs

In this subsection, we modify the peeling algorithm, originally designed for a model
without unmeasured confounders (Li et al., 2023a), to uncover 9" and {ca,(k)},.,.,

in the presence of hidden confounders, of which the results can be subsequently

used as the inputs for identification of v in Section 3.3. The modified peeling



algorithm essentially requires p regressions to identify the ARG and candidate Vs,
which is suited for large-scale causal discovery. Moreover, the produced ARG and

candidate |V sets enjoy desirable statistical properties; see Section 5.
Let us begin with an observation that (1) can be rewritten as

Y=V X+1-U ) e, (2)

P
where v-=wa-uv)'and v, =3 w, (I, +U, +""+@U"",). Intuitively, v =0

k=1

implies the dependence of Y;on X;through a directed path x, » v, » "~ - v, ;and
hence that X;intervenes on Yjitself (when k=) or its ancestor Yx (when iz ;). In
cases where Xjintervenes exclusively on one primary variable, the following

proposition provides insights into the connection between V and 91 .

Proposition 1. Suppose Assumptions (A1), (A2), and (A4) areisatisfied. There exists
at least one intervention variable X; such that v, = o anéw »='o for k' = k ifand

only if Yk is a leaf node (has no descendant). Moreover, 'such X is a valid IV of Yk in
g.

Proposition 1 suggests that the leavesiand their valid IVs in ¢ can be identified by

leaf(g) ={k: forsome [,V, # 0 and,V,, =0 for all k' = k}

={k :k = argmax |V ‘jsforsome / = a“rg I“‘nin HVH HO},
J v, >0

©)

ivg (k) ={l:V, #0and Vi, =0 forall k' = k}

- {131 = arg min v, & and k = argmax |V, |}, kelecaf(9)
After the leaf nodes are learned, we can remove them to obtain a sub-DAG. If X/is a
valid IV of'a non-leaf Yxin 9 , its validity for Yk is retained in the sub-DAG, implying
(A4) continues to hold. Moreover, Assumptions (A1)—(A2) are naturally upheld in the
sub-DAG. Hence, the requirements of Proposition 1 are satisfied in the sub-DAG,
whose leaf variables and their valid IVs can be learned in the same fashion. As a
result, we can successively identify and remove (i.e., peel) the leaf nodes from the
DAG and sub-DAGs. This yields a topological order of primary variables but does not

recover 9° .



Next, we investigate how v can be further used to recover 9 with {ca g (K)} e, -
Subsequently, we use 9° = (x ,¥ ;¢ ,Z") to denote a generic sub-DAG produced
by peeling, where v = are the primary variables in ¢~ and v \ v are peeled ones,
X~ are intervention variables on v ~, ¢ is the set of causal relations among v -,
and 7~ is the set of interventional relations between x~ and v . Then each
variable in v~ is a non-descendant of each in ¥ ™\ v . Moreover, 1caf(Y ) and

fivy (B} are identified by (3).

leaf(97)

Proposition 2. Suppose Assumptions (A1), (A2), and (A4) are satisfied. Let Yk be a

leafnode in 9~ and Y;be in y ™ v . Then the following statements are true.

(A)Ifv, =0 foralliciv, (k), we have (k,j)e¢".

(B) If Yk is an unmediated parent of Yj, then v = o forall i <iv [ (k)

Proposition 2 outlines a method for identifying edges in 9* from the leaf variables of

Y- to the peeled variables v \ v~ by

{(k.j):Y, e leaf(97), Y, ¥ N ¥ and V, # 0 fofall Fefiv ¥ (k)}.(4)

k

Specifically, (A) shows that any identified edge must be presentin 9, so no extra
edges are identified. Meanwhile, (B) shows that every directed edge from an
unmediated parent must be correctly discovered. Importantly, the collection of all
such edges suffices to recover all ancestral relationships, which guarantees that no
edge in ¢ is overlooked. Upon the identification of ¢, the candidate IV sets can be

learned by
cag(k)=1{1:(1, kel and (1, j)e L k= jonlyif (k,j)e€"}, 1<k< p. (5)

Consequently, Propositions 1-2 enable the recovery of ¢9* and {ca, (k)}

3.2 Finite-sample estimation of ¢ and candidate IVs

This subsection implements the modified peeling algorithm delineated in Section 3.1

to estimate 9* and {ca, (k) . To proceed, suppose data matrices

1<sks<p

Y, ,=(Y_,..,Y_)andXx  =(X_...,X ) aregiven, where (v, .x ) are



sampled from (1) independently. We estimate v by v = (v.,,...,v.,) with sparse
regressions

2

V., =argmin Y (Y, - X )" st lgl<c (6)

p i=1
where 1<« <4 istuned by BIC for 1 < j < p» Moreover, the truncated Lasso

penalty (TLP) (Shen et al., 2012) is used as the computational surrogate for | ,

where TLP is defined as TLP ()= min(|8,|/z.1) for g=(p,.....5),and >0 isa

hyperparameter in TLP; see Supplementary Materials Section 2 for details. The

modified peeling algorithm based on Section 3.1 is summarized in Algorithm 1.2

Algorithm 1: Estimation of 9* and {ca, (k)}

1<sks<p

Input: Data v and x__;

1 Compute v via (6);

2 nitialize v« V. € « @7 « {(Lk):Va = O
3lnitialize " by ¥ « ¥, x « x, ¢ « &I L ;
4 while vy = /s not empty do

5 Update 1caf (Y ) and live (), e via (3);

£(95
6 Update ¢ by adding (4);

7 Update 9 by removing 1£2%Y% and v by keeping the columnsin v ~;
8 end

9 Update ¢ « (DY, =" 5 ¥ in £y,
10 Update T L eV Uy el and (k, jy e 3
11 Update ca o) by (5);

12return € W2, and (ca s (k)} :

I<k<p )

3.3 Identification of v

In this subsection, we present a new method for identifying causal effects v , using

the ARG 9 and candidate IV sets {ca,(k)} as inputs. Note that {an, (k)}

1<k<p 1<k<p



can be derived from 9* . Throughout this subsection, the

and {meg (k. /), ..
subscript 9 is dropped for brevity and «, g,y denote nuisance parameters in
regression. Moreover, we assume that : and Xare independent to simplify the
derivation; see Lemmas 1-2 in the Appendix for the case with : and Xbeing

uncorrelated.
The case with all IVs being valid.

We begin with a special case of (1) where all IVs are valid, that is, ca (k) = iv (k) ;

k=1,...,p.

To estimate u , note that u is supported on ¢, namely v = (U, ,0). Here, we
consider estimating v, as well as selecting nonzero u, for graph recovery, for

each (x, j) ", as described in Figure 1 (a).

To pinpoint the difficulties and motivate our approach, we make the following
observations. First, regression of Y;on Yxtogether with'covariates (Y, - X) Can
bias the estimation due to confounder 7. Second, in heperof treating confounders

one might replace Y with its surrogate ¥ (v, | ¥, .}, Xy to regress Yjon

(

By 1y, .. %) with (v« X, ,.) being covariates. However, this is also

( (k}?

problematic. For explanation, note that an( ) \ {x} can be partitioned into mediators

me (k, j) and non-mediators
nm(k, j)=an(j) > (me(k, )G (k).

In Figure 1 (a), x.

iv (&)

can be associated with ngiven v, =Y

n ()N (k) me(k,/)’Ynm(k,/))’

violating the unconfoundedness of IVs (Remark 1) and causing an estimation bias.

This is because the’'mediators v,  generate additional associations after

(
conditioning'on them; see the Appendix for technical discussion using the concept of

d-separation (Pearl, 2009).

Now, we propose a new method, which eliminates the impact of mediators v, by

introducing the working response v = v, - U _
J J

me(k,j),ije(k,j)’

as depicted in Figure 1 (b).
Of note, the definition of Y_] depends on (4, j), which is dropped for simplicity. As in
Angrist et al. (1996), we have



E(YT/ |Ynm(k,/)’X)

= U/(/E(Yklynm(k,j)’X)+ Z Uk’/'Yk’+ Z W//X/+E(g/|Ynm<k,/)7X) (7)

k'enm(k,j) leiv (k)

where v, = By v X), Z=(Y

nm(k,j)’

)= Y X ) equality (i) follows

nm(k,/')’XCa(k)( iv

from (1), and equality (ii) holds because ¥ (¢, 17 X ) is a linear combination of

nm(k,j)?

(¥, X, ) bylLemma 1in Appendix. Observe that §k dependson x, , while Z

k)

does not. As a result, the U, is identified through the working response regression.

This approach requires the knowledge of v, . . prior to identifying u¢, . Given 9,
we develop a sequential procedure to learn U. First, we identify u, foreach pair (4,
J) such that the longest path in 9 between kA and jis equal to d= 1. Then for (4, ))
such that the longest path in ¢* between kand jis d= 2, the effects of mediators

U are available. Thus, we can identify u, in (7). Proceedsimilarly for

me (k,j),j

d =3,4,5,... until all pairs in €* have been identified.

The case with invalid IVs.

In general, ca (k) o iv(k) because of invalid IVs, where ca () is known but iv (k) is

unknown. Similar to Kang et al. (2016), we have

By v, X)

e X))+ A UL Y Y WUX1+E(5/_|YW(M),X) (8)

klenm@hs)) leiv (k)

= U, B(r v

(iii) -
.
= U Y, +r Z+ > B,X,.

Ieca (k) Niv (k)

where v, '« By |7

e X Z = (Y0 X ), equality (iii) holds by Lemma 1 in
Appendix, and g, = w, = 0 indicates X;is an invalid IV for Yi However, since iv (k)

has not been identified and ?k depends on x_ the representation of (iii) may not

a(k)?
be unique. When the maijority rule (A3) is satisfied by the DAG, the term (iii) admits
the unique expression as in (8), providing the identification of u, . This leads to a

sparse regression for an infinite sample



Jni/}n E(;jkajI;A fyTZ f,b’TXca(M)2 s.t. Hﬂ HOS K, (9)
LAY

where o0 <« <|ca (k) |/2 IS an integer-valued hyperparameter controlling the sparsity

of p .
3.4 Finite-sample estimation of U

Suppose (v, .x_ ) aregiven. To estimate u, , noting that v, is linear in
pxn gxn J
,

(Y X) by Lemma 1, we estimate v., by Yii=a: X, +a2Y where (a,,a»)

nm(k,j)? nm(k),i?

solves
min Z (Yk’l_ —aTX” + azZTYnm(k)"_)2 s.t. Hal HO + Haz HOS v, (10)

with ¥4 being a tuning parameter. Let the final estimate u,, with (/;,;:) be the
solution to the working response regression (provided that u ... 4% are available)

T

n
. T T 2
Jnl/rny Z ((Yj,i -U me(k.n,_/Ymcu»,f).f) “Ug Y= B X ) 77 Z,,)
KA A

(11)

wt. pu e lplze ylso,

where 0 <« <|ca(k)|/2 and 0 < v, <[nm(k, j)|+|ca (k) | are tuning parameters.
Depending on the purpose, p() = 1= 0) for graph recovery and ,() = o for effect
estimation without selection. In(10)-(11), v ,v, are added to treat possible high-
dimensional situations and thethyperparameters are tuned by BIC. Algorithm 2

summarizes the procedure.

Algorithm 2: Estimation’of u

Input: Data'y, , and x_  , ARG 9 and candidate IV sets (ca,(x)},_,.,;

1 Initialize v « 0 and ¢ « 1;

2 while ¢ < the length of the longest directed path in 9* do

3 For (k, j) ¢ so that the length of the longest directed path from Yk to Vjis 4,
estimate u,, with (10)-(11);

4 Update ¢ « d +1;



5end

6 return v ;

4 Likelihood inference

This section develops a likelihood ratio test for the presence of multiple directed
edges. Let " < (k. j):k = j.1<k,j< p} be ahypothesized edge set for primary
variables Y, where (. j) <7 specifies a (hypothesized) directed edge v, —» v, in (1).

Now consider simultaneous testing of directed edges,
HO:UA,/_=0f0rall (k,j)eH versus Ha:Uk/;tOforsorne (k,j)eH. (12)

The null hypothesis Ab asserts that all hypothesized edges in * are absent in the
true graph 9 . Rejecting b indicates that at least one hypothesizediedge in 7

presents in 9 .

The likelihood ratio.

Given 9" = (x.,v;¢", 27, let 99") = (u,w,) encode the coefficient parameters in 9",

where U = (U, ,0) and w = (w_ ,0). As such, the adjacency matrix u automatically

meets the acyclicity constraint. Given arandom sample (v_,.x_ )’ , the log-
likelihood is written as (up to an additive*constant)
LG H),0)=- 1_2 HQ”Z ((r= U Y, -W X, ) M log det(@), (13)

2 < ’ 2

where o = x ' is the inverse of = in (1). Then the maximum likelihood estimation
(MLE) of (1) can bewritten as

max max L(0(g+),9). (14)

G @)y 09")

In view of (14), to obtain a likelihood ratio statistic for (12) we need to compute the
following quantities: (1) a consistent estimate g of -, (2) a consistent estimate o
of @, and (3) two estimates, o and o ,of (9") under Hb and H, respectively.

This leads to the likelihood ratio defined as



L(am,g)—L(e(o),Q), (15)
where 9 is estimated by Algorithm 1 and o is estimated from the residuals after

fitting model (1) via Algorithm 2.
4 Inference subject to acyclicity.

In classical models, a likelihood ratio of form (15) has a nondegenerate and tractable
limiting distribution, typically a chi-squared distribution with degrees of freedom | |.
However, the likelihood ratio for (12) may behave differently from classical ones

since (15) may be degenerate or intractable, as to be explained.

First, note that the maximum likelihood subject to a wrong ARG 9 5 9 stendsito be

smaller than that subject to the correct 9, that is,

max max L(H(g+),9)< max L(a(g+),9)a

9729 99" ). 097 )0

as » » « under some regularity conditions for consistency. Thus, we assume

¢~ 6" in this paragraph. Then 0" isthe MLE subjectto 9* and u, =0, which is
equal to the MLE subject to the graph 9 < (x,y3¢ %\ " Z°) Meanwhile, to test
whether any edge in * exists, o' isthe MLE subject to an augmented graph

9= (x,v;¢€ v " 17y with hypothesized edges being added, namely,

vl - (Ui‘]}uH ,0) and w v (W » .0y . Of note, since ™ is pre-specified by the user,
9 is not necessarily acycli¢, and thus, not all edges in * could present in v

Furthermore, if a hypothesized.edge (4, )) is present in v , then {(x, j)1u € must
have no directed cycle and (15) is strictly positive (nondegenerate). However, even if
(15) does not degenerate to zero, its limiting distribution can be complicated when
there exist multiple ways of augmenting 9 with the edges in ® while maintaining
the resulting graph as a DAG. Therefore, a regularity condition for * is necessary to

rule out intractable situations.

On the ground of the foregoing discussion, we introduce the concepts of
nondegeneracy and regularity to characterize the behavior of (15) as in Li
et al. (2023a).



Definition 5 (Nondegeneracy and regularity with respect to [INEQ-START). 9]

(A)An edge (k, j) e " is said to be nondegenerate with respect to an ancestral
graph 9° = (v, x;¢",Z%) if {(«, j); u®" contains no directed cycle. Otherwise,
(k, ) is said to be degenerate. Let © < ™ be the set of all nondegenerate
edges with respect to 9. A null hypothesis Ab is said to be nondegenerate
with respectto 9 if P » @ . Otherwise, Ab is said to be degenerate.

(B) A null hypothesis b is said to be regular with respectto 9 if 2 u ¢* contains

no directed cycle. Otherwise, Ao is called irregular.

Suppose Hp is nondegenerate and regular. Then 6" isthe MLE subject tothe, graph

9'=(x,v;¥* NP Iy and o' isthe MLE subject to the graph

+ LEH D I+
9 = (x,v;¢ 0D Iy,

Now, we investigate the limiting distribution of (15) and derive an_asymptotic test

based on it. To this end, define the statistic

(1) (0) D
2(L(0 Q)-L(0 ,Q)) if |2 Dis fixed,

(
o=l \ (16)
{kz(L(a Q) - L(B ,Q))—|D|}/\/2|D| it P> o.

Theorem 2 (Limiting distribution). Assume the null hypothesis Hp is nondegenerate

and regular. Suppose PG _94 %, 851> «.Then we have ®P Dy 1. In

addition, ifl @ - I’= 0. s{loglp v n)/n) where s = {(k, jy:Q, = o}, then under Hy,

a [ 2 if 4P
YA 1 ' ,
TPy D D
[N (0,1), if |2 5> 0 and | P || S [log(pv n)/n— 0.

isfixed and | S |log(pvn)/n—> 0,

On the basis.of Theorem 2, we conduct inference by substituting | P | by its estimate
| P | and proceed with the empirical rule: (1) use the chi-squared test when | P |< 50,

and (2) use the normal test when | ? > 50 .

Theorem 2 requires a good estimator @ of @ = =' to account for the confounding

T

effects, where = = cov(z). To estimate @, let c.. = (1-U) Y, -W X_;i=1,.,n

be the estimated residuals after fitting (1) with Algorithm 2. Here we use the



neighborhood selection method (Meinshausen and Bihimann, 2006) with an
additional refitting to obtain a positive definite estimate « . In Supplementary
Materials, we include the computational details and show that this estimator satisfies

lo - = 0.(510g(p v n)/n) sothat Theorem 2 applies.

Remark 2. In Theorem 2, we focus on nondegenerate and regular hypotheses. For a
degenerate case, we define the p-value as one. For an irregular case where P o €
contains a directed cycle, we decompose b into sub-hypotheses #",...,n,” , each

of which is regular. Then testing At is reduced to multiple testing for #",... .z (" .

0

Finally, we discuss two aspects of likelihood estimation and inference in the
presence of unmeasured confounding. First, when = is non-diagonal, the likelihood
in (13) cannot be factorized according to ¢ (or 9 ). This implies that;runlike the case
without latent confounders (Shojaie and Michailidis, 2010), the parameters of each
equation in (1) cannot be estimated separately given 9 . Indeed,the likelihood
estimation of (u,w) in (1) requires a preliminary estimate of.@ to account for
correlations arising from hidden confounding. Furthermore, compared to Li

et al. (2023a), the likelihood ratio (15) is no longer a'sum of likelihood ratios of
equations associated with nondegenerate hypothesized edges, rendering inference
more challenging in both computation and theory when hidden confounders are
present. Computationally, the likelihoad ratio (15) requires maximization of the full
likelihood, which is costly for a large-scale graph. Theoretically, estimating @ and

(U, W) in high-dimensional situations may suffer from the curse of dimensionality.

Second, to mitigate the challenges in inference, we may conduct inference with
respect to a sub-DAG to achieve dimensionality reduction. Specifically, let P be the
nondegenerate edges of Hb. Given ARG 9", we perform likelihood inference using a

sub-DAG (of ARG) 9" - (x_,.v ;¢ . .2 ), where all edges specified in P are

sub > sub?

among primary variables v_ , and v_, are non-descendants of ¥ ™ y_, in the graph

sub ?

is the set of intervention variables of v__, ¢ is the set of

b b

(x,v;¢ 0D Iy x_

b

and Z° is the set of interventional relations between

ub

ancestral relations among v

sub ?

in ARG 9" . Then the test statistic (16) is computed within the sub-

DAG 9 , which reduces computation. Furthermore, Theorem 2 holds true when the

x_,and vy,

ub b

estimator of the smaller precision matrix o . enjoys the desired convergence rate



op(\/| S.. |log(p,, v n)/n) in operator norm, where the subscript  denotes the

quantities corresponding to the structural equations of v

b "

5 Theory

In this section, we develop a theory to quantify the finite sample performance as well

as the complexities of Algorithms 1-2 when TLP is used for computation.

To proceed, we introduce some technical conditions for casual discovery

(k7))

consistency. For (x, j) ¢, let = be the covariance matrix of

Ew |y X),Y

nmg (k,j)° ng (

.- X) . Moreover, let s = max . (c+v,,v)vmax, Vi

be the maximum sparsity-level in the estimation procedure, where v ,v % depends
on (4, /) which is dropped for conciseness. Assume there exist constants

C,sC,C,,C, >0 such that

0

(K0,

(C1) min ., min min v,X v)y>c .
(k,jyet" B:B|<2s VZVZZI,\’RLIS}VB|+(‘U.\'4’]0g(p),/n< > > 1

(CZ) min ¢0|Vk/_ |> czallog(qvn)/n .
(C3) minUVKO\Uk,_ |> cﬂ/log(pvn)/n.

(C4) max,_,_ {lang (k) Lling (k) .l U 21001 , and

1<k<p

max (Diag(z(k'”)) =0().

(k.j)es"

Condition (C1) is a restricted eigenvalue condition, which is common in high-
dimensional estimation (Bickehet al., 2009) and can be viewed as a stronger version
of (A1) in Theorem 1. (C2),and“(C3) impose restrictions on the minimal signal
strengths of v and o so.that the ARG 9° and DAG Y can be consistently
recovered, respectively. They are similar to the beta-min condition (Meinshausen
and BUhlmann, 2006) and the degree of separation condition (Shen et al., 2012) in

the variable selection literature.

Theorem 3. Suppose Assumptions (A1)—-(A3) in Theorem 1 are satisfied and assume

X is sub-Gaussian with mean zero and parameter ¢ .

(A) (Parameter estimation) Suppose (C1), (C2), (C4) are met with sufficiently
large c,,c ,c,. Suppose the tuning parameters are suitably chosen such that



() InAlgorithm 1, 0.01¢,\log(g v n)/n < ¢' < 0.4min, |V, |« =lv | for
1<j<p.

(1) In Algorithm 2,

0.5c,flog(pvn)/n<z,v,=[TLP ((a,.a,)].v, =[TLP ()], and

x =[TLP ()] forany (k,j)e®".

Then there exists constant c, > o such that when n is sufficiently large

| Uy = U, |< Clog(pvn)/n,

almost surely under ¥ Moreover, Algorithms 1 and 2 respectively:

Uu.w.x) "

terminate in o (p x log(s)x (¢° + ng’)) a@nd o€ |xlog(s)x (¢ +ng’ )

operations almost surely.

(B) (Graph recovery) Additionally, if (C3) is satisfied with ¢, >°C, > ¢, then when n

is sufficiently large we have 9 = 9 almost surely.

By Theorem 3, the proposed method achieves causal discovery consistency in terms
of consistent parameter estimation and structure recovery. Moreover, Algorithms 1-2
enjoy low-order polynomial time complexity almost surely provided that the data are

randomly sampled from (1).

6 Numerical examples
6.1 Simulations

This subsection investigates via simulations the operating characteristics of GrIVET,
including the qualities of structure learning, parameter estimation, and statistical

inference.

To generate an observation (v, x ), we first introduce hidden variables » ~ v (0,1 )
as unmeasured confounders. Then, we sample Xfrom ~ (0.1 ) for continuous
interventions or from {-1,1:* with equal probability for discrete interventions. Given X

and », we generate Yaccording to

Y=UY+W X+® g+e, e~N(0,Diag(o],...02)). (17)



We conduct simulations with the following settings.

e Hubgraph. Let p=101, g=252, and r=10. For u, (U, ) are

independently sampled from ¢-1,1; with equal probability, while the rest are
set to 0. This generates a sparse graph with the dense neighborhood of the

first node. Let w__ =« ,F ) where the entries (¢ , ,F , ) are

pxp’  pxp 1<j<q-2p

set to 1, while other entries of F are zero. Then x . x, are IVs of Y;for

j=1...p and x, ... x_areinvalid Vs with two intervention targets. For

+1

1< j<r

jk )10j—xsks10j+1

the confounders,  and (o are sampled uniformly from

1.1
(-0.4,-0.6) U (0.4,0.6) , While other entries of ® are zero. We generate

(o,.....o ) uniformly from (0.4,0.6) .

« Random graph. Let p= 100, ¢ =250, and r=10. For u , the upper off-

diagonals (u,)),_, are sampled independently from {0, 1} according to

T T

=1, .1 .F)

pXp’  pxp

Bernoulli(1/10 p) While other entries are zero. Set w

P

where (F , .F ) are set to 1, while other entries of F are zero. Then

j.2j1<j<1-2p

+1

x . x, arelVsof Yifor j=1....p and x, .. .x areinvalid Vs with two

intervention targets. For the confounders;, (o(, ;" .., are sampled
J J sr=sl0y

uniformly from (-0.4,-0.6) U (0.4,0.6), While other entries of ® are zero. We

generate (o,.....o ) uniformly fram (0.470.6) .
Structure learning.

After obtaining ancestral relations'from Algorithm 1, we implement Algorithm 2 to
confirm parental relations butiwith constraints also imposed on the parameter of
interest. Four graphsmetrics are used for evaluation: the false discovery rate (FDR),
the true positiverate (FPR), the Jaccard index (JI), and the structural Hamming
distance (SHD). The results in Table 1 demonstrate the strong performance of
GrIVET in structure learning. Note that a high TPR indicates GrIVET’s capability to
detect the true existing edges, while the FDR remains low, signifying the high
specificity of GrIVET. In Supplementary Materials Section 3.3, we further compare
GrIVET with RFCI (Colombo et al., 2012) and LRpS-GES (Frot et al., 2019) in terms

of structural learning accuracy. GrlVET compares favorably against the competitors.



Parameter estimation.

We compare the proposed IV estimation method in Section 3.3 with the regression
method without any adjustment for confounding (Li et al., 2023a). To evaluate the
quality of estimation, we consider three metrics, the average maximum absolute
deviation, the mean absolute deviation, and the mean square deviation between true
coefficients and estimates over 1000 runs. As demonstrated in Table 2, GrIVET
enhances parameter estimation by accounting for latent confounding. As anticipated,
GrIVET’s estimation improves with increasing sample size n, while the naive
regression method (Li et al., 2023a) remains inconsistent. Furthermore, GrIVET’s
advantages become more pronounced when stronger confounding effects are

present, as evidenced by additional simulations in the Supplementary Materials.
Inference.

We now evaluate the empirical performance of the proposed‘tests.in terms of size
and power. For the empirical size, we calculate the percentage of times Ao is
rejected out of 1000 simulations when A is true. Forthe power, we consider three
alternative hypotheses H., where all the edges in AHj exist. The empirical power of a
test is the percentage of times Ao is rejected out of 1000 simulations when H; is true.
The adjacency matrix u is modified aceording'to the null and alternative

hypotheses.

« Hub graph, fixed 7 . Forthesize, consider
Ho g2, M= 12,7).(7,12),(12,17)} , and
H o= ((2,7),(7.12),@2,17),¢17,22),(22,27)} . For the power, consider
Hoca,2), ™= 401,2),0,12),1,22)y ,and H = ((1,2),(1,12),(1,22),(1,32),(1,42)} .

« Random graph, fixed " . We consider ™ = {(1,6)}, ™ = {(1,6).(6.11),(11,16)} ,
and 7= fa,6),(6,11),(11,16),(16,21),(21,26)} for both size and power.

« Random graph, random 7 . We also consider testing 50 randomly selected
edges individually. Here, a random graph is generated so that 20 of these
selected edges are present in the true DAG (i.e., Hzis valid). As a result, for
every selected edge, b holds in roughly 600 repetitions and Hz holds in
roughly 400 repetitions.



As shown in Table 3 for fixed * , empirical sizes are close to the nominal « = 0.05
under Hb, and the proposed test enjoys desirable power under Hs. Figure 2 presents
similar results for testing random * . The Supplementary Materials display that the
sampling distribution of the test statistic is close to the derived asymptotic distribution
in Theorem 2. Additional simulation details and results are also available in

Supplementary Materials.
6.2 ADNI data analysis

In this subsection, GrIVET is applied to analyze the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (available at https://adni.loni.usc.edu)..The
goal is to infer gene pathways related to Alzheimer’s Disease (AD) in order to
elucidate the gene-gene interactions in AD/cognitive impairment patients and healthy

individuals, respectively.
Dataset.

The dataset comprises gene expression levels adjusted, for five covariates: gender,
handedness, education level, age, and intracranial volume. For data analysis, we
select genes with at least one SNP at a marginal significance level below 107",
resulting in p= 21 genes as primary variables.,\For these genes, we further extract
their marginally most correlated two SNPs,,yielding g = 42 SNPs as unspecified
intervention variables for subsequent data analysis. All gene expression levels are

normalized.

The dataset initially categorizes, individuals into four groups: Alzheimer’s Disease
(AD), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment
(LMCI), and Cognitive Normal (CN). For our analysis, we treat 247 CN individuals as
controls and thesremaining 462 individuals as cases (AD-MCI). We then use the
gene expressions and the SNPs to infer gene pathways for the 462 AD-MCI and 247

CN control cases, respectively.

Hypotheses.


https://adni.loni.usc.edu/

We focus on statistical inferences related to genes APP and CASP3 (Julia and
Goate, 2017; Su et al., 2001). As in Figure 3, for each edge (4, j), we consider testing

H():Ukj:0versusH“:U = 0.

kj
Results.

Figure 3 displays the p-values and significant results under the level « = 0.05 after
the Holm-Bonferroni adjustment for 2 x 7 = 14 tests. The tests exhibit strong
evidence for the presence of {LRP1—» cAsSP3, APP » APOE} inthe AD-MCI group,
but no evidence in the CN group. Meanwhile, this result suggests the presence of
connections {CAPN1— CASP3,ATP5F1 - CcAsP3} inthe CN group but not so inithe
AD-MCI group. In both groups, we identify directed connection App — APBBI .
Figure 4 shows the residual correlation matrices for both groups, suggesting the
existence of unmeasured confounding. The Supplementary Materials include normal
Q-Q plots of residuals, demonstrating that the normality assumption is approximately

satisfied for both groups.

Some of our discoveries agree with the existing findings. Specifically, our result
indicates the presence of connection APP - AROE for the AD-MCI group, but not for
the CN group, which seems consistent with the knowledge that APP and APOE are
functionally linked in brain cholesterol metabolism (Liu et al., 2017) and the
contributions of APOE to the pathephysiology of AD (Bu, 2009). The connection
LRP1 - CASP3 also differs in/AD-MCI and CN groups, which may serve to support
the conclusion that activated CASP3 may be a factor in functional decline and may
have an important role in_neuronal cell death and plaque formation in AD brain (Su
et al., 2001) given the finding that both APOE and its receptor LRP1 are present in
amyloid plaques (Pairier, 1996). Moreover, the connection CAPN1 - CDK5R1
discovered in beth groups can be found in the AlzNet database (interaction ID
24614).



7 Discussion

This article proposes a novel instrumental variable procedure that integrates causal
discovery and inference for a Gaussian directed acyclic graph with hidden
confounders. One future research direction is to develop methodologies for
analyzing discrete/mixed-type (primary variable) data. Additionally, the present work
uses individual-level data from a single study for causal discovery and inference. In
many real applications, due to privacy concerns and ownership restrictions, the data
are only available in the form of summary statistics (e.g., GWAS summary data) or in
other privatized forms. Extending GrIVET to leverage these data is an important
topic. Furthermore, multisource/decentralized data are ubiquitous, raising new
challenges in communication, privacy, and handling of corrupted data. It weuld be
promising to employ modern machine learning techniques, such as federated
learning (Xiong et al., 2021; Gao et al., 2021), to address these challenges and fully

unleash the potential of large-scale causal discovery and inference.
Finally, we discuss two limitations of the present work.

« GrIVET necessitates the availabilitysof validiVs for each primary variable due
to the hardness of causal identificationiin the presence of hidden confounding.
In genetic research, there is an'ample supply of genetic variants (e.g., SNPs)
serving as IVs. Nonetheless, obtaining valid Vs can be challenging in certain
applications. It is thus crucialto investigate the potential for causal discovery
even when faced with an insufficient number of IVs.

e Forinference, Theorem 2 requires that IP’(9+ = 9"y 1, which is guaranteed
by Condition (C2) in Theorem 3. Fulfilling this requirement can be challenging;
in such cases, one might turn to the post-selection inference framework (Berk
et al.,.2013) by concentrating on the parameters within the selected model.
However, the test results should be meticulously interpreted, as these
parameters cease to be causal or structural (Berk et al., 2013) unless
PG -Gy 1.In essence, (C2) enables the causal meaning of the tested
parameters to be carried over to finite-sample inference. Exploring ways to lift

the signal strength condition while preserving the causal interpretation for



statistical inference after DAG structure learning (Wang et al., 2023) is an

important research topic.

A Appendix

Definition of d-separation (Pearl, 2009).

Consider a DAG 9 with node variables (7 ,... ,zd)T . Nodes Zx and Z; are adjacent if
z,— z,0r z, « z, . Anundirected path between Zxand Zin 9 is a sequence of
distinct nodes (z,....,z ) such that all pairs of successive nodes in the sequence are

adjacent. A non-endpoint node Z» on an undirected path (z,,....,z, .z .z .7 52)

+12°

is called a colliderif z - z « z . Otherwise, itis called a non-collider. Let

-1 +

4c {1,...4},where Adoes not contain Aand /. Then z , is said to block an
undirected path (z,.....z ) if at least one of the following holds: (1) theundirected
path contains a non-collider that is in z , or (2) the undirected'path contains a
collider that is not in z , and has no descendantin z ,. A nede Z is d-separated

from Z;given z , if z block every undirected path between.Zxand Z; « = ;.
Additional discussion of Figure 1 (a).

Let (k. ) e¢" and suppose all IVs arewalid. We explain why x ., may not be valid

(k)

IVs after conditioningon v, .. ,asmentioned in Section 3.3. Let / cca (k) and

ky
m e me(k, j) such that Yxis an unmediated parent of Y/». Note that in Figure 1 (a) of

the main text, whenever , ».x, ;then v .. does notd-separate x and 7,

ca (k)

since Ynis a collider in the undirected path (x .v,.v,.».v,). Asaresult, x_ , andn

ca (k

can be associated conditionedon v, ., .

Additional discussion on identification of uU .

We have the following result.
Lemma 1. /n (1), assume X and ¢ are independent.

A)Bw, 1y,
(B)E (s ¥

,»X) Is a linear combination of (v X).

n (k (k,j)?

X) /s a linear combination of (v X ).

nm(k,j)’ m(k, /)" ca (k)



Proof. Here, (A) follows directly from (1). For (B), we have

T

T snm(k‘/) ’

E(g/ VY iy X)) = E(g/' L€ X) = E(g/ l€0mi) =

where the last equality is due to the normality of ¢ . Finally, in (1), we immediately

have &, islinearin (v, , .Xx ). 0

m(k,j) (k.j) ca (k)

Now, we show that cov(e, X) = 0 is sufficient to derive the identification results in
Section 3.3. Given random variables {and ¢, let (2| ¢) be the best linear

approximation of {using ¢, namely L (¢ |¢) = ng where

®w = arg min E((—wTé)z,

For random variables ¢ ¢/, and ¢, we have that (a) L+ ¢ 1e)= Y1+ H o),
(b) Lecrery=clicie) foree® (o) Bc1er=0 if covic.or=o i (@ ie=¢ if
¢ espan(é),and () Lc1e)=L1a¢) forinvertible A . Thus, L (1*) mimics B *),

and Lemma 2 holds. The proof is similar to that of Lemima1.
Lemma 2. /n (1), Lemma 1 holds with (| *) being replaced by (| *) .

As a result, if Xand ¢ are uncorrelated as in (1), the derivation in Section 3.3 holds

with E({*) being replaced by L *).
Supplementary materials

Supplementary Materialstinclude implementation details, additional simulations, and

technical proofs.

ENDNOTES
'"The causal parameter U is said to be identifiable if for any (u,w,x) and (U, W ,=), we

>

have ¥ | | = IPU, ., implies U = U". Otherwise, it is said to be non-identifiable.

*In Algorithm 1 Step 7, the indices of V are kept so that v, always represents the effect from
X, toY, .
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Fig. 1 Estimation of causal parameter U, . (a) Display of the relations‘ameng

relevant variables. (b) Display of working response regression.
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Fig. 2 The boxplots of the empirical rejection probabilities for testing randomly

selected edgesi The nominal level is « = 0.05 .
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Table 1 Faise discovery rate (FDR), true positive rate (TPR), structural Hamming
distance (SHD), and Jaccard index (JI) of GrIVET for causal discovery over 1000
simulation replications. To compute the metrics, let TP, RE, FP, and FN be the
numbers of identified edges with correct directions, those with wrong directions,
estimated edges not in the skeleton of the true graph, and missing edges compared
to the true skeleton. Then

FDR = (RE + FP)/(TP + RE + FP), TPR = TP /(TP + FN),SHD = FP + FN + RE , and

JI=TP /(TP +SHD).

Graph |[Intervention|| n |[FDR(%)|TPR(%)||SHD| JI(%)

Hub Continuous 500/0.000 {{100.000j(0.000j[100.000

400(0.000 |(99.998 |/0.002|/99.998

300(0.000 (199.998 |0.002|99.998

Discrete 500/0.000 {|99.999 |0.001{/99.999

400(0.000 |(99.998 |/0.002|99.998

300j(0.000 {|99.999 (0.001{(99.999

Random||Continuous |[500(0.011 |98.600 1|0.001(198.589

400(0.000 |98.600 (0.000/98.600

300j(0.018 }|98.590 (0.003|/98.575

Discrete  |500/(0.000, |98.600 {/0.000|98.600

400(0.024 |/98.600 ||0.002|98.576

300(0.000 98.600 0.000(198.600




Table 2 Parameter estimation: the average of largest absolute difference (Max

AD), the average absolute differences (Mean AD), and the average squared

differences (Mean SqD) between the estimated parameters and the true parameters

for two competing methods over 1000 simulation replications.

Direct regression (Li

Graph |[Intervention|| n GrIVET et al., 2023a)
(Max AD, Mean AD, Mean _(Max AD, Mean AD, Mean
SqD) SqD)
(0.06107, 0.01808, _
Hub Continuous (500//0.00052) (0.12817, 0.02448, 0.00142)
(0.06863, 0.02037, _
400|/0.00066) (0.1319670.02637, 0.00156)
(0.07922, 0.02347, _
300(/0.00087) (0113395, 0.02873, 0.00170)
(0.06119, 0.01803, -
Discrete  |500/(0.00051) (0.12770, 0.02434, 0.00141)
(0.06932, 0.02030, _
400(/0.00065) (0.13041, 0.02621, 0.00153)
(0.08046,0:02355, _
300|(0.00088) (0.13334, 0.02867, 0.00169)
(0102836, 0.01445, _
Random|/Continuous|500}0.00034) (0.04254, 0.01791, 0.00076)
(0.03245, 0.01660, _
400(/0.00045) (0.04390, 0.01899, 0.00079)
(0.03760, 0.01939, _
300|(0.00060) (0.04709, 0.02150, 0.00091)
(0.02910, 0.01505, _
Discrete  |500(/0.00037) (0.04287, 0.01808, 0.00075)
(0.03272, 0.01686, -
400(/0.00046)

(0.04432, 0.01962, 0.00081)




Graph

Intervention

GrlVET

Direct regression (Li
et al., 2023a)

300

(0.03619, 0.01879,
0.00057)

(0.04756, 0.02146, 0.00094)




Table 3 Empirical size for GrIVET at nominal level « = 0.05 , respectively for

'P1=1,]P =3 and | P = 5, over 1000 simulation replications.

Graph

Intervention

Size (|1P =1,3,5)

Power (1P |=1,3,5)

Hub

Continuous

500

(0.028,0.026,0.029)

(1.000,1.000,1.000)

400

(0.043,0.038,0.035)

(1.000,1.000,1.000)

300

(0.037,0.030,0.034)

(1.000,1.000,1.000)

Discrete

500

(0.036,0.040,0.027)

(1.000,1.000,1.000)

400

(0.051,0.040,0.040)

(1.000,1.000,1.000)

300

(0.052,0.041,0.035)

(1.000,1.000,1.000)

Random

Continuous

500

(0.038,0.037,0.026)

(1.000,1.000,1.000)

400

(0.033,0.031,0.028)

(1.000,1.000,1.000)

300

(0.033,0.025,0.030)

(1.000,1.000, 1%000)

Discrete

500

(0.040,0.029,0.027)

(1.000,1.000, 1:000)

400

(0.042,0.034,0.040)

(1.000,1.000,1.000)

300

(0.029,0.033,0.0384)

(1.000,1.000,1.000)




