2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR) | 979-8-3503-1184-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/MSR59073.2023.00089

2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)

GitHub OSS Governance File Dataset

Yibo Yan
UC Davis
ybyan@ucdavis.edu

Seth Frey
UC Davis
sethfrey @ucdavis.edu

Abstract—QOpen-source Software (OSS) has become a valuable
resource in both industry and academia over the last few decades.
Despite the innovative structures they develop to support the
projects, OSS projects and their communities have complex needs
and face risks such as getting abandoned. To manage the internal
social dynamics and community evolution, OSS developer com-
munities have started relying on written governance documents
that assign roles and responsibilities to different community
actors.

To facilitate the study of the impact and effectiveness of formal
governance documents on OSS projects and communities, we
present a longitudinal dataset of 710 GitHub-hosted OSS projects
with GOVERNANCE . MD governance files. This dataset includes all
commits made to the repository, all issues and comments created
on GitHub, and all revisions made to the governance file. We
hope its availability will foster more research interest in studying
how OSS communities govern their projects and the impact of
governance files on communities.

I. INTRODUCTION

As one of the largest online open code hosting platforms,
GitHub provides a widely accessible and easy-to-use platform
for many Open Source Software (OSS) projects and communi-
ties. With the free availability of OSS digital traces, studying
OSS at scale has become feasible, and academic studies of
OSS repositories have proliferated.

Research into OSS communities spans topics including code
quality [1], [2], sustainability [3], [4], [S], and more recently
governance [6], [7]. GitHub governance is different than the
governance in other OSS hosting organizations. For instance,
Apache Software Foundation (ASF), a well-known not-for-
profit organization, provides an incubator for OSS projects.
Projects in the ASF Incubator (ASFI) receive mentorship, and
their efforts are guided and governed by ASFI’s committee.
Most OSS projects and communities on GitHub do not have
such a committee to support OSS activities. As a solution,
many OSS communities draft their own governance files and
utilize GitHub’s “issue” feature to govern and coordinate OSS
activities. Based on the existing convention of using text-based
documentation to govern collective activities (e.g., Contributor
Covenant), open-source communities start to adopt the ap-
proach of hosting a text-based file named GOVERNANCE . MD,
making an effort to foster a healthier community and convey
labor division and participation expectations more clearly. As
a project evolves, the governance file often evolves through
periodic revisions, as community members introduce, modify,
or delete governance rules.

Studying governance files can shed light on how OSS
projects coordinate work and potentially reveal aspects of the

Amy Zhang
UW Seattle
axz@cs.uw.edu

Vladimir Filkov
UC Davis
vfilkov@ucdavis.edu

Likang Yin
UC Davis
lkyin@ucdavis.edu

socio-technical dynamics within OSS projects. Understanding
how OSS projects on GitHub govern their collaborative work
and how socio-technical dynamics change within projects can
further facilitate the study of sustainability in OSS projects to
pinpoint crucial factors in the successful governance of OSS
projects and communities [8], [9].

We present the GitHub Open-Source Software governance
documentation dataset. It includes governance files, projects’
commit history, and issues for 710 OSS projects hosted on
GitHub. To facilitate longitudinal studies, we provide separate
tables, capturing the commit history of GOVERNANCE.MD
files and detailed changes made in each commit on the
GOVERNANCE . MD file at line-level granularity.

To the best of our knowledge, this is the first time
such a governance-documentation-oriented GitHub-hosted
OSS project dataset has been presented to the empirical
software engineering community. Next, we present the de-
tails of our dataset, scraping methodology, and storage,
followed by two preliminary examples of research studies
that can benefit from this data. Our dataset, along with
the scripts we used to scrape it, is available at Zenodo:
https://doi.org/10.5281/zenodo.7530768.

II. RELATED WORK

Analyzing the community organization, structure, and gov-
ernance of OSS projects from a socio-technical perspective
enables the understanding of dynamics [10], project quality
over time [11], and project coordination effectiveness [12]
within OSS projects [13], [14]. Besides GitHub, many large
organizations and foundations like OSGeo [15], Apache Soft-
ware Foundation [16], [17], and Linux Foundation [18] also
support a multitude of OSS projects. Various tools have been
produced to mine these projects, e.g., Perceval provides a
unified entry-point to gather the data of software repositories
from various backends [19]; GHTorrent provides a streamlined
approach to gather mirrored data from GitHub [20]; Project
CHAOSS delivers metrics, model and software to understand
OSS community health [21]. Our governance documentation
dataset is orthogonal, and together with other sources can
enable holistic longitudinal analyses of OSS project evolution.

III. OSS GOVERNANCE DOCUMENTATION DATASET

The dataset comprises a longitudinal record of the entire
revision history of the GOVERNANCE.MD file for each col-
lected project, at varying levels of granularity. Besides the
detailed information on each commit that developers made

2574-3864/23/$31.00 ©2023 IEEE 630
DOI 10.1109/MSR59073.2023.00089
Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

to the governance file, we also extracted the line change
information for each commit made on the governance file.

1) Data Access: GitHub maintains a set of interfaces
through which developers can fetch repository-related data.
GitHub supports both REST [22] and GraphQL [23] APIs for
data retrieval, and we take advantage of both to scrape the
data. Since GitHub provides first-hand data access, the data
gathered through GitHub’s official APIs is at least as reliable
and up-to-date as the data from other social coding sites.
Although GHTorrent serves the purpose of mining GitHub,
it might not be useful for particular research directions, as
it produces excessive data by exhaustively mirroring GitHub
data but misses detailed data on the governance file’s per-line
revisions.

2) Repositories: Based on GitHub search results, there
are more than 1.6M projects with a GOVERNANCE . MD file.
However, not all of them are signaling meaningful information
as these projects often do not have a GOVERNANCE.MD
file for their own projects but include other packages or
dependencies that have GOVERNANCE . MD files. ! Therefore,
to reduce noise in the data set, we used the REST API’s search
code endpoint 2 to fetch only the repositories that contain a
file with a GOVERNANCE . MD (case-insensitive and non-exact
match) in the root directory. 3 The initial data set consists
of 1,899 unique projects that have a GOVERNANCE . MD file
in their root directory. To ensure the projects are meaningful,
we only keep projects that have at least 1 commit/issue. This
results in the final data set of 710 projects. We gathered a list
of basic metadata for each repository, such as the repository
name and the filename of the governance file.

Due to the non-deterministic nature of GitHub’s search API,
we kept calling the search API repetitively until 99 out of the
100 last searched repositories were already encountered. We
used gql4 to fetch commits, issues, and comments in each
issue for each repository. Additionally, we used PyDriller
[24] to locally locate all commits that involve a change on
the governance file. With the help of PyDriller, we obtained
detailed information on each commit made on the governance
file at the granularity of a line by processing through the parsed
diff output, offering a view of which line along with the edited
content is added or deleted in each commit.

3) Commits, Issues, and Comments: We used the
GraphQL endpoint, https://docs.github.com/en/graphql/guides/
forming-calls- with- graphql#the- graphql-endpoint, to collect
commits, issues, and comments inside each issue. We sent
sequential GraphQL queries to iterate through the search space
by adjusting the cursor correspondingly.

Preliminary project-scoped aggregations were done on the
collected data to generate basic metrics for each repository

IThis is because the npm installs packages/dependencies in the project
directory, and project developers do not “gitignore” the dependency folder.

Zhttps://docs.github.com/en/rest/search?api Version=2022- 11-28#
search-code

3Therefore, results like ‘Governance-Committee_Charter.md’, ‘IPEP-29:-
Project-Governance.md’, and ‘GovernancePolicy.md’, etc., exist.

“https://github.com/graphql-python/gql

631

and were added to the repository list afterward. As a result,
the repository list contains information regarding the number
of stars, forks, commits, committers, issues, and comments;
the number of submitters of issues and comments; and the
number of commits and committers on the governance file.

4) Commit History of the Governance File: As GitHub
lacks support for retrieving commit history of a specific file,
we used PyDriller [24] to examine commits that involve a
change (i.e., add, delete, or modify) to the governance file.
We extracted basic metadata, e.g., author, committer, fileLOC,
along with the content and diff output before and after the
commit. We also extracted information on how each line
got modified (i.e., added or deleted) in each commit on
the governance file. We used scripts on the collected list of
commits on the governance file and obtained: a) a list of
commits per section of the governance file; > and b) a list of
the latest governance file of every repository by pulling out the
content after the last collected commit on the governance file.
All data—commits, issues, comments—were collected from
the initial creation date of the corresponding project on GitHub
to June 2022, the last day updated by the script.

5) Database: Most data were stored directly in a MongoDB
database, a type of NoSQL database, and later were exported
to different formats of data, i.e., CSV, SQL, and MongoDB
archive dumps. A small portion of data, such as the repository
list, was initially processed by pandas in-memory and written
to the MongoDB database afterward by scripts. All data were
re-exported in the end. We used PyMongo® to interact with
the MongoDB database via python scripts. The associated
data schema is shown in Figure 1. Each table in the schema
corresponds to one CSV table, SQL table, or MongoDB
collection in the dataset.

Table repo-list contains a list of metadata of GitHub-
hosted projects. Each row represents a project. There is no
explicit foreign key across tables; instead, ‘repo_name’ and
‘filename’ serve as two major keys to locate commits, issues,
and comments of the corresponding repository.

Table commit-list contains the commits from all projects in
repo-list; each row represents a commit.

Table governance-change-commit contains the commits for
the governance file of every project. Each row represents a
commit. As this list was collected by locally analyzing git
repositories, no GitHub-related information is presented.

Table governance-change-content contains the list of line-
change information of each commit made on the governance
file over all collected projects. Each row represents one line-
change information of a specific commit. The combination of
oid, repository.nameWithOwner, and filename should be used
as the key to locate all line changes on one specific commit.

Table governance-change-commit-by-section contains the
same information as governance-change-commit. For each
row in the governance-change-commit table, the ‘sourceFile’

SThe section is defined as the content between two heading elements in the
Markdown file. The heading element is written as ‘#°, ‘##’, etc., followed by
the heading content.

Shttps://github.com/mongodb/mongo-python-driver

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

repo-list governance-change-commit
—»{repo_name string {e—— author.name string
filename string |e—{— author.email string Derived from
html_url string committer.name string governance-change-commit
star_count int committer.email string
:N- hi it-bt
fork_count int authoredDate string 1 gover [] y :
created_at string LN committedDate string governance-change-content author.nam.e 5"?"9
updated_at string oid string oid string author..eman 5“’?"9
pushed_at string isMerge bool lineChangeType string comm!ner.nam.e str{ng
num_commits int fileDeletion int repository.nameWithOwner |string CEHCIE] strfng
N num_committers int fileAddition int filename string author.edDate str!ng
1 |num_issues int |—— repository.nameWithOwner |string changeLineNumber int Cf)mmlttedDam S"f"g
num_issues_submitters int - filename string content string _md string
num_issues_comments int fileChangeType string |.sMerge‘ F’OOI
num_issues_commenters |int 1N sourceFile string f!IeDele.t‘lon int
num_gov_commits int sourceFileBefore string f'IEAd_d'“O") nt
num_gov_committers int diffUnparsed string repository.nameWithOwner string
1 filename string
1:1 fileChangeType string
commit-list issue-list sourceFile string
»repository.nameWithOwner [string - sourceFileBefore string
commitUr strin issue comment diffUnparsed string
bbreviatedoid i 9 url string url string sectionOrder int
abbreviatedOi string 0 - ’ -
e - author.login string author.login string sectionHeading string
authorAssociation string authorAssociation string tionContent trin
author.name string . - sectiont-onte string
) X bodyText string bodyText string
CULUsAT Sno createdAt string createdAt string e m——
author.user.login string lastEditedAt string lastEditedAt string " = -
authorByCommitter bool number nt | 2:N—s number nt repository.nameWithOwner string
i i filename strin
changfedFlles |ntv publishedAt string publishedAt string committedDate string
CEIIIEIPETS string issueUrl string |e—1:N—sfissueUrl string .
committer.name string - . content string
i) X type string type string
commfnenemall . strfng __—» repository.nameWithOwner |string («—1:N—»{repository.nameWithOwner |string
comrT\mer.user.Iogm jstnng title string editor.login string
doicicns mtv state string isMinimized bool
messageBody § S"!ng closed bool minimizedReason string
messageHeadline slrfng closedAt string
pushedDate string updatedAt St
repository.nameWithOwner |string

Fig. 1. Data Schema of the
e.g., for a MongoDB dump,

field was used to extract section information. Each section
information was stored as a row in the governance-change-
commit-by-section table. Most fields are identical to the fields
in the governance-change-commit table.

Table lastest-governance-file-content contains the latest
version of the governance file of each collected project.

6) Metrics: We compute a set of standard software engi-
neering metrics for OSS project activity from our governance
documentation dataset. These include: the number of stars
(star_count), forks (fork_count), commits (num_commits),
committers (num_committers), issues (num_issues), issue
submitters (num_issues_submitters), and issue comments
(num_issues_comments); the number of people who com-
mented on issues (num_issues_commenters); the number of
commits to the governance file (num_gov_commits); and the
number of people committed to it (num_gov_committers). The
descriptive statistics for these metrics over the 710 GitHub-
hosted projects are given in Table I.

IV. POTENTIAL USE CASES

This section presents two potential use cases that can be
studied based on the presented dataset.

632

GitHub OSS Governance Documentation Dataset. Note: the actual data type can vary based on different sources for the archives,
all date fields like ‘createdAt’ will be a native Date type in the MongoDB context.

TABLE 1
THE PROJECT-LEVEL STATISTICS OF THE 710 GITHUB-HOSTED PROJECTS
WITH THE GOVERNANCE MARKDOWN FILE

Statistic Mean Median St. Dev. Min Max
star_count 1500.8 42.5 5902.7 0 85775
fork_count 308.3 23 1305.3 0 22861
num_commits 2,865.3 350.5 6,896.2 0 60,612
num_committers 164.5 19 495.7 0 4,033
num_issues 419.2 43 1,453.8 1 23,609
num_issues_submitters 149.34 12 629.8 1 10,069
num_issues_comments 1,344 71 5,724.3 0 83,183
num_issues_commenters 168.9 13 842.1 0 14,285
num_gov_commits 5.5 2 9.1 1 79
num_gov_committers 2.4 1 2.8 1 26

A. Case I: Studying Governance in Digital Commons

Scholars of self-organized self-governance in the online
context have long drawn on the theories of common pool
resource scholars such as Elinor Ostrom [25], [26]. One
particularly prominent contribution from this literature are the
Design Principles for Sustainable Common Pool Resource

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

Management [27]. These were developed for studying in-
stitutions for managing natural resources such as fisheries,
forests, and water systems, but have been extended to OSS
and other digital resources [28]. Yet, there remains a critical
need to test the generality of the design principles in the OSS
context, which would require a comprehensive comparative
dataset of formal OSS governance records. For example, with
a large collection of formal governance documents on GitHub,
a scholar could test “Principle 1: Clearly defined boundaries”
by extracting reference to GitHub platform position constructs
like users, committers, and contributors. For “Principle 5:
Graduated sanctions for appropriators who do not respect
community rules” a scholar might search GOVERNANCE . md
files for whether the rules contain a variety of sanctions (both
warnings and bans, not just one or the other). With this
dataset, we can apply these principles in any open-source
project hosted on GitHub and see how it works and whether
the best practices align with these principles. We can also
study the collaboration mechanisms, the rules and norms
set in the community, and the role of institutions, such as
maintainers, collaborators, and contributors in the governance
of the project.

B. Case II: Semantic Search in Institutions Analysis

Institutional analysis using natural language processing
(NLP) methods on GitHub can be used to study the organiza-
tional structure, rules, and norms of online communities, and
how they relate to the governance and performance of open-
source software projects. With the classified sentences, we can
conduct institutional analysis to understand the governance
mechanisms. In what way do people invoke the rules of an
open-source project in regular discourse? What is the overlap
between the rules people discuss and those they use? How do
rules change over time, and in what direction? How many
people tend to contribute to rules, and what is the typical
number of discrete roles they define as a project matures?
These questions all inform the practice of OSS governance,
and effective peer production generally. The dataset we in-
troduce thus makes it possible to advance the entire front of
online governance research.

C. Case IlI: Development of Governance Design Patterns

By examining a repository of enacted governance across
a range of communities, governance practitioners and tool
developers can gain an understanding of what governance
components are common. Broadly common components could
be surfaced as governance design patterns to then be integrated
into guides and other materials to help communities who
are deciding on what kind of governance to enact [29].
These patterns could also be translated into programs within
existing software toolkits for programmatically enacting gover-
nance [30]. Finally, developers of governance-related features
on GitHub or third-party tools could build in customized
support for common governance components; for instance,
implementing certain roles, tiered permissions, or voting
mechanisms that were often expressed.

633

V. LIMITATIONS AND CONCLUSION

Limitations We note that this dataset has two major lim-
itations regarding completeness and potential bias. Com-
pleteness 1) Because GitHub’s search API doesn’t return
a deterministic and full set of results, the dataset is not a
complete set of all GitHub-hosted repositories with a gov-
ernance file. 2) As we only collected projects which con-
tain the GOVERNANCE .MD file in the root directory, some
GitHub-hosted projects are missing from our dataset as they
might organize and store their governance files differently. For
example, some projects put their governance files directly in
the readme file. 3) The commit history collected in our dataset
does not necessarily represent the full history of all commits
that have been made. Certain Git operations may lose commit
history, such as squash or rebase. Bias 1) Some projects
may use the same governance file. Under some circumstances,
multiple projects may put the same line of redirection link
in their project-level governance file, referring to the external
governance documentation. In this case, all governance files in
these projects will produce the exact same but not meaningful
governance content. 2) Some projects didn’t start at GitHub
in the first place; instead, the projects and corresponding
governance files were hosted on other platforms and were
moved to GitHub in the later development stage. In this case,
the commit history on the governance file might be incomplete,
causing bias in analytic studies.

To mitigate the completeness and bias mentioned above, we
can 1) integrate data from other sources, such as GHTorrent’s
mirrored data, to workaround GitHub APIs’ non-deterministic
behavior; 2) we can use the available governance file dataset
to train a classifier to classify whether some text files contain
governance content, avoiding searching for the governance file
in a specific pattern and expanding the search space to include
more repositories.

Conclusion This work presents the development of a longi-
tudinal dataset of 710 Open Source Software (OSS) projects
hosted on GitHub that includes information about governance
files. OSS projects and communities still fail frequently, de-
spite the popularity of hosting platforms like GitHub, and
governance files are sometimes drafted and revised to serve
the community’s needs.

This dataset aims to help researchers and developers under-
stand best practices and common patterns in OSS governance
documentation and to identify projects with poor governance
that could lead to better maintainability and sustainability in
the long run. We present how the data was collected and what
specific criteria were used to select the projects, as well as
a description of the data, its structure, and the challenges
encountered during the data collection process. Additionally,
we discussed the potential applications and the value of the
dataset and encourage researchers to use this dataset to study
the state of open-source software governance across different
projects and communities.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
comments. This material is based upon work supported by the
National Science Foundation under GCR #2020751/2020900
“Jumpstarting Successful OSS Projects With Evidence-Based
Rules and Structures”, and DASS #2217652/2217653 “Transi-
tioning OSS projects to accountable community governance”.

(1]

2

(3

[t

[4

=

[5

[t

(6]

(71

(8

—

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

REFERENCES

Y. Lu, X. Mao, Z. Li, Y. Zhang, T. Wang, and G. Yin, “Does the role
matter? an investigation of the code quality of casual contributors in
github,” in 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2016, pp. 49-56.

S. Stanciulescu, L. Yin, and V. Filkov, “Code, quality, and process
metrics in graduated and retired asfi projects,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 495-506.

J. Gamalielsson and B. Lundell, “Sustainability of open source software
communities beyond a fork: How and why has the libreoffice project
evolved?” Journal of Systems and Software, vol. 89, pp. 128-145, 2014.
L. Yin, Z. Chen, Q. Xuan, and V. Filkov, “Sustainability forecasting
for apache incubator projects,” ser. ESEC/FSE 2021. New York, NY,
USA: Association for Computing Machinery, 2021, p. 1056-1067.
[Online]. Available: https://doi.org/10.1145/3468264.3468563

I. Chengalur-Smith, A. Sidorova, and S. L. Daniel, “Sustainability of
free/libre open source projects: A longitudinal study,” Journal of the
Association for Information Systems, vol. 11, no. 11, p. 5, 2010.

J. L. C. Izquierdo and J. Cabot, “Enabling the definition and enforcement
of governance rules in open source systems,” in 2015 IEEE/ACM 37th
1IEEE International Conference on Software Engineering, vol. 2. 1EEE,
2015, pp. 505-514.

R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code of conduct
conversations in open source software projects on github,” Proceedings
of the ACM on Human-computer Interaction, vol. 5, no. CSCW1, pp.
1-31, 2021.

A. Amrollahi, M. Khansari, and A. Manian, “How open source software
succeeds? a review of research on success of open source software,”
2014.

A. H. Ghapanchi, A. Aurum, and G. Low, “A taxonomy for measuring
the success of open source software projects,” First Monday, vol. 16,
no. 8, 2011.

N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” Computer Supported Cooperative Work
(CSCW), vol. 14, no. 4, pp. 323-368, 2005.

C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting
it all together: Using socio-technical networks to predict failures,” in
2009 20th International Symposium on Software Reliability Engineering.
IEEE, 2009, pp. 109-119.

C. Bird, “Sociotechnical coordination and collaboration in open source
software,” in 2011 27th IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 2011, pp. 568-573.

J. D. Herbsleb, “Global software engineering: The future of socio-
technical coordination,” in Future of Software Engineering (FOSE’07).
IEEE, 2007, pp. 188-198.

W. Scacchi, “Socio-technical interaction networks in free/open source
software development processes,” in Software process modeling.
Springer, 2005, pp. 1-27.

Apr 2022. [Online]. Available: https://www.osgeo.org/

L. Yin, M. Chakraborti, Y. Yan, C. Schweik, S. Frey, and V. Filkov,
“Open source software sustainability: Combining institutional analysis
and socio-technical networks,” Proceedings of the ACM on Human-
Computer Interaction, vol. 6, no. CSCW2, pp. 1-23, 2022.

L. Yin, Z. Zhang, Q. Xuan, and V. Filkov, “Apache software foundation
incubator project sustainability dataset,” in 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR). 1EEE,
2021, pp. 595-599.

[Online]. Available: https://www.linuxfoundation.org/

S. Dueiias, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona,
“Perceval: software project data at your will,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 1-4.

634

[23
[24]

[25]

(26]

[27]

(28]

] [Online].

G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233-236.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2487085.2487132
[Online]. Available: https://chaoss.community/

Available: https://docs.github.com/en/rest?apiVersion=
2022-11-28

1 [Online]. Available: https://docs.github.com/en/graphql

D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework
for Mining Software Repositories, 2018.

C. M. Schweik and R. C. English, Internet success: a study of open-
source software commons. MIT Press, 2012.

S. Frey and R. W. Sumner, “Emergence of integrated institutions in
a large population of self-governing communities,” PloS one, vol. 14,
no. 7, p. €0216335, 2019.

E. Ostrom, Governing the Commons: The Evolution of Institutions for
Collective Action, ser. Canto Classics. Cambridge University Press,
2015.

S. Frey, P. Krafft, and B. C. Keegan, “” this place does what it was built
for” designing digital institutions for participatory change,” Proceedings
of the ACM on Human-Computer Interaction, vol. 3, no. CSCW, pp. 1-
31, 2019.

N. Schneider, “Designing community self-governance with communi-
tyrule,” 2020.

A. X. Zhang, G. Hugh, and M. S. Bernstein, “Policykit: building
governance in online communities,” in Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology, 2020, pp.
365-378.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

