
GitHub OSS Governance File Dataset

Yibo Yan
UC Davis

ybyan@ucdavis.edu

Seth Frey
UC Davis

sethfrey@ucdavis.edu

Amy Zhang
UW Seattle

axz@cs.uw.edu

Vladimir Filkov
UC Davis

vfilkov@ucdavis.edu

Likang Yin
UC Davis

lkyin@ucdavis.edu

Abstract—Open-source Software (OSS) has become a valuable
resource in both industry and academia over the last few decades.
Despite the innovative structures they develop to support the
projects, OSS projects and their communities have complex needs
and face risks such as getting abandoned. To manage the internal
social dynamics and community evolution, OSS developer com-
munities have started relying on written governance documents
that assign roles and responsibilities to different community
actors.

To facilitate the study of the impact and effectiveness of formal
governance documents on OSS projects and communities, we
present a longitudinal dataset of 710 GitHub-hosted OSS projects
with GOVERNANCE.MD governance files. This dataset includes all
commits made to the repository, all issues and comments created
on GitHub, and all revisions made to the governance file. We
hope its availability will foster more research interest in studying
how OSS communities govern their projects and the impact of
governance files on communities.

I. INTRODUCTION

As one of the largest online open code hosting platforms,

GitHub provides a widely accessible and easy-to-use platform

for many Open Source Software (OSS) projects and communi-

ties. With the free availability of OSS digital traces, studying

OSS at scale has become feasible, and academic studies of

OSS repositories have proliferated.

Research into OSS communities spans topics including code

quality [1], [2], sustainability [3], [4], [5], and more recently

governance [6], [7]. GitHub governance is different than the

governance in other OSS hosting organizations. For instance,

Apache Software Foundation (ASF), a well-known not-for-

profit organization, provides an incubator for OSS projects.

Projects in the ASF Incubator (ASFI) receive mentorship, and

their efforts are guided and governed by ASFI’s committee.

Most OSS projects and communities on GitHub do not have

such a committee to support OSS activities. As a solution,

many OSS communities draft their own governance files and

utilize GitHub’s “issue” feature to govern and coordinate OSS

activities. Based on the existing convention of using text-based

documentation to govern collective activities (e.g., Contributor

Covenant), open-source communities start to adopt the ap-

proach of hosting a text-based file named GOVERNANCE.MD,

making an effort to foster a healthier community and convey

labor division and participation expectations more clearly. As

a project evolves, the governance file often evolves through

periodic revisions, as community members introduce, modify,

or delete governance rules.

Studying governance files can shed light on how OSS

projects coordinate work and potentially reveal aspects of the

socio-technical dynamics within OSS projects. Understanding

how OSS projects on GitHub govern their collaborative work

and how socio-technical dynamics change within projects can

further facilitate the study of sustainability in OSS projects to

pinpoint crucial factors in the successful governance of OSS

projects and communities [8], [9].

We present the GitHub Open-Source Software governance

documentation dataset. It includes governance files, projects’

commit history, and issues for 710 OSS projects hosted on

GitHub. To facilitate longitudinal studies, we provide separate

tables, capturing the commit history of GOVERNANCE.MD
files and detailed changes made in each commit on the

GOVERNANCE.MD file at line-level granularity.

To the best of our knowledge, this is the first time

such a governance-documentation-oriented GitHub-hosted

OSS project dataset has been presented to the empirical

software engineering community. Next, we present the de-

tails of our dataset, scraping methodology, and storage,

followed by two preliminary examples of research studies

that can benefit from this data. Our dataset, along with

the scripts we used to scrape it, is available at Zenodo:

https://doi.org/10.5281/zenodo.7530768.

II. RELATED WORK

Analyzing the community organization, structure, and gov-

ernance of OSS projects from a socio-technical perspective

enables the understanding of dynamics [10], project quality

over time [11], and project coordination effectiveness [12]

within OSS projects [13], [14]. Besides GitHub, many large

organizations and foundations like OSGeo [15], Apache Soft-

ware Foundation [16], [17], and Linux Foundation [18] also

support a multitude of OSS projects. Various tools have been

produced to mine these projects, e.g., Perceval provides a

unified entry-point to gather the data of software repositories

from various backends [19]; GHTorrent provides a streamlined

approach to gather mirrored data from GitHub [20]; Project

CHAOSS delivers metrics, model and software to understand

OSS community health [21]. Our governance documentation

dataset is orthogonal, and together with other sources can

enable holistic longitudinal analyses of OSS project evolution.

III. OSS GOVERNANCE DOCUMENTATION DATASET

The dataset comprises a longitudinal record of the entire

revision history of the GOVERNANCE.MD file for each col-

lected project, at varying levels of granularity. Besides the

detailed information on each commit that developers made

630

2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)

2574-3864/23/$31.00 ©2023 IEEE
DOI 10.1109/MSR59073.2023.00089

20
23

 IE
EE

/A
C

M
 2

0t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

in
in

g
So

ftw
ar

e
R

ep
os

ito
rie

s (
M

SR
) |

 9
79

-8
-3

50
3-

11
84

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

SR
59

07
3.

20
23

.0
00

89

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

to the governance file, we also extracted the line change

information for each commit made on the governance file.

1) Data Access: GitHub maintains a set of interfaces

through which developers can fetch repository-related data.

GitHub supports both REST [22] and GraphQL [23] APIs for

data retrieval, and we take advantage of both to scrape the

data. Since GitHub provides first-hand data access, the data

gathered through GitHub’s official APIs is at least as reliable

and up-to-date as the data from other social coding sites.

Although GHTorrent serves the purpose of mining GitHub,

it might not be useful for particular research directions, as

it produces excessive data by exhaustively mirroring GitHub

data but misses detailed data on the governance file’s per-line

revisions.

2) Repositories: Based on GitHub search results, there

are more than 1.6M projects with a GOVERNANCE.MD file.

However, not all of them are signaling meaningful information

as these projects often do not have a GOVERNANCE.MD
file for their own projects but include other packages or

dependencies that have GOVERNANCE.MD files. 1 Therefore,

to reduce noise in the data set, we used the REST API’s search

code endpoint 2 to fetch only the repositories that contain a

file with a GOVERNANCE.MD (case-insensitive and non-exact

match) in the root directory. 3 The initial data set consists

of 1,899 unique projects that have a GOVERNANCE.MD file

in their root directory. To ensure the projects are meaningful,

we only keep projects that have at least 1 commit/issue. This

results in the final data set of 710 projects. We gathered a list

of basic metadata for each repository, such as the repository

name and the filename of the governance file.

Due to the non-deterministic nature of GitHub’s search API,

we kept calling the search API repetitively until 99 out of the

100 last searched repositories were already encountered. We

used gql4 to fetch commits, issues, and comments in each

issue for each repository. Additionally, we used PyDriller
[24] to locally locate all commits that involve a change on

the governance file. With the help of PyDriller, we obtained

detailed information on each commit made on the governance

file at the granularity of a line by processing through the parsed

diff output, offering a view of which line along with the edited

content is added or deleted in each commit.

3) Commits, Issues, and Comments: We used the

GraphQL endpoint, https://docs.github.com/en/graphql/guides/

forming-calls-with-graphql#the-graphql-endpoint, to collect

commits, issues, and comments inside each issue. We sent

sequential GraphQL queries to iterate through the search space

by adjusting the cursor correspondingly.

Preliminary project-scoped aggregations were done on the

collected data to generate basic metrics for each repository

1This is because the npm installs packages/dependencies in the project
directory, and project developers do not “gitignore” the dependency folder.

2https://docs.github.com/en/rest/search?apiVersion=2022-11-28#
search-code

3Therefore, results like ‘Governance-Committee Charter.md’, ‘IPEP-29:-
Project-Governance.md’, and ‘GovernancePolicy.md’, etc., exist.

4https://github.com/graphql-python/gql

and were added to the repository list afterward. As a result,

the repository list contains information regarding the number

of stars, forks, commits, committers, issues, and comments;

the number of submitters of issues and comments; and the

number of commits and committers on the governance file.

4) Commit History of the Governance File: As GitHub

lacks support for retrieving commit history of a specific file,

we used PyDriller [24] to examine commits that involve a

change (i.e., add, delete, or modify) to the governance file.

We extracted basic metadata, e.g., author, committer, fileLOC,

along with the content and diff output before and after the

commit. We also extracted information on how each line

got modified (i.e., added or deleted) in each commit on

the governance file. We used scripts on the collected list of

commits on the governance file and obtained: a) a list of

commits per section of the governance file; 5 and b) a list of

the latest governance file of every repository by pulling out the

content after the last collected commit on the governance file.

All data—commits, issues, comments—were collected from

the initial creation date of the corresponding project on GitHub

to June 2022, the last day updated by the script.

5) Database: Most data were stored directly in a MongoDB

database, a type of NoSQL database, and later were exported

to different formats of data, i.e., CSV, SQL, and MongoDB

archive dumps. A small portion of data, such as the repository

list, was initially processed by pandas in-memory and written

to the MongoDB database afterward by scripts. All data were

re-exported in the end. We used PyMongo6 to interact with

the MongoDB database via python scripts. The associated

data schema is shown in Figure 1. Each table in the schema

corresponds to one CSV table, SQL table, or MongoDB

collection in the dataset.

Table repo-list contains a list of metadata of GitHub-

hosted projects. Each row represents a project. There is no

explicit foreign key across tables; instead, ‘repo name’ and

‘filename’ serve as two major keys to locate commits, issues,

and comments of the corresponding repository.

Table commit-list contains the commits from all projects in

repo-list; each row represents a commit.

Table governance-change-commit contains the commits for

the governance file of every project. Each row represents a

commit. As this list was collected by locally analyzing git

repositories, no GitHub-related information is presented.

Table governance-change-content contains the list of line-

change information of each commit made on the governance

file over all collected projects. Each row represents one line-

change information of a specific commit. The combination of

oid, repository.nameWithOwner, and filename should be used

as the key to locate all line changes on one specific commit.

Table governance-change-commit-by-section contains the

same information as governance-change-commit. For each

row in the governance-change-commit table, the ‘sourceFile’

5The section is defined as the content between two heading elements in the
Markdown file. The heading element is written as ‘#’, ‘##’, etc., followed by
the heading content.

6https://github.com/mongodb/mongo-python-driver

631

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Data Schema of the GitHub OSS Governance Documentation Dataset. Note: the actual data type can vary based on different sources for the archives,
e.g., for a MongoDB dump, all date fields like ‘createdAt’ will be a native Date type in the MongoDB context.

field was used to extract section information. Each section

information was stored as a row in the governance-change-
commit-by-section table. Most fields are identical to the fields

in the governance-change-commit table.
Table lastest-governance-file-content contains the latest

version of the governance file of each collected project.
6) Metrics: We compute a set of standard software engi-

neering metrics for OSS project activity from our governance

documentation dataset. These include: the number of stars

(star count), forks (fork count), commits (num commits),

committers (num committers), issues (num issues), issue

submitters (num issues submitters), and issue comments

(num issues comments); the number of people who com-

mented on issues (num issues commenters); the number of

commits to the governance file (num gov commits); and the

number of people committed to it (num gov committers). The

descriptive statistics for these metrics over the 710 GitHub-

hosted projects are given in Table I.

IV. POTENTIAL USE CASES

This section presents two potential use cases that can be

studied based on the presented dataset.

TABLE I
THE PROJECT-LEVEL STATISTICS OF THE 710 GITHUB-HOSTED PROJECTS

WITH THE GOVERNANCE MARKDOWN FILE

Statistic Mean Median St. Dev. Min Max

star count 1500.8 42.5 5902.7 0 85775

fork count 308.3 23 1305.3 0 22861

num commits 2,865.3 350.5 6,896.2 0 60,612

num committers 164.5 19 495.7 0 4,033

num issues 419.2 43 1,453.8 1 23,609

num issues submitters 149.34 12 629.8 1 10,069

num issues comments 1,344 71 5,724.3 0 83,183

num issues commenters 168.9 13 842.1 0 14,285

num gov commits 5.5 2 9.1 1 79

num gov committers 2.4 1 2.8 1 26

A. Case I: Studying Governance in Digital Commons

Scholars of self-organized self-governance in the online

context have long drawn on the theories of common pool

resource scholars such as Elinor Ostrom [25], [26]. One

particularly prominent contribution from this literature are the

Design Principles for Sustainable Common Pool Resource

632

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

Management [27]. These were developed for studying in-

stitutions for managing natural resources such as fisheries,

forests, and water systems, but have been extended to OSS

and other digital resources [28]. Yet, there remains a critical

need to test the generality of the design principles in the OSS

context, which would require a comprehensive comparative

dataset of formal OSS governance records. For example, with

a large collection of formal governance documents on GitHub,

a scholar could test “Principle 1: Clearly defined boundaries”

by extracting reference to GitHub platform position constructs

like users, committers, and contributors. For “Principle 5:

Graduated sanctions for appropriators who do not respect

community rules” a scholar might search GOVERNANCE.md
files for whether the rules contain a variety of sanctions (both

warnings and bans, not just one or the other). With this

dataset, we can apply these principles in any open-source

project hosted on GitHub and see how it works and whether

the best practices align with these principles. We can also

study the collaboration mechanisms, the rules and norms

set in the community, and the role of institutions, such as

maintainers, collaborators, and contributors in the governance

of the project.

B. Case II: Semantic Search in Institutions Analysis

Institutional analysis using natural language processing

(NLP) methods on GitHub can be used to study the organiza-

tional structure, rules, and norms of online communities, and

how they relate to the governance and performance of open-

source software projects. With the classified sentences, we can

conduct institutional analysis to understand the governance

mechanisms. In what way do people invoke the rules of an

open-source project in regular discourse? What is the overlap

between the rules people discuss and those they use? How do

rules change over time, and in what direction? How many

people tend to contribute to rules, and what is the typical

number of discrete roles they define as a project matures?

These questions all inform the practice of OSS governance,

and effective peer production generally. The dataset we in-

troduce thus makes it possible to advance the entire front of

online governance research.

C. Case III: Development of Governance Design Patterns

By examining a repository of enacted governance across

a range of communities, governance practitioners and tool

developers can gain an understanding of what governance

components are common. Broadly common components could

be surfaced as governance design patterns to then be integrated

into guides and other materials to help communities who

are deciding on what kind of governance to enact [29].

These patterns could also be translated into programs within

existing software toolkits for programmatically enacting gover-

nance [30]. Finally, developers of governance-related features

on GitHub or third-party tools could build in customized

support for common governance components; for instance,

implementing certain roles, tiered permissions, or voting

mechanisms that were often expressed.

V. LIMITATIONS AND CONCLUSION

Limitations We note that this dataset has two major lim-

itations regarding completeness and potential bias. Com-
pleteness 1) Because GitHub’s search API doesn’t return

a deterministic and full set of results, the dataset is not a

complete set of all GitHub-hosted repositories with a gov-

ernance file. 2) As we only collected projects which con-

tain the GOVERNANCE.MD file in the root directory, some

GitHub-hosted projects are missing from our dataset as they

might organize and store their governance files differently. For

example, some projects put their governance files directly in

the readme file. 3) The commit history collected in our dataset

does not necessarily represent the full history of all commits

that have been made. Certain Git operations may lose commit

history, such as squash or rebase. Bias 1) Some projects

may use the same governance file. Under some circumstances,

multiple projects may put the same line of redirection link

in their project-level governance file, referring to the external

governance documentation. In this case, all governance files in

these projects will produce the exact same but not meaningful

governance content. 2) Some projects didn’t start at GitHub

in the first place; instead, the projects and corresponding

governance files were hosted on other platforms and were

moved to GitHub in the later development stage. In this case,

the commit history on the governance file might be incomplete,

causing bias in analytic studies.

To mitigate the completeness and bias mentioned above, we

can 1) integrate data from other sources, such as GHTorrent’s

mirrored data, to workaround GitHub APIs’ non-deterministic

behavior; 2) we can use the available governance file dataset

to train a classifier to classify whether some text files contain

governance content, avoiding searching for the governance file

in a specific pattern and expanding the search space to include

more repositories.

Conclusion This work presents the development of a longi-

tudinal dataset of 710 Open Source Software (OSS) projects

hosted on GitHub that includes information about governance

files. OSS projects and communities still fail frequently, de-

spite the popularity of hosting platforms like GitHub, and

governance files are sometimes drafted and revised to serve

the community’s needs.

This dataset aims to help researchers and developers under-

stand best practices and common patterns in OSS governance

documentation and to identify projects with poor governance

that could lead to better maintainability and sustainability in

the long run. We present how the data was collected and what

specific criteria were used to select the projects, as well as

a description of the data, its structure, and the challenges

encountered during the data collection process. Additionally,

we discussed the potential applications and the value of the

dataset and encourage researchers to use this dataset to study

the state of open-source software governance across different

projects and communities.

633

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive

comments. This material is based upon work supported by the

National Science Foundation under GCR #2020751/2020900

“Jumpstarting Successful OSS Projects With Evidence-Based

Rules and Structures”, and DASS #2217652/2217653 “Transi-

tioning OSS projects to accountable community governance”.

REFERENCES

[1] Y. Lu, X. Mao, Z. Li, Y. Zhang, T. Wang, and G. Yin, “Does the role
matter? an investigation of the code quality of casual contributors in
github,” in 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2016, pp. 49–56.

[2] S. Stănciulescu, L. Yin, and V. Filkov, “Code, quality, and process
metrics in graduated and retired asfi projects,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 495–506.

[3] J. Gamalielsson and B. Lundell, “Sustainability of open source software
communities beyond a fork: How and why has the libreoffice project
evolved?” Journal of Systems and Software, vol. 89, pp. 128–145, 2014.

[4] L. Yin, Z. Chen, Q. Xuan, and V. Filkov, “Sustainability forecasting
for apache incubator projects,” ser. ESEC/FSE 2021. New York, NY,
USA: Association for Computing Machinery, 2021, p. 1056–1067.
[Online]. Available: https://doi.org/10.1145/3468264.3468563

[5] I. Chengalur-Smith, A. Sidorova, and S. L. Daniel, “Sustainability of
free/libre open source projects: A longitudinal study,” Journal of the
Association for Information Systems, vol. 11, no. 11, p. 5, 2010.

[6] J. L. C. Izquierdo and J. Cabot, “Enabling the definition and enforcement
of governance rules in open source systems,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 2. IEEE,
2015, pp. 505–514.

[7] R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code of conduct
conversations in open source software projects on github,” Proceedings
of the ACM on Human-computer Interaction, vol. 5, no. CSCW1, pp.
1–31, 2021.

[8] A. Amrollahi, M. Khansari, and A. Manian, “How open source software
succeeds? a review of research on success of open source software,”
2014.

[9] A. H. Ghapanchi, A. Aurum, and G. Low, “A taxonomy for measuring
the success of open source software projects,” First Monday, vol. 16,
no. 8, 2011.

[10] N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” Computer Supported Cooperative Work
(CSCW), vol. 14, no. 4, pp. 323–368, 2005.

[11] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting
it all together: Using socio-technical networks to predict failures,” in
2009 20th International Symposium on Software Reliability Engineering.
IEEE, 2009, pp. 109–119.

[12] C. Bird, “Sociotechnical coordination and collaboration in open source
software,” in 2011 27th IEEE International Conference on Software
Maintenance (ICSM). IEEE, 2011, pp. 568–573.

[13] J. D. Herbsleb, “Global software engineering: The future of socio-
technical coordination,” in Future of Software Engineering (FOSE’07).
IEEE, 2007, pp. 188–198.

[14] W. Scacchi, “Socio-technical interaction networks in free/open source
software development processes,” in Software process modeling.
Springer, 2005, pp. 1–27.

[15] Apr 2022. [Online]. Available: https://www.osgeo.org/
[16] L. Yin, M. Chakraborti, Y. Yan, C. Schweik, S. Frey, and V. Filkov,

“Open source software sustainability: Combining institutional analysis
and socio-technical networks,” Proceedings of the ACM on Human-
Computer Interaction, vol. 6, no. CSCW2, pp. 1–23, 2022.

[17] L. Yin, Z. Zhang, Q. Xuan, and V. Filkov, “Apache software foundation
incubator project sustainability dataset,” in 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR). IEEE,
2021, pp. 595–599.

[18] [Online]. Available: https://www.linuxfoundation.org/
[19] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona,

“Perceval: software project data at your will,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 1–4.

[20] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2487085.2487132

[21] [Online]. Available: https://chaoss.community/
[22] [Online]. Available: https://docs.github.com/en/rest?apiVersion=

2022-11-28
[23] [Online]. Available: https://docs.github.com/en/graphql
[24] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework

for Mining Software Repositories, 2018.
[25] C. M. Schweik and R. C. English, Internet success: a study of open-

source software commons. MIT Press, 2012.
[26] S. Frey and R. W. Sumner, “Emergence of integrated institutions in

a large population of self-governing communities,” PloS one, vol. 14,
no. 7, p. e0216335, 2019.

[27] E. Ostrom, Governing the Commons: The Evolution of Institutions for
Collective Action, ser. Canto Classics. Cambridge University Press,
2015.

[28] S. Frey, P. Krafft, and B. C. Keegan, “” this place does what it was built
for” designing digital institutions for participatory change,” Proceedings
of the ACM on Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–
31, 2019.

[29] N. Schneider, “Designing community self-governance with communi-
tyrule,” 2020.

[30] A. X. Zhang, G. Hugh, and M. S. Bernstein, “Policykit: building
governance in online communities,” in Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology, 2020, pp.
365–378.

634

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 13,2023 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

