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Abstract
Commercial satellite sensors offer the luxury of mapping of indi-
vidual permafrost features and their change over time. Deep learning 
convolutional neural nets (CNNs) demonstrate a remarkable success 
in automated image analysis. Inferential strengths of CNN models are 
driven primarily by the quality and volume of hand-labeled train-
ing samples. Production of hand-annotated samples is a daunting 
task. This is particularly true for regional-scale mapping applica-
tions, such as permafrost feature detection across the Arctic. Image 
augmentation is a strategic “data-space” solution to synthetically 
inflate the size and quality of training samples by transforming the 
color space or geometric shape or by injecting noise. In this study, 
we systematically investigate the effectiveness of a spectrum of 
augmentation methods when applied to CNN algorithms to recognize 
ice-wedge polygons from commercial satellite imagery. Our findings 
suggest that a list of augmentation methods (such as hue, saturation, 
and salt and pepper noise) can increase the model performance.

Introduction
A network of polygonal patterns appears in the tundra due to the crack-
ing and subsequent development of ice wedges. Ice-wedge polygons 
(IWPs) are one of the most common landforms across the Arctic tundra 
lowlands. Early studies (Leffingwell 1919) described two major types 
of IWPs: (1) polygons with elevated blocks or high-centered polygons 
and (2) polygons with depressed blocks or low-centered polygons. The 
microtopography associated with IWP controls a multitude of functions 
of the Arctic ecosystem (Kutzbach et al. 2004), such as permafrost 
and hydrologic dynamics from local to regional scales, due to the 
linkages between microtopography and the flow and storage of water 
(Liljedahl et al. 2016), vegetation succession (Magnússon et al. 2020), 
and permafrost dynamics (Lara et al. 2020). Widespread ice-wedge 
degradation is transforming low-centered polygons into high-centered 
polygons in a rapid phase (Steedman et al. 2016).

The entire Arctic has been imaged by high-spatial-resolution com-
mercial satellite sensors, producing sheer volumes of data. Imagery 
archives are quickly morphing to petabyte scale. While studies have 
been conducted on vegetation dynamics (Verdonen et al. 2020), phe-
nology (Zheng et al. 2020), vegetation classification (Davidson et al. 
2016), and spectral and seasonal variation of leaf area index (Juutinen 
et al. 2017), imagery-derived products lag behind. We are in the pro-
cess of translating these big imagery resources to Arctic science–ready 
products. Our ongoing research investigates the automated detection of 
IWPs from commercial satellite imagery.

The successful implementation of deep learning (DL) convolu-
tional neural nets (CNNs) in computer vision applications has received 
a great deal of interest from the remote sensing community (Ma et 
al. 2019). There has been an upsurge of recent research that exhibits 
DLCNN applications in a multitude of remote sensing classification 
problems, such as land use and land cover types of detection (Paoletti 
et al. 2019; Zhang et al. 2019), agricultural crop mapping (Zhong et al. 

2019), feature extraction from remote sensing images (Romero et al. 
2016), object localization (Long et al. 2017), cloud detection (Xie et 
al. 2017), and disaster recognition (Liu & Wu 2016). DLCNNs perform 
well in terms of object detection (Zhao et al. 2019), image segmenta-
tion (Rizwan I Haque and Neubert 2020), and semantic object instance 
segmentation (Lateef and Ruichek 2019). An array of DLCNN architec-
tures have been developed, trained, and tested with different types of 
imagery. Each of these architectures has its own advantages and disad-
vantages with respect to computation time and resources. Among many 
others, Mask R-CNN, U-Net, and Deeplab V3+ stand out as superior 
methods in semantic object instance segmentation. Researchers used 
Deeplab V3+ with the Pascal VOC data set and achieved 89% intersec-
tion over union (IoU). In a separate biological image segmentation 
data set, the U-Net model achieved a total of 85.5% IoU (Karimov et 
al. 2019). There is an increasing interest in the application of the Mask 
R-CNN model for Earth science applications (Su et al. 2019; Bhuiyan 
et al. 2020; Carvalho et al. 2021; Mahmoud et al. 2020; Zabawa et al. 
2020; Zuo et al. 2020). Previous studies have shown promising results 
found by the implementation of DLCNN with commercial satellite im-
agery (Zhang et al. 2018; Bhuiyan et al. 2020; Witharana et al. 2020). 
By design, inferential strengths of CNN models are fueled largely by 
the quality and volume of hand-labeled training data. Production of 
hand-annotated samples is a daunting task. This is particularly true for 
regional-scale mapping applications, such as permafrost feature detec-
tion across the Arctic, where landscape complexity would spontane-
ously inflate the semantic complexity of submeter-resolution imagery. 
Additionally, image dimensions, multispectral channels, imaging 
conditions, and seasonality, coupled with multi-scale organization of 
geo-objects, pose extra challenges on the generalizability of DLCNN 
models. Image augmentation is a strategic “data-space” solution to 
synthetically inflate the size and quality of training samples without 
additional investments on hand annotations. A plethora of augmenta-
tion methods have been proposed under the auspices of two general 
categories: data warping and oversampling (Shorten and Khoshgoftaar 
2019). The performance of image augmentation methods depends 
largely on the image recognition problem on hand and the characteris-
tics of the underlying data. Researchers have used color augmentation 
techniques for skin lesion segmentation and classification (Galdran et 
al. 2017), geometric transformation with chest X-ray for the screening 
of COVID-19 (Elgendi et al. 2021), and noise injection techniques for 
plant leaf disease detection (Arun Pandian et al. 2019).

In this study, we have investigated the efficacy of 17 augmentation 
methods in relation to IWP detection. We relied on the Mask R-CNN 
algorithm as the base model in the training and the prediction of IWPs. 
The Mask R-CNN model itself has a lot of room to modify and tweak 
the default parameters (He et al. 2017). The backbone of the model is 
a convolutional neural network. This can be changed to different types 
of CNN models; we used the ResNet-50 structure (He et al. 2015) as the 
backbone. To initialize the model, we have practiced the transfer learn-
ing approach. In this approach, the model is already trained based on 
another hand-labeled data set. Our backbone was pretrained based on 
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the ImageNet data set. We retrained the Mask R-CNN model with differ-
ent augmentation methods using our data set so that the model could 
be used for the detection and segmentation of the IWPs. One of the 
major weaknesses of the DLCNNs is that spectral and spatial variations 
in the training data set affect the model performance (Grm et al. 2018). 
In our data, the spectral, spatial, and textural characteristics of IWPs 
vary based on the tundra vegetation types (Stow et al. 1993; Sturtevant 
et al. 2013; Mikola et al. 2018). Thus, separate Mask R-CNN models are 
trained for different tundra types.

The main goal of this study is to explore the potential of augmenta-
tion methods on top of a state-of-the-art DLCNN method (Mask R-CNN) 
to characterize the tundra IWP landscape as well as to assess the change 
in the model performance when trained with separate tundra types. We 
conducted a multi-step quantitative assessment to assess the precision, 
recall, F1 score, and overall accuracy of the prediction results from 
each of the augmentation scenarios.

Methods
Study Area
We extracted a total of 696 image tiles of varying dimensions (such 
as 292 × 292, 345 × 345, 507 × 507, and 199 × 199 pixels) out of 
seven satellite imagery scenes from the Norths Slope of Alaska, Prince 
Patrick Island, Banks Island, Inuvik in Canada, and Nizhnekolymskiy 
Ulus in Russia (Figure 1). These areas are covered mostly by tussock 
and non–tussock sedge tundra, sedge/grass, moss wetland, and other 
types of tundra. We hand annotated a total of 25,509 polygons (15,989 
low-centered and 9520 high-centered polygons) from the satellite im-
age scenes.

We prepared three sets of images out of all annotated patches as the 
training (487 images), test (106 images), and validation (103 images) 
data sets. The training data set was used for training the model, and the 
validation data set was used to check model performance while train-
ing the model. The test data set was used to calculate the performance 
of the trained model.

Model Architecture
Our experimental design was centered on the Mask R-CNN model archi-
tecture (He et al. 2017) (Figure 2). This model is specialized in object 
detection as well as instance segmentation at the same time.

We built the work flow based on an open-source package, built 
on Keras and TensorFlow developed by the Mask R-CNN team, that is 
available on Github (Waleed Abdulla 2017). The Mask R-CNN model 
consists of a CNN backbone, a region proposal network, and neural 
networks for predicting classes, bounding boxes, and masks (Figure 
2). We  used ResNet-50 (He et al. 2016) pretrained with the ImageNet 
data set as the backbone of the Mask R-CNN network. The final outputs 
of the model consist of the polygons detected inside the bounding 
boxes as well as in the form of masks and the class names (high-
centered or low-centered polygons) corresponding to each of those 
detected polygons.

Augmentation Methods
Image augmentation is a process that modifies training images in a 
variety of ways and acts like additional training images to the model. 
Image augmentation, thus, can boost the performance of DL models 
by introducing additional training data. In the Mask R-CNN model, it 
is possible to implement augmentation methods. Table 1 exhibits the 
augmentation methods that we used in our study.

Some augmentation methods (e.g., flipping) do not change the 
spectral distribution of the input images, whereas other methods (e.g., 
Gaussian noise) change the spectral distribution of the input images. 
Also, all the augmentation methods do not essentially improve the 
model performance, as we will see in the “Results” section.

Other than the single augmented methods, we have implemented 
combined augmented methods. For example, we have combined the 
salt and pepper noise and hue augmentation, saturation augmentation, 
and hue-saturation augmentation methods into a single pipeline and 
named it spectral augmentation to get the benefits of all the individual 
augmentation methods. We also used a sequential combination of 
the salt and pepper noise augmentation and the FlipLR augmentation 
method. The last augmentation method, named top 7, includes seven 
augmentation methods that appeared at the top when ranked by their 
performance. The performance assessment process is discussed in the 
section “Accuracy Assessment.” Figure 3 lists some of the sample im-
ages, showing the effects of augmentation methods with respect to the 
original image.

Figure 1. Geographical distribution of study sites: (A) 
Nizhnekolymskiy Ulus, Russia. (B) Barrow, Alaska, USA. (C) 
Atqasuk, Alaska, USA. (D) Prudhoe Bay, Alaska, USA. € Inuvik, 
Canada. (F) Banks Island, Canada. (G) Prince Patrick Island, Canada.

Figure 2. Simplified block diagram of the Mask R-CNN model.
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Model Dependency
Different tundra vegetation types exhibit distinct spectral, spatial, 
textural characteristics, which in turn decide the semantics of overlying 
IWPs (Liu et al. 2017). Landscape complexity translates to the image 
complexity, affecting DL model performances. Our idea was to imple-
ment separate models for separate tundra types and to study the model 
performance. To achieve this, we selected the best augmentation meth-
ods based on their performance and then trained separate models with 
separate training data sets, each of which will contain only one type 
of tundra. When the distribution of tundra types in our annotated data 
is compared to the entire Arctic, we see that our data have different 
distributions than the original Arctic (Figure 4). However, three of the 
major tundra types cover more than 70% of our sampled data set. Thus, 
we have prepared four tundra types named non–tussock sedge (G3) , 
tussock sedge (G4), sedge/grass (W1), and other tundra types (Others).

Model Training
We used transfer learning approach to retrain the Mask R-CNN model. 
While doing so, we have taken the ResNet-50 as the CNN backbone 
of the model. The model was initially trained with the ImageNet data 
set. The training process was completed in a local machine with an 
Intel Core i9 CPU with NVIDIA GeForce RTX 2070 SUPER with 8 GB of 
GPU memory. The training time was not measured, as multiple training 
processes were run on the local machine at the same time, and based 
on the GPU load, the training time was varied.

After deciding the augmentation methods and the tundra types, 
we trained the Mask R-CNN model with minibatches (we changed the 
step size and batch size based on the memory available in the GPU), 

Table 1. Augmentation methods used in this study.
Augmentation 
Type

Augmentation 
Methods Description

Color space 
transformation

Hue Multiplies the hue of images by 
random values 

Saturation Multiplies the saturation of images 
by random values 

Hue saturation Multiplies the hue and saturation of 
images by random values 

Invert Subtracts all pixel values from 255

Geometric 
transformation

Crop Generates smaller subimages from 
given full-sized input images

Flip left to right 
(FlipLR)

Flips the image horizontally

Flip up and down 
(FlipUD)

Flips the image vertically

Flip left to right and up 
and down (FlipLRUD)

Combination of FlipLR and FlipUD

Rotation (x) Apply affine rotation of x degrees on 
the y-axis to input data

Noise injection Gaussian noise Adds noise sampled from Gaussian 
distributions

Salt and pepper noise Adds salt and pepper noise (noisy 
white-ish and black-ish pixels) to 
rectangular areas within the image

Mixed Salt and pepper and 
FlipLR

A combination of salt and pepper 
noise and FlipLR method

Spectral A sequential combination of salt and 
pepper noise, hue, saturation, and 
hue-saturation augmentation methods

Top 7 augmentations A sequential combination of the top 7 
augmentation methods based on their 
mean average precision score on the 
test data set (Figure 7d),  including 
FlipLR, FlipUD, FlipLRUD, hue 
saturation, hue, saturation, and salt 
and pepper noise.

Figure 3. Zoomed-in views of an example original image and 
corresponding augmented images. (a) Original image. (b) Crop. (c) 
FlipLRUD (flip left to right and up and down). (d) FlipLR flip left 
to right). (e) FlipUD (flip up and down). (f) Gaussian noise. (g) Hue 
saturation. (h) Hue. (i) Saturation. (j) Invert. (k) Rotation (30). (l) 
Rotation (60). (m) Rotation (120). (n) Rotation (150). (o) Spectral. 
(p) Salt and pepper noise. (q) Salt and pepper and FlipLR. (r) Top 7 
augmentations.
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learning rate of 0.001, learning momentum of 0.9, and weight decay of 
0.0001. We had a total of 487 training image tiles (11,151 low-centered 
polygons and 6404 high-centered polygons), 103 validation image 
tiles (2108 low-centered polygons and 1584 high-centered polygons), 
and 106 test image tiles (2108 low-centered polygons and 1584 high-
centered polygons).

To optimize the model, we calculated different losses, such as (1) 
L1 loss (this defines box regression on object detection systems, which 
is less sensitive to outliers than other regression loss), (2) Mask R-CNN 
bounding box loss (this loss indicates the difference between predicted 
bounding box correction and true bounding box), (3) Mask R-CNN 
classifier loss (this loss estimates the difference of class labels between 
prediction and ground truth), (4) mask binary cross-entropy loss (this 
loss measures the performance of a classification model by observ-
ing predicted class and actual class), (5) RPN bounding box loss (this 
loss identifies the regression loss of bounding boxes only when there 
is object), and (6) RPN anchor classifier loss (this loss indicates the 
difference between the predicted RPN and actual closest ground-truth 
box to the anchor box). The total loss consists of the summation of all 
these loss values. We prepared the training and validation loss graphs 
for each of the augmentation methods (Figure 5, see next page) and for 
each of the tundra types (Figure 6). Based on these graphs, we have se-
lected the best models for each of the augmentation methods or tundra 
types. In Figure 5, all the models converge at a point, but in Figure 6, 
the G3 tundra type seems to converge when trained for 200 epochs.

Accuracy Assessment
We conducted a multistep accuracy assessment for the outputs. The 
outputs are in the form of class names and binary masks. We calcu-
lated the IoU for each of the polygons in the outputs that matched with 
the polygon classes in the test data set. We set a threshold of the IoU 
values as 0.5 and considered the polygons above this threshold as cor-
rectly classified.

We calculated precision, recall, and F1 score for each of the classes 
and for each of the images based on Equations 1–3:
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 We then calculated the average precision, recall, and F1 score for 
low-centered and high-centered polygons. Finally, we calculated mean 
average precision and overall accuracy for each of the models based on 
Equations 4 and 5. Here, N is the number of total classes:
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Results and Discussion
Models with Different Augmentation Methods
After the model training step was completed, we calculated assessment 
values for each of the models (Figure 7). Some augmentation methods 
outperformed the model without any augmentation. However, some 
augmentation methods did not perform well, as expected. Choosing the 
best seven methods, we trained another model named the top 7 model 
and then calculated the assessment values for that model. Figure 7 
shows that the top 7 model outperformed the individual models with a 
79.6% mAP and 79.3% overall accuracy.

The rotation augmentation methods and the crop method did not 
perform well compared to other augmentation methods. When the im-
ages are cropped, the corners of the images are filled with zero values 
to match the input image size, and thus the image distribution is very 
much changed. This could be a reason why rotation methods did not 
improve the performance. Figure 8 depicts sample outputs from differ-
ent augmentation methods. Detected polygons are marked in different 
colors. As we observed in the accuracy plots, certain augmentation 
methods outperformed in detecting the polygon boundaries. 

Among the single augmentation methods, the FlipLR method per-
formed the best; this method does not change the distribution of the in-
put images. However, the salt and pepper noise method also performed 
well. Salt and pepper noise adds some black and white pixels randomly 
in the data. The amount of these pixels is not enough to change the 
distribution widely but is able to mimic digital noise in the image 
and makes the model robust against noise. As seen on the probability 
density function and the cumulative distribution function plots (Figure 
9), the contributions of the salt and pepper noise in the higher and the 
lower ends of the possible pixel values are evident.

Models with Separate Tundra Types
We used our trained models on different tundra types and predicted 
for different tundra types. Table 2 shows the mean average precision 
for models trained on and predicted for different tundra types. These 
models performed better when trained and tested on the same tundra 
types. However, for the model trained on non–tussock sedge (G3) actu-
ally performed better on the sedge/grass (W1) tundra type. The reason 

Figure 6. Loss plots for different tundra types: (a) Non–tussock 
sedge or G3. (b) Tussock sedge or G4. (c) Sedge/grass or W1. (d) 
Other tundra types.

Figure 4. Percent distribution of tundra types, such as  tussock 
sedge (G4), non–tussock sedge (G3), sedge/grass (W1), and other 
tundra types (Others) on the ground and in the training data. 
Percent distribution of tundra types on the ground was based on the 
Circumpolar Arctic Vegetation Map (Raynolds et al. 2019).
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Figure 5. Loss and accuracy plots for different augmentation methods. 
(a) No augmentation. (b) Crop. (c) FlipLRUD (flip left to right and 
up and down). (d) FlipLR (flip left to right). (e) FlipUD (flip up and 
down). (f) Gaussian noise. (g) Hue saturation. (h) Hue. (i) Saturation. 
(j) Invert. (k) Rotation (30). (l) Rotation (60). (m) Rotation (120). (n) 
Rotation (150). (o) Spectral. (p) salt and pepper noise. (q) Salt and 
pepper and FlipLR. (r) Top 7 augmentations.
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Figure 7. Performance analysis of augmentation methods. (a) 
Precision values for low-centered polygons (LCP) and high-centered 
polygons (HCP). (b) Recall values for LCP and HCP. (c) F1 score 
for LCP and HCP. (d) Mean average precision. (e) Accuracy. FlipLR 
= flip left to right; FlipUD = flip up and down; FlipLRUD = flip left 
to right and up and down).

Figure 8. Sample outputs with different augmentation methods. (a) 
No augmentation. (b) Crop. (c) FlipLRUD (flip left to right and up 
and down). (d) FlipLR (flip left to right). (e) FlipUD (flip up and 
down). (f) Gaussian noise. (g) Hue saturation. (h) Hue. (i) Saturation. 
(j) Invert. (k) Rotation (30). (l) Rotation (60). (m) Rotation (120). (n) 
Rotation (150). (o) Spectral. (p) Salt and pepper noise. (q) Salt and 
pepper and FlipLR. (r) Top 7 augmentations.
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could be the similarity between these two types and the inadequate 
numbers of polygons of these tundra types.

Table 2. Mean average precision values for models trained on different 
tundra types: non–tussock sedge (G3), tussock sedge (G4), other 
tundra types, and sedge/grass (W1).

Mean Average 
Precision G3 G4 Other Tundra Types W1 

G3 0.58 0.32 0.47 0.57

G4 0.08 0.79 0.18 0.05

Other tundra types 0.35 0.69 0.62 0.22

W1 0.75 0.35 0.54 0.8

We also predicted the overall accuracy values for the models 
trained and tested with different tundra types (Table 3). We observed 
that the models trained and tested on the same tundra types performed 
better. However, exceptions were found. For example, the model 
trained with the G3 tundra type performed the best with the W1 tundra 
type, and the model trained with the G4 tundra type performed the 
best with other tundra types. This calls for further analysis to better 
understand the underlying reasons linking the tundra types and model 
performances.

Table 3. Overall accuracy values for models trained on different tundra 
types: non–tussock sedge (G3), tussock sedge (G4), other tundra types, 
and sedge/grass (W1).

Overall Accuracy G3 G4 Other Tundra Types W1

G3 0.66 0.13 0.13 0.62

G4 0.08 0.66 0.66 0.05

Other tundra types 0.35 0.79 0.79 0.22

W1 0.75 0.36 0.36 0.8

Conclusion
Mapping IWPs from large satellite imagery requires a huge amount of 
computational resources as well as large volume of annotated images. 
We implemented the Mask R-CNN model for segmentation and clas-
sification of IWPs from commercially available satellite imagery. We 
have improved the model performance and found promising results 
by applying augmentation methods on top of the regular Mask R-CNN 
model. We explored an array of augmentation methods in the training 
process. Our results suggested that not all augmentation methods stand 
as favorable for improving prediction performance. We also trained 
separate Mask R-CNN models for separate tundra types. The lack of 
annotated data seems to be visible in the model performance when 
trained with separate tundra types. Our future research will further 
investigate the impact of augmentations methods on permafrost feature 
modeling efforts.
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