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1 INTRODUCTION

The verification of concurrent programs is a major challenge due to the non-deterministic behavior
intrinsic to them. Certain scheduling patterns may be unanticipated by the programmers, whichmay
then lead to introducing concurrency bugs. Such bugs are easy to introduce during development
but can be very hard to reproduce during in-house testing, and have been notoriously called
heisenbugs [Musuvathi et al. 2008]. Among the most notorious concurrency bugs are deadlocks,
occurring when the system blocks its execution because each thread is waiting for another thread
to finish a task in a circular fashion. Deadlocks account for a large fraction of concurrency bugs in
the wild across various programming languages [Lu et al. 2008; Tu et al. 2019] while they are often
introduced accidentally when fixing other concurrency bugs [Yin et al. 2011].

Deadlock-detection techniques can be broadly classified into static and dynamic techniques. As
usual, static techniques analyze source code and have the potential to prove the absence of dead-
locks [Liu et al. 2021; Naik et al. 2009; Ng and Yoshida 2016]. However, as static analyses face
simultaneously two dimensions of non-determinism, namely in inputs and scheduling, they lead
to poor performance in terms of scalability and false positives, and are less suitable when the
task at hand is to help software developers proactively find bugs. Dynamic analyses, on the other
hand, have the more modest goal of discovering deadlocks by analyzing program executions,
allowing for better scalability and few (or no) false positives. Although dynamic analyses cannot
prove the absence of bugs, they offer statistical and coverage guarantees. These advantages have
rendered dynamic techniques a standard practice in principled testing for various bugs, such as
data races, atomicity violations, deadlocks, and others [Bensalem and Havelund 2005; Biswas et al.
2014; Flanagan and Freund 2009; Flanagan et al. 2008; Mathur and Viswanathan 2020; Pozniansky
and Schuster 2003; Savage et al. 1997; Serebryany and Iskhodzhanov 2009]. A recent trend in this
direction advocates for predictive analysis [Flanagan et al. 2008; Genç et al. 2019; Huang 2018;
Huang et al. 2014; Kalhauge and Palsberg 2018; Kini et al. 2017; Smaragdakis et al. 2012], where the
goal is to enhance coverage by additionally reasoning about alternative reorderings of the observed
execution trace that could have taken place and also manifest the bug.

Due to the difficulty of the problem, many dynamic deadlock analyses focus on detecting deadlock

patterns, broadly defined as cyclic lock-acquisition patterns in the observed execution trace. One
of the earliest works in this direction is the Goodlock algorithm [Havelund 2000]. As deadlock
patterns are necessary but insufficient conditions for the presence of deadlocks, subsequent work
has focused on refining this notion in order to reduce false-positives [Agarwal et al. 2006; Bensalem
and Havelund 2005]. Further techniques reduce the size of the lock graph to improve scalability [Cai
and Chan 2012; Cai et al. 2020]. To further address the unsoundness (false positives) problem, various
works propose controlled-scheduling techniques that attempt to realize deadlock warnings via
program re-execution [Bensalem et al. 2006; Joshi et al. 2009; Samak and Ramanathan 2014a,b;
Sorrentino 2015] and exhaustive exploration of all reorderings [Joshi et al. 2010; Sen et al. 2005].

Fully sound deadlock prediction has traditionally relied on explicitly [Joshi et al. 2010; Sen et al.
2005] or symbolically (SMT-based) [Eslamimehr and Palsberg 2014; Kalhauge and Palsberg 2018]
producing all sound witness reorderings. The heavyweight nature of such techniques limits their
applicability to executions of realistic size, which is often in the order of millions of events. The
first steps for sound, polynomial-time deadlock prediction were made recently with SeqCheck [Cai
et al. 2021], an extension of M2 [Pavlogiannis 2019] that targets data races.

This line of work highlights the need for a most-efficient sound deadlock predictor, approaching
the golden standard of linear time. Moreover, dynamic analyses are often employed as runtime
monitors, and must thus operate online, reporting bugs as soon as they occur. Unfortunately, most
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C1 C2

1 acq(ℓ1)
2 acq(ℓ2)
3 w(G)
4 rel(ℓ2)
5 rel(ℓ1)
6 acq(ℓ2)
7 r(G)
8 acq(ℓ1)
9 rel(ℓ1)
10 rel(ℓ2)

(a) A trace f1 with no

predictable deadlock.

C1 C2 C3 C4

1 acq(ℓ1)
2 rel(ℓ1)
3 acq(ℓ2)
4 acq(ℓ3)
5 w(I)
6 rel(ℓ3)
7 rel(ℓ2)
8 acq(ℓ1)
9 w(~)
10 r(I)

C1 C2 C3 C4

11 rel(ℓ1)
12 acq(ℓ3)
13 w(G)
14 r(~)
15 rel(ℓ3)
16 acq(ℓ3)
17 r(G)
18 acq(ℓ2)
19 rel(ℓ2)
20 rel(ℓ3)

(b) A trace f2 with a sync-preserving deadlock, stalling C2 on 44 and C3 on 418.

Fig. 1. Traces with no predictable deadlock (a), and with a sync-preserving deadlock (b).

existing online algorithms only report deadlock patterns, thus suffering false positives. The lack of
such a deadlock predictor is even more pronounced when contrasted to the problem of dynamic
race prediction, which has seen a recent surge of sound, online, linear-time predictors (e.g., [Kini
et al. 2017; Roemer et al. 2020]), and highlights the bigger challenges that deadlocks entail. We
address these challenges in this work, by presenting the first high-precision, sound dynamic
deadlock-prediction algorithm that works online and in linear time.

The task of checking if a potential deadlock is a real predictable deadlock, in general, involves
searching for the reordering of the original execution that witnesses the deadlock. The first ingre-
dient towards our technique is the notion of synchronization-preserving reorderings [Mathur et al.
2021] that help systematize this search space. Synchronization-preserving deadlocks are then those
predictable deadlocks that can be witnessed in some synchronization-preserving reordering. We
illustrate synchronization-preserving deadlocks using an example in Section 1.1.

This notion of synchronization-preservation, by itself, is not sufficient when it comes to deadlock
detection as the prerequisite step towards predicting deadlocks also involves identifying potential
deadlock patterns. Unlike data races, where potential races can be identified in polynomial-time, the
identification of deadlock patterns is in general, intractable; we prove this in Section 3. As a result,
an approach that works by explicitly enumerating cycles in a lock graph and then checking if any
of these cycles is realizable to a deadlock is likely to be not scalable. To tackle this, we propose the
novel notion of abstract deadlock patterns which, informally, represent clusters of deadlock patterns
of the same signature. Intuitively, a set of deadlock patterns have the same signature if the threads
and locks that participate in the patterns are the same. Our next key observation is that a single
abstract deadlock pattern can be checked for sync-preserving deadlocks in linear total time in the
length of the execution, regardless of how many concrete deadlock patterns it represents. Our first
deadlock prediction algorithm SPDOffline builds upon this — it enumerates all abstract deadlock
patterns in a first phase and then checks their realizability in a second phase, while running in
linear time per abstract deadlock pattern. Since the number of abstract deadlock patterns is typically
far smaller than the number of (concrete) deadlock patterns (see Table 1 in Section 6), this approach
achieves high scalability. Our second algorithm SPDOnline works in a single streaming pass — it
computes abstract deadlock patterns that involve only two threads and checks their realizability
on-the-fly simultaneously in overall linear time in the length of the execution.

1.1 Synchronization-Preserving Deadlocks

Consider the trace f1 in Figure 1a consisting of 10 events and two threads. We use 48 to denote the
8-th event of f1. The events 42 and 48 form a deadlock pattern: they respectively acquire the locks
ℓ2 and ℓ1 while holding the locks ℓ1 and ℓ2, and no common lock protects these operations.
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A deadlock pattern is a necessary but insufficient condition for an actual deadlock: a sound algorithm
must examine whether it can be realized to a deadlock via a witness. A witness is a reordering d of
(a slice of) f1 that is also a valid trace, and such that 42 and 48 are locally enabled in their respective
threads at the end of d . In general, the problem of checking if a deadlock pattern can be realized is
intractable (Theorem 3.3). In this work we focus on checking whether a given deadlock pattern
forms a sync-preserving deadlock, which is a subclass of the class of all predictable deadlocks.

A deadlock pattern is said to be sync-preserving deadlock if it can be witnessed in a sync-preserving
reordering. A reordering dSP of a trace f is said to be sync-preserving if it preserves the control
flow taken by the original observed trace f , and further it preserves the mutual order of any two
critical sections (on the same lock) that appear in the reordering dSP. Consider, for example, the
sequence d1 = 41..43 46 ..47 where 48 ..4 9 denote the contiguous sequence of events that starts from 48
and ends at 4 9 . We call d1 a correct reordering of f1, being a slice of f1 closed under the thread order
and preserving the writer of each read in f1; the precise definition is presented in Section 2. In this
case, however, d1 does not witness the deadlock as the event 42 is not enabled in d1. In fact, due to
the dependency between the events 43 and 47, there are no correct reorderings of f1 which make
both 42 and 48 enabled. This makes the deadlock pattern ⟨42, 48⟩ non-predictable. Consider now f2
in Figure 1b, and the sequence d2 = 43..47 48 ..411 4142. Observe that d2 is also a correct reordering.
However, d2 is not sync-preserving as the order of the two critical sections on lock ℓ1 in d2 is
different from their original order in f2. On the other hand, d3 = 4142434849 412 ..415 416417 is a correct
reordering that is also sync-preserving — all pairs of critical sections on the same lock appear in
the same order in d3 as they did in f2. Further, d3 also witnesses the deadlock as the events 44 and
418 are both enabled in d3. This makes the deadlock pattern ⟨44, 418⟩ a sync-preserving deadlock.

In this work we show that sync-preserving deadlocks enjoy two remarkable properties. First, all
sync-preserving deadlocks of a given abstract deadlock pattern can be checked in linear time. Second,
our extensive experimental evaluation on standard benchmarks indicates that sync-preservation
captures a vast majority of deadlocks in practice. In combination, these two benefits suggest that
sync-preservation is the right notion of deadlocks to be targeted by dynamic deadlock predictors.

1.2 Our Contributions

In detail, the contributions of this work are as follows.

(1) Complexity of Deadlock Prediction. Perhaps surprisingly, the complexity of detecting
deadlock patterns, as well as predicting deadlocks has remained elusive. Our first contribution
resolves such questions. Given a trace f of size N and T threads, we first show that detecting
even one deadlock pattern of length : isW[1]-hard in : . This establishes that the problem is
NP-hard, and further rules out algorithms that are fixed-parameter-tractable in : , i.e., with
running time of the form 5 (:) · poly(N), for some function 5 . We next show a stronger fine-
grained (conditional) hardness — for every : ≥ 2, there is no algorithm for detecting a deadlock
pattern of size : that runs in time$ (N:−n ), no matter what n > 0 we choose. These two results
shed light on the difficulty in identifying deadlock patterns — a task that might otherwise
appear easier than the core task of prediction. These hardness results, in particular the fine-
grained lower bound result, are based on novel constructions, and results from fine-grained
complexity [Williams 2018]. Our third result is about confirming predictable deadlocks — even
for a deadlock pattern of size : = 2, checking whether it yields a predictable deadlock isW[1]-
hard in the number of threads T (and thus again NP-hard), and is inspired from an analogous
result in the context of data race prediction [Mathur et al. 2020]. These results capture the
intractability of deadlock prediction in general, even for the class of parametrized algorithms.
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(2) Sync-preserving Deadlock Prediction and Abstract Deadlock Patterns. Given the above
hardness of predicting arbitrary deadlocks, we define a novel notion of sync(hronization)-
preserving deadlocks, illustrated in Section 1.1.We develop SPDOnline, an online, sound deadlock
predictor that takes as input a trace and reports all sync-preserving deadlocks of size 2 in linear

time $̃ (N)∗. As most deadlocks in practice involve only two threads [Lu et al. 2008], restricting
SPDOnline to size 2 deadlocks leads to linear-time deadlock prediction with small impact on
its coverage. We also develop our more general algorithm, SPDOffline, that detects all sync-
preserving deadlocks of all sizes. SPDOffline operates in two phases. In the first phase, it
detects all abstract deadlock patterns. An abstract deadlock pattern is a novel notion that serves
as a succinct representation of the class of deadlock patterns having the same signature. In the
second phase, SPDOffline executes SPDOnline on each abstract pattern to decide whether a
deadlock is formed. The running time of SPDOffline remains linear in N , but increases by a
factor proportional to the number of abstract deadlock patterns in the lock graph.

(3) Implementation and Evaluation.We have evaluated SPDOnline and SPDOffline in terms
of performance and predictive power on a large dataset of standard benchmarks. In the offline
setting, SPDOffline finds the same number of deadlocks as the recently introduced SeqCheck,
while achieving a speedup of > 200× on the most demanding benchmarks, and 21× overall. In
the online setting, SPDOnline achieved a significant improvement in deadlock discovery and
deadlock-hit-rate compared to the random scheduling based controlled concurrency testing
technique of DeadlockFuzzer [Joshi et al. 2009]. Our experiments thus support that the notion
of sync-preserving deadlocks is suitable: (i) it captures the vast majority of the deadlocks in
practice, and (ii) sync-preserving deadlocks can be detected online and optimally — that is,
soundly, completely and in linear time, (iii) it can enhance the deadlock detection capability of
controlled concurrency testing techniques, (iv) with reasonable runtime overhead.

2 PRELIMINARIES

Here we set up our model and develop relevant notation, following related work in predictive
analyses of concurrent programs [Kini et al. 2017; Roemer et al. 2020; Smaragdakis et al. 2012].

Execution traces. A dynamic analysis observes traces generated by a concurrent program, and
analyzes them to determine the presence of a bug. Each such trace f is a linear arrangement of
events Eventsf . An event 4 ∈ Eventsf is tuple 4 = ⟨8, C, >⟩, where 8 is a unique identifier of 4 , C is the
unique identifier of the thread performing 4 , and > is either a read or write (> = r(G) or > = w(G))
operation to some variable G , or an acquire or release (> = acq(ℓ) or > = rel(ℓ)) operation on some
lock ℓ . For the sake of simplicity, we often omit 8 when referring to an event. We use thread(4) and
op(4) to respectively denote the thread identifier and the operation performed in the event 4 . We
use Threadsf , Varsf and Locksf to denote the set of thread, variable and lock identifiers in f .

We restrict our attention to well-formed traces f , that abide to shared-memory semantics. That is,
if a lock ℓ is acquired at an event 4 by thread C , then any later acquisition event 4′ of the same lock
ℓ must be preceded by an event 4′′ that releases lock ℓ in thread C in between the occurrence of 4
and 4′. Taking 4′′ to be the earliest such release event, we say that 4 and 4′′ are matching acquire
and release events, and denote this by 4 = matchf (4′′) and 4′′ = matchf (4). Moreover, every read
event has at least one preceding write event on the same location, that it reads its value from.

Functions and relations on traces. A trace f implicitly defines some relations. The trace-order
≤ftr⊆ Eventsf × Eventsf orders the events of f in a total order based on their order of occurrence in

∗We use $̃ to ignore polynomial appearance of trace parameters typically much smaller than N (e.g., number of threads).
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the sequence f . The thread-order ≤f
TO

is the unique partial order over Eventsf such that 4 ≤f
TO

4′ iff
thread(4) = thread(4′) and 4 ≤ftr 4′. We say 4 <

f
TO

4′ if 4 ≤f
TO

4′ but 4 ≠ 4′. The reads-from function
rff is a map from the read events to the write events in f . Under sequential consistency, for a read
event 4 on variable G , we have that 4′ = rff (4) be the latest write event on the same variable G
such that 4′ ≤ftr 4 . We say that a lock ℓ ∈ Locksf is held at an event 4 ∈ Eventsf if there is an event
4′ such that (i) op(4′) = acq(ℓ), (ii) 4′ <f

TO
4 , and (iii) either matchf (4′) does not exist in f , or

4 ≤f
TO

matchf (4′). We use HeldLksf (4) to denote the set of all the locks that are held by thread(4)
right before 4 . The lock nesting depth of f is max

4∈Eventsf
|HeldLksf (4) | + 1 where op(4) = acq(ℓ).

Deadlock patterns. A deadlock pattern† of size : in a trace f is a sequence � = ⟨40, 41, . . . , 4:−1⟩,
with : distinct threads C0, . . . , C:−1 and : distinct locks ℓ0, . . . , ℓ:−1 such that thread(48 ) = C8 , op(48 ) =
acq(ℓ8 ), ℓ8 ∈ HeldLksf (4 (8+1)%: ), and further, HeldLksf (48 ) ∩ HeldLksf (4 9 ) = ∅ for every 8, 9 such
that 8 ≠ 9 and 0 ≤ 8, 9 < : . A deadlock pattern is a necessary but insufficient condition of an actual
deadlock, due to subtle synchronization or control and data flow in the underlying program.

Dynamic predictive analysis and correct reorderings. Dynamic analyses aim to expose bugs
by observing traces f of a concurrent program, often without accessing the source code. While such
purely dynamic approaches enjoy the benefits of scalability, simply detecting bugs that manifest onf
offer poor coverage and are bound tomiss bugs that appear in select thread interleavings [Musuvathi
et al. 2008]. Therefore, for better coverage, predictive dynamic techniques are developed. Such
techniques predict the occurrence of bugs in alternate executions that can be inferred from f ,
irrespective of the program that produced f . The notion of such inferred executions is formalized
by the notion of correct reorderings [Sen et al. 2005; Şerbănută et al. 2013; Smaragdakis et al. 2012].

A trace d is a correct reordering of a trace f if (1) Eventsd ⊆ Eventsf , (2) for every 4, 5 ∈ Eventsf with

4 ≤f
TO

5 , if 5 ∈ Eventsd , then 4 ∈ Eventsd and 4 ≤dTO 5 , and (3) for every read event A ∈ Eventsd , we
have rff (A ) ∈ Eventsd and rfd (A ) = rff (A ). Intuitively, a correct reordering d of f is a permutation
of f that respects the thread order and preserves the values of each read and write that occur in
d . This ensures a key property — every program that generated f is also capable of generating d

(possibly under a different thread schedule), and thus d serves as a true witness of a bug.

Predictable deadlocks. We say that an event 4 is f-enabled in a correct reordering d of f if
4 ∈ Eventsf , 4 ∉ Eventsd and for every 5 ∈ Eventsf if 5 <

f
TO

4 , then 5 ∈ Eventsd . A deadlock
pattern� = ⟨40, 41 . . . 4:−1⟩ of size : in trace f is said to be a predictable deadlock if there is a correct
reordering d of f such that each of 40, . . . , 4:−1 are f-enabled in d . This notion guarantees that the
witness d is a valid execution of any concurrent program that produced f . Analogous definitions
have also been widely used for other predictable bugs [Huang et al. 2014; Smaragdakis et al. 2012].
We call a deadlock-prediction algorithm sound if for every input trace f , all deadlock reports on f

are predictable deadlocks of f (i.e., no false positives), and complete if all predictable deadlocks of f
are reported by the algorithm (i.e., no false negatives). This is in line with the previous works on
the topic of predictive analyses [Cai et al. 2021; Kalhauge and Palsberg 2018; Mathur et al. 2021;
Pavlogiannis 2019]. We remark that other domains sometimes use this terminology reversed.

Example 1. Let us illustrate these definitions on the trace f2 in Fig. 1b, with 48 denoting the 8
th

event in the figure. The set of events, threads, variables and locks of f2 are respectively Eventsf2 =

{48 }208=1, Threadsf2 = {C1, C2, C3, C4}, Varsf2 = {G,~, I} and Locksf2 = {ℓ1, ℓ2, ℓ3}. The trace order
yields 48 ≤f2tr 4 9 iff 8 ≤ 9 , and some examples of thread-ordered events are 41 <

f2
TO

42 <
f2
TO

415

†Similar notions have been used in the literature, sometimes under the term deadlock potential [Havelund 2000].
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�

0

1

2

C1 C2 C3

acq(ℓ{0,2} )
acq(ℓ{0,1} )
cs(ℓ1, ℓ2 )
rel(ℓ{0,1} )
rel(ℓ{0,2} )

acq(ℓ{0,1} )
cs(ℓ1, ℓ2 )
rel(ℓ{0,1} )

acq(ℓ{0,2} )
cs(ℓ1, ℓ2 )
rel(ℓ{0,2} )

acq(ℓ{0,2} )
acq(ℓ{0,1} )
cs(ℓ2, ℓ0 )
rel(ℓ{0,1} )
rel(ℓ{0,2} )

acq(ℓ{0,1} )
cs(ℓ2, ℓ0 )
rel(ℓ{0,1} )

acq(ℓ{0,2} )
cs(ℓ2, ℓ0 )
rel(ℓ{0,2} )

acq(ℓ{0,2} )
acq(ℓ{0,1} )
cs(ℓ0, ℓ1 )
rel(ℓ{0,1} )
rel(ℓ{0,2} )

acq(ℓ{0,1} )
cs(ℓ0, ℓ1 )
rel(ℓ{0,1} )

acq(ℓ{0,2} )
cs(ℓ0, ℓ1 )
rel(ℓ{0,2} )

(a) Reduction of INDEPENDENT-SET(3) on� to de-

tecting a deadlock pa�ern of size 3.

[1, 1]

[1, 0]

�

[1, 0]

[0, 1]

�

C� C�

acq(ℓ2 )
acq(ℓ1 )

cs(<0,<1 )
rel(ℓ1 )
rel(ℓ2 )

acq(ℓ1 )
cs(<0,<1 )
rel(ℓ1 )

acq(ℓ1 )
cs(<1,<0 )
rel(ℓ1 )

acq1 (ℓ2 )
cs(<1,<)
rel1 (ℓ2 )

(b) Reduction for :-OV-hardness proof from an in-

stance of size = = 2, 3 = 2 and : = 2.

Fig. 2. Construction of W[1]-hardness (a) and OV-hardness (b) results. We use the shortcut cs(ℓ8 , ℓ9 ) to
denote two nested critical sections on ℓ8 and ℓ9 . That is, cs(ℓ8 , ℓ9 ) = acq(ℓ8 ) · acq(ℓ9 ) · rel(ℓ9 ) · rel(ℓ8 ).

and 416 <
f2
TO

418 <
f2
TO

420. The reads-from function is as follows: rff2 (410) = 45, rff2 (414) = 49 and
rff2 (417) = 413. The lock nesting depth of f2 is 2. The sequence� = ⟨44, 418⟩ forms a deadlock pattern
because of the cyclic acquisition of locks ℓ2 and ℓ3 without simultaneously holding a common lock.
The trace d4 = 43..47 48..411 4142412..415 416417 is a correct reordering of f2; even though it differs
from f2 in the relative order of the critical sections of lock ℓ1, and contains only a prefix of thread C3,
it is consistent with rff2 and <

f2
TO

. However, d4 does not witness ⟨44, 418⟩ as a deadlock, as only 418 is
f2-enabled in d4. On the other hand, the trace d3 = 4142434849 412..415 416417 is a correct reordering
of f2 in which 44 and 418 are f2-enabled, witnessing � as a predictable deadlock of f2.

3 THE COMPLEXITY OF DYNAMIC DEADLOCK PREDICTION

Detecting deadlock patterns and predictable deadlocks is clearly a problem in NP, as any witness
for either problem can be verified in polynomial time. However, little has been known about the
hardness of the problem in terms of rigorous lower bounds. Here we settle these questions, by
proving strong intractability results. Due to space constraints, we state and explain the main results
here, and refer to our technical report [Tunç et al. 2023a] for the full proofs.

Parametrized hardness for detecting deadlock patterns.We show that the basic problem of
checking the existence of a deadlock pattern is itself hard parameterized by the size : of the pattern.

Theorem 3.1. Checking if a trace f contains a deadlock pattern of size : isW[1]-hard in the parameter

: . Moreover, the problem remains NP-hard even when the lock-nesting depth of f is constant.

Proof. We show that there is a polynomial-time fixed parameter tractable reduction from
INDEPENDENT-SET(c) to the problem of checking the existence of deadlock-patterns of size
2 . Our reduction takes as input an undirected graph � and outputs a trace f such that � has an
independent set of size 2 iff f has a deadlock pattern of size 2 .

Construction. Let + = {E1, E2, . . . , E=}. We assume a total ordering <� on the set of edges �.
The trace f we construct is a concatenation of 2 sub-traces: f = f (1) · f (2) · · ·f (2 ) and uses 2
threads {C1, C2, . . . C2 } and |� | + 2 locks {ℓ{D,E}}{D,E}∈� ⊎ {ℓ0, ℓ1 . . . , ℓ2−1}. The 8th sub-trace f (8 ) is a
sequence of events performed by thread C8 , and is obtained by concatenation of = = |+ | sub-traces:
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f (8 ) = f
(8 )
1 ·f

(8 )
2 · · ·f

(8 )
= . Each sub-trace f

(8 )
9 with (8 ≤ 2, 9 ≤ =) comprises of nested critical sections

over locks of the form ℓ{E9 ,D} , where D is a neighbor of E 9 . Inside the nested block we have critical
sections on locks ℓ8%2 and ℓ(8+1)%2 . Formally, let {E 9 , E:1 }, . . . , {E 9 , E:3 } be the neighboring edges of
E 9 (ordered according to <� ). Then, f

(8 )
9 is the unique string generated by the grammar having 3 + 1

non-terminals (0, (1, . . . , (3 , start symbol (3 and the following production rules:

• (0 → ⟨C8 , acq(ℓ8%2 )⟩ · ⟨C8 , acq(ℓ(8+1)%2 )⟩ · ⟨C8 , rel(ℓ(8+1)%2 )⟩ · ⟨C8 , rel(ℓ8%2 )⟩.
• for each 1 ≤ A ≤ 3 , (A → ⟨C8 , acq(ℓ{E9 ,E:A })⟩ · (A−1 · ⟨C8 , rel(ℓ{E9 ,E:A })⟩.
Fig. 2a illustrates this construction for a graph with 3 nodes and parameter 2 = 3. Finally, observe
that the lock-nesting depth in f is bounded by 2 + the degree of � . □

Theorem 3.1 implies that the problem is not only NP-hard, but also unlikely to be fixed parameter

tractable in the size : of the deadlock pattern. In fact, under the well-believed Exponential Time
Hypothesis (ETH), the parametrized problem INDEPENDENT-SET(c) cannot be solved in time
5 (2) · => (2 ) [Chen et al. 2006]. The above reduction preserves the parameter : = 2 , thus under ETH,
detecting deadlock patterns of size : is unlikely to be solvable in time complexity 5 (:) · N6 (: ) ,
where 6(:) is > (:) (such as 6(:) =

√
: or even 6(:) = :/log(:)). The problem of checking the

existence of deadlock patterns is, intuitively, a precursor to the deadlock prediction problem. Thus,
an approach for deadlock prediction that first identifies the existence of arbitrary deadlock patterns
and then verifying their feasibility is unlikely to be tractable. In practice, the synchronization
patterns corresponding to the hard instances are uncommon in executions, and our proposed
algorithms (Section 4 and Section 5) can effectively expose predictable deadlocks (Section 6).

Fine-grained hardness for deadlock pattern detection. We now establish a fine-grained
hardness for detecting deadlock patterns — for each : ≥ 2, we cannot check for the existence of
patterns of size : in time$ (N:−n ) for any n > 0, under the popular Orthogonal Vectors hypothesis
(OV). For a fixed : ≥ 2, the :-OV problem takes : sets of 3-dimensional vectors �1, �2, . . . , �: ⊆
{0, 1}3 , each of cardinality |�8 | = = (1 ≤ 8 ≤ :) as input, and asks if there are vectors 01 ∈
�1, . . . , 0: ∈ �: such that the extended dot product 01 ·02 · · ·0: =

∑3
?=1 (01 [?] ·02 [?] · · ·0: [?]) = 0.

For a : ≥ 2, the :-OV hypothesis states that for any n > 0, there is no $ (=:−n · poly(3)) algorithm
for :-OV. The Strong Exponential Time Hypothesis (SETH) implies :-OV [Williams 2005]. Our
next theorem is based on showing that, for every : ≥ 2, detecting deadlock patterns of size : is
at least as hard as solving :-OV. Note the difference between Theorem 3.1 and Theorem 3.2: the
former allows algorithms with running time of the form N:/2 (even under ETH), but the latter
excludes them, requiring that : fully appears in the exponent. The two results are based on different
hypotheses and also incomparable since it could turn out that :-OV is false but ETH is true. We
thus establish both results, in order to develop a deeper understanding of the intricacies of the
problem.

Theorem 3.2. Given a trace f of size N , L locks and size : ≥ 2, for any n > 0, there is no algorithm

that determines in $ (N:−n · poly(L)) time whether f has a deadlock pattern of size : , under the

:-OV hypothesis.

Proof. We show a fine-grained reduction from the Orthogonal Vectors Problem to the problem of
checking for deadlock patterns of size : . For this, we start with two sets �1, �2, . . . , �: ⊆ {0, 1}3 of
3-dimensional vectors with |�8 | = = for every 1 ≤ 8 ≤ : . We write the 9Cℎ vector in �8 as �8, 9 .

Construction. We will construct a trace f such that f has a deadlock pattern of length : iff
(�1, �2, . . . , �: ) is a positive :-OV instance. The trace f is of the form f = f�1 ·f�2 · · ·f�: and uses
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: threads {C�1
, . . . , C�:

} and 3 + : distinct locks ℓ1, . . . , ℓ3 ,<1,<2, . . . ,<: . Intuitively, the sub-trace

f�8 encodes the given set of vectors�8 . The sub-traces f
�8 = f�8

1 ·f
�8

2 · · ·f
�8
= are defined as follows.

For each 9 ∈ {1, 2, . . . , =} the sub-trace f�8

9 is the unique string generated by the grammar having

3 + 1 non-terminals (0, (1, . . . , (3 , start symbol (3 and the following production rules:

• (0 → ⟨C/ , acq(<8 )⟩ · ⟨C/ , acq(<8%:+1)⟩ · ⟨C/ , rel(<8%:+1)⟩ · ⟨C/ , rel(<8 )⟩.
• for each 1 ≤ ? ≤ 3 , (? → (?−1 if �8, 9 [?] = 0. Otherwise (if �8, 9 [?] = 1), (? → ⟨C�8

, acq(ℓ? )⟩ ·
(?−1 · ⟨C�8

, rel(ℓ? )⟩.
In words, all events of f�8 are performed by thread C�8

. Next, the 9Cℎ sub-trace of f�8 , denoted

f�8

9 corresponds to the vector �8, 9 as follows — f�8

9 is a nested block of critical sections, with the

innermost critical section being on lock<8%:+1, which is immediately enclosed in a critical section

on lock<8 . Further, in the sub-trace f�8

9 , the lock ℓ? occurs iff �8, 9 [?] = 1. Fig. 2b illustrates the

construction for an OV-instance with : = 2 = = 2 and 3 = 2. □

The complexity of deadlock prediction. Finally, we settle the complexity of the prediction
problem for deadlocks, and show that, even for deadlock patterns of size 2, the problem isW[1]-hard
parameterized by the number of threads. In contrast, recall that the W[1]-hardness of Theorem 3.1
concerns deadlock patterns of arbitrary size. Our result is based on a similar hardness that was
established recently for predicting data races [Mathur et al. 2020].

Theorem 3.3. The problem of checking if a trace f has a predictable deadlock of size 2 is W[1]-hard
in the number of threads T appearing in f , and thus is also NP-hard.

4 SYNCHRONIZATION-PRESERVING DEADLOCKS AND THEIR PREDICTION

Having established the intractability of general deadlock prediction in Section 3, we now define the
subclass of predictable deadlocks called synchronization-preserving (sync-preserving, for short) in
Section 4.1. The key benefit of sync-preserving deadlocks is that, unlike arbitrary deadlocks, they
can be detected efficiently; we develop our algorithm SPDOffline for this task in Sections 4.2-4.5.
Our experiments later indicate that most predictable deadlocks are actually sync-preserving, hence
the benefit of fast detection comes at the cost of little-to-no precision loss in practice.

Overview of the algorithm. There are several insights behind our algorithm. First, given a
deadlock pattern, one can verify if it is a sync-preserving deadlock in linear time (Section 4.3); this
is based on our sound and complete characterization of sync-preserving deadlocks (Section 4.2). Next,
instead of verifying single deadlock patterns one-by-one, we consider abstract deadlock patterns,
which are essentially collections of deadlock patterns that share the same signature; the formal
definition is given in Section 4.4. We show that our basic algorithm can be extended to incrementally

verify all the concretizations of an abstract deadlock pattern in linear time (Section 4.4), in a single
pass (Lemma 4.3). Finally, we feed this algorithm all the abstract deadlock patterns of the input
trace, by constructing an abstract lock graph and enumerating cycles in it (Section 4.5).

4.1 Synchronization-Preserving Deadlocks

Our notion of sync-preserving deadlocks builds on the recently introduced concept of sync-
preserving correct reorderings [Mathur et al. 2021].

Definition 1 (Sync-preserving Correct Reordering). A correct reordering d of a trace f is sync-
preserving if for every lock ℓ ∈ Locksd and every two acquire events 41 ≠ 42 ∈ Eventsd with

op(41) = op(42) = acq(ℓ), the order of 41 and 42 is the same in f and d , i.e., 41 ≤dtr 42 iff 41 ≤ftr 42.
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C1 C2 C3

1 acq(ℓ1)
2 acq(ℓ2)
3 rel(ℓ2)
4 acq(ℓ2)
5 w(~)
6 rel(ℓ2)
7 rel(ℓ1)
8 acq(ℓ3)
9 w(G)
10 r(~)
11 rel(ℓ3)
12 acq(ℓ2)
13 acq(ℓ3)
14 r(G)
15 rel(ℓ3)
16 acq(ℓ1)

C1 C2 C3

17 w(E)
18 rel(ℓ1)
19 acq(ℓ1)
20 rel(ℓ1)
21 rel(ℓ2)
22 acq(ℓ4)
23 acq(ℓ1)
24 w(I)
25 r(E)
26 rel(ℓ1)
27 rel(ℓ4)
28 acq(ℓ1)
29 acq(ℓ2)
30 r(I)
31 rel(ℓ2)
32 rel(ℓ1)

[1 = ⟨C1, ℓ2, {ℓ1}, [42, 44, 429]⟩
[2 = ⟨C2, ℓ1, {ℓ4}, [423]⟩
[3 = ⟨C3, ℓ1, {ℓ2}, [416, 419]⟩
[4 = ⟨C3, ℓ3, {ℓ2}, [413]⟩

�abs
= ⟨[1, [3⟩

�1 = ⟨42, 416⟩
�2 = ⟨42, 419⟩
�3 = ⟨44, 416⟩

�4 = ⟨44, 419⟩
�5 = ⟨429, 416⟩
�6 = ⟨429, 419⟩

Fig. 3. A trace f3, its abstract acquires [8 , unique abstract deadlock pa�ern �
abs, concrete pa�erns �8 ∈ �abs.

A sync-preserving correct reordering preserves the order of those critical sections (on the same
lock) that actually appear in the reordering, but allows intermediate critical sections to be dropped
completely. This style of reasoning is more permissive than the space of reorderings induced by the
Happens-Before partial order [Lamport 1978], that implicitly enforces that all intermediate critical
sections on a lock be present. Sync-preserving deadlocks can now be defined naturally.

Definition 2 (Sync-preserving Deadlocks). Let f be a trace and � = ⟨40, 41, . . . , 4:−1⟩ be a deadlock
pattern. We say that � is a sync-preserving deadlock of f if there is a sync-preserving correct
reordering d of f such that each of 40, . . . , 4:−1 is f-enabled in d .

Example 2. Consider the trace f2 in Fig. 1b. The deadlock pattern� = ⟨44, 418⟩ is a sync-preserving
deadlock, witnessed by the sync-preserving correct reordering d3 = 4142434849 412 ..415 416417. Now
consider the trace f3 from Fig. 3 and the deadlock pattern �5 = ⟨429, 416⟩. This is a predictable
deadlock, witnessed by the correct reordering d5 = 41 ..4748..411412 ..415 428. Observe that d5 is a
sync-preserving reordering, which makes �5 a sync-preserving deadlock. A key aspect in d5 is that
the events 422..427 are dropped, as otherwise 416 cannot be f3-enabled. A similar reasoning applies
for the deadlock pattern �6, and it is also a sync-preserving deadlock. The other deadlock patterns
(�1, �2, �3, �4) are not predictable deadlocks. Intuitively, the reason for this is that realizing these
deadlock patterns require executing the read event 414, which then enforces to execute the events
48..411 and 41..46. This prevents the deadlocks from becoming realizable as the events 42 or 44 that
appear in these deadlock patterns are no longer f3-enabled. This point is detailed in Example 3.

4.2 Characterizing Sync-Preserving Deadlocks

There are two fundamental tasks in searching for a correct reordering that witnesses a deadlock —
(i) determining the set of events in the correct reordering, and (ii) identifying a total order on such
events — both of which are intractable [Mathur et al. 2020]. On the contrary, for sync-preserving
deadlocks, we show that (a) the search for a correct reordering can be reduced to the problem of
checking if some well-defined set of events (Definition 3) does not contain the events appearing in
the deadlock pattern (Lemma 4.2), and that (b) this set can be constructed efficiently.

Definition 3 (Sync-Preserving Closure). Let f be a trace and ( ⊆ Eventsf . The sync-preserving
closure of ( , denoted SPClosuref (() is the smallest set ( ′ such that (a) ( ⊆ ( ′, (b) for every
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4, 4′ ∈ Eventsf such that 4 <
f
TO

4′ or 4 = rff (4′), if 4′ ∈ ( ′, then 4 ∈ ( ′, and (c) for every lock ℓ and
every two distinct events 4, 4′ ∈ ( ′ with op(4) = op(4′) = acq(ℓ), if 4 ≤ftr 4′ then matchf (4) ∈ ( ′.

Definition 3 resembles the notion of correct reorderings (Definition 1). Indeed, Lemma 4.1 justifies
using this set — it is both a necessary and a sufficient set for sync-preserving correct reorderings.

Lemma 4.1. Let f be a trace and let ( ⊆ Eventsf . For any sync-preserving correct reordering d of f , if

( ⊆ Eventsd , then SPClosuref (() ⊆ Eventsd . Further, there is a sync-preserving correct reordering d

of f such that Eventsd = SPClosuref (().

For an intuition, consider again Figure 3 and the sync-preserving correct reordering d5 =

41..4748..411412..415 428 computed in Example 2. According to Lemma 4.1, SPClosuref3 (() ⊆ Eventsd5
holds for all ( such that ( ⊆ Eventsd5 . For example, if we take ( = {41, 415} then observe that
( ⊆ Eventsd5 and SPClosuref3 (() = {41, . . . , 46, 48, . . . 415} ⊆ Eventsd5 holds.

Based on Lemma 4.1, we present a sound and complete characterization of sync-preserving dead-
locks (Lemma 4.2). For a set ( ⊆ Eventsf , we let predf (() denote the set of immediate thread prede-
cessors of events in ( . That is, predf (() = {4 ∈ Eventsf | ∃5 ∈ (, 4 <

f
tr 5 and ∀4′ <f

tr 5 , 4
′ ≤f

TO
4}.

Lemma 4.2. Let f be a trace and let � = ⟨40, . . . , 4:−1⟩ be a deadlock pattern of size : in f . � is a

sync-preserving deadlock of f iff SPClosuref (predf (()) ∩ ( = ∅, where ( = {40, . . . , 4:−1}.

Example 3. Consider the trace f2 in Fig. 1b, and the deadlock pattern � = ⟨44, 418⟩.
We have SPClosuref2 (predf2 ({44, 418})) = {41, 42, 43, 48, 49, 412, . . . , 417}. Since we have that
44, 418 ∉ SPClosuref2 (predf2 ({44, 418})), � is a sync-preserving deadlock. Now consider the
trace f3 in Fig. 3, and the deadlock patterns �1 = ⟨42, 416⟩, �5 = ⟨429, 416⟩, and �6 =

⟨429, 419⟩. We have SPClosuref3 (predf3 ({42, 416})) = {41, . . . , 46, 48, . . . , 415}, SPClosuref3 (predf3 (
{429, 416})) = {41, . . . , 415, 428}, and SPClosuref3 (predf3 ({429, 419})) = {41, . . . , 418, 428}. Since
42 ∈ SPClosuref3 (predf3 ({42, 416})), �1 is not a sync-preserving deadlock. However, 429, 416 ∉

SPClosuref3 (predf3 ({429, 416})), and 429, 419 ∉ SPClosuref3 (predf3 ({429, 419})), thus �5 and �6 are
sync-preserving deadlocks (as we also concluded in Example 2).

4.3 Verifying Deadlock Pa�erns

Given a deadlock pattern, we check if it constitutes a sync-preserving deadlock by constructing
the sync-preserving closure (Lemma 4.2) in linear time. Based on Definition 3, this can be done
in an iterative manner. We (i) start with the set of ≤TO predecessors of the events in the deadlock
pattern, and (ii) iteratively add ≤TO and rf predecessors of the current set of events. Additionally,
we identify and add the release events that must be included in the set. We utilize timestamps to
ensure that the entire fixpoint computation is performed in linear time.

Thread-read-from timestamps. Given a set Threads of threads, a timestamp is simply a mapping
) : Threads → N. Given timestamps )1,)2, we use the notations )1 ⊑ )2 and )1 ⊔)2 for pointwise
comparison and pointwise maximum, respectively. For a set * of timestamps, we write

⊔
* to

denote the pointwise maximum over all elements of* . Let ≤f
TRF

be the reflexive transitive closure
of the relation (≤f

TO
∪{(rff (4), 4) | ∃G ∈ Varsf , op(4) = r(G)}); observe that ≤f

TRF
is a partial order.

We define the timestamp TS4f of an event 4 in f to be a Threadsf -indexed timestamp as follows:

TS4f (C) = |{5 | 5 ≤fTRF 4}|. This ensures that for two events 4, 4′ ∈ Eventsf , 4 ≤fTRF 4′ iff TS4f ⊑ TS4
′

f .

For a set ( ⊆ Eventsf , we overload the notation and say the timestamp of ( is TS(f =
⊔{TS4f }4∈( .
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Given a trace f with N events and T threads we can compute these timestamps for all the events
in $ (N · T ) time, using a simple vector clock algorithm [Fidge 1991; Mattern 1989].

Computing sync-preserving closures. Recall the basic template of the fixpoint computation. In
each iteration, we identify the set of release events that must be included in the set, together with
their ≤f

TRF
-closure. In order to identify such events efficiently, for every thread C and lock ℓ , we

maintain a FIFO queue CSHistC,ℓ (critical section history of C and ℓ) to store the sequence of events
that acquire ℓ in thread C . In each iteration, we traverse each list to determine the last acquire event
that belongs to the current set. For a given lock, we need to add the matching release events of
all thus identified events to the closure, except possibly the matching release event of the latest
acquire event (see Definition 3). This computation is performed using timestamps, as shown in
Algorithm 1. Starting with a set ( , the algorithm runs in time $ ( |( | · T + T · A), where T and A
are respectively the number of threads and acquire events in f .

Algorithm 1: CompSPClosure:
Computing sync-preserving closure.

Input: Trace f , Timestamp )0

1 let {CSHistC,ℓ }ℓ∈Locksf ,C ∈Threadsf be the

lock-acquisition histories in f

2 ) ← )0

3 repeat

4 for ℓ ∈ Locks do
5 foreach C ∈ Threads do
6 let 4C be the last event in CSHistC,ℓ

with TS
4C
f ⊑ )

7 Remove all earlier events in CSHistC,ℓ

8 let 4C∗ be the last event in
{4C }C ∈Threadsf according to ≤ftr

9 ) := ) ⊔ ⊔{TSmatchf (4C )
f | 4C ≠ 4C∗}

10 until ) does not change

11 return )

Algorithm 2: CheckAbsDdlck:
Checking an abstract deadlock pattern.

Input: Trace f , �abs of length :

1 let �0, . . . , �:−1 be the sequences of acquires
in �abs

2 let =0, . . . , =:−1 be the lengths of �0, . . . , �:−1
3 foreach 9 ∈ {0, . . . , : − 1} do 8 9 ← 1

4 ) ← _C, 0 while
:−1∧
9=0

8 9 < = 9 do

5 let 40 = �0 [80], . . . , 4:−1 = �:−1 [8:−1]
6 ( ← predf {40, . . . , 4:−1}
7 ) ← CompSPClosure(f,) ⊔ TS(f)
8 if ∀9 < :, TS

4 9
f ⊑ ) then

9 report pattern � = 40, . . . , 4:−1 and exit

10 foreach 9 ∈ {0, . . . , : − 1} do
11 8 9 = min{; ≤ = 9 | TS

� 9 [; ]
f ̸⊑ ) }

Checking a deadlock pattern. After computing the timestamp ) of the closure (output of
Algorithm 1, starting with the set of events in the given deadlock pattern), determining whether a
given deadlock pattern � = 40, . . . , 4:−1 is a sync-preserving deadlock can be performed in time
$ (: · T ) — simply check if ∀8, TSf (48 ) ̸⊑ ) . This gives an algorithm for checking if a deadlock
pattern of length : is sync-preserving that runs in time $ (T · N + : · T + T · A) = $ (N · T ).

4.4 Verifying Abstract Deadlock Pa�erns

Abstract acquires and abstract deadlock patterns. Given a thread C , a lock ℓ and a set of locks
! ⊆ Locksf ≠ ∅ with ℓ ∉ !, we define the abstract acquire [ = ⟨C, ℓ, !, � ⟩, where � = [41, . . . , 4=] is
the sequence of all events 48 ∈ Eventsf (in trace-order) such that for each 8 , we have (i) thread(48 ) = C ,
(ii) op(48 ) = acq(ℓ), and (iii) HeldLksf (48 ) = !. In words, the abstract acquire [ contains the
sequence of all acquire events of a specific thread, that access a specific lock and hold the same set
of locks when executed, ordered as per thread order. An abstract deadlock pattern of size : in a trace
f is a sequence �abs

= [0, . . . , [:−1 of abstract acquires [8 = ⟨C8 , ℓ8 , !8 , �8⟩ such that C0, . . . , C:−1 are
distinct threads, ℓ0, . . . , ℓ:−1 are distinct locks, and !0, !1, . . . , !:−1 ⊆ Locksf are such that ℓ8 ∉ !8 ,
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ℓ8 ∈ !(8+1)%: for every 8 , and !8 ∩ ! 9 = ∅ for every 8 ≠ 9 . Thus, an abstract deadlock pattern �abs

succinctly encodes all concrete deadlock patterns �0 × �1 × · · · × �:−1, called instantiations of �abs.
We also write � ∈ �abs to denote that � ∈ �0 × �1 × · · · × �:−1. We say that �abs contains a
sync-preserving deadlock if there exists some instantiation � ∈ �abs that is a sync-preserving
deadlock. See Fig. 3 for an example. Our next result is stated below, followed by its proof idea.

Lemma 4.3. Consider a trace f with N events and T threads, and an abstract deadlock pattern �abs

of f . We can determine if �abs contains a sync-preserving deadlock in $ (T · N) time.

An abstract deadlock pattern of length : ≥ 2 can haveN: instantiations, giving a naive enumerate-
and-check algorithm running in time$ (T · N:+1), which is prohibitively large. Instead, we exploit
(i) the monotonicity properties of the sync-preserving closure (Proposition 4.4) and (ii) instantiations
of an abstract pattern (Corollary 4.5) that allow for an incremental algorithm that iteratively checks
successive instantiations of a given abstract deadlock pattern, while spending total $ (N · T ) time.
The first observation allows us to re-use a prior computation when checking later deadlock patterns.

Proposition 4.4. For a trace f and sets (, ( ′ ⊆ Eventsf . If for every event 4 ∈ ( , there is an event

4′ ∈ ( ′ such that 4 ≤f
TO

4′, then SPClosuref (() ⊆ SPClosuref (( ′).

Consider f3 in Figure 3 and let ( = predf3 ({429, 416}), and ( ′ = predf3 ({429, 419}). The sets (, (
′

satisfy the conditions of Proposition 4.4, hence SPClosuref3 (() ⊆ SPClosuref3 (( ′), as computed
in Example 3. Next, we extend Proposition 4.4 to avoid redundant computations when a sync-
preserving deadlock is not found and later deadlock patterns must be checked. Given two deadlock
patterns �1 = 40, . . . , 4:−1 and �2 = 50, . . . , 5:−1 of the same length : , we say �1 ≺ �2 if they are
instantiations of a common abstract pattern �abs (i.e., �1, �2 ∈ �abs) and for every 8 < : , 48 ≤fTO 58 .

Corollary 4.5. Let f be a trace and let �1 = 40, . . . , 4:−1 and �2 = 50, . . . 5:−1 be deadlock

patterns of size : in f such that �1 ≺ �2. Let (1 = {40, . . . , 4:−1} and (2 = {50, . . . , 5:−1}. If
SPClosuref (predf ((1)) ∩ (2 ≠ ∅, then SPClosuref (predf ((2)) ∩ (2 ≠ ∅.

We now describe how Proposition 4.4 and Corollary 4.5 are used in our algorithms, and illustrate
them later in Example 4. Algorithm 2 checks if an abstract deadlock pattern contains a sync-
preserving deadlock. The algorithm iterates over the sequences �0, . . . , �:−1 of acquires (one for
each abstract acquire) in trace order. For this, it maintains indices 80, . . . , 8:−1 that point to entries
in �0, . . . , �:−1. At each step, it determines whether the current deadlock pattern � = 40, . . . , 4:−1
constitutes a sync-preserving deadlock by computing the sync-preserving closure of the thread-
local predecessors of the events of the deadlock pattern. The algorithm reports a deadlock if the
sync-preserving closure does not contain any of 40, . . . , 4:−1. Otherwise, it looks for the next eligible
deadlock pattern, which it determines based on Corollary 4.5. In particular, it advances the pointer
8 9 all the way until an entry which is outside of the closure computed so far. Observe that the
timestamp ) of the closure computed in an iteration is being used in later iterations; this is a
consequence of Proposition 4.4. Furthermore, in the call to the Algorithm 1 at Line 7, we ensure that
the list of acquires CSHistC,ℓ , used in the function CompSPClosure is reused across iterations, and
not re-assigned to the original list of all acquire events. The correctness of this optimization follows
from Proposition 4.4. Let us now calculate the running time of Algorithm 2. Each of the CSHistC,ℓ
in CompSPClosure is traversed at most once. Next, each element of the sequences �0, . . . , �:−1 is
also traversed at most once. For each of these acquires, the algorithm spends $ (T ) time for vector
clock updates. The total time required is thus $ (N · T ). This concludes the proof of Lemma 4.3.
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C1, ℓ2, {ℓ1}, [42]

C2, ℓ1, {ℓ2}, [48]

C2, ℓ3, {ℓ2}, [44]

C3, ℓ2, {ℓ3}, [418]

C1, ℓ2, {ℓ1}, [42, 44, 429] C2, ℓ1, {ℓ4}, [423]

C3, ℓ1, {ℓ2}, [416, 419] C3, ℓ3, {ℓ2}, [413]

Fig. 4. Abstract lock graphs of the traces from Fig. 1a (le�), Fig. 1b (middle) and Fig. 3 (right).

4.5 The Algorithm SPDOffline

We now present the final ingredients of SPDOffline. We construct the abstract lock graph, enu-
merate cycles in it, check whether any cycle is an abstract deadlock pattern, and if so, whether it
contains sync-preserving deadlocks.

Abstract lock graph. The abstract lock graph of f is a directed graph ALGf = (+f , �f ), where
• +f = {⟨C1, ℓ1, !1, �1⟩, . . . , ⟨C: , ℓ: , !: , �:⟩} is the set of abstract acquires of f , and
• for every [1=⟨C1, ℓ1, !1, �1⟩, [2=⟨C2, ℓ2, !2, �2⟩ ∈ +f , we have ([1, [2) ∈ �f iff C1 ≠ C2, ℓ1 ∈ !2, and
!1 ∩ !2 = ∅.

A node ⟨C1, ℓ1, !1, �1⟩ signifies that there is an event acq1 (ℓ1) performed by thread C1 while holding
the locks in !1. The last component �1 is a list which contains all such events acq1 in order of
appearance in f . An edge ([1, [2) signifies that the lock ℓ1 acquired by each of the events acq1 ∈ �1
was held by C2 when it executed each of acq2 ∈ �2 while not holding a common lock. The abstract
lock graph can be constructed incrementally as new events appear in f . For N events, L locks and
nesting depth 3 , the graph has |+f | = $

(
T · L3

)
vertices, |�f | = $ ( |+f | · L3−1) edges and can be

constructed in $ (N · 3) time. See Fig. 4 for examples. In the left graph, the cycle marks an abstract
deadlock pattern and its single concrete deadlock pattern �abs

= {42} × {48}, and similarly for the
middle graph where �abs

= {44} × {418}. In the right graph, there is a unique cycle which marks an
abstract deadlock pattern of 6 concrete deadlock patterns �abs

= {42, 44, 429} × {416, 419}.

Algorithm 3: Algorithm SPDOffline.

Input: A trace f .

Output: All abstract deadlock patterns of f that contain a sync-preserving deadlock.

1 Construct the abstract lock graph ALGf

2 foreach cycle � = ⟨[0, . . . , [:−1⟩ in � do

3 Let [8 = ⟨C8 , ℓ8 , !8 , �8 ⟩
4 if ∀8 ≠ 9 we have C8 ≠ C 9 and ℓ8 ≠ ℓ9 and !8 ∩ !9 = ∅ then // � is an abstract deadlock pattern

5 if CheckAbsDdlck(�) then Report that � contains a sync-preserving deadlock

Algorithm SPDOffline. It is straightforward to verify that every abstract deadlock pattern of f
appears as a (simple) cycle in ALGf . However, the opposite is not true. A cycle � = [0, [1, . . . , [:−1
of ALGf , where [8 = ⟨C8 , ℓ8 , !8 , �8⟩ defines an abstract deadlock pattern if additionally every thread
C8 is distinct, all every lock ℓ8 is distinct, and all sets !8 are pairwise disjoint. This gives us a simple
recipe for enumerating all abstract deadlock patterns, by using Johnson’s algorithm [Johnson 1975]
to enumerate every simple cycle � in ALGf , and check whether � is an abstract deadlock pattern.
We thus arrived at our offline algorithm SPDOffline (Algorithm 3). The running time depends
linearly on the length of f and the number of cycles in ALGf .

Theorem 4.6. Consider a trace f of N events, T threads and Cycf cycles in ALGf . The algorithm

SPDOffline reports all sync-preserving deadlocks of f in time $ (N · T · Cycf ).
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Although, in principle, we can have exponentially many cycles in ALGf , because the nodes of ALGf

are abstract acquire events (as opposed to concrete), we expect that the number of cycles (and thus
abstract deadlock patterns) in ALGf remains small, even though the number of concrete deadlock
patterns can grow exponentially. Since SPDOffline spends linear time per abstract deadlock pattern,
we have an efficient procedure overall for constant T and L. We evaluate Cycf experimentally in
Section 6, and confirm that it is very small compared to the number of concrete deadlock patterns
in f . Nevertheless, Cycf can become exponential when T and L are large, making Algorithm 3
run in exponential time. Note that this barrier is unavoidable in general, as proven in Theorem 3.1.

Example 4. We illustrate how the lock graph is integrated inside SPDOffline. Consider the tracef3
in Fig. 3. It contains 6 concrete deadlock patterns�1 . . . �6. A naive algorithmwould enumerate each
pattern explicitly until it finds a deadlock. However, the tight interplay between the abstract lock
graph and sync-preservation enables a more efficient procedure. SPDOffline starts by computing
the sync-preserving closure of �1, SPClosuref3 (predf3 ({42, 416})) = {41, . . . , 46, 48, . . . , 415}. As
42 ∈ SPClosuref3 (predf3 ({42, 416})), we conclude that �1 is not a sync-preserving deadlock. The
algorithm further deduces that the deadlock patterns �2, �3 and �4 are also not sync-preserving
deadlocks, as follows. �2 = ⟨42, 419⟩ shares a common event 42 with �1 but contains the event 419
instead of 416, while 45 ∈ SPClosuref3 (predf3 ({42, 416})). Since 416 ≤

f3
TO

419, and the sync-preserving
closure grows monotonically (Proposition 4.4), the sync-preserving closure of 42 and 419 will also
contain 45 (and thus 42). Therefore, �2 cannot be a sync-preserving deadlock. This reasoning is
formalized in Corollary 4.5, and also applies to �3 and �4. Next, the algorithm proceeds with
�5. The above reasoning does not hold for �5 as SPClosuref3 (predf3 ({42, 416})) ∩ (5 = ∅ where
(5 = {429, 416}. The algorithm then computes the sync-preserving closure of �5, reports a deadlock
(Example 3) and stops analyzing this abstract deadlock pattern. In the end, we have only explicitly
enumerated the deadlock patterns �1 and �5.

Remark 1. Although the concept of lock graphs exists in the literature [Bensalem and Havelund
2005; Cai and Chan 2014; Cai et al. 2020; Havelund 2000], our notion of abstract lock graphs is novel
and tailored to sync-preserving deadlocks. The closest concept to abstract lock graphs is that of
equivalent cycles [Cai and Chan 2014]. However, equivalent cycles unify all the concrete patterns
of a given abstract pattern and lead to unsound deadlock detection, which was indeed their use.

5 ON-THE-FLY DEADLOCK PREDICTION

Although SPDOffline is efficient, both theoretically (Theorem 4.6) and in practice (Table 1), it runs
in two passes, akin to other predictive deadlock-detection methods [Cai et al. 2021; Kalhauge and
Palsberg 2018]. In a runtime monitoring setting, it is desirable to operate in an online fashion. Recall
that CheckAbsDdlck(·) indeed operates online (Section 4.4), while the offline nature of SPDOffline
is tied to the offline construction of the abstract lock graph ALGf . To achieve the golden standard of
online, linear-time, sound deadlock prediction, we focus on deadlocks of size 2. This focus is barely
restrictive as most deadlocks in the wild have size 2 [Lu et al. 2008]. Further, deadlocks of size 2
enjoy the following computational benefits: (a) cycles of length 2 can be detected instantaneously
without performing graph traversals, and (b) every cycle of length 2 is an abstract deadlock pattern.

Algorithm SPDOnline. The algorithm SPDOnline maintains all abstract acquires of the form
[ = ⟨C, ℓ1, {ℓ2}, � ⟩, i.e., we only focus on one lock ℓ2 that is protecting each such acquire. When
a new acquire event 4 = ⟨C, acq(ℓ1)⟩ is encountered, the algorithm iterates over all the locks
ℓ2 ∈ HeldLksf (4) that are held in 4 , and append the event 4 to the sequence � of the corresponding
abstract acquire [ = ⟨C, ℓ1, {ℓ2}, � ⟩; � is maintained as FIFO queue. Recall that we use timestamps on
the acquire events in � to determine membership in our closure computation. Our online algorithm
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Algorithm 4: SPDOnline.

1 function checkDeadlock(!BC , � , ⟨C1, ℓ1, C2, ℓ2⟩)
2 while not!BC • isEmpty() do

3 (�pred ,�) := !BC • first()

4 � := CompSPClosure(� ⊔�pred , ⟨C1, ℓ1, C2, ℓ2⟩)
5 if � ̸⊑ � then declare ‘Deadlock’ and break

6 !BC • removeFirst()

7 return �

8 handler write(C , G)

9 LWG := CC
10 CC := CC [C ↦→ CC (C) + 1]
11 handler release(C , ℓ)

12 CC := CC [C ↦→ CC (C) + 1]
13 foreach C1, C2 ∈ Threads, ℓ1, ℓ2 ∈ Locks do
14 CSHist

⟨C1,ℓ1,C2,ℓ2 ⟩
C,ℓ

• last() • updateRelease(CC)

15 handler acquire(C , ℓ)

16 �pred := CC

17 CC := CC [C ↦→ CC (C) + 1]
18 6ℓ := 6ℓ + 1
19 foreach C1, C2 ∈ Threads, ℓ1, ℓ2 ∈ Locks do
20 CSHist

⟨C1,ℓ1,C2,ℓ2 ⟩
C,ℓ

• addLast((6ℓ ,CC ,⊥))
21 foreach D ∈ Threads, ℓ′ ∈ HeldLks do
22 AcqHist

⟨D ⟩
C,ℓ,ℓ ′

• addLast((�pred, CC))

23 foreach D ≠ C ∈ Threads, ℓ′ ∈ HeldLks do
24 � := I⟨D,ℓ

′C,ℓ ⟩ ⊔�pred

25 I
⟨D,ℓ ′C,ℓ ⟩ := checkDeadlock(AcqHist

⟨C ⟩
D,ℓ ′,ℓ , � ,

⟨D, ℓ′C, ℓ⟩)

26 handler read(C , G)

27 CC := CC ⊔ LWG

computes these timestamps on-the-fly and stores them in these queues together with the events.
Then the algorithm calls CheckAbsDdlck(�) on the abstract deadlock pattern � formed between [
and [′ = ⟨C ′ ≠ C, ℓ2, {ℓ1}, � ′⟩, in order to check for sync-preserving deadlocks between the deadlock
patterns in � × � ′. If CheckAbsDdlck(�) reports no deadlock, the contents of � ′ are emptied as we
are guaranteed that � ′ will not cause a sync-preserving deadlock with any further acquire of thread
C on lock ℓ1. For a trace withN events, T threads and L locks. The algorithm calls CheckAbsDdlck
for each of the $ (T 2 · L2) abstract deadlock patterns of size 2, each call taking $ (N · T ) time.

SPDOnline is shown in detail in Algorithm 4. The pseudocode contains handlers for processing the
different events of f in a streaming fashion, as well as a helper function for checking deadlocks.
The main data structures of the algorithm are (i) vector clocks CC , LWG , and I

⟨C1,ℓ1,C2,ℓ2 ⟩ , (ii) scalar

6ℓ , and (iii) FIFO queues of vector clocks CSHist
⟨C1,ℓ1,C2,ℓ2 ⟩
C,ℓ and AcqHist

⟨D ⟩
C,ℓ1,ℓ2

, where C, C1, C2, D range

over threads, G ranges over variables, and ℓ, ℓ1, ℓ2 range over locks. CC stores the timestamp TS4f
where 4 is the last event in thread C . LWG keeps track of the TS4f where 4 is the last event such that

op(4) = w(G). I⟨C1,ℓ1,C2,ℓ2 ⟩ stores the computed sync-preserving closures for every tuple ⟨C1, ℓ1, C2, ℓ2⟩.
The scalar variable 6ℓ keeps track of the index of the last acquire event on lock ℓ . Similar to

Algorithm 1, the FIFO queue CSHist
⟨C1,ℓ1,C2,ℓ2 ⟩
C,ℓ is maintained to keep track of the critical section

history of thread C and lock ℓ . Lastly, for an acquire event 4 , AcqHist
⟨D ⟩
C,ℓ1,ℓ2

maintains a queue of

tuples of the form ⟨�pred ,CC ⟩ where�pred and CC are the timestamps of predf (4) and 4 , respectively
These tuples are utilized when checking for deadlocks (Line 25).

Theorem 5.1. Consider a trace f ofN events, T threads andL locks. The online SPDOnline algorithm

reports all sync-preserving deadlocks of size 2 of f in $ (N · T 3 · L2) time.

6 EXPERIMENTAL EVALUATION

We first evaluated our algorithms in an offline setting (Section 6.1), where we record execution traces
and evaluate different approaches on the same input. This eliminates biases due to non-deterministic
thread scheduling. Next, we consider an online setting (Section 6.2), where we instrument programs
and perform the analyses during runtime. We conducted all our experiments on a standard laptop
with 1.8GHz Intel Core i7 processor and 16GB RAM.
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6.1 Offline Experiments

Experimental setup. The goal of the first set of experiments is to evaluate SPDOffline, and
compare it against prior algorithms for dynamic deadlock prediction. In order for our evaluation to
be precise we evaluate all algorithms on the same execution trace. We implemented SPDOffline

in Java inside the RAPID analysis tool [Mathur 2019], following closely the pseudocode in Algo-
rithm 3. RAPID takes as input execution traces, as defined in Section 2. These also include fork,
join, and lock-request events. We compare SPDOffline with two state-of-the-art, theoretically-
sound albeit computationally more expensive, deadlock predictors, SeqCheck [Cai et al. 2021] and
Dirk [Kalhauge and Palsberg 2018], both of which also work on execution traces.

On the theoretical side, the complexity of SeqCheck is $̃ (N 4), as opposed to the $̃ (N) complexity
of SPDOffline. Moreover, SeqCheck only predicts deadlocks of size 2, and though it could be
extended to handle deadlocks of any size, this would degrade performance further. SeqCheck may
miss sync-preserving deadlocks even of size 2, but can detect deadlocks that are not sync-preserving.
Thus SeqCheck and SPDOffline are theoretically incomparable in their detection capability. We
refer to [Tunç et al. 2023a] for examples. We noticed that SeqCheck fails on traces with non-well-
nested locks — we encountered one such case in our dataset. Dirk’s algorithm is theoretically
complete, i.e., it can find all predictable deadlocks in a trace. In addition, it can find deadlocks
beyond the predictable ones, by reasoning about event values. However, Dirk relies on heavyweight
SMT-solving and employs windowing techniques to scale to large traces. Due to windowing, it can
miss deadlocks between events that are outside the given window. As with previous works [Cai
et al. 2021; Kalhauge and Palsberg 2018], we set a window size of 10K for Dirk.

Our dataset consists of several benchmarks from standard benchmark suites — IBM Contest
suite [Farchi et al. 2003], Java Grande suite [Smith et al. 2001], DaCapo [Blackburn et al. 2006],
and SIR [Do et al. 2005] — and recent literature [Cai et al. 2021; Joshi et al. 2009; Jula et al. 2008;
Kalhauge and Palsberg 2018]. Each benchmark was instrumented with RV-Predict [Rosu 2018] or
Wiretap [Kalhauge and Palsberg 2018] and executed in order to log a single execution trace.

Evaluation. Table 1 presents our results. A bug identifies a unique tuple of source code locations
corresponding to events participating in the deadlock. Trace lengths vary vastly from 39 to about
241M, while the number of threads ranges from 3 to about 800, which are representative features of
real-world settings. Hsqldb contains critical sections that are not well nested, and SeqCheck was
not able to handle this benchmark; our algorithm does not have such a restriction.

Abstract vs Concrete Patterns. Columns 7-9 present statistics on the abstract lock graph ALGf of
each trace f . Many traces have a large number of concrete deadlock patterns but much fewer
abstract deadlock patterns; a single abstract deadlock pattern can comprise up to an order of 104

more concrete patterns (Column 8 v/s Column 9). Unlike all prior sound techniques, our algorithms
analyze abstract deadlock patterns, instead of concrete ones. We thus expect our algorithms to be
much more scalable in practice.

Deadlock-detection capability. In total, both SeqCheck and SPDOffline reported 40 deadlocks.

SeqCheck misses a deadlock of size 5 in DiningPhil, which is detected by SPDOffline, and
SPDOffline misses a deadlock in jigsaw which is detected by SeqCheck. As SPDOffline is com-
plete for sync-preserving deadlocks, we conclude that there are no more such deadlocks in our
dataset. Overall, SPDOffline and SeqCheck miss only three deadlocks reported by Dirk. On closer
inspection, we found that these deadlocks are not witnessed by correct reorderings, and require
reasoning about event values. On the other hand, Dirk struggles to analyze even moderately-sized
benchmarks and times out in 3 of them. This results in Dirk failing to report 5 deadlocks after 9
hours, all of which are reported by SPDOffline in under a minute. Similar conclusions were recently
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Table 1. Trace characteristics, abstract lock graph statistics and performance comparison. Columns 2-6 show

the number of events, threads, variables, locks and total number of lock acquire and request events. Columns

7-9 show the number of cycles, abstract and concrete deadlock pa�erns in the abstract lock graph. Columns

10 - 15 show the number of deadlocks reported and the times (in seconds) taken. by Dirk, SeqCheck, and

SPDOffline. Time out (T.O) was set to 3h. F stands for technical failure.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benchmark N T V L A/R A. Lock Graph Dirk SeqCheck SPDOffline

|Cyc| A. P. C. P. Dlk Time Dlk Time Dlk Time
Deadlock 39 3 4 3 8 1 1 1 1 0.02 0 0.09 0 0.16

NotADeadlock 60 3 4 5 16 1 1 1 0 0.02 0 0.09 0 0.16
Picklock 66 3 6 6 20 2 2 2 1 0.02 1 0.10 1 0.18
Bensalem 68 4 5 5 22 2 2 2 1 0.02 1 0.12 1 0.16
Transfer 72 3 11 4 12 1 1 1 1 0.02 0 0.09 0 0.15

Test-Dimmunix 73 3 9 7 26 2 2 2 2 0.02 2 0.10 2 0.17
StringBuffer 74 3 14 4 16 1 3 6 2 0.02 2 0.12 2 0.19

Test-Calfuzzer 168 5 16 6 48 2 1 1 1 0.02 1 0.12 1 0.17
DiningPhil 277 6 21 6 100 1 1 3K 1 1.60 0 0.09 1 0.17
HashTable 318 3 5 3 174 1 2 43 2 0.19 2 0.12 2 0.19
Account 706 6 47 7 134 3 1 12 0 0.19 0 0.09 0 0.18
Log4j2 1K 4 334 11 43 1 1 1 1 0.65 1 0.11 1 0.20
Dbcp1 2K 3 768 5 56 2 2 3 - F 2 0.11 2 0.19
Dbcp2 2K 3 592 10 76 1 2 4 - F 0 0.10 0 0.18
Derby2 3K 3 1K 4 16 1 1 1 1 0.23 1 0.10 1 0.17

RayTracer 31K 5 5K 15 976 0 0 0 - F 0 0.15 0 0.19
jigsaw 143K 21 8K 2K 67K 172 12 70 - F 2 0.36 1 1.55

elevator 246K 5 727 52 48K 0 0 0 0 1.65 0 0.33 0 0.27
hedc 410K 7 109K 8 32 0 0 0 0 2.09 0 0.50 0 0.24

JDBCMySQL-1 442K 3 73K 11 13K 2 4 6 2 28.45 2 0.24 2 0.48
JDBCMySQL-2 442K 3 73K 11 13K 4 4 9 1 3.37 1 0.22 1 0.33
JDBCMySQL-3 443K 3 73K 13 13K 5 8 16 1 31.23 1 0.25 1 0.45
JDBCMySQL-4 443K 3 73K 14 13K 5 10 18 2 5.51 2 0.28 2 0.49

cache4j 775K 2 46K 20 35K 0 0 0 0 5.86 0 0.46 0 0.39
ArrayList 3M 801 121K 802 176K 9 3 672 3 8.7K 3 21.98 3 1.68

IdentityHashMap 3M 801 496K 802 162K 1 3 4 1 443.93 1 8.51 1 1.45
Stack 3M 801 118K 2K 405K 9 3 481 1 T.O 3 25.34 3 2.94
Sor 3M 301 2K 3 719K 0 0 0 0 15.89 0 44.12 0 0.61

LinkedList 3M 801 290K 802 176K 9 3 10K 3 4.7K 3 48.02 3 2.06
HashMap 3M 801 555K 802 169K 1 3 10K 3 4.4K 2 504.36 2 1.65

WeakHashMap 3M 801 540K 802 169K 1 3 10K - T.O 2 499.68 2 1.70
Swing 4M 8 31K 739 2M 0 0 0 - F 0 0.72 0 0.88
Vector 4M 3 15 4 800K 1 1 1B - T.O 1 1.52 1 1.90

LinkedHashMap 4M 801 617K 802 169K 1 3 10K 2 40.74 2 492.87 2 1.69
montecarlo 8M 3 850K 3 26 0 0 0 0 2.6K 0 1.81 0 0.79
TreeMap 9M 801 493K 802 169K 1 3 10K 2 105.45 2 480.11 2 1.92
hsqldb 20M 46 945K 403 419K 0 0 0 - F - - 0 2.38

sunflow 21M 16 2M 12 1K 0 0 0 - F 0 8.35 0 1.62
jspider 22M 11 5M 15 10K 0 0 0 - F 0 8.49 0 1.95

tradesoap 42M 236 3M 6K 245K 2 1 4 - F 0 108.16 0 7.06
tradebeans 42M 236 3M 6K 245K 2 1 4 - F 0 116.23 0 7.26

eclipse 64M 15 10M 5K 377K 9 5 280 - F 0 26.67 0 9.90
TestPerf 80M 50 599 9 197K 0 0 0 0 795.04 0 47.56 0 4.30
Groovy2 120M 13 13M 10K 69K 0 0 0 0 1.7K 0 38.06 0 8.92

Tsp 200M 6 24K 3 882 0 0 0 0 7.6K 0 72.62 0 12.70
lusearch 203M 7 3M 98 273K 0 0 0 0 1.3K 0 75.88 0 14.44
biojava 221M 6 121K 79 16K 0 0 0 - F 0 63.79 0 12.65

graphchi 241M 20 25M 61 1K 0 0 0 - F 0 102.05 0 25.25

Totals 1B 7K 70M 37K 8M 256 93 1B 35 >18h 40 2801 40 135
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made in [Cai et al. 2021]. Overall, our results strongly indicate that the notion of sync-preservation
characterizes most deadlocks that other tools are able to predict.

Unsoundness of Dirk. In our evaluation, we discovered that the soundness guarantee underlying

Dirk [Kalhauge and Palsberg 2018] is broken, resulting in it reporting false positives. First, its
constraint formulation [Kalhauge and Palsberg 2018] does not rule out deadlock patterns when
acquire events in the pattern hold common locks, in which case mutual exclusion disallows such a
pattern to be a real predictable deadlock. Second, Dirk also models conditional statements, allowing
it to reason about witnesses beyond correct reorderings. While this relaxation allows Dirk to
predict additional deadlocks in Transfer, Deadlock and HashMap, its formalization is not precise
and its implementation is erroneous. We elaborate these aspects further in [Tunç et al. 2023a].

Running time. Our experimental results indicate that Dirk, backed by SMT solving, is the least

efficient technique in terms of running time — it takes considerably longer or times out on large
benchmark instances. SPDOffline analyzed the entire set of traces ∼21× faster than SeqCheck.
On the most demanding benchmarks, such as HashMap and TreeMap, SPDOffline is more than
200× faster than SeqCheck. Although SeqCheck employs a polynomial-time algorithm for deadlock
prediction, and thus significantly faster than the SMT-based Dirk, the large polynomial complexity
in its running time hinders scalability on execution traces coming from benchmarks that are more
representative of realistic workloads. In contrast, the linear time guarantees of SPDOffline are
realized in practice, allowing it to scale on even the most challenging inputs. More importantly, the
improved performance comes while preserving essentially the same precision.

False negatives.Our benchmark set contains 93 abstract deadlock patterns, 40 of which are confirmed

sync-preserving deadlocks. We inspected the remaining 53 abstract patterns to see if any of them
are predictable deadlocks missed by our sync-preserving criterion, independently of the compared
tools. 48 of these 53 patterns are in fact not predictable deadlocks — for every such pattern � , the
set (� of events in the downward-closure of pred(�) with respect to ≤TO and rf , already contains
an event from � , disallowing any correct reordering (sync-preserving or not) in which � can be
enabled. Of the remaining, 4 deadlock patterns obey the following scheme: there are two acquire
events acq1, acq2 participating in the deadlock pattern, each acq8 is preceded by a critical section
on a lock that appears in HeldLks (acq3−8 ), again disallowing a correct reordering that witnesses
the pattern. Thus, only one predictable deadlock is not sync-preserving in our whole dataset. This
analysis supports that the notion of sync-preservation is not overly conservative in practice.

The above analysis concerns false negatives wrt. predictable deadlocks. Some deadlocks are beyond
the common notion of predictability we have adopted here, as they can only be exposed by
reasoning about event values and control-flow dependencies, a problem that is NP-hard even for 3
threads [Gibbons and Korach 1997]. We noticed 3 such deadlocks in our dataset, found by Dirk,
though, as mentioned above, Dirk’s reasoning for capturing such deadlocks is unsound in practice.

6.2 Online Experiments

Experimental setup. The objective of our second set of experiments is to evaluate the performance
of our proposed algorithms in an online setting. For this, we implemented our SPDOnline algorithm
inside the framework of DeadlockFuzzer [Joshi et al. 2009] following closely the pseudocode in
Algorithm 4. This framework instruments a concurrent program so that it can perform analysis
on-the-fly while executing it. If a deadlock occurs during execution, it is reported and the execution
halts. However, if a deadlock is predicted in an alternate interleaving, then this deadlock is reported
and the execution continues to search further deadlocks. We used the same dataset as in Section 6.1,
after discarding some benchmarks that could not be instrumented by DeadlockFuzzer.
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To the best of our knowledge, all prior deadlock prediction techniques work offline. For this reason,
we only compared our online tool with the randomized scheduling technique of [Joshi et al. 2009]
already implemented inside the same DeadlockFuzzer framework. At a high level, this random
scheduling technique works as follows. Initially, it (i) executes the input program with a random
scheduler, (ii) constructs a lock dependency relation, and (iii) runs a cycle detection algorithm to
discover deadlock patterns. For each deadlock pattern thus found, it spawns new executions that
attempt to realize it as an actual deadlock. To increase the likelihood of hitting the deadlock,
DeadlockFuzzer biases the random scheduler by pausing threads at specific locations.

The second, confirmation phase of [Joshi et al. 2009] acts as a best-effort proxy for sound deadlock
prediction. On the other hand, SPDOnline is already sound and predictive, and thus does not
require additional confirmation runs, making it more efficient. Towards effective prediction, we
also implemented a simple bias to the scheduler. If a thread C attempts to write on a shared
variable G while holding a lock, then our procedure randomly decides to pause this operation for a
short duration. This effectively explores race conditions in different orders. Overall, implementing
SPDOnline inside DeadlockFuzzer provided the added advantage of supplementing a powerful
prediction technique with a biased randomized scheduler. To our knowledge, our work is the first
to effectively combine these two orthogonal techniques. We also remark that such a bias is of no
benefit to DeadlockFuzzer itself since it does not employ any predictive reasoning.

For this experiment, we run DeadlockFuzzer on each benchmark, and for each deadlock pattern
found in the initial execution, we let it spawn 3 new executions trying to realize the deadlock, as per
standard (https://github.com/ksen007/calfuzzer). We repeated this process 50 times and recorded the
total time taken. Then, we allocated the same time for SPDOnline to repeatedly execute the same
program and perform deadlock prediction. We measured all deadlocks found by each technique.

Evaluation. Table 2 presents our experimental results. Columns 2-3 of the table display the total
number of bug hits, which is the total number of times a bug was predicted by SPDOnline in the
entire duration, or was confirmed in any trial of DeadlockFuzzer. Columns 4-6 display the unique
bugs (i.e., unique tuples of source code locations leading to a deadlock) found by the techniques.
The employed techniques are able to find a maximum of 3 unique bugs for each benchmark in our
benchmark set. Respectively, columns 7-12 display the detailed information on the number of times
a particular bug was found by each technique. Runtime overheads are displayed in the columns
13-16, with −I denoting the instrumentation phase only.

Deadlock-detection capability. DeadlockFuzzer had 2076 bug reports in total, and it found 42 unique

bugs. In contrast, SPDOnline flagged 7633 bug reports, corresponding to 49 unique bugs. In more
detail, DeadlockFuzzer missed 9 bugs reported by SPDOnline whereas SPDOnline missed 2 bugs
reported by DeadlockFuzzer. Also, SPDOnline significantly outperformed DeadlockFuzzer in
total number of bugs hits. Our experiments again support that the notion of sync-preservation
captures most deadlocks that occur in practice, to the extent that other state-of-the-art techniques
can capture. A further observation is that in the offline experiments, SPDOffline was not able to
find deadlocks in Transfer and Deadlock. However, the random scheduling procedure allowed
SPDOnline to navigate to executions from which deadlocks can be predicted. This demonstrates
the potential of combining predictive dynamic techniques with controlled concurrency testing.

Runtime overhead. We have also measured the runtime overhead of both SPDOnline and
DeadlockFuzzer, both as incurred by instrumentation, as well as by the deadlock analysis. The
latter is the time taken by Algorithm 4 for the case of SPDOnline, and the overhead introduced
due to the new executions in the second confirmation phase for the case of DeadlockFuzzer. Our
results show that the instrumentation overhead of SPDOnline is, in fact, comparable to that of
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Table 2. Performance comparison of SPDOnline (SPD) and DeadlockFuzzer (DF). Columns 2-3 show the total

number of bug reports. Columns 4-6 show the total number of unique bugs found by each tool, and their

union. Columns 7-12 show the hit rate on each bug. Columns 13-16 show the runtime overhead of the tools.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Benchmark
Bug Hits Unique Bugs Bug 1 Bug 2 Bug 3 Runtime Overhead
SPD DF SPD DF All SPD DF SPD DF SPD DF SPD-I SPD DF-I DF

Deadlock 50 50 1 1 1 50 50 - - - - 2× 3× 2× 4×
Picklock 227 97 2 1 2 226 97 1 0 - - 2× 2× 2× 5×
Bensalem 355 32 2 1 2 8 0 347 32 - - 2× 2× 2× 6×
Transfer 54 50 1 1 1 54 50 - - - - 2× 2× 1× 4×

Test-Dimmunix 702 0 2 0 2 351 0 351 0 - - 2× 2× 2× 4×
StringBuffer 153 131 2 2 2 128 118 25 13 - - - - - -

Test-Calfuzzer 177 44 1 1 1 177 44 - - - - 2× 2× 2× 4×
DiningPhil 162 100 1 1 1 162 100 - - - - - - - -
HashTable 169 120 2 2 2 82 21 87 99 - - - - - -
Account 19 188 1 1 1 19 188 - - - - 2× 8× 2× 16×
Log4j2 290 100 2 1 2 145 100 145 0 - - - - - -
Dbcp1 265 138 2 2 2 264 61 1 77 - - - - - -
Dbcp2 129 126 2 2 2 86 99 43 27 - - - - - -

RayTracer 0 0 0 0 0 - - - - - - 122× 124× 109× 111×
Tsp 0 0 0 0 0 - - - - - - 47× 60× 37× 40×

jigsaw 1189 1 1 1 2 1189 0 0 1 - - - - - -
elevator 0 0 0 0 0 - - - - - - 2× 2× 2× 2×

JDBCMySQL-1 349 117 2 3 3 1 21 0 4 348 92 3× 4× 2× 13×
JDBCMySQL-2 559 73 1 1 1 559 73 - - - - 2× 4× 2× 18×
JDBCMySQL-3 560 224 1 1 1 560 224 - - - - 2× 5× 2× 24×
JDBCMySQL-4 1717 101 3 1 3 95 0 834 0 788 101 3× 5× 2× 31×

hedc 0 0 0 0 0 - - - - - - 2× 2× 1× 2×
cache4j 0 0 0 0 0 - - - - - - 2× 2× 2× 2×
lusearch 0 0 0 0 0 - - - - - - 16× 17× 13× 16×
ArrayList 47 45 3 3 3 20 22 3 5 24 18 50× 69× 18× 79×

Stack 44 27 3 3 3 18 13 8 4 18 10 69× 91× 64× 86×
IdentityHashMap 68 62 2 2 2 13 47 55 15 - - 4× 8× 3× 10×

LinkedList 48 26 3 2 3 21 17 7 0 20 9 16× 28× 14× 32×
Swing 0 0 0 0 0 - - - - - - 5× 6× 4× 6×

Sor 0 0 0 0 0 - - - - - - 2× 7× 2× 2×
HashMap 46 44 2 2 2 18 11 28 33 - - 7× 11× 4× 8×

Vector 126 50 1 1 1 126 50 - - - - 2× 2× 2× 3×
LinkedHashMap 57 43 2 2 2 22 10 35 33 - - 10× 10× 4× 8×
WeakHashMap 29 40 2 2 2 6 11 23 29 - - 7× 12× 4× 8×

montecarlo 0 0 0 0 0 - - - - - - 16× 100× 13× 126×
TreeMap 42 47 2 2 2 16 15 26 32 - - 9× 12× 5× 9×
eclipse 0 0 0 0 0 - - - - - - 2× 2× 2× 2×

TestPerf 0 0 0 0 0 - - - - - - 2× 2× 2× 2×
Total 7633 2076 49 42 51 - - - - - - - - - -

DeadlockFuzzer, though somewhat larger. This is expected, as SPDOnline needs to also instrument
memory access events, while DeadlockFuzzer only instruments lock events, but at the same time
surprising because the number of memory access events is typically much larger than the number
of lock events. On the other hand, the analysis overhead is often larger for DeadlockFuzzer, even
though it reports fewer bugs. It was not possible to measure the runtime overhead in certain
benchmarks as either they were always deadlocking or the computation was running indefinitely.
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7 RELATED WORK

Dynamic techniques for detecting deadlock patterns, like the GoodLock algorithm [Havelund 2000]
have been improved in performance [Cai et al. 2020; Zhou et al. 2017] and precision [Bensalem and
Havelund 2005], sometimes using re-executions to verify potential deadlocks [Bensalem et al. 2006;
Joshi et al. 2009; Samak and Ramanathan 2014a,b; Sorrentino 2015]. Predictive analyses directly
infer concurrency bugs in alternate executions [Şerbănută et al. 2013] and are typically sound

(no false positives). This approach has been successfully applied for detecting bugs such as data
races [Huang et al. 2014; Kini et al. 2017; Mathur et al. 2021; Pavlogiannis 2019; Roemer et al. 2020;
Said et al. 2011; Smaragdakis et al. 2012], use-after-free vulnerabilities [Huang 2018], and more
recently for deadlocks [Cai et al. 2021; Eslamimehr and Palsberg 2014; Kalhauge and Palsberg 2018].

The notion of sync-preserving deadlocks has been inspired by a similar notion pertaining to
data races [Mathur et al. 2021]. However, sync-preserving deadlock prediction rests on some
further novelties. First, unlike data races, deadlocks can involve more than 2 events. Generalizing
sync-preserving ideals of sets of events of arbitrary size, as well as establishing the monotonicity
properties (Proposition 4.4 and Corollary 4.5) for arbitrarily many events is non-trivial. Second, our
notions of abstract deadlock patterns (Section 4.4) and abstract lock graphs (Section 4.5) are novel
and carefully crafted to leverage these monotonicity properties in the deadlock setting. Indeed, the
linear-time sync-preserving verification of each abstract deadlock pattern is the cornerstone of our
approach, for the first linear-time, sound and precise deadlock predictor.

Although the basic principles of data-race and deadlock prediction are similar, there are notable
differences. First, identifying potential deadlocks is theoretically intractable, whereas, potential
races are identified easily. Second, popular partial-order based techniques [Flanagan and Freund
2009; Kini et al. 2017] for data races are likely to require non-trivial modifications for deadlocks, as
they typically order critical sections, which may hide a deadlock. Nevertheless, bridging prediction
techniques between data races and deadlocks is an interesting and relatively open direction.

Predicting deadlocks is an intractable problem, the complexity of which we have characterized in
this work. Prior works have also focused on the complexity of predicting data races [Kulkarni et al.
2021; Mathur et al. 2020] and atomicity violations [Farzan and Madhusudan 2009].

8 CONCLUSION

We have studied the complexity of deadlock prediction and introduced the new tractable notion
of sync-preserving deadlocks, along with sound, complete and efficient algorithms for detecting
them. Our experiments show that the majority of deadlocks occurring in practice are indeed sync-
preserving, and our algorithm SPDOffline is the first deadlock predictor that achieves sound and
high coverage, while also spending only linear time to process its input. Our online algorithm
SPDOnline enhances the bug detection capability of controlled concurrency testing techniques
like [Joshi et al. 2009], at close runtime overheads. Interesting future work includes incorporating
static checks [Rhodes et al. 2017] and exploring ways for deeper integration of controlled concur-
rency testing with predictive techniques. Another step is to extend the coverage of sync-preserving
deadlocks while maintaining efficiency, for example, by reasoning about program control flow.
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