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Breast cancer is the most commonly diagnosed cancer type worldwide. Given high survivorship, increased
focus has been placed on long-term treatment outcomes and patient quality of life. While breast-conserving
surgery (BCS) is the preferred treatment strategy for early-stage breast cancer, anticipated healing and breast
deformation (cosmetic) outcomes weigh heavily on surgeon and patient selection between BCS and more
aggressive mastectomy procedures. Unfortunately, surgical outcomes following BCS are difficult to predict,
owing to the complexity of the tissue repair process and significant patient-to-patient variability. To overcome
this challenge, we developed a predictive computational mechanobiological model that simulates breast healing
and deformation following BCS. The coupled biochemical-biomechanical model incorporates multi-scale cell
and tissue mechanics, including collagen deposition and remodeling, collagen-dependent cell migration and
contractility, and tissue plastic deformation. Available human clinical data evaluating cavity contraction and
histopathological data from an experimental porcine lumpectomy study were used for model calibration. The
computational model was successfully fit to data by optimizing biochemical and mechanobiological parameters
through Gaussian process surrogates. The calibrated model was then applied to define key mechanobiological
parameters and relationships influencing healing and breast deformation outcomes. Variability in patient
characteristics including cavity-to-breast volume percentage and breast composition were further evaluated
to determine effects on cavity contraction and breast cosmetic outcomes, with simulation outcomes aligning
well with previously reported human studies. The proposed model has the potential to assist surgeons and their
patients in developing and discussing individualized treatment plans that lead to more satisfying post-surgical
outcomes and improved quality of life.

1. Introduction that is challenging, multi-faceted, and stressful. In recent years, BCS

has replaced mastectomy as the preferred standard of care for early-

Breast cancer is the most common cancer in women, with approxi-
mately 287,850 women in the United States alone being diagnosed in
2022 [1]. Increased awareness, early detection with frequent screen-
ings, and expanded treatment options have improved breast cancer
survival rates over time, with recent 5-year survival rates reported
to be 90.6% [2]. Given these high survival rates, increased focus has
been placed on long-term outcomes and patient quality of life after
treatment. At present, the lowest rates of cancer recurrence are asso-
ciated with surgical treatment options [3,4]. As a result, breast cancer
patients and their surgeons are often faced with choosing between
breast-conserving surgery (BCS; otherwise known as lumpectomy) or
mastectomy (removal of the whole breast), a decision-making process

stage breast cancer, since BCS has similar or improved survival rates
and decreased risk of complications compared to mastectomy [5-8].
With the goal of preserving healthy breast tissue and breast appear-
ance, BCS involves the removal of the cancerous tissue along with
a small margin of healthy tissue. As shown in Fig. 1, the resulting
tissue cavity undergoes a wound healing process that ultimately leads
to variable levels of tissue contraction, scar tissue formation, and
breast deformation (i.e., cosmetic defects, including dents, distortions,
and asymmetries between breasts). The prognosis of a good cosmetic
outcome typically weighs heavily on physician and patient selection
of BCS over mastectomy, since good aesthetics has been associated
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Fig. 1. Schematic of cavity healing process following removal of breast tumor by lumpectomy. Tumor is excised along with a small margin of surrounding healthy tissue, forming
a fluid-filled cavity. The surgical void undergoes wound healing, with hemostasis and inflammation phases resulting in creation of a cytokine gradient within the cavity. In turn,
cytokines induce fibroblast migration and proliferation, resulting in collagen deposition and scar tissue formation through collagen fiber alignment. Fibroblast differentiation into
myofibroblasts further promotes contraction of the cavity and surrounding tissue, which may contribute to breast deformities.

with improved patient psychological recovery and quality of life [9,10].
However, the complex nature of the tissue repair process as well as sig-
nificant variations in patient-specific characteristics, make it extremely
challenging, if not impossible, for surgeons to predict post-surgical
healing, oncologic, and cosmetic outcomes. The inability to predict
healing and breast deformation outcomes stems from the complex in-
terplay between tissue mechanics, inflammatory-mediated biochemical
and cellular signaling, and (myo)fibroblast mechanobiology during the
tissue repair process. Therefore, there is a need for an improved mech-
anistic understanding of the multi-scale breast healing process along
with definition of critical patient-specific characteristics that affect BCS
outcomes. With this knowledge, surgeons and their patients can better
develop individualized treatment plans that lead to decreased post-
surgical complications, decreased surgical procedures (e.g., re-excision,
revision, and/or reconstruction), and improved patient satisfaction and
quality of life [5].

Given that few objective criteria and limited surgical decision-
making tools exist, preoperative predictions of healing, oncologic, and
breast cosmetic outcomes remain largely dependent on a surgeon’s
past training and experience [11]. BCS surgical planning has been an
evolving area over the past several years, as physicians work to further
inform and standardize the process. In 2014 and 2016, the Society of
Surgical Oncology (SSO), the American Society of Radiation Oncology
(ASTRO), and the American Society of Clinical Oncology (ASCO), pub-
lished consensus guidelines on adequate surgical margins when treating
various types and stages of breast cancer with BCS and whole breast
irradiation [12,13]. Additionally, surgical decision trees have been
developed based on correlative analyses of human BCS patient data,
including tumor-to-breast volume percentage (TBVP), tumor location,
breast cosmetic outcome assessments, and quality of life surveys [14-
16]. While these decision-making tools provide recommendations on
treatment thresholds (i.e., when to treat a patient with BCS versus
mastectomy) based on tumor size and location, they have yet to re-
ceive widespread adoption. Feedback regarding patient satisfaction and
quality of life, as provided through BREAST — Q™M questionnaires
and other patient surveys, has informed surgeons of other patient-
specific factors affecting BCS outcomes [17]. More specifically, results
from multivariable clinical analyses revealed that decreased breast
density as measured by BI-RADS rankings, increased excised breast
volume percentage -or equivalently cavity to breast volume percentage
(CBVP)-, increased patient age, body mass index, breast irradiation,
and concomitant adjuvant chemotherapy and radiotherapy often neg-
atively influence surgical outcomes and patient satisfaction [18-22].
In summary, since patient-specific characteristics are intertwined and

significantly affect post-lumpectomy healing and cosmetic outcomes,
there is a need for a predictive tool to better understand the mechanistic
interplay between these contributing factors.

Computational models provide useful tools that can assist with in-
forming, predicting, and simulating wound healing outcomes, including
surgical wounds associated with BCS. In general, wound healing can
be modeled as four, overlapping phases: hemostasis, inflammation,
proliferation (or granulation), and remodeling [23]. To date, numerous
numerical-based approaches have been developed to describe healing
of superficial skin layers, including the epidermis and/or the der-
mis [24]. However, unlike skin wounds, which have an air-tissue
interface, BCS yields a fully-enclosed cavity or void that resides rela-
tively deep within the breast tissue. Healing of these deep, soft tissue
wounds begins immediately following cavity creation, with blood clots
(hematomas) and/or serous fluid (seromas) often filling the void [25].
The fibrin matrix, with its limited persistence and mechanical integrity,
serves as a provisional scaffold, allowing local tissue contraction while
promoting inflammation and cellularization. Platelet degranulation and
cytokine secretion by inflammatory cells contributes to the formation
of a cytokine gradient within the cavity, which, in turn, promotes
fibroblast proliferation and migration into the wound space. Fibrob-
last proliferation, migration, and differentiation into myofibroblasts
are further guided by fibrillar collagen deposition, and scaffold re-
organization/contraction, ultimately creating a dense, stiff scar tissue
within the contracted cavity. Scar tissue formation and remodeling
over time are perhaps the most unpredictable aspects of BCS, since
it is known to contribute to pain, breast deformations, and altered
breast consistency, all of which negatively affect women emotionally
and psychologically [26].

In recent years, computational models have also been developed for
the purpose of predicting specific surgical outcomes following BCS. For
example, Garbey and collaborators proposed a two-dimensional (2D)
model to predict time-dependent changes in breast shape following
lumpectomy [27,28]. This model was calibrated using 1D MRI (mag-
netic resonance imaging) profiles obtained for a single patient [28].
Vavourakis and collaborators developed a 3D finite element model to
predict breast deformation following BCS. Model validation was per-
formed using a combination MRI and optical surface scans for 4 patients
obtained before and 6 to 12 months after BCS [29]. Unfortunately, com-
putational models developed to date lack a thorough calibration against
experimental or clinical breast healing data. Additionally, present-day
models do not fully capture the complex couplings between cellu-
lar mechanobiological activity, extracellular matrix (ECM) deposition
and remodeling, and cavity and breast plastic deformation over time.
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Fig. 2. Meshing, initial conditions, and boundary conditions for the (A) porcine and (B) human breast geometries. For the porcine geometry, the breast was assumed to be a
half-ellipsoid (22.60 cm?®) and the cavity was assumed to be an ellipsoid (5.65 cm?®), with both dimensions based on a quadrantectomy. The tissue external to the breast was
modeled as connective tissue. The mesh consisted of 97,517 tetrahedral elements. For the human geometry, the breast was assumed to be a hemisphere with a volume of 1324
cm?® and the cavity was assumed to be a sphere with a volume of 115.5 cm’. The mesh consisted of 64,753 tetrahedral elements. The Dirichlet boundary condition was applied
to the interior surface of the 2-cm thick chest wall while the exterior surface of the breast was a free boundary. Initial conditions for cell density p, cytokine concentration ¢, and

collagen content ¢, are also shown.

Descriptions of collagen deposition, granulation tissue formation, and
remodeling are especially important to capture, as the breast cavity
and surrounding tissue will undergo large deformations and permanent
contracture.

In this paper, we work to address this gap in wound mechanobiology
modeling following BCS by presenting a theoretical and computational
framework calibrated against animal model and clinical data. Here, we
adapt our previously developed experimentally-calibrated model of der-
mal wounds that accounts for couplings between cellular mechanobi-
ological activity, plastic deformations, and tissue remodeling [30,31].
This informed 3D finite element model is then used to inform a machine
learning surrogate model in order to evaluate the effect of specific
mechanobiological parameters and patient-specific characteristics on
healing and breast deformation outcomes. The proposed model has
the potential to assist surgeons in creating an individualized treatment
plan for patients that better predict oncologic, healing, and cosmetic
outcomes.

2. Methods

The computational breast mechanobiological model represents a
custom finite element solver implemented in C++. The link to the
code repository is provided at the end of the manuscript. The software
builds upon and extends our previous dermal wound healing mod-
els [23,30,32]. An overview of the model and associated adaptations
is discussed below, with more detailed descriptions available in our
previous work [30,32]. Detailed parameter descriptions and values are
included in Tables S1 and S2 in the Supplementary Material.

2.1. Geometry
We considered the two breast lumpectomy geometries shown in

Fig. 2. Both geometries were created and meshed in COMSOL (COMSOL
Multiphysics, Burlington, MA). One geometry (Fig. 2A) corresponded to

a generalized porcine breast based on a preclinical porcine lumpectomy
study by Puls et al. (2021) [25]. Available ultrasound and explant
images were used to estimate the dimensions of the ellipsoidal cavity
(@ = b =15 cm, ¢ = 0.6 cm) along with a cavity depth of 1.15 cm.
The cavity represented approximately one-quarter of the total breast
volume (quadrantectomy). The breast was assigned the shape of a half-
ellipsoid (¢ = b = 2.32 cm, ¢ = 2 cm), enclosed within a rectangular
region (15 cm by 15 cm by 2 cm) of connective tissue.

An idealized human breast lumpectomy geometry was developed
based on average breast and cavity sizes reported in a human clinical
study by Prendergast et al. (2009) [33]. As shown in Fig. 2B, the
breast was modeled as a hemisphere with a radius of 8.58 cm and
the cavity was modeled as a sphere with a radius of 3.02 cm. Since
the upper outer quadrant is reported to be the most prevalent tumor
location [15,33-36], this cavity location was assumed in the model.
Breast cavity contraction over a four-week period following BCS, as
quantified by Prendergast and co-workers, was also used for model
calibration.

2.2. Kinematics

The reference geometries displayed in Fig. 2 are described with
material coordinates X € 53, C R®. Through the deformation mapping
@, the time-dependent configuration, /3,, is obtained as x = @(X,?).
The fibroblast density, cytokine concentration, and collagen density are
p(x,1), c(x, 1), p(x, 1), respectively. The collagen matrix is further defined
through the fiber dispersion x(x,7) and the preferred fiber orientation
ay(x,1). The deformation gradient F = 0dx/0X, which describes local
geometry changes, can be split into two separate components capturing
the elastic and plastic deformation

F =F°F’. (€D)]

Furthermore, the plastic deformation tensor is described with three
scalar fields

FP = APa; @ ag + Alsy ® sy + Any @ nyy, @
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where vectors a, sy, ny form an orthonormal basis around the preferred
fiber orientation a.

2.3. Constitutive and balance equations

The change in the fields introduced in the previous section are
classified into three categories. The biological fields p,c¢ satisfy mass
balance in the form of reaction—diffusion partial differential equations
(PDESs). The microstructural fields ¢, 4, A%, 27, x,a, do not have a diffu-
sion component and their change is local. The microstructural fields
are directly coupled to the mechanical field of deformation ¢, which
satisfies momentum balance.

2.3.1. Biochemical model
Fibroblast density and cytokine concentration satisfy standard
advection—diffusion transport equations

p=V-Q,+s, 3
¢=V-0.+s,., (€))

where Q,, Q, are flux terms akin to Fickian diffusion

0,=-D,(¢.0)\Vp ®)
Q,=-D,/Vc. 6)

While the diffusion coefficient for the cytokine is assumed constant,
cell diffusion (migration) is affected by both cytokine concentration and
collagen densities,

2
v () c

e+ @)

D, =d,,—
14 X 6 pc KN ¢

with parameters d,psdyesdyp- The first term in Eq. (7) reflects the
direct dependence of fibroblast speed on collagen density, while the
second and third terms are related to the baseline diffusion coefficient
for cells in native tissue and their change in diffusivity with ¢ con-
sidering Michaelis Menten kinetics. The initial profile for v,(¢) was
estimated through available in-vivo wound healing data [25,37]. The
expression was then modified through a parameter 4, which skews
the collagen concentration associated with maximum fibroblast speed.
Additional information about v,(¢) and 4 can be found in Figure S1 in
the Supplementary Material.
The source terms s ,, s, are

c P
s, = p+p,————+p,HUﬂ><1———>p—dp (8)
4 < 4 pCK,,,C+C pe Kﬂﬂ 4
p
5= (Pepc+ P HU) ( T c) —d.c, 9
c,c

with parameters PpsPpcs KpesPpos Kppid, for the fibroblast source and
Pe.p> Pees Ke - . for the cytokine. The values of all parameters are listed
in Table S1 in the Supplementary Material.

Note that most dependencies of the biological fields are on other
biological fields, but some couplings exist in the microstructural and
mechanical fields. For instance, cell migration in Eq. (7) depends on
the microstructural field ¢ through v, defined in the Supplementary
Material. The biological fields are also coupled to the mechanical field
through the mechanosensing logistic function, H(J¢) in Egs. (8) and (9)
described below.

2.3.2. Mechanical model
Balance of linear momentum in the absence of body force is reduced
to the standard equation

V.e6=0. (10)

However, here the total stress is split into two separate components
for active and passive stress contributions

6 = 0% 4+ P, a1
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The active stress is described in the following section devoted to the
mechanobiological couplings. In this section, we focus on the passive
part. The passive material response is assumed hyperelastic with the
strain energy function

P =¢ (ko(If -3+ %(Je — 1)? = 2ky log(J®)

k
S e e
3k, P (ko (e T7 + (1 = 3)I) — 1]2)> (12)

parameterized by kg, k|, ko, k s It is also a function of the microstructure
fields ¢, «, and of the elastic invariants of the deformation I7,J¢, I}.
Note that only the elastic part of the deformation contributes to the
strain energy. Based on the split Eq. (1), the elastic volume change is
J¢ = det(F¢), the first isotropic invariant is the trace of the elastic right
Cauchy Green tensor I} = tr(F¢TF¢), and the fourth invariant describes
the deformation in the preferred fiber direction I; = a, -FTF°a;, = a-a,
with a representing the deformed fiber orientation.

The parameters k, and k,, which correspond to a neo-Hookean
contribution, were determined using the rule of mixtures assuming
that human and porcine breast tissue, on average, is composed of 70%
adipose tissue and 30% fibroglandular tissue [38]. Han et al. (2011)
and several other studies were used to inform material properties for
adipose and fibroglandular tissue, as we estimated Young’s modulus
for adipose and fibroglandular tissue to be 10 kPa and 40 kPa, respec-
tively [39-47]. The parameter k 7 denotes collagen fiber stiffness for
the scar tissue [48]. Mechanical parameter descriptions and values are
included in Table S2 in the Supplementary Material.

2.3.3. Mechanobiological coupling
As mentioned before, the biological fields are linked to the mechan-
ical deformation by the logistic function H(J°) in Egs. (8) and (9).
This function encodes a mechanosensing activation as the deformation
deviates from homeostasis
1

HUD =17 exp(—y,(J¢ — 99))

13)

with parameters y,,9°. Another coupling that appeared in Eq. (11) is
the active stress, which is defined as

t,.c A
c*“=p <z,, + ) —? )i 14
Kic+c )\ K? +¢2

which depends on the fibroblast density p, the cytokine ¢, the collagen
density ¢, and the preferred fiber orientation through the structure
tensor A = A/tr(A), A = I+ (1 — 3x)a ® a. The parameters of the
active stress Eq. (14) are t,,1, ., K,, K, ., with parameter descriptions
and values provided in Table S2 in the Supplementary Material.

The other mechanobiological coupling that was introduced ear-
lier is the fibroblast migration dependence on collagen density in a
non-monotonic fashion through v, in Eq. (7) [30].

The last set of equations needed to close the model are the rate
equations for the microstructural fields. Collagen deposition is encoded
by

¢ = <p¢ + Ppe ﬁ +p¢EH(Je)> <ﬁ> ~(dy+epdy ). (15)

with dependence on both cell density and cytokine concentration.
Descriptions and values of parameters Py Pjcr Kgos Py, Ky, dg,dy, in
Eq. (15) are included in Table S2 in the Supplementary Material.
The change in plastic deformation occurs independently in all three
directions

i = g+ L = germy 6)
Tip

where a = {a,s,n} are the three directions of the orthonormal frame
ay,8p,ny. The term ¢* in Eq. (16) is the positive part of the rate
of change of collagen (i.e., the new collagen deposition rate), which
contributes to deformation plastification. The Macaulay brackets (e)
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Fig. 3. Overview of histological image analysis process used to quantify fibroblast and collagen densities within (A) normal porcine breast tissue and porcine breast tissue undergoing
progressive healing at (B) 1 week, (C) 4 weeks, and (D) 16 weeks following simulated lumpectomy (quadrantectomy). Individual regions (500 x 500 um?) of H&E-stained cross-
sections (top left inset) were processed using a particle analyzer (top right inset) for identification and enumeration of fibroblasts (blue), RBCs (red), and immune cells (green).
Collagen density was determined by normalizing regional eosin intensity values for connective tissue within healing breasts to eosin intensity in normal breast connective tissue.

specify that plastic deformation only occurs beyond some threshold
deformation A,

Lastly, the change in preferred collagen fiber orientation and dis-
persion are based on the eigenvalues of the deformation

i+

b = A, <27r¢ ) I-a,®ape, 17)
T(L?

where 4,,e,; are the largest eigenvalue and corresponding eigenvector,

respectively. Eq. (17) essentially reorients the principal fiber direction

to the direction of maximum principal stretch, with time constant z,,

dependent on collagen deposition ¢*. The fiber dispersion change

i+ /{}’K
P (3 as)
7. \ 3 ,17”
depends on the ratio of the first two eigenvalues with a power law
parameterized by y, and the time constant 7.

2.4. Experimental data

Time-dependent changes in fibroblast and collagen densities were
informed by histopathological data from the porcine lumpectomy study
[25]. Hematoxylin and eosin (H&E) stained cross-sections of breast
explants were analyzed 1 week, 4 weeks, and 16 weeks following
lumpectomy and compared to normal porcine breast tissue (Fig. 3). An
image of each cross-section was post-processed in Aperio ImageScope
(Leica Biosystems, Vista, CA) and 25 individual regions (500 x 500
um?) spanning the cavity domain were extracted. These regions were
further processed in ImageJ (National Institutes of Health, Bethesda,
MD), where multiple color balance filters were applied to quantify
the number fibroblasts, red blood cells (RBCs), and immune cells per
region. Fibroblast number per area was used to calculate fibroblast
volume density, assuming a tissue section thickness of 4 pm. Additional
details of this image analysis process are provided in the Supplementary
Material. The H&E stained cross-sections were also used to determine
collagen density by correlating collagen density with the intensity of
eosin-stained collagen fibers. Eosin intensity for a region of interest
was determined using ImageJ and normalized to connective tissue

values within adjacent healthy breast tissue values. When calculating
normalized collagen densities, an average breast composition of 70%
adipose tissue and 30% fibroglandular tissue was assumed [38].

Temporal changes in cytokine concentration were informed by prior
human clinical studies that evaluated cytokine levels in seroma fluid,
which commonly fills the breast void following surgery. Seroma fluid
is known to be composed of cytokines that impact the inflammation
and proliferation phases of healing [49]. It has also been reported
that seromas formed following BCS resolve within approximately 4
weeks [50]. Based on this, it was assumed that cytokine levels decayed
exponentially over approximately a 4-week time period.

2.5. Model calibration using Gaussian process surrogates

The finite element model defined in previous sections is computa-
tionally expensive and impractical for tasks such as model calibration
or sensitivity analysis. Therefore, to calibrate the model against experi-
mental porcine data and human clinical data, we leveraged Gaussian
process (GP) surrogates [51]. The methodology for GP model cali-
bration is illustrated in Fig. 4. Calibration was performed with two
separate GPs. First, a biochemical {p,c,¢}-submodel consisting only
of the biological fields p and ¢ as described in Section 2.3.1 and
the microstructural field ¢ depeicted in Eq. (15) was isolated out of
the complete set of equations with the goal of fitting the porcine
histology data (i.e., fibroblast and collagen densities). A second GP
was constructed for the fully coupled mechanobiological model which
incorporated the equations relevant to the biochemical model, the
mechanical model, and the mechanobiological coupling as described in
Sections 2.3.1, 2.3.2, and 2.3.3. This two-stage approach was used to
(i) inform biological parameters that could, in turn, be compared with
other computational models lacking mechanobiological couplings, and
(ii) calibrate the mechanobiological coupling terms, for which limited
prior information exists.

For the first GP surrogate, 5 parameters 0, = {p,.,d, 4,4, Py Py }
were sampled from the ranges reported in Table 1 using Latin Hy-
percube Sampling (LHS). These parameters were prioritized since they
were relatively uninformed in terms of the breast healing process and
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Biochemical and mechanobiological parameters with established initial ranges that were evaluated and optimized using the biochemical or mechanobiological GP.

Parameter Description Range

Optimized value References

Biochemical GP parameters

Ppe [1/h] Cytokine-increased proliferation [0.0092641, 0.04632] 0.015314 [30,32,52-55]

d,, [-] Fibroblast diffusion scaling constant [62.6793, 12472.9067] 1582.3 [30,32,52-57]

A [-] Skewness of fibroblast speed v,(¢) [0, 1] 0 [25,30]

Py [1/h] Collagen production [3.633 x 107, 3.633 x 1077] 1.4 x 1078 [30,32,54,55,58-63]
Py [1/h] Collagen production activated by cytokine [3.633 x 1072, 3.633 x 1077] 7.0 x 1078 [30,32,54,55,58-63]

Mechanobiological GP parameters

1, [MPa] Contractile force of fibroblasts

14 [MPa] Contractile force of myofibroblasts

K, [-] Saturation of mechanical force by collagen
7, [1/h] Rate of plastic deformation

[9.08244 x 1078, 544947 x 1077]
[1-1,,5-1,]

[0.1, 0.5]

[0.00485, 0.2425] 0.05

233548 x 1077 [30,32,64-68]
328571 -1, [30,32,64-68]
0.2 [30]

[30,32]

not well-defined in the literature. Initial ranges were established for
each parameter by starting at the values used in previous cutaneous
wound healing models and performing a preliminary sensitivity analy-
sis to ensure broad coverage of the selected parameter space [30,32].
All other parameters affecting the submodel {p,c,¢} were assigned
values from literature or calculated in order to satisfy a physiological
steady state. In other words, the 5 parameters ©, were identified as
the adjustable parameters for model calibration. To train the GP, 100
different parameter combinations of ©, were generated and applied to
the finite element submodel, with fibroblast and collagen density values
at the center of the cavity p(t), ¢ (t) representing model outcomes of
interest. Submodel training simulations were performed in COMSOL,
where initial conditions, boundary conditions, and submodel equations
were applied using the Transport of Diluted Species interface. A total
of 196 time steps were extracted from the simulation, covering the
time ¢ € [0, 16] weeks. Following calibration, the GP model was used
for minimization of root mean square error (RMSE) by comparing
GP predictions for p(0;,1), ¢ (O, 1) against porcine histopathological
data. After minimization, regions of the parameter space ©, with
lower RMSE and higher predicted variance were used to select new
©, parameter combinations to further train the GP model. Subsequent
RMSE minimization with the GP model yielded the optimal parameter
values 0,.

After calibration of the {p, ¢, ¢}-submodel, a similar approach was
performed to calibrate the mechanobiological parameters 6,, = {t,,7,,
K;,7;,}. These submodel parameters were prioritized since they were
relatively uninformed. For the second GP model, a total of 100 simula-
tions were run after LHS sampling of ©,, within the specified ranges
in Table 1. Training simulations were performed using the custom
finite element solver in C++. Verification analysis was performed to
ensure that the C++ and the {p, ¢, ¢}-submodel in COMSOL produced
the same results before turning over to the C++ for the fully coupled
model. The trained GP was used to minimize the RMSE with respect
to the cavity contraction data from the human clinical study [33]. As
described previously, initial minimization was followed by subsequent
finite element model parameter evaluations and training of the GP
model.

3. Results
3.1. Pathophysiologic findings through porcine histology analysis

Analysis of breast histological cross-sections from a longitudinal
porcine lumpectomy study informed fibroblast and collagen densities
within the breast cavity at 1, 4, and 16 weeks after surgery. Ta-
ble 2 summarizes values for each post-surgical time point compared to
healthy breast tissue. Given that hematomas or seromas were observed
grossly and histologically 1 week following lumpectomy (Fig. 3B),
fibroblast and collagen densities were assumed to be zero for this time
point. By 4 weeks, fibrovascular scar tissue was evident within the
contracted cavity (Fig. 3C), with fibroblast and collagen density values

Randomly
Sample Within
Parameter
Ranges

Evaluate Model
Simulations

v

Train
=P Surrogate GP |
Model

Large Variety of GP Evaluation
Parameter

# . A
Combinations (Inexpansive}

$ ¥

GP Predictive
Results

v

Optimized Model

Experimental or
Clinical Data

Fig. 4. GP methodology used to identify optimum biochemical and mechanobiological
parameters that best fit porcine lumpectomy histology results and human clinical
contraction data. The computational model was run several times, sampling across
the entire parameter space to train the GP model. The GP model was then used
minimize RMSE by comparing GP generated curves against experimental and clinical
data. Regions of interest within the parameter space (because they were predicted
to minimize RMSE and had a large predicted variance) were further sampled, finite
element simulations run, and GP model updated for further minimization.

roughly 7 and 1.3 times healthy breast tissue values, respectively.
By 16 weeks, the fibrous scar tissue increased in collagen density
(approximately 2.3 times healthy breast tissue values), appearing as dif-
ferentially oriented swirls of parallel-aligned fibers (Fig. 3D). Although
fibroblast density decreased between 4 and 16 week time points, values
remained high at roughly 4 times those for healthy breast tissue.

3.2. Calibration of the {p,c, ¢} submodel

Fibroblast and collagen density values reported in Table 2 were
successfully fit to the {p,c,¢} submodel by optimizing the parame-
ters ©,. Predicted fibroblast and collagen density values fell within
experimentally-determined standard deviation ranges for all time points
(Fig. 5). Finite element simulations for the optimized submodel are
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Fig. 5. Simulation results of the {p,c,¢} submodel using optimized parameters @,. Plots display time-dependent changes in fibroblast density, collagen density, and cytokine
concentration at the cavity center as determined from simulations and histology. Corresponding contour plots from breast cavity healing simulations are shown for weeks 1, 4,

and 16.

Table 2

Fibroblast and collagen densities (mean + SD) quantified from histological cross-sections
of normal, healthy porcine breast tissue and explanted breast tissue at 1 week, 4 weeks,
and 16 weeks following lumpectomy. Post-surgical values represent the cavity center.

Time point Fibroblast density

(Mean + SD) [cells/mm?]

Collagen density
(Mean + SD) [¢/¢,]

Healthy tissue 55,051 + 15,527 1+0
1 week post-surgry 00 0+0
4 weeks post-surgery 377,504 + 94,279 1.35 + 0.25
16 weeks post-surgery 215,893 + 45,150 2.33 + 0.35

shown in Fig. 5, illustrating spatiotemporal changes in fibroblast den-
sity, collagen density, and cytokine concentration.

Fibroblast and collagen densities within the cavity center were
roughly zero at week 1 of the simulation (Fig. 5), successfully mod-
eling hematoma and/or seroma formation and the lack of fibroblast
infiltration observed histologically (Fig. 3B). Contour plots showed
modest increases in fibroblast and collagen density, respectively, at the
cavity-tissue interface (Fig. 5), which also matched histological findings
(Fig. 3B). Fibroblast density increased sharply between weeks 1 and 4
(Fig. 5), effectively simulating fibroblast proliferation and migration.
An increase in collagen density followed thereafter (Fig. 5), which is
consistent with progressive collagen deposition by fibroblasts during
the proliferation phase of healing. As shown in Fig. 5, simulation results
reached a maximum fibroblast density of 3.95x10° cells/mm? at roughly
4.5 weeks, after which time fibroblast density steadily declined to
match histological outcomes. As fibroblast number declined between
4 and 16 weeks, the rate of collagen deposition declined, with colla-
gen density values plateauing within experimentally measured ranges
(Fig. 5). Simulated cytokine concentration within the cavity started at
the maximum nominal value and showed a rapid decay over the first
four weeks (Fig. 5). Such results are consistent with events and phases
of wound healing as reported in the literature [50,69].

3.3. Calibration of the fully coupled mechanobiological model

Human breast cavity contraction data estimated from Prendergast
et al. (2009) was fit with the coupled mechanobiological model by
optimizing mechanobiological parameters (0,,) listed in Table 1. Re-
sults from the calibrated finite element simulation, including cavity
contraction, permanent deformation, and breast surface deformation,
are displayed in Fig. 6. Consistent with human data, the simulated
post-surgical breast cavity contracted to approximately 66.49% of its
original cavity volume within 1 week. The cavity volume continued to

decrease, contracting to 20.90% of its original volume in just 16 days
following surgery. By 4 weeks, the cavity showed a modest increase
in volume to reach 31.43% of the excised volume. The overall shape of
the contraction curve was similar to porcine lumpectomy study findings
as well as cavity contraction in human patients following BCS and
whole-breast irradiation [25,70].

Permanent deformation (J?) was also visible across the cavity do-
main and surrounding tissue, leading to breast surface deformations
(Fig. 6B). At the time of tumor removal (t = 0 week), no change in tissue
volume is observed across the entire geometry (J? = 1). Imnmediately
thereafter, permanent contracture (J? < 1) becomes prevalent at the
tissue-cavity interface, with J? = 0.85 for this region at the 1-week time
point. This permanent deformation contributed to a modest surface
asymmetry in the upper outer quadrant breast (Fig. 6B). By week 4,
severe permanent contracture (J? = 0.3) was observed within the cavity
while tissue surrounding the cavity was experiencing tensional forces
(J? > 1) directed perpendicular to the cavity surface. Such observations
are consistent with tissue repair and scar formation, as newly de-
posited collagen fibers within the cavity are contracted and reoriented
by fibroblasts and myofibroblasts and the surrounding tissue ECM is
drawn in tension [30,31]. This permanent contracture contributed to
an obvious breast surface deformity adjacent to the cavity (Fig. 6B).

3.4. Mechanobiological parameter sensitivity analysis

A major goal associated with the calibration of our detailed mecha-
nistic model of breast healing after BCS is to better define key parame-
ters and relationships that influence healing and cosmetic outcomes.
In particular, mechanobiological model calibration, as described in
previous sections, allowed optimization of parameters ©,, for which
there is little direct experimental or clinical information. An important
next step was to explore the sensitivity of model predictions with
respect to these parameters. To analyze ©,, parameter effects, 2500
predictive cavity contraction curves were generated with the calibrated
GP by sampling ©,, values within ranges reported in Table 1. The
normalized cavity volume at week 4 (V,/V,) was probed, with Fig. 7A-
D showing four 2D contour plots where the force of fibroblasts (@,
force of myofibroblasts (7, .), saturation of mechanical force by collagen
(K,), and rate of plastic deformation (zr,,) were varied.

As shown in Fig. 7A, cavity contraction was highly dependent on the
fibroblast force t,, with increasing force leading to larger contraction.
Although K, had a less pronounced effect, increasing the saturation of
mechanical force by collagen was found to decrease cavity contraction.
Due to this inverse relationship, low K, values and high 7, values
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change in cavity volume at week 4. Gray regions on the plots represent regions in the parameter space that were not well informed and for which the predicted variance by the

GP model were large.

produced the largest contractions, with the cavities contracting to
less than 25% of their initial volume by week 4. Cavity contraction
also increased with increasing myofibroblast force 7, ; however, an
interesting coupling was identified between K, and 7, (Fig. 7B). Eval-
uation of 7, and K, pairings (Fig. 7A) clearly showed that fibroblast
force was the dominant parameter. By contrast, results for 7, and K,
pairings (Fig. 7B) suggested that collagen saturation (K,) had a more
pronounced effect coupled to myofibroblast force 7, .. For example, for
sensitivity at low collagen K, = 0.1, cavity contraction was severe and

ranged between 25% and 30%. A broader cavity contraction range
was observed for peak sensitivity at higher collagen K, = 0.5, with
contraction values varying from 50% to 37.5% across ¢ pe €11:1,,2.5:1,].

The rate of plastic deformation (r,,) was inversely related to cav-
ity contraction. In other words, lower values of 7,, supported larger
cavity contraction. The contour plot showing 7,, and fibroblast force 7,
pairings (Fig. 7C) revealed that cavity contraction was less sensitive to
7, for lower ¢, values. However, as ¢, increased, the rate of plastic
deformation became more influential on contraction outcomes. For
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Fig. 8. Effect of CBVP on cavity contraction and breast surface deformities. (A) Contour plot created with the re-calibrated GP model accounting for cavity volume as an input,
which predicts time-dependent cavity contraction as a function of CBVP. (B) Simulations were run for three specific CBVP values to evaluate permanent tissue deformation J? and
breast surface deformation 4 weeks following lumpectomy for CBVPs of (i) 8.7%, (ii) 4.5%, and (iii) 1.0%.

the 7, versus myofibroblast force 7, . contour (Fig. 7D), it was found
that myofibroblast force was tightly coupled to the rate of plastic
deformation, with cavity contraction becoming more severe for lower
7,» and larger 7, . values. Interestingly, the greatest cavity contraction
(between 20% to 25%) occurred when both z,, and 7,. had larger
values.

3.5. Effect of cavity-to-breast volume percentage

Since the mechanobiological model was informed based on human
BCS cavity contraction data, it can be applied to predict how patient-
to-patient variability in breast and tumor characteristics affect healing
and cosmetic outcomes. For example, the effect of CBVP was evaluated
to identify trends in spatiotemporal cavity contraction and breast de-
formation. This model application involved adding CBVP as an input
variable to the established mechanobiological GP. Similar to the initial
GP model calibration, LHS sampling of the parameters ©,, and CBVP
was performed. Following GP model re-calibration, 2,500 GP predictive
contraction curves were then used to evaluate the 4-week post-surgical
cavity contraction and breast deformation for CBVP values between
0.43% and 8.7% (Fig. 8A). This CBVP range was based on geometric
constraints of the assumed breast geometry and captures the wide range
of reported breast tumor sizes [71].

Simulation results showed that smaller cavities contract at a faster
rate compared to larger cavities, which is consistent with previously
reported human wound contraction outcomes [72,73]. Additionally,
larger CBVP values showed a greater reduction in cavity volume
(i.e., greater contracture). Finite element simulations were also con-
ducted for specific CBVP values of (i) 8.7%, (ii) 4.5%, (iii) 1.0% to
verify accuracy of GP predictions and visualize breast deformations
(Fig. 8B). As expected, permanent changes in breast volume and shape
increased with cavity size, with similar permanent deformation values
within the cavity centers (Fig. 8B). Overall, larger breast surface de-
formation occurred with increasing CBVP. For instance, for a relatively
small CBVP of 1.0%, there was no visible breast surface deformation
4 weeks post-surgery (Fig. 8B). Increasing the CBVP to 4.5% resulted
in moderate surface deformation, which became more severe for CBVP
of 8.7% (Fig. 8B). These results are consistent with reported clinical
outcomes [21,74,75].

3.6. Effect of breast composition

To determine the effect of breast composition on BCS outcomes,
the GP surrogate was further informed by running additional simula-
tions including breast composition as an input variable. Specifically,
recall that the material parameters k., k; were assigned based on the
assumption of 70% adipose tissue and 30% fibroglandular tissue [38].
When evaluating the effect of breast composition, k, k; were modified
according to the rule of mixtures by varying the percent of adipose
to fibroglandular tissue. Following re-calibration, the GP model was
used to predict 4-week post-surgical cavity contraction as a function
of breast composition (Fig. 9.A). Clinically, breast composition is mea-
sured with the BI-RADS ranking system which reports the percentage
of breast fibroglandular tissue [76]. As shown in Fig. 9A, cavities
created in low density breasts (i.e., breasts consisting primarily of
soft fatty tissue or scattered small regions of fibroglandular tissue)
contracted more rapidly and to a greater extent than those in high
density breasts (i.e., breasts consisting of heterogeneously or extremely
dense fibroglandular tissue). Lower density breasts also gave rise to
higher magnitudes of permanent contracture within the cavity, causing
the surrounding breast tissue to be drawn in higher tension (Fig. 9B).
Interestingly, permanent contracture was positively correlated with
breast surface deformation, as lower breast densities were more prone
to breast asymmetry (Fig. 9B). These results are consistent with clinical
findings [18-20,77].

4. Discussion

Understanding the mechanobiology of breast cavity healing af-
ter lumpectomy is essential for improved prediction of post-surgical
outcomes and individualized treatment planning for breast cancer pa-
tients. At present, there is a relatively high incidence of BCS-related
breast deformities, with approximately one-third of women develop-
ing dents, distortions, and asymmetry between breasts [15,18,21,49],
which negatively impacts survivor self-esteem or quality of life [5].
While the significance of this problem has been recognized by the
breast surgical community, there remains a fundamental lack of mech-
anistic and objective tools that define how various patient-to-patient
factors affect post-surgical cavity healing and cosmetic outcomes. In
this study, we developed a detailed finite element model of breast
cavity healing after BCS that was calibrated using experimental porcine
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lumpectomy and previously published human clinical data. The compu-
tational model incorporated biological, microstructural, and mechani-
cal variables that describe fundamental breast healing processes and
relationships. The finite element model was designed to define how
the coupling of mechanobiological cues and patient-specific breast
characteristics (geometry, consistency, and biomechanics) contributes
to temporal changes in cavity contraction and associated breast volume
and surface deformations. Therefore, this model has the potential to
help both surgeons and patients anticipate BCS healing and cosmetic
outcomes.

Computational and mathematical descriptions of wound healing
processes and outcomes have been a focus area of investigation for
over three decades, with the majority of models describing cutaneous
(skin) repair [24,78]. The first wound healing model, proposed by
Sherratt and Murray (1990) [79], did not consider mechanobiology
or tissue mechanics when describing re-epithelialization of skin. For
this early model, activation and proliferation of epithelial cells was
assumed to occur along a 1D wound in response to chemical cues.
Such models have been refined over time to include more complex
cellular and chemical reaction-transport phenomena associated with
inflammation and angiogenesis [52,53]. Increasing attention has also
been given to fibroblast and myofibroblast activity and their impact
on collagen deposition and remodeling [55,80]. Coupling to nonlinear
tissue mechanics has been explored extensively by our group and
others in recent years [23,30,32,52-54,58,64]. Specifically, our pub-
lished models have leveraged prior modeling efforts and focused on
adding detailed descriptions of local mechanobiological couplings be-
tween (myo)fibroblast activity and collagen remodeling to explain the
observed macroscale changes in tissue mechanics and elastoplastic
deformation. Our extensive work on the calibration of the 3D der-
mal model based on data from rat excisional wounds showed the
model’s ability to predict a large set of experimental observations
including treatment with collagen scaffolds, providing confidence in the
fundamental relationships encoded in the model [30].

Here, we describe a finite element model of breast cavity healing
following BCS that builds upon our previously published computational
mechanobiological models of cutaneous wound healing [23,30,32]. At
present, there are few models describing the healing of deep wounds,
such as those associated with BCS, with the majority being adapted
from early skin wound models. For example, with the goal of pre-
dicting wound healing following lumpectomy, Garbey and co-workers
developed a 2D cellular automata model linked to a PDE describing
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cytokine signaling within skin wounds [27,54]. Likewise, Vavourakis
et al. adapted a finite element model of inflammation and angiogenesis
initially introduced by Sherratt and Murray, coupling it with a finite
element model of soft tissue biomechanics [29,56]. In the present study,
we modified our 3D dermal wound model [30] to include more realistic
fibroblast migration, with dependence on both cytokine concentration
and collagen density. The collagen fiber dispersion was also updated
to be isotropic (xk = 1/3), allowing for deformation around the breast
cavity. We also implemented a generalized breast geometry that was
based on human clinical data and adjusted tissue mechanical properties
based on the literature. Biochemical and mechanobiological model
parameters that were not well defined in the literature were tuned
and optimized, allowing the computational model to be fit to experi-
mental porcine lumpectomy data describing time-dependent changes in
fibroblast migration and collagen deposition and human clinical data
depicting the volumetric breast cavity changes that occur after BCS.
Since it was unobtainable to optimize every model parameter, parame-
ters relating to collagen fiber stiffness and reorientation were assumed
to be consistent with previous dermal wound healing work [30,32].
Model parameters that are unable to be experimentally measured, such
as saturation constants and mechanosensing activation terms, were also
kept the same as the dermal wound healing model [30,32].

The calibrated model was designed to provide a new and useful
tool for supporting future hypothesis generation, surgical visualiza-
tion, and surgical decision-making. More specifically, we applied the
model to define how patient-to-patient variability in breast and tumor
characteristics affected breast contracture and breast surface deforma-
tion. When evaluating CBVP, model simulations predicted that larger
cavities, specifically located within the outer quadrant of the breast,
would contract more slowly but to a greater extent than smaller cav-
ities. Additionally, as CBVP increased from 1.0% (13.24 cm’ volume;
2.94 cm diameter) to 8.7% (115.5 cm?; 6.04 cm diameter), resul-
tant tissue permanent deformation profiles contributed to more severe
breast distortions. These model predictions aligned well with previously
published clinical perspectives that state that tumor size, breast tissue
volume excised, and CBVP are major determinants of BCS cosmetic
outcomes. Maximum tumor diameters between 2 cm and 4 cm are
commonly used as selection criteria for BCS [75,81]. Moreover, CBVP
is highly correlated with breast cosmesis assessment scores and patient
satisfaction following BCS. Specifically, more than 80% of women
were very satisfied with breast aesthetic outcomes when their CBVP
was less than 10% [21,74,75]. By contrast, CBVP greater than 20%
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Fig. 10. Comparison in the cosmetic outcomes after BCS between (A) a patient 5 years removed from BCS and (B) the generalized human breast geometry simulated 16 weeks

post-surgery. (A) is reprized from Adamson et al. (2020) [82].

led to high levels of patient dissatisfaction [21,74,75]. Tumor loca-
tion is an important determinant of cosmetic outcomes and patient
satisfaction following BCS, with proposed recommendations for max-
imum CBVP including the following: 18%-19% for the upper-outer
quadrant, 14%-15% for the lower-outer quadrant, 8%-9% for the
upper-inner quadrant, and 9%-10% for the lower-inner quadrant [16].
Such findings have led to proposed surgical decision-making algo-
rithms, where breast volume, clinical tumor size, and tumor location
serve as major determinants when choosing between breast surgi-
cal procedures to achieve satisfactory breast cosmesis and quality of
life [15,16]. While these algorithms are currently being evaluated in
randomized controlled trials in patients who are candidates for both
BCS and mastectomy, they do not account for mechanistic details of
the wound healing response. As a result, they cannot predict breast
deformation over time, account for further coupling phenomena such
as individualized breast biomechanics, or aid in the design of new
therapeutics.

The calibrated model was also used to determine how breast tissue
density affected breast tissue contracture and breast shape following
BCS. Human breasts, as well as other mammalian mammary glands, are
composed of a heterogeneous mixture of fibroglandular and adipose tis-
sue, which contributes to differences in consistency and biomechanical
properties. Reported Young’s modulus ranges for human breasts vary
from 0.7 to 66 kPa, depending on breast composition (e.g., percentage
of fibroglandular to adipose tissue) [40,47]. Model simulations evalu-
ated breast densities representing 15% (Eg; = 14.5 kPa), 50% (Epg; =
25 kPa), and 85% (Egr = 35.5 kPa), spanning the range of soft breast
consisting primarily of fatty tissue to firm (stiff) breast consisting pri-
marily of fibroglandular tissue. Our simulations predicted that cavities
within low density, fatty breasts exhibit larger contracture compared to
high-density, firm breasts. As a result, breast surface deformities were
larger and more pronounced as breast density decreased. These results
are in agreement with human clinical findings, as many studies have
correlated through patient surveys and clinical analysis that patients
with low breast density have higher chances of poor cosmetic results
and low patient satisfaction after BCS [18-20,77].

Mechanobiological parameters influencing cell contractility and
plastic deformation were also proven to greatly impact cavity contrac-
ture and cosmetic outcomes. Through the sensitivity analysis shown in
Fig. 7, we were able to learn more about plausible parameter ranges
and gain insight into complex parameter relationships. The parameters
that were deemed to be the most sensitive to the mechanobiologi-
cal response and contracture were (myo)fibroblast forces 1, and fyer
Therefore, it is important to ensure model accuracy regarding these
two parameters. Both 7, and 7, . were optimized based on clinical data
evaluating time-dependent cavity volume changes. Compared to dermal
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wound healing models that considered fibroblast traction based on
experimental evidence, our model’s optimized value for 7, was on the
lower end of the established range [30,32,52-55,64]. Relative to the
contractility of fibroblasts, the optimized ¢, value for our model was
also well within the broad range of values in other wound healing mod-
els [30,32,52-55,64]. To potentially reduce model uncertainty, future
experimental studies could be conducted to measure and validate the
contractile force of fibroblasts and myofibroblasts post-lumpectomy.
The present study was made possible by leveraging machine learn-
ing techniques to replace the high-fidelity computational model with
inexpensive but accurate surrogates. In particular, GP surrogates were
used to predict cell density, collagen density, and cavity contraction
over time as a function of model parameters [83-85]. While a single
simulation with the fully coupled model takes on the order of 20-
72 h to run (depending on model parameters), the GP evaluation
can be performed in milliseconds. Therefore, this 107 speed-up was
crucial to perform the parameter optimization and sensitivity analysis.
Although many machine learning techniques exist, the GP was applied
due to its Bayesian construction which allows the estimation of both the
desired quantity of interest and expected epistemic uncertainty (i.e., it
provides an estimate of the confidence for a given prediction) [51]. This
differentiates GP approaches from other popular tools such as artificial
neural networks [51]. The prediction of the variance by the GP guided
the selection of parameter combinations for which to evaluate the finite
element model, akin to other active learning strategies using GPs [86].
The study is not without limitations. For the computational model,
we implemented a generic human breast geometry that was informed
through several clinical studies. Further, the model was calibrated
by tuning mechanobiological parameters to fit clinical data of time-
dependent cavity volume changes reported as an average of 34 patients.
Future model iterations will incorporate more patient-specific data,
which includes application of patient-specific breast geometries and tu-
mor or cavity shapes and locations. This will also allow for the inclusion
of heterogeneous breast tissue composition, which will be beneficial in
ensuring accurate permanent tissue contracture and realistic cosmetic
results. Individual healing outcomes can then be compared to model
predictions to further validate the model. Fig. 10 shows an example of
how the generalized human breast geometry can nonetheless be used
to forecast possible poor cosmetic outcomes that patients may experi-
ence. The model also fails to incorporate other factors that can affect
breast healing. For example, radiation therapy, which is commonly
applied to patient breasts shortly after BCS, is not accounted for in the
model. This is an area we hope to capture in future work. Addition of
radiation therapy to the computational model would require changes
in cell death, inflammation, collagen deposition, and (myo)fibroblast
contraction, ultimately leading to changes in mechanical properties and
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breast deformation. Although the mechanobiological model is able to
accurately predict healing outcomes, the complexity of the model can
be further expanded to include additional specific cellular players and
processes such as neovascularization, various types of immune cells
(e.g., macrophages or neutrophils), and edema related osmotic pres-
sure and poroelastic response. Future model applications also include
the design of therapeutic approaches (e.g., regenerative breast tissue
fillers), enabling the promise of in silico trials for BCS before animals
or human subjects are involved.

5. Conclusions

The presented computational model proved to effectively simu-
late the breast healing response following BCS, including fibroblast
infiltration, collagen remodeling, and breast permanent deformation.
Preclinical porcine data and human clinical data were used to inform
time-dependent trends for fibroblast density, collagen density, and
cavity volume change. The model was fit to this data by optimizing
model parameters enabled by GP regression. Although previous models
of wound healing after BCS have been developed, we advanced these
efforts by implementing a detailed mechanobiological model coupled
with the nonlinear mechanics of breast tissue, including large plastic
deformation and collagen remodeling. Therefore, our model is uniquely
suited for the prediction of scar tissue formation and breast deformation
after BCS, which allowed us to gain insight into how key parameters
and patient-to-patient variability with respect to breast and tumor
characteristics factor into the post-surgical cosmetic outcome. With this
work presenting the foundation of the computational model, future
efforts can be shifted to focus on patient-specific cases, addition of
radiation therapy effects, and the design of therapeutic approaches
(e.g., regenerative breast fillers).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported, in part, by an NSF CMMI Multiscale
Mechanobiology of Growth and Remodeling During Wound Healing
grant (A.B.T.; 1911346). The preclinical porcine lumpectomy study
was supported by an NSF SBIR Phase I award (S.V.-H.; 1913626).
The authors acknowledge the Purdue University Histology Research
Laboratory, a core facility of the NIH-funded Indiana Clinical and
Translational Sciences Institute, for preparation of histological slides.
Z.H., M.F., and C.M. were recipients of a Purdue Summer Undergrad-
uate Research Fellowship (SURF). E.V. and D.S. are trainees of the
NIGMS-funded Indiana Medical Scientist/Engineer Training Program
(T32 GM077229) and the recipient of a NIDDK-funded predoctoral
fellowship (T32 DK101000) and an Indiana CTSI predoctoral fellowship
(UL1TR002529).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compbiomed.2023.107342. The finite el-
ement model is available in the following repository: https://github.
com/zharbin/CBM_2023_BCS.

12

Computers in Biology and Medicine 165 (2023) 107342

References
[1] A.N. Giaquinto, H. Sung, K.D. Miller, J.L. Kramer, L.A. Newman, A. Minihan,
A. Jemal, R.L. Siegel, Breast cancer statistics, 2022, CA: Cancer J. Clin. 72 (6)
(2022) 524-541.
Cancer of the breast (female) - cancer stat facts. URL https://seer.cancer.gov/
statfacts/html/breast.html.
A. Fourquet, F. Campana, B. Zafrani, V. Mosseri, P. Vielh, J.-C. Durand, J.R.
Vilcoq, Prognostic factors of breast recurrence in the conservative management
of early breast cancer: a 25-year follow-up, Int. J. Radiat. Oncol. Biol. Phys. 17
(4) (1989) 719-725.
E.B.C.T.C. Group, et al., Effects of radiotherapy and of differences in the extent
of surgery for early breast cancer on local recurrence and 15-year survival: an
overview of the randomised trials, Lancet 366 (9503) (2005) 2087-2106.
J. de Boniface, R. Szulkin, A.L. Johansson, Survival after breast conservation
vs mastectomy adjusted for comorbidity and socioeconomic status: a Swedish
national 6-year follow-up of 48 986 women, JAMA Surg. 156 (7) (2021)
628-637.
A. Chatterjee, B. Pyfer, B. Czerniecki, K. Rosenkranz, J. Tchou, C. Fisher, Early
postoperative outcomes in lumpectomy versus simple mastectomy, J. Surg. Res.
198 (1) (2015) 143-148.
S. Litiére, G. Werutsky, 1.S. Fentiman, E. Rutgers, M.-R. Christiaens, E. Van Lim-
bergen, M.H. Baaijens, J. Bogaerts, H. Bartelink, Breast conserving therapy versus
mastectomy for stage I-II breast cancer: 20 year follow-up of the EORTC 10801
phase 3 randomised trial, Lancet Oncol. 13 (4) (2012) 412-419.
H.D. Mogal, C. Clark, R. Dodson, N.F. Fino, M. Howard-McNatt, Outcomes after
mastectomy and lumpectomy in elderly patients with early-stage breast cancer,
Ann. Surg. Oncol. 24 (2017) 100-107.
E. Hau, L. Browne, A. Capp, G.P. Delaney, C. Fox, J.H. Kearsley, E. Millar,
E.H. Nasser, G. Papadatos, P.H. Graham, The impact of breast cosmetic and
functional outcomes on quality of life: long-term results from the St. George and
Wollongong randomized breast boost trial, Breast Cancer Res. Treat. 139 (2013)
115-123.
J.F. Waljee, E.S. Hu, P.A. Ubel, D.M. Smith, L.A. Newman, A.K. Alderman, Effect
of esthetic outcome after breast-conserving surgery on psychosocial functioning
and quality of life, J. Clin. Oncol. 26 (20) (2008) 3331-3337.
M. Azu, P. Abrahamse, S.J. Katz, R. Jagsi, M. Morrow, What is an adequate
margin for breast-conserving surgery? Surgeon attitudes and correlates, Ann.
Surg. Oncol. 17 (2010) 558-563.
A. Tremelling, R.L. Aft, A.E. Cyr, W.E. Gillanders, K. Glover-Collins, V. Herrmann,
J.A. Margenthaler, Impact of consensus guidelines for breast-conserving surgery
in patients with ductal carcinoma in situ, Cancer Rep. 5 (5) (2022) e1502.
M.S. Moran, S.J. Schnitt, A.E. Giuliano, J.R. Harris, S.A. Khan, J. Horton, S.
Klimberg, M. Chavez-MacGregor, G. Freedman, N. Houssami, et al., Society of
Surgical Oncology-American Society for Radiation Oncology consensus guideline
on margins for breast-conserving surgery with whole-breast irradiation in stages
I and II invasive breast cancer, Int. J. Radiat. Oncol. Biol. Phys. 88 (3) (2014)
553-564.
E.L. Vos, A.H. Koning, I.-M. Obdeijn, V.M. van Verschuer, C. Verhoef, P.J. van der
Spek, M.B. Menke-Pluijmers, L.B. Koppert, Preoperative prediction of cosmetic
results in breast conserving surgery, J. Surg. Oncol. 111 (2) (2015) 178-184.
E. Vos, L. Koppert, W. van Lankeren, C. Verhoef, B.G. Koerkamp, M. Hunink, A
preliminary prediction model for potentially guiding patient choices between
breast conserving surgery and mastectomy in early breast cancer patients; a
Dutch experience, Qual. Life Res. 27 (2018) 545-553.
D. Pukancsik, P. Kelemen, M. Ijjhelyi, E. Kovécs, N. Udvarhelyi, N. Mészéros, 1.
Kenessey, T. Kovacs, M. Kasler, Z. Métrai, Objective decision making between
conventional and oncoplastic breast-conserving surgery or mastectomy: An
aesthetic and functional prospective cohort study, Eur. J. Surg. Oncol. (EJSO)
43 (2) (2017) 303-310.
A.L. Pusic, AF. Klassen, A.M. Scott, J.A. Klok, P.G. Cordeiro, S.J. Cano,
Development of a new patient-reported outcome measure for breast surgery: the
BREAST-Q, Plast. Reconstr. Surg. 124 (2) (2009) 345-353.
A. Gardfjell, C. Dahlbéck, K. Ahsberg, Patient satisfaction after unilateral on-
coplastic volume displacement surgery for breast cancer, evaluated with the
BREAST-Q™, World J. Surg. Oncol. 17 (2019) 1-13.
P.C. Rassu, Observed outcomes on the use of oxidized and regenerated cellulose
polymer for breast conserving surgery-A case series, Ann. Med. Surg. 5 (2016)
57-66.
R. Mitsueda, A. Gen, Y. Fujiki, N. Gondo, M. Sato, J. Kawano, K. Kuni-
naka, S. Kanemitsu, M. Teraoka, Y. Matsuyama, et al., Satisfaction of patients
who received breast-conserving surgery using the suture scaffold technique:
A single-institution, cross-sectional study, Ann. Surg. Oncol. 29 (6) (2022)
3829-3835.
C. Dahlbédck, J. Manjer, M. Rehn, A. Ringberg, Determinants for patient satis-
faction regarding aesthetic outcome and skin sensitivity after breast-conserving
surgery, World J. Surg. Oncol. 14 (2016) 1-11.
A. Brands-Appeldoorn, R. Thomma, L. Janssen, A. Maaskant-Braat, V. Tjan-
Heijnen, R. Roumen, Factors related to patient-reported cosmetic outcome after
breast-conserving therapy for breast cancer, Breast Cancer Res. Treat. 191 (3)
(2022) 545-552.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]


https://doi.org/10.1016/j.compbiomed.2023.107342
https://github.com/zharbin/CBM_2023_BCS
https://github.com/zharbin/CBM_2023_BCS
https://github.com/zharbin/CBM_2023_BCS
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb1
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb1
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb1
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb1
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb1
https://seer.cancer.gov/statfacts/html/breast.html
https://seer.cancer.gov/statfacts/html/breast.html
https://seer.cancer.gov/statfacts/html/breast.html
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb3
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb3
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb3
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb3
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb3
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb3
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb3
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb4
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb4
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb4
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb4
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb4
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb5
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb5
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb5
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb5
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb5
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb5
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb5
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb6
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb6
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb6
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb6
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb6
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb7
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb7
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb7
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb7
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb7
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb7
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb7
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb8
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb8
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb8
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb8
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb8
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb9
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb10
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb10
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb10
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb10
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb10
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb11
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb11
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb11
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb11
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb11
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb12
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb12
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb12
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb12
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb12
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb13
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb14
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb14
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb14
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb14
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb14
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb15
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb15
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb15
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb15
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb15
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb15
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb15
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb16
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb17
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb17
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb17
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb17
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb17
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb18
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb18
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb18
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb18
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb18
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb19
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb19
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb19
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb19
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb19
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb20
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb21
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb21
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb21
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb21
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb21
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb22
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb22
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb22
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb22
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb22
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb22
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb22

Z. Harbin et al.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A. Buganza Tepole, E. Kuhl, Computational modeling of chemo-bio-mechanical
coupling: a systems-biology approach toward wound healing, Comput. Methods
Biomech. Biomed. Eng. 19 (1) (2016) 13-30.

C. Valero, E. Javierre, J. Garcia-Aznar, A. Menzel, M. Gomez-Benito, Challenges
in the modeling of wound healing mechanisms in soft biological tissues, Ann.
Biomed. Eng. 43 (2015) 1654-1665.

T.J. Puls, C.S. Fisher, A. Cox, J.M. Plantenga, E.L. McBride, J.L. Anderson, C.J.
Goergen, M. Bible, T. Moller, S.L. Voytik-Harbin, Regenerative tissue filler for
breast conserving surgery and other soft tissue restoration and reconstruction
needs, Sci. Rep. 11 (1) (2021) 2711.

1.C. Henderson, Breast Cancer: Fundamentals of Evidence-Based Disease
Management, Oxford University Press, 2015.

M. Garbey, R. Salmon, D. Thanoon, B.L. Bass, Multiscale modeling and dis-
tributed computing to predict cosmesis outcome after a lumpectomy, J. Comput.
Phys. 244 (2013) 321-335.

R. Salmon, M. Garbey, L.W. Moore, B.L. Bass, Interrogating a multifactorial
model of breast conserving therapy with clinical data, Plos One 10 (4) (2015)
e0125006.

V. Vavourakis, B. Eiben, J.H. Hipwell, N.R. Williams, M. Keshtgar, D.J. Hawkes,
Multiscale mechano-biological finite element modelling of oncoplastic breast
surgery—numerical study towards surgical planning and cosmetic outcome
prediction, PLoS One 11 (7) (2016) e0159766.

D.O. Sohutskay, A.B. Tepole, S.L. Voytik-Harbin, Mechanobiological wound
model for improved design and evaluation of collagen dermal replacement
scaffolds, Acta Biomater. 135 (2021) 368-382.

M. Pensalfini, A.B. Tepole, Mechano-biological and bio-mechanical pathways in
cutaneous wound healing, PLoS Comput. Biol. 19 (3) (2023) €1010902.

A.B. Tepole, Computational systems mechanobiology of wound healing, Comput.
Methods Appl. Mech. Engrg. 314 (2017) 46-70.

B. Prendergast, D.J. Indelicato, S.R. Grobmyer, A.I. Saito, J.L. Lightsey, F.E.
Snead, C.G. Morris, E.M. Copeland, N.P. Mendenhall, The dynamic tumor bed:
volumetric changes in the lumpectomy cavity during breast-conserving therapy,
Int. J. Radiat. Oncol. Biol. Phys. 74 (3) (2009) 695-701.

P.D. Darbre, Recorded quadrant incidence of female breast cancer in Great
Britain suggests a disproportionate increase in the upper outer quadrant of the
breast, Anticancer Res. 25 (3C) (2005) 2543-2550.

N. Kroman, J. Wohlfahrt, H.T. Mouridsen, M. Melbye, Influence of tumor location
on breast cancer prognosis, Int. J. Cancer 105 (4) (2003) 542-545.

S. Rummel, M.T. Hueman, N. Costantino, C.D. Shriver, R.E. Ellsworth,
Tumour location within the breast: Does tumour site have prognostic
ability? Ecancermedicalscience 9 (2015).

D.O. Sohutskay, T.J. Puls, S.L. Voytik-Harbin, Collagen self-assembly: biophysics
and biosignaling for advanced tissue generation, in: Multi-scale Extracellular
Matrix Mechanics and Mechanobiology, Springer, 2020, pp. 203-245.

T.R. Nelson, L.I. Cervifio, J.M. Boone, K.K. Lindfors, Classification of breast
computed tomography data, Med. Phys. 35 (3) (2008) 1078-1086.

L. Han, J.H. Hipwell, C. Tanner, Z. Taylor, T. Mertzanidou, J. Cardoso, S.
Ourselin, D.J. Hawkes, Development of patient-specific biomechanical models
for predicting large breast deformation, Phys. Med. Biol. 57 (2) (2011) 455.

A. Gefen, B. Dilmoney, Mechanics of the normal woman’s breast, Technol. Health
Care 15 (4) (2007) 259-271.

F.S. Azar, D.N. Metaxas, M.D. Schnall, Methods for modeling and predicting
mechanical deformations of the breast under external perturbations, Med. Image
Anal. 6 (1) (2002) 1-27.

P.R. Bakic, Breast Tissue Description and Modeling in Mammography, Lehigh
University, 2001.

A.L. McKnight, J.L. Kugel, P.J. Rossman, A. Manduca, L.C. Hartmann,
R.L. Ehman, MR elastography of breast cancer: preliminary results, Am. J.
Roentgenol. 178 (6) (2002) 1411-1417.

T.A. Krouskop, T.M. Wheeler, F. Kallel, B.S. Garra, T. Hall, Elastic moduli of
breast and prostate tissues under compression, Ultrason. Imaging 20 (4) (1998)
260-274.

A. Samani, D. Plewes, A method to measure the hyperelastic parameters of ex
vivo breast tissue samples, Phys. Med. Biol. 49 (18) (2004) 4395.

P.S. Wellman, Tactile Imaging, Harvard University, 1999.

N.G. Ramiao, P.S. Martins, R. Rynkevic, A.A. Fernandes, M. Barroso, D.C. Santos,
Biomechanical properties of breast tissue, a state-of-the-art review, Biomech.
Model. Mechanobiol. 15 (2016) 1307-1323.

A.B. Tepole, H. Kabaria, K.-U. Bletzinger, E. Kuhl, Isogeometric Kirchhoff-Love
shell formulations for biological membranes, Comput. Methods Appl. Mech.
Engrg. 293 (2015) 328-347.

D.F. Veiga, J. Veiga-Filho, L.M. Ribeiro, 1. Archangelo-Junior, P.F. Balbino, L.V.
Caetano, N.F. Novo, L.M. Ferreira, Quality-of-life and self-esteem outcomes after
oncoplastic breast-conserving surgery [outcomes article], Plast. Reconstr. Surg.
125 (3) (2010) 811-817.

S.S. Jeffrey, W.H. Goodson, D.M. Ikeda, R.L. Birdwell, M.S. Bogetz, Axillary
lymphadenectomy for breast cancer without axillary drainage, Arch. Surg. 130
(8) (1995) 909-913.

C.E. Rasmussen, C.K. Williams, Gaussian processes in machine learning, Lecture
Notes in Comput. Sci. 3176 (2004) 63-71.

13

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Computers in Biology and Medicine 165 (2023) 107342

C. Valero, E. Javierre, J.M. Garcia-Aznar, M.J. Gémez-Benito, A cell-regulatory
mechanism involving feedback between contraction and tissue formation guides
wound healing progression, PLoS One 9 (3) (2014) €92774.

K.E. Murphy, C.L. Hall, P.K. Maini, S.W. McCue, D.S. McElwain, A fibrocontrac-
tive mechanochemical model of dermal wound closure incorporating realistic
growth factor kinetics, Bull. Math. Biol. 74 (2012) 1143-1170.

E. Javierre, P. Moreo, M. Doblaré, J. Garcia-Aznar, Numerical modeling of a
mechano-chemical theory for wound contraction analysis, Int. J. Solids Struct.
46 (20) (2009) 3597-3606.

L. Olsen, J.A. Sherratt, P.K. Maini, A mechanochemical model for adult dermal
wound contraction and the permanence of the contracted tissue displacement
profile, J. Theoret. Biol. 177 (2) (1995) 113-128.

J.A. Sherratt, J. Murray, Mathematical analysis of a basic model for epidermal
wound healing, J. Math. Biol. 29 (1991) 389-404.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X.-D. Ren, M. Rafailovich,
R.A. Clark, Cell adaptation to a physiologically relevant ECM mimic with
different viscoelastic properties, Biomaterials 28 (4) (2007) 671-679.

B.D. Cumming, D. McElwain, Z. Upton, A mathematical model of wound healing
and subsequent scarring, J. R. Soc. Interface 7 (42) (2010) 19-34.

A. Fine, R.H. Goldstein, The effect of transforming growth factor-beta on cell
proliferation and collagen formation by lung fibroblasts, J. Biol. Chem. 262 (8)
(1987) 3897-3902.

J. Varga, J. Rosenbloom, S. Jimenez, Transforming growth factor g (TGF p)
causes a persistent increase in steady-state amounts of type I and type III collagen
and fibronectin mRNAs in normal human dermal fibroblasts, Biochem. J. 247 (3)
(1987) 597-604.

J. Jutley, E. Wood, W. Cunliffe, Influence of retinoic acid and TGF-§ on
dermal fibroblast proliferation and collagen production in monolayer cultures
and dermal equivalents, Matrix 13 (3) (1993) 235-241.

W. Schlumberger, M. Thie, J. Rauterberg, H. Robenek, Collagen synthesis in
cultured aortic smooth muscle cells. Modulation by collagen lattice culture,
transforming growth factor-beta 1, and epidermal growth factor, Arterioscler.
Thromb.: J. Vasc. Biol. 11 (6) (1991) 1660-1666.

A.B. Roberts, M.B. Sporn, R.K. Assoian, J.M. Smith, N.S. Roche, L.M. Wakefield,
U.L Heine, L.A. Liotta, V. Falanga, J.H. Kehrl, Transforming growth factor type
beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of
collagen formation in vitro, Proc. Natl. Acad. Sci. 83 (12) (1986) 4167-4171.
D.C. Koppenol, F.J. Vermolen, F.B. Niessen, P.P. van Zuijlen, K. Vuik, A
mathematical model for the simulation of the formation and the subsequent
regression of hypertrophic scar tissue after dermal wounding, Biomech. Model.
Mechanobiol. 16 (2017) 15-32.

L.K. Wrobel, T.R. Fray, J.E. Molloy, J.J. Adams, M.P. Armitage, J.C. Sparrow,
Contractility of single human dermal myofibroblasts and fibroblasts, Cell Motil.
Cytoskelet. 52 (2) (2002) 82-90.

S.A. Maskarinec, C. Franck, D.A. Tirrell, G. Ravichandran, Quantifying cellular
traction forces in three dimensions, Proc. Natl. Acad. Sci. 106 (52) (2009)
22108-22113.

M.S. Kolodney, R.B. Wysolmerski, Isometric contraction by fibroblasts and
endothelial cells in tissue culture: a quantitative study, J. Cell Biol. 117 (1)
(1992) 73-82.

J.J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R.A. Brown, Myofibroblasts
and mechano-regulation of connective tissue remodelling, Nat. Rev. Mol. Cell
Biol. 3 (5) (2002) 349-363.

A. Valeta-Magara, R. Hatami, D. Axelrod, D.F. Roses, A. Guth, S.C. Formenti,
R.J. Schneider, Pro-oncogenic cytokines and growth factors are differentially
expressed in the post-surgical wound fluid from malignant compared to benign
breast lesions, SpringerPlus 4 (1) (2015) 1-11.

C. Hurkmans, M. Admiraal, M. van der Sangen, I. Dijkmans, Significance of
breast boost volume changes during radiotherapy in relation to current clinical
interobserver variations, Radiother. Oncol. 90 (1) (2009) 60-65.

H.G. Welch, P.C. Prorok, A.J. O’'Malley, B.S. Kramer, Breast-cancer tumor size,
overdiagnosis, and mammography screening effectiveness, N. Engl. J. Med. 375
(15) (2016) 1438-1447.

C.E. Ananian, R.D. Davis, E.L. Johnson, M.J. Regulski, A.M. Reyzelman, M.C.
Saunders, A. Danilkovitch, Wound closure outcomes suggest clinical equivalency
between lyopreserved and cryopreserved placental membranes containing viable
cells, Adv. Wound Care 8 (11) (2019) 546-554.

C.E. Fife, S.D. Horn, R.J. Smout, R.S. Barrett, B. Thomson, A predictive model
for diabetic foot ulcer outcome: the wound healing index, Adv. Wound Care 5
(7) (2016) 279-287.

J. Stevenson, R. Macmillan, S. Downey, L. Renshaw, J. Dixon, Factors affecting
cosmetic outcome after breast conserving surgery, Eur. J. Cancer (37) (2001) 31.
R. Cochrane, P. Valasiadou, A. Wilson, S. Al-Ghazal, R. Macmillan, Cosmesis
and satisfaction after breast-conserving surgery correlates with the percentage of
breast volume excised, J. Br. Surg. 90 (12) (2003) 1505-1509.

A.C. of Radiology, C.J. D’Orsi, E.A. Sickles, E.B. Mendelson, E.A. Morris, et al.,
ACR BI-RADS Atlas: Breast Imaging Reporting and Data System; Mammography,
Ultrasound, Magnetic Resonance Imaging, Follow-Up and Outcome Monitoring,
Data Dictionary, ACR, American College of Radiology, 2013.


http://refhub.elsevier.com/S0010-4825(23)00807-7/sb23
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb23
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb23
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb23
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb23
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb24
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb24
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb24
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb24
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb24
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb25
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb25
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb25
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb25
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb25
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb25
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb25
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb26
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb26
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb26
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb27
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb27
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb27
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb27
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb27
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb28
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb28
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb28
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb28
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb28
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb29
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb29
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb29
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb29
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb29
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb29
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb29
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb30
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb30
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb30
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb30
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb30
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb31
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb31
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb31
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb32
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb32
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb32
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb33
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb33
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb33
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb33
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb33
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb33
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb33
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb34
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb34
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb34
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb34
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb34
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb35
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb35
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb35
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb36
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb36
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb36
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb36
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb36
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb37
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb37
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb37
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb37
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb37
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb38
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb38
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb38
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb39
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb39
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb39
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb39
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb39
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb40
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb40
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb40
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb41
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb41
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb41
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb41
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb41
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb42
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb42
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb42
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb43
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb43
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb43
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb43
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb43
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb44
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb44
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb44
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb44
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb44
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb45
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb45
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb45
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb46
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb47
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb47
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb47
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb47
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb47
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb48
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb48
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb48
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb48
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb48
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb49
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb49
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb49
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb49
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb49
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb49
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb49
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb50
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb50
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb50
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb50
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb50
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb51
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb51
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb51
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb52
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb52
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb52
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb52
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb52
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb53
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb53
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb53
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb53
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb53
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb54
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb54
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb54
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb54
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb54
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb55
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb55
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb55
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb55
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb55
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb56
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb56
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb56
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb57
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb57
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb57
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb57
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb57
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb58
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb58
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb58
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb59
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb59
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb59
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb59
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb59
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb60
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb60
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb60
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb60
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb60
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb60
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb60
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb61
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb61
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb61
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb61
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb61
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb62
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb62
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb62
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb62
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb62
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb62
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb62
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb63
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb63
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb63
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb63
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb63
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb63
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb63
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb64
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb64
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb64
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb64
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb64
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb64
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb64
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb65
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb65
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb65
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb65
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb65
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb66
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb66
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb66
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb66
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb66
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb67
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb67
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb67
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb67
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb67
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb68
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb68
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb68
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb68
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb68
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb69
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb69
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb69
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb69
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb69
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb69
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb69
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb70
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb70
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb70
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb70
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb70
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb71
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb71
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb71
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb71
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb71
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb72
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb72
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb72
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb72
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb72
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb72
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb72
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb73
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb73
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb73
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb73
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb73
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb74
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb74
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb74
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb75
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb75
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb75
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb75
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb75
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb76
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb76
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb76
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb76
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb76
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb76
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb76

Z. Harbin et al.

[77]

[78]

[79]

[80]

[81]

N. Shiina, M. Sakakibara, K. Fujisaki, T. Iwase, T. Nagashima, T. Sangai, Y.
Kubota, S. Akita, H. Takishima, M. Miyazaki, Volumetric breast density is
essential for predicting cosmetic outcome at the late stage after breast-conserving
surgery, Eur. J. Surg. Oncol. (EJSO) 42 (4) (2016) 481-488.

J.A. Flegg, S.N. Menon, P.K. Maini, D.S. McElwain, On the mathematical
modeling of wound healing angiogenesis in skin as a reaction-transport process,
Front. Physiol. 6 (2015) 262.

J.A. Sherratt, J.D. Murray, Models of epidermal wound healing, Proc. R. Soc. B
241 (1300) (1990) 29-36.

R.T. Tranquillo, J. Murray, Continuum model of fibroblast-driven wound
contraction: inflammation-mediation, J. Theoret. Biol. 158 (2) (1992) 135-172.
J. Gu, G. Groot, C. Boden, A. Busch, L. Holtslander, H. Lim, Review of factors
influencing women’s choice of mastectomy versus breast conserving therapy in
early stage breast cancer: a systematic review, Clin. Breast Cancer 18 (4) (2018)
e539-e554.

14

[82]

[83]

[84]

[85]

[86]

Computers in Biology and Medicine 165 (2023) 107342

K. Adamson, D.D. Rivedal, E.L. Doren, Breast reconstruction following breast
conserving surgery: a review, Curr. Surg. Rep. 8 (2020) 1-10.

1. Bilionis, N. Zabaras, B.A. Konomi, G. Lin, Multi-output separable Gaussian pro-
cess: Towards an efficient, fully Bayesian paradigm for uncertainty quantification,
J. Comput. Phys. 241 (2013) 212-239.

R. Tripathy, 1. Bilionis, M. Gonzalez, Gaussian processes with built-in dimen-
sionality reduction: Applications to high-dimensional uncertainty propagation, J.
Comput. Phys. 321 (2016) 191-223.

M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear differential
equations using Gaussian processes, J. Comput. Phys. 348 (2017) 683-693.

F. Sahli Costabal, Y. Yang, P. Perdikaris, D.E. Hurtado, E. Kuhl, Physics-informed
neural networks for cardiac activation mapping, Front. Phys. 8 (2020) 42.


http://refhub.elsevier.com/S0010-4825(23)00807-7/sb77
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb77
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb77
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb77
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb77
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb77
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb77
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb78
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb78
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb78
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb78
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb78
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb79
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb79
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb79
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb80
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb80
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb80
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb81
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb81
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb81
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb81
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb81
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb81
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb81
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb82
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb82
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb82
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb83
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb83
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb83
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb83
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb83
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb84
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb84
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb84
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb84
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb84
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb85
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb85
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb85
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb86
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb86
http://refhub.elsevier.com/S0010-4825(23)00807-7/sb86

	Computational mechanobiology model evaluating healing of postoperative cavities following breast-conserving surgery
	Introduction
	Methods
	Geometry
	Kinematics
	Constitutive and balance equations
	Biochemical model
	Mechanical model
	Mechanobiological coupling

	Experimental data
	Model calibration using Gaussian process surrogates

	Results
	Pathophysiologic findings through porcine histology analysis
	Calibration of the {ρ,c,φ} submodel
	Calibration of the fully coupled mechanobiological model
	Mechanobiological parameter sensitivity analysis
	Effect of cavity-to-breast volume percentage
	Effect of breast composition

	Discussion
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


