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ABSTRACT

Tissues grow and remodel in response to mechanical cues, extracellular and intracellular signals experienced through various biological
events, from the developing embryo to disease and aging. The macroscale response of soft tissues is typically nonlinear, viscoelastic
anisotropic, and often emerges from the hierarchical structure of tissues, primarily their biopolymer fiber networks at the microscale. The
adaptation to mechanical cues is likewise a multiscale phenomenon. Cell mechanobiology, the ability of cells to transform mechanical inputs
into chemical signaling inside the cell, and subsequent regulation of cellular behavior through intra- and inter-cellular signaling networks, is
the key coupling at the microscale between the mechanical cues and the mechanical adaptation seen macroscopically. To fully understand
mechanics of tissues in growth and remodeling as observed at the tissue level, multiscale models of tissue mechanobiology are essential. In
this review, we summarize the state-of-the art modeling tools of soft tissues at both scales, the tissue level response, and the cell scale mecha-
nobiology models. To help the interested reader become more familiar with these modeling frameworks, we also show representative exam-
ples. Our aim here is to bring together scientists from different disciplines and enable the future leap in multiscale modeling of tissue
mechanobiology.
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cell-cell signaling networks is called mechanotransduction.™ In turn,
cellular activity at the microscale, on the order of micrometers (um)—
such as cell proliferation and structural protein deposition—locally
transforms the microstructure and, thus, the mechanical behavior of
the tissue. These microscale changes, when coordinated over larger
length scales, are what we measure as growth and remodeling at the
tissue level.”® Therefore, to fundamentally understand the mechanical
function of tissues, mechanistic models of the two-way coupling across
scales are needed. This review explores first the tools at the two sepa-
rate scales before diving into recent efforts to develop fully coupled
multiscale mechanobiology models.

Soft tissues are inherently multiscale materials characterized by a
complex structural hierarchy.” Connective tissues show nonlinear and
anisotropic strain-stiffening response at the macroscale.”” These prop-
erties can be explained by a fibrillar collagen microstructure described
by metrics such as fiber orientation and crimp.'”""* Collagen is not the
sole constituent. Elastin, fibrin, and other biopolymers also influence
the mechanical behavior of connective tissue, particularly at small to
moderate strains.'"* From a computational point of view, modeling
the mechanical behavior of connective tissue at the macroscale has
been a focus of the biomechanics community for decades, and several
constitutive models for different soft tissues have been developed, some
of which are inspired by the fibrillar microstructure.'”'® However, to
more accurately capture the hierarchical structure of these tissues, mod-
els at smaller scales have also been built. At the mesoscale, from micro-
meters (um) to millimeters (mm), representative volume element
(RVE) simulations with discrete fiber networks are an adequate model-
ing choice.'” ?" Smaller scale models, for example, coarse grained or
atomistic simulations, can capture the behavior of individual fibers or
molecules.”’ This review focuses on the meso- and macroscale descrip-
tion of tissue mechanics.

Models of growth and remodeling have been mostly described at
the macroscale level using continuum mechanics. One approach relies
on a geometric description of growth much like plasticity, it is often
referred to as multiplicative volumetric growth.”” ** This description
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is based on splitting the deformation into two parts, permanent
volume changes due to addition or loss of mass, and deformations due
to externally applied forces. Another approach is based on mixture
theory.”” In this approach, the key idea is to keep track of mass
fractions of individual constituents. Both of these approaches will be
reviewed in more detail later.

Models of mechanobiology have emerged by analyzing the cell
and molecular scales. For soft tissues, the focus has been on mesenchy-
mal cells, especially fibroblasts.””” For models of single cells, or even
sub-cellular level, integrins and their aggregation into focal adhesions
have been recognized as the key mechanical coupling between the
extra-cellular matrix (ECM) and the cell.”**’ Models of mechanobiol-
ogy at this scale, therefore, focus on how forces from the ECM can be
transferred to the cell through these adhesions.”” In turn, conforma-
tional changes at focal adhesions, together with cytoskeleton deforma-
tion linking cell-ECM interface all the way to the nucleus, trigger a
myriad of intra-cellular cascades that we still do not fully under-
stand.””"" We review some of the mechanobiology models of the cell-
scale, but focus particularly on the kinetics of focal adhesions.

Coupling the macroscale soft tissue mechanics, the mesoscale
structure in terms of fiber networks, and the single cell interaction
with the ECM at the microscale is an open challenge. Up-scaling from
the lower spatial scales can be done by averaging quantities of interest
to try to learn homogenized responses.”” Down-scaling has been tradi-
tionally been achieved by creating RVE models with boundary condi-
tions in terms of quantities of interest from larger scales.'”'”*’ We
discuss emerging techniques to further integrate mechanics and
mechanobiology across scales, see Fig. 1.

Il. CONTINUUM MODELS OF TISSUE MECHANICS

At the macroscale, the mechanical behavior of tissues is naturally
described within continuum mechanics. The basic variable needed to
describe the local deformation and strain in the tissue is the deforma-
tion gradient tensor F. To guarantee that the stress computed from the
deformation, o(F), is independent of change of coordinates or rigid
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FIG. 1. Multiscale growth, remodeling, and mechanobiology modeling. At the macroscale, continuum variables such as stress, strain, chemical concentrations, and cell densi-
ties can be used to describe tissue mechanics and mechanobiology. These fields obey basic balance laws usually in the form of partial differential equations that can be solved
with finite element analysis (FE). The evolution of the continuum fields requires constitutive models that should reflect the underying mesoscale phenomena. At the mesoscale,
tissues are characterized by fibrilar biopolymer networks constantly remodeled by cellular activity. Models at the mesoscale, thus, combine discrete and continuum models,
e.g., discrete fiber networks (DFN), agent based models. Because it is the cellular activity that controls the growth and remodeling process, the mechanobiological response of
cells to the properties and deformations of their immediate extra-cellular matrix (ECM) needs to be modeled at the microscale. At the microscale, discrete and 0D models (ordi-
nary differential equations or ODEs) can be used to describe the cell-ECM interface as well as the intra-cellular signaling pathways triggered by mechanical cues.
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body motion, stress is expressed as a function of the tensors C = F'F
orb = FF'. The tensors C and b are called the right and left Cauchy
Green deformation tensors and are related to nonlinear strain mea-
sures. Since tissues have a nonlinear mechanical response, the basic
building block to model soft tissue is usually the definition of a strain
energy function 'P. Even though linear elasticity descriptions are still
popular,”* they are not adequate to model soft tissue. Tissues have
been treated with simple models, such as the isotropic neo-Hookean
strain energy or the Ogden strain energy.”” " More nonlinear models
that include anisotropy but are still largely phenomenological include
Gasser-Ogden-Holzapfel, or May-Newman.'"””*’ The next level of
sophistication are microstructure-driven models that ultimately
depend on variables at the macroscale but encode details about fiber
network orientation, diameter, and waviness distributions.”"** Given
a definition of the strain energy as a function of either C or b, the stress
is calculated from

1, OF
c=]2b 75 (1)
with J = detF.

Hyperelasticity is a good starting point, but it is still an approxi-
mation of soft tissue mechanical response, even when highly nonlinear
and detailed strain energies are used. In reality, when mechanical work
is done on tissue through applied forces, not all the energy gets stored
as strain energy. There are several dissipative mechanisms that can be
considered, such as viscoelasticity, damage, plasticity, and fracture. b
These phenomena can, however, be modeled by building on top of the
hyperelastic assumption. For example, in the case of viscoelastic
behavior, the energy can be decomposed into equilibrium and non-

equilibrium components,'**> "
v — \{/eq + \\I_/neq7
0P 10X G
—b be — % neq7
T T T @)

o 2

beb ! = — Ldev(c“eq) - —]tr(o'“eq)l7
b Iy

where the split of the energy leads to two contributions for the stress,
one coming from an equilibrium branch, and another from a
Maxwell-type branch. The last component of the system in (2) denotes
the evolution of the equation for the Maxwell branch. The rate of
change b denotes the Lie time derivative of the elastic deformation,
and it is proportional to the non-equilibrium stress. The model in (2)
is just one of other possible descriptions of viscoelasticity,” introduced
here because it builds naturally on top of a hyperelastic framework for
nonlinear soft tissue. Section I A presents more detail regarding a par-
ticular example for nonlinear anisotropic materials.

A. Example: A nonlinear, anisotropic, microstructural,
viscoelastic model

There are a wide variety of approaches to model the mechanical
behavior of soft tissue, and this review only scratches the surface of
this wide topic.® To model multiscale mechanobiology, some notion
of material response at the macroscale is needed. In the beginning of
this section, we have introduced the basic framework of hyperelastic-
ity. We then showed how this framework has been extended to
account for viscoelasticity. Here, we show an example of a recently

REVIEW scitation.org/journal/bpr

developed microstructure-driven model for soft tissue. Consider the
strain energy

¥ (b) = ¥™(b) +¥(b,0) + ¥™I(b,0) +p[J - 1], (3)

with a hyperelastic neo-Hookean term P (b) to describe the isotropic
ground substance of the ECM. The equilibrium anisotropic term is of
the form

f s 2
P (b) = %inw(zw) pr’(e) {12 +5- 3} dodz,,  (4)
where uf is a shear modulus parameter for fibers, p**(/,,) is a proba-
bility distribution of fiber slack or waviness, p’(0) is a fiber orientation
distribution, and the stretch A is actually a function of the angle, the
fiber slack, and the total deformation
_ (0
A0, 2y) = # . A(0) =||F - [cos (0), sin(B),0]]|. (5)
The non-equilibrium part is of the same functional form as the
equilibrium branch, but it is expressed in terms of the elastic portion
of the non-equilibrium branch,

Pred(pe) = ﬁT“f J 0 (Joy) Jpo(e) {mz + % - 3} dodi;  (6)

with 2¢ = A/2" and 1" being the viscous stretch of the viscoelastic
branch. As before, the viscous branch evolves in time according to a
relaxation equation. The rate of relaxation depends on the stress on
the non-equilibrium branch,**

]otneq — lo_neq, (7)

where © = Jo is the Kirchhoff stress and # is a viscosity parameter
associated with the time scale of relaxation. The basic behavior of this
constitutive model is illustrated in Fig. 2.

The model presented here is a representative example,'” but it
builds upon a rich development of constitutive equations for biologi-
cal materials. It considers viscoelasticity in a framework similar to
Liu et al.** Other approaches for viscoelastic materials include frac-
tional calculus™””’ and Prony series for different time scales of relax-
ation.”"”* The anisotropic component in terms of fiber orientation
distribution is also a common theme in the literature.'””” The wavi-
ness or slack distribution is not as widely used, although there are
some other examples.” *° As opposed to a waviness distribution, a
common approach is to change from a simple model like neo-
Hookean to an exponential fiber strain energy.'” The integration
over the fiber waviness of a neo-Hookean model yields a nonlinear
response similar to the exponential function for small to moderate
stretches.”” The exponential function, however, has the potential
limitation of unbounded stress increase for larger stretches, whereas
the fiber waviness distribution, in the limit of large stretches, con-
verges to a stiff neo-Hookean material. Thus, in terms of stability
and sensitivity to parameters, the exponential potentials should be
used with caution and only to predict deformations in the same
range as the data used to calibrate the model.”” A model based on
fiber orientation and waviness distributions is more robust, but it
comes with a higher computational cost.
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FIG. 2. Example: A nonlinear hyper-viscoelastic model based on microstructure
features. The fiber network can be represented through probability distributions
for fiber orientation and waviness. To account for viscoelasticity, the total defor-
mation F is split into the equilibrium component—which depends on the total
deformation—and a non-equilibrium branch. The non-equilibrium branch intro-
duces the viscous deformation, F, and the corresponding elastic deformation of
the non-equilibrium branch, F¢. When subjected to cyclic biaxial loading, this
model can recreate the nonlinear, anisotropic, viscoelastic response of soft
tissue.

Figure 2 shows a representative example with strain energy (3)
showcasing the mechanical behavior of the tissue. The code to gener-
ate this figure is also available, see the Github link at the end of the
article. The purpose of this example is to provide the reader not just
with a synthesis of the state-of-the-art on soft tissue modeling but to
further generate basic educational material that illustrates the key con-
cepts covered in the review.

REVIEW scitation.org/journal/bpr

B. Growth and remodeling at the tissue level

Considering only the passive response, soft tissues already exhibit
a rich mechanical behavior. It is even more fascinating to consider tis-
sues’ unique capacity to growth and remodel. There are two
approaches to describe growth and remodeling at the macroscale that
have become the most widely used. One is based on describing tissues
as a mixture of the different constituents,”” the second one is based on
a geometric description.m In the constrained mixture model,””*"’ the
tissue is composed of mass fractions of constituents p; and these satisfy
the standard mass transport equation,

pi+ V- (vip;) = mi, (8)

where v; is the velocity of constituent i and m; the mass production
rate of each constituent.

The linear momentum balance of the mixture is the standard
condition, V - ¢ = 0, but with the stress being a sum of the stress
from each constituent,

=) o ©)

There is a constraint equation that relates the momentum
exchange between different constituents,

> (p; + mivi) =0, (10)

where p; is the momentum exchange between constituent i and all
other constituents. Up to this point, the description is analogous to
classical mixture theory approaches.”’ However, the connection to
growth and remodeling is achieved in two ways. First, the mass source
term for constituent i can be used to describe deposition and decay of
structural proteins by cells. Second, the stress for a particular constitu-
ent can be calculated in a similar manner as (1), with one key change:
the notion of evolving natural configurations.”" Equation (1) describes
the stress in the material assuming that the left Cauchy-Green defor-
mation tensor b captures deformation from a stress-free state. In the
case that material is continuously deposited and destroyed, the stress
for a constituent needs to be computed with respect to its own stress-
free or natural configuration

F.=FF"'G,. (11)

The deformation for constituent i that contributes to stress is F;,
while the total deformation of the mixture with respect to the reference
configuration is F. Note that the reference configuration of the mixture
is arbitrary and not necessarily stress-free, it is simply a configuration
of the mixture from which one wishes to measure deformation. The
tensor, F is the deformation from the stress-free or natural configura-
tion of constituent i to the reference configuration of the mixture. To
obtain F}', one would have to track the mixture over time and deter-
mine the instant at which constituent i was deposited. Consider the
total deformation of the mixture as a parametric motion F(s), where s
can represent time. If a constituent is deposited at some time s = 7,
then F}' = F(). Finally, the last tensor in (11), G; captures pre-stress
of constituent i as it is deposited in the mixture at the time s = 7.

The mixture theory approach describes the tissue in extreme
detail so as to account for individual constituents, the time at which
they are deposited, the natural configuration of each constituent, and
how they interact to produce the observed response of the mixture.
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On the other hand, the detail comes at a price, specifically computa-
tional cost of keeping track of the time history of material deposition
with respect to the motion of the mixture.”

The alternative approach, multiplicative volumetric growth, fol-
lows the theory of large deformation plasticity,

F = F°F, (12)

where F is the deformation of the tissue with respect to a single stress-
free reference state. The growth tensor F® is the permanent volume
change due to mass addition or subtraction with respect to the initial
stress-free state. The deformation F* is the only one that contributes to
the stress. In the case of a hyperelastic material,

oY
ob*’

with J* = det F°. The deformation that leads to stress in the material
can be further decomposed into an equilibrium contribution and a
non-equilibrium contributions when considering viscoelastic behavior,
as shown in Sec. IT A.

In the multiplicative decomposition, the growth tensor F8 captures
the biological process. In particular, an evolution equation for the
growth tensor is needed, i.e., and equation of the form F%. This growth
rate can be related back to mass deposition, similar to (8). In fact, it
should also be noted the similarities between (12) and (11). Both
approaches recognize the need to track the stress-free state and measure
stress with respect to that configuration. The volumetric split, in contrast
to the mixture model, distills the complex growth and remodeling pro-
cess into a single tensor, without keeping track of the detailed history of
deposition of individual constituents.”” Therefore, it has been more
widely adopted in large scale computer simulations.”**’

6 = ]s—lbs bs — FstT (13)

C. Example: A tissue growing in response to stretch

Consider the tissue with elastic response as illustrated in Fig. 2.
Adopting the multiplicative growth framework,”” the total deforma-
tion is first split into the growth and stress-inducing deformations.
The portion of the deformation that contributes to the mechanical
response is further split into equilibrium and non-equilibrium
branches, see Fig. 3. The mechanical response is thus analogous to
before, but now with the additional growth deformation F8. To close
the description, we introduce two more constitutive models. One is
the specific form of the growth tensor. We assume that the tissue
grows by adding material into each of the fiber directions,

F8 = J P 28(0)V(0) ® V(0)do, (14)

where V(0) is the direction vector for a particular orientation 0 and
78(0) is the growth in that direction. The other equation needed is the
rate equation to determine how growth evolves over time. We assume
that the growth rate is proportional to the elastic equilibrium stretch
in the direction 0

25(0) = = [22(0) —1]. (15)

This type of constitutive model has been successfully used to cap-
ture skin growth, axon growth, and muscle growth, among other
applications.”"*” Alternative examples of constitutive rate equations

REVIEW scitation.org/journal/bpr
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FIG. 3. Example: A tissue grows in response to stretch. This example follows the
description of the elastic behavior shown above. The key addition is the split of the
total deformation F into growth and stress-inducing deformations F9, F*. The com-
ponent F* is further split into equilibrium and non-equilibrium branches. The growth
tensor is assembled by computing the growth in each of the fiber orientations
79(6) with the rate of growth for a particular orientation being proportional to the
elastic deformation in that direction. When subjected to a constant applied stress,
the tissue initially creeps viscoelastically. Then, tissue grows by adding mass into
each of the fiber directions. Because the tissue is subjected to constant stress,
there is always some elastic deformation and, thus, growth will go on indefinitely in
this example.

for growth are based on stress. In other words, stress away from a
homeostatic state is the driver for growth. Stress-driven growth has
been used to capture tumor and bacteria biofilm growth, for instance
in Refs. 66 and 67.

Figure 3 shows a representative example to illustrate the main
points of this theory. A biaxial state of stress is prescribed. This is anal-
ogous to a creep test. At the beginning, the material creeps due to the
viscous, non-equilibrium branch of the deformation that carries the
stress, F*. However, as time progresses, the viscous stretch equilibrates
and it is the growth of the tissue that drives the total deformation. In
this example, growth is proportional to the elastic deformation. Since
the simulation is under constant stress, there is always some elastic
deformation and thus growth would continue indefinitely in this
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example. Note that the time scale of growth is assumed to be quite
small in order to show representative changes in lhr of simulated
time. Yet, even with such a fast time scale for biological adaptation, it
is still clear in Fig. 3 that there is a separation of time scales between
the viscous response and the biological adaptation. Thus, the viscous
response can be safely ignored for equilibrium problems over long
periods of simulated time. If cyclic loading is present, then the visco-
elastic response cannot be ignored. Similar to the previous example,
the code to generate the figure is available in a public repository listed
at the end of the review.

11l. COUPLED BIOCHEMICAL
AND MECHANOBIOLOGICAL FIELD
EQUATIONS AT THE MACROSCALE

Even though in Sec. II, we already alluded to the fact that biologi-
cal tissue can grow and remodel in response to mechanical cues, the
biological processes driving growth and remodeling have not been dis-
cussed. Staying at the macroscale and aiming for a description almost
entirely based on mechanics, the first approach is to consider growth
and remodeling rates as a function of stress or deformation alone. This
was, for instance, the approach in our example, Eq. (15), in which the
growth rate was assumed proportional to the stretch along a fiber
direction. A variety of these equations have been used in the litera-
ture.”*”" For example, growth as a function of fiber stretch® has been
used to model heart adaptation, growth as a function of area stretch
has been used to model skin growth.”” This kind of coupling is not
exclusive to the multiplicative growth theory but has also been used
with the mixture model. For example, in Ref. 71, the deposition of con-
stituents depends on the difference between the current stress and a
target homeostatic stress.

Even though the direct coupling of the state of stress or deforma-
tion to the growth and remodeling rates is insightful, it completely
ignores the underlying biology. One level of sophistication past the
purely phenomenological models is to still consider the macroscale
problem, but to expand the variables from being restricted to mechan-
ics and instead incorporate cell and cytokine density and concentra-
tion fields.”””” Cell populations and soluble chemical signals in the
extracellular space satisfy partial differential equations for mass
balance,

.b+v'qp:3m

) i (16)
¢+ DVe=s.

The flux of the cells, q, includes diffusion due to random walk
of cells but can also account for advective terms for chemotaxis and
haptotaxis.”"”” The flux of chemicals in (16) is typically Fickian diffu-
sion. The source terms, s, s, are the key for coupling the biochemical
fields to the growth and remodeling response of the tissue.

We focus on two main feedback loops between mechanics and
biochemical fields. There is a clear role of connective tissue cells like
fibroblasts to exert active stress on the ECM.”®”” For example,

¢ =pt'v eV, (17)

which considers that the active stress is proportional to cell density
with an average traction per cell £*. The active stress is assumed in the
direction of the fibers via the structural tensor v ® v determined by
the deformed fiber direction v. Cells also deposit ECM constituents
and contribute to ECM degradation through the release of specific
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proteins and enzymes. Thus, we can explicitly link cell and cytokine
fields to changes in mass (growth), mechanical properties, and micro-
structure properties.’”*”>’® For instance, we can propose a growth
rate proportional to the cell density p in response to a signal ¢ with a
mass rate 1,

P =m cp. (18)

Equations such as (18), together with the mass transport of cells
and cytokines in Eq. (16), can, therefore, couple biochemical field
equations to tissue growth and remodeling. This kind of approach has
been used in models of wound healing,22 thrombus remodeling,“ and
tumor growth,”” to name some examples.

The converse feedback loop is the mechanobiological coupling
from the stress and strain fields to the models of cellular activity. At
the macroscale, this would require a way to relate strain and stress
fields to cell behavior such as mass production terms or the active
stress magnitude. This coupling is not straightforward because the
process of transforming mechanical cues to cellular behavior is inher-
ently restricted to the smaller spatial scales, as illustrated in Fig. 1.
Often times, the mechanobiology coupling is bypassed in continuum
models of tissue remodeling.s“‘Sl However, there are some examples of
models at the macroscale that consider a homogenized or average
description of cell mechanobiology. The work by Moreo et al. for
example, introduces macroscale quantities to capture a mechanobiol-
ogy variable,””

Kpassea 0 < 01 ’

Kactpmax )
Kactel _pmax (01 0) + KP35507 01 < 0 < 0 ,

Peell = (19)

Kactpmax *
_SwaPmax g ) 4 K0, 0° <0< 0,
Kact 02 _pmax( : ) s U=
Kpassea 0> 927

where p. denotes a mechanobiology signal that regulates other bio-
logical processes such as mass production terms for collagen and cyto-
kines. The model (19) is derived from a simplified model of cell-ECM
mechanics. The variable 0 in the model is a generalized strain of the
ECM, [0y, 0,] is the range of strain in the cell over which the cell is
capable of producing contractile force. The contractile force of the cell
is assumed bi-linear, with an increasing slope starting from p, = 0 at
01, up tO Pactmax at 0", going back to zero contractile force at 0,. The
parameters Ky, and K, refer to the passive stiffness of the cell and
the stiffness of the active contractile machinery of the cell, respectively.
In summary, Eq. (19) is a good example of how macroscale strain
quantities; in this case, the generalized strain 6 can be used to compute
a mechanobiology variable, in this case pce, to create coupled models
of tissue mechanobiology at the continuum level.”* Other examples
are Refs. 83 and 84. A different example is found in cardiac electro-
physiology modeling, in which the macroscale stress/strain is related
to the opening of ion channels.””

Thus, there are strategies to couple tissue growth and remodeling
equations to the underlying cellular mechanobiology. The coupling
from cell density fields and cytokine concentrations to changes in tis-
sue composition, mechanical properties, and active stress are intuitive
even though they leave out many of the details of the underlying bio-
logical processes. The converse coupling, from the state of stress and
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deformation to the cellular behavior, is more challenging because it is
not naturally captured at the continuum level. While some attempts
have been made to capture macroscale variables of mechanobiology,
Sec. IV dives into the microscale models that capture in detail the way
in which ECM deformation gets transmitted to cell deformation
through the formation and remodeling of focal adhesions.

IV. MODELING MECHANOBIOLOGY AT THE CELL LEVEL

As reviewed so far, the mechanics of the tissue including growth
and remodeling are well developed. Open problems persist when
bridging between the macroscale biomechanics and the biophysics of
the microscopic cell-ECM interaction. In this section, we focus on
mesenchymal cells and connective soft tissues. For these tissues, the
interface between the ECM and the cell is predominantly regulated
through focal adhesions, and, in particular, binding between integrins
and ligands on the substrate.””"” At the scale of single cells, other
mechanotransduction pathways are important in addition to focal
adhesion dynamics. For example, ion-channels on the cell membrane
can be activated as a function of strain.”® Biophysics of cell-cell adhe-
sion are also key for mechanotransduction and can regulate overall tis-
sue growth and remodeling at the macroscale.”” Mechanotransduction
via cell-cell adhesions is particularly important for soft epithelial tis-
sue. The epidermis, the top layer of the skin, is a cellular epithelial tis-
sue that grows in response to stretch via o-catenin signaling activated
by cell-cell cadherin junctions.” For hard tissue cells like osteocytes,
interstitial fluid flow is a primary signal for mechanotransduction.””
Recent work has extended the relevance of fluid transport to other cells
beyond those resident in bone.” Finally, there are indirect paths for
mechanotransduction through growth factors, either due to interacting
between growth factors and the ECM in response to applied forces, or
through secondary couplings between mechanotransduction pathways
and growth factor production and cell membrane receptor activity.
Emphasis in this section will be placed on integrin signaling, since this
is the primary mechanotransduction pathway for cells in soft connec-
tive tissue, where force transmission to single cells occurs via the fibril-
lar, load-bearing ECM. Toward the end of the section, however, we
address some of the modeling tools applicable for a broader set of
mechanosensing events.

A. Cell-ECM mechanotransduction through focal
adhesions

Integrins are a family of transmembrane receptor proteins con-
sisting of o and f§ subunits. There are 18 o subunits and 8 f§ subunits
that combine to form 24 different integrins with finely tuned affinity
to specific ligands and with different roles in cell mechanotransduc-
tion.”* Binding of integrin to ECM ligands and subsequent force trans-
mission from the ECM to the actin cytoskeleton triggers outside-in
signaling that regulates cell behavior.”' Conversely, regulation of integ-
rin activity depends on intracellular signaling pathways and forces
from actin polymerization and molecular motors inside the cell in the
process of inside-out signaling.”” Integrins connect to the actin
cytoskeleton through a number of cross linker proteins such as talin,
vinculin and kindlin.”*”” Force sensitivity of the ECM-integrin-cyto-
skeleton complex has been studied in great detail with molecular
dynamics simulations to understand the fundamental mechanisms of
cell mechatransduction through focal adhesions. Molecular dynamics
of single integrin complexes are beyond the scope of this review but
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can be modeled either will all-atom simulations or with coarse-grained
models.”® An efficient but still mechanistic way of describing integrin
kinetics is through the model originally proposed by Bell more than
half a century ago to describe cell-cell adhesion kinetics,” later
extended to capture integrin binding Kkinetics in the presence of
applied forces. According to this model, integrins can bind ligands in
the substrate with certain probability P,, which depends on the rela-
tive concentration of integrins in the cell membrane and ligands on
the substrate as well as the affinity between the two. The key insight of
Bell’s model of adhesion is the dependence of the dissociation rate on
the energy stored at the adhesion. The bond dissociation probability
follows a Boltzmann distribution. The energy stored at the adhesion,
in turn, depends on the contractility of the cell and the stiffness of the
substrate. The probability of forming a new bond between an integrin
and a ligand can be expressed according to the Poisson process
distribution,

Po = 1 — ¢ 8k, (20)
while the probability of bond dissociation is, likewise
Pog = 1 — ¢4, (21)

but with the dissociation rate in Eq. (21) depending on the energy at
the adhesion through a Boltzmann distribution,

kot = kofreE/aT. (22)

The energy at the adhesion, AE, depends on the stiffness of the
substrate, a characteristic length scale, and the contractile force of the
actomyosin motors in the cytoskeleton, which pull on the integrin-
ligand bonds.'” For the simplest case of linear elastic substrate, the
energy at the adhesion is

f2

2kpem

AE, = fy = (23)
where f is the contractile force, 7 is the characteristic length scale, and
kgcwm the substrate stiffness.

The initial model by Bell”” has endured the test of time. It has
gradually been improved, resulting on a rich history of model develop-
ment and sophistication. For example, the model has been extended to
capture the feedback between cell contractility and substrate stiff-
ness,'’! the role of integrin clustering,”u and the role of substrate vis-
coelasticity.”” Local remodeling of the ECM has also been built upon
this adhesion model.'”” Other variations of the model have incorpo-
rated a bimodal response of integrins to force such that the dissocia-
tion rate is not a decreasing function of the energy at the adhesion.
Instead, a certain level of force increases the rate of integrin bond for-
mation. This is called the catch-bond model and captures a positive
feedback loop between force exerted by cells and growth of focal adhe-
sions.'” The model by Bell and the extensions to include the more
sophisticated events—e.g., activation rates of different integrins, the
catch bond response, integrin clustering—have been informed by
atomistic models, but eventually condensed into rate parameters such
as ko, and kos used in Eq. (22)."% Thus, even if the homogenized
kinetics of integrin binding are much simpler compared to all-atom
models, they are informed from molecular dynamics and coarse
grained simulations to ensure that they still capture the same (homog-
enized) physics.
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It should also be noted that Eqs. (20) and (21) are in terms of the
discrete events, i.e., they describe the binding or dissociation of an
individual bond. As a result, they need to be modeled with Monte
Carlo sampling.'”” The homogenized version of this model assuming
uniform distribution of integrins on the cell surface and ignoring satu-
ration of ligand sites on the substrate is an ordinary differential equa-
tion (ODE)

bp = kon(1 = ¢3) — kot Dy (24)

where ¢, is the fraction of integrin bonds with respect to the total
number of integrins of a single cell. Equation (24) thus reduces the
entire surface of the cell and the discrete adhesion events to a single
scalar. Even though this simplification has been made often, spatial
models accounting for integrin diffusion on the membrane and integ-
rin clustering are also found in the literature.'”” For example, some of
the most impressive work in this regard are the models of single cell
migration on different substrates by Kim et al.'””'"* These and other
efforts that go from the single integrin kinetics to the modeling of
whole cells increases the complexity by considering not only the
mechanics at the adhesion, but also the complex mechanics of the
actin cytoskeleton and of fiber networks nearby cells.'”"""’
Nonetheless, the cell-ECM adhesion components in these whole-cell
models are still based on the fundamental Egs. (22) and (24). When
considering whole-cell simulations, the mechanics of the actin cyto-
skeleton mechanics can be captured with agent based models.'"” For
increased computational efficiency, homogenized models of actin
cytoskeleton networks treated as a Maxwell solids have also been
employed to model whole cells.""'

By modeling the adhesion of cells to the substrate accounting for
biophysical phenomena, models such as (22) and (24) are a mechanis-
tic tool to capture mechanosensing. Indeed, these models predict
observed cell behavior such as increased contractility, stiffness, and
adhesion in stiffer substrates compared to softer ones.''” Models of
cell migration based on (22) and (24) capture durotaxis, or the ten-
dency of cells to migrate toward stiffer substrates.''” Therefore, simply
by modeling the kinetics of the adhesion and how these depend on the
biophysics of integrin bonds opens up a pathway to model how
mechanical inputs such as stretch, stress, viscoelasticity, or stiffness of
the substrate contribute to cellular activity. "

Even understanding the cell-ECM interface, there is still a
lengthy and convoluted path to go from integrin-ligand bonds to the
gene expression at the nucleus of the cells, which is what ultimately
drives the long-term growth and remodeling of the tissue. The cascade
of intra-cellular events taking place upon integrin binding and leading
up to changes in gene expression is a topic for a review on its own and
will not be covered in detail here.”’ Briefly, integrin binding to ECM
ligands—such as fibronectin or collagen—generates conformational
changes in their cytoplasmatic domain and results in recruitment of
proteins such as talin and vinculin that link integrins’ cytoplasmic
domain to the actin cytoskeleton in a force-dependent manner.”””*
Interaction among integrins and cross-linker proteins under force also
drives clustering and maturation of the focal adhesions.'”” One of the
main pathways for signaling downstream of integrin activity is
through focal adhesion kinase (FAK) phosphorilzation.”” FAK
recruitment and phosphorylation at cell-ECM adhesions acts through
Src tyrosine kinases to regulate downstream signaling cascades that
affect cell behavior. For instance, the FAK-SRC complex regulates
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GTPases signaling proteins including Racl, Cdc42, and Rho, which
have direct roles in actin cytoskeleton remodeling."'” Another end
point of the integrin signaling pathway, that is, regulated through the
FAK-SRC complex culminates in ERK activation, leading to the regu-
lation of cell proliferation.''® Changes in the cytoskeleton also result in
downstream gene regulation, for example, through the YAP/TAZ
pathway.''”"'? Forces transmitted from the ECM to the cell do not
stop at the cytoskeleton but are transmitted to the nucleus through the
LINC complex.'"” Nuclear deformation itself offers another potential
mechanism for mechanoregulation of gene expression, possibly
through regulation of nuclear import of transcription factors and
export of mRNA, both of which are enforced by the nuclear pore com-
plex."”” There are efforts on modeling the intra-cellular mechanobiol-
ogy processes that take place beyond cell-ECM adhesion formation.
In this front, some excellent work has been done to describe signaling
networks for fibroblasts.'”' ">’ For instance, in the work by Zeigler
et al,'”* the authors model how paracrine signaling in direct response
to myocardial infarction can predict observed changes in heart tissue
fibrosis through a cell-signaling model of fibroblast mechanobiology.
The approach is similar in the work by Estrada and coauthors.'” In
general, a reasonable approximation of the problem is to rely on ordi-
nary differential equations (usually Hill-type equations) and logic
models linking mechanical cues to activity of intracellular signaling
pathways to cell phenotype.'”*'** These models can range in com-
plexity, from considering only a couple of pathways with a small num-
ber of components''” to very detailed signaling cascades.'”’

B. Models of cell mechanotransduction beyond
cell-ECM adhesion

Even though most of this review is focused on mesenchymal cell
mechanobiology for soft connective tissue growth and remodeling, it
is worth devoting some attention at other modeling frameworks that
are applicable to a broader range of tissues. Even for mesenchymal
cells, other mechanotransduction pathways beyond cell-ECM adhe-
sion are at play as discussed briefly at the beginning of the section. For
epithelial tissues, which are highly cellular, a natural mathematical
description of cell mechanics and mechanobiology is in terms of vertex
models."”” In this approach, the geometry of the epithelial tissue can
be captured with polygons for each cell in 2D, or with prismatic poly-
hedra in 3D."”""** Balance of momentum in vertex models usually fol-
lows from posing an energy minimization problem.'”” The energy
functional allows the encoding of cell behavior—e.g., preferred cell
area or volume-, as well as interaction energies between cells—e.g.,
cortical tension along faces or edges of the polyhedra shared by two or
more cells. External forces can be also applied as boundary conditions.
Minimization of the energy functional leads to force balance on the
domain. Crucially, the energy potentials are used to encode the mecha-
nobiological response via attractors toward a desired homeostatic state.
Minimization of competing potentials can lead to emergent behavior
as one potential is dominant over another. For instance, a well-
established transition in epithelial tissue is whether they are more
fluid-like or solid-like, which is a consequence of the competing ener-
gies for cell volume and surface tension.'”

Coupling of vertex models to the nonlinear tissue mechanics
descriptions at the larger scales, such as the ones reviewed in Sec. I,
have not been attempted and constitute an avenue for future research.
On the other hand, homogenization of representative volume elements
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from vertex models alone, without interaction with the fibrillar ECM,
can be done to upscale mechanics of epithelial tissue to be used in con-
tinuum models of the larger scales.”” More interestingly, vertex mod-
els pose the question of how to derive analogous mechanobiology
potentials but for mesenchymal cells interacting with connective tissue
ECM. In a fiber network, modeling cells as polyhedra could pose its
own challenges. Alternative geometries for cells in epithelial tissue
have been explored,”(’ and could be used to model cells in fibrillar
ECMs. Finite element models of single cells embedded in the ECM are
also plausible but their use in multiscale modeling can be hindered by
computational cost.""’

C. Example: A nonlinear model of cell adhesion
and contractile stress

To illustrate the biophysics encoded in (20), (21), and (24), we
show a representative example illustrated in Fig. 4. Compared to the
literature, however, consider a nonlinear energy at the adhesion that
builds upon the model we introduced in Eq. (3). This nonlinear model
is in contrast with the more common linear models in the literature.
For such a material, the energy at the adhesion becomes nonlinearly
dependent on the contractile force and the stretch of the substrate, as
opposed to the linear case in Eq. (23). For the nonlinear material
model, the energy is AE = [W(1) — ¥(2)]Ag Iy, with 2 being the new
stretch of the fiber or fiber network as it is pulled by the contractile
force fat the site of adhesion and [y, A are length scale and area param-
eters related to the column of substrate being deformed due to a single
integrin-ligand bond. Because the model is nonlinear, it directly links
stretch of the substrate to changes in binding probability, as seen in
Fig. 4.

In addition to the nonlinear energy, the model includes one more
level of sophistication: dynamic control of the contractile force accord-
ing to the model by Cao et al.'” In Fig. 4, the contractile force f is
tightly regulated in a dynamic fashion. The model captures the rein-
forcement of the adhesion by modeling the coupling between the con-
tractile force and the ECM stiffness,'”°

f= fok ko)’ =
1- B+ (—“ + —“)
kei Ky

where f, is the pulling force on actin when there is no feedback, k,, is
actin stiffness, ky is nucleus stiffness, [ is a feedback term, and kg is
the effective stiffness of the substrate. In our example in Fig. 4, the stift-
ness of the substrate is the tangential stiffness since the model is non-
linear and the stiffness changes at different levels of stretch. Figure 4,
thus, illustrates how the contractile force is regulated according to (25)
to maintain an optimal level of adhesion as the tangential stiffness of
the substrate changes.

To conclude the example, we recall the active stress mentioned
briefly in Eq. (17). After solving for the adhesion probability of
integrin-ligand pairs, estimating the total number of integrins per cell
and solving for the contractile force as indicated in Eq. (25), the mag-
nitude of the active stress becomes

llo®l[ = * = f by i (26)

with #* being the resulting traction magnitude and p; the integrin den-
sity. The active stress is illustrated in Fig. 4. Due to the nonlinear
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FIG. 4. Example: A nonlinear adhesion model. The interface cell-ECM results from
the formation and dissociation of integrin-ligand bonds and focal adhesions. The
kinetics at the adhesion are first-order with the dissociation rate dependent on the
elastic energy at the adhesion. The elastic energy at the adhesion, in turn, depends
on ECM deformation and the cell contractile machinery. Monte Carlo simulations of
individual integrin-ligand pairs can be homogenized to obtain ordinary differential
equations (ODEs). In the case in which the ECM is modeled as a nonlinear mate-
rial, the apparent stiffness of the ECM ke is dependent on stretch. The integrin-
ligand bond fraction remains largely unchanged with stretch; however, this is due to
the dynamic regulation of the contractile force f based on Eq. (25). Even though the
cell adhesion stabilizes to a similar value as stretch increases, the active stress
exerted by the cell on the ECM changes in a nonlinear fashion to match the stiff-
ness of the substrate.

tangential stiffness of the substrate with increasing stretch, kg, the cell
active stress exhibits a corresponding regulation. Even though we
have illustrated a rather essential description of cell adhesion, it
illustrates the key concept that cells constantly form and dissociate
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integrin-ligand bonds with the substrate, and the mechanobiology
coupling occurs due to the biophysics at the adhesion, which depend
on apparent stiffness (in turn a function of deformation) and the com-
position of the substrate. This type of model is intuitive when analyz-
ing the cell scale, but in fact, most of the tissue level descriptions of
growth and remodeling are coupled directly to the macroscopic elastic
deformation or state of stress of the tissue, without considering the
complex biophysics that link the ECM to the cell.””

V. MULTISCALE GROWTH, REMODELING,
AND MECHANOBIOLOGY

By this point, we hope to have convinced the reader that the mac-
roscale mechanics of soft tissue, including growth and remodeling, are
well established. Coupling between growth, remodeling and mecha-
nobiology at the tissue level can be done by introducing continuum
fields for cells and cytokines. These biological and biochemical fields
can then be used in the reaction terms of the growth and remodeling
equations, as well as in the active stress equation. On the other hand,
as just reviewed, modeling the cell level biophysics, especially the integ-
rin and focal adhesion kinetics, offers a necessary tool to capture the
first link in the mechanobiology coupling: how forces are transmitted
from the ECM to the cell. The purpose of this section is to review the
existing approaches to go across these two scales in a unified
framework.

A naive formulation for multiscale modeling is to simply nest
models and build bottom-up approaches that capture all the details
and mechanisms of the lower scales up to the macroscale response of
the tissue. Multiscale coupling of this nature is feasible up to a certain
extent."””"*” Yet, it becomes intractable for realistic biomedical appli-
cations. Some recent efforts in multiscale mechanobiology propose the
use of an intermediate scale or mesoscale to gain a deeper understand-
ing of how to couple cellular activity to tissue mechanics."*’ Other
work aimed at gaining insight from the mesoscale are Refs. 17, 20, and
141. At the mesoscale, on the order of hundreds of um, the ECM can
be accurately modeled with discrete fiber networks.'”""*>'*" Cells
can be considered with realistic geometries'** or with more simple
geometries such as ellipsoids." " ** Mesoscale models allow for model-
ing of cell-cell and cell-ECM interactions.”” Due to the manageable
size of the domain, computational models from the single cell can be
easily ported into mesoscale models by considering cells as agents.'””
Some information is inevitably lost in this scaling up, but enough
detail can be maintained. Similarly, information from the larger, mac-
roscopic scale can be passed down to the mesoscale in the form of
boundary conditions.”” Mesoscale models are perhaps the most natu-
ral playground to gain a deeper understanding of growth and remodel-
ing across scales. Before diving into the open problems and
opportunities, one last example is provided.

A. Example: A tissue remodels in response to cellular
activity

To illustrate the concepts covered so far, Fig. 5 shows the integra-
tion of the cell adhesion model from Fig. 4 to the growing tissue model
from Fig. 3. The ability to capture the coupling across scales in this
case is achieved by considering a homogeneous solution. In other
words, consider a tissue subjected to uniform boundary conditions
(specified deformation) and populated by cells that all behave in
exactly the same way. This greatly simplifies the coupling in terms of
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FIG. 5. Example: A fully coupled model of tissue growth. Following the tissue
growth example, the total deformation of the tissue is split into growth and stress-
inducing contributions. However, growth is now modeled based on collagen deposi-
tion my by cells p in response to TGF /5 ¢ and stretch. The link to stretch is based
on the adhesion kinetics model described above, in particular the stress in the cell
t2. When subjected to a uniform applied deformation, tissue grows over time.
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numerical simulation; yet, it still provides a window into the coupled
behavior that can be observed when taking knowledge from different
scales into account. In Fig. 5, the growth of the tissue is ultimately dic-
tated by collagen deposition,

75 =)o, (27)

where #i1¢ denotes collagen mass production and ¢ is the density of
collagen. Deposition of collagen is due to cells, denoted p. The process
is further regulated by TGFf}, denoted ¢, and a mechanobiology cou-
pling, which, in this case, is the taken to be the active stress magnitude
#°. The production of collagen is based on our previous work,

o

c
K¢, + mg

K. Tc — (d¢ +ds p c)my,

g = (Pf + Pre +Pf,sta)

(28)

with parameters as reported in Ref. 75. The cell and cytokine variables
change in a similar manner. For the cell,

. Pp.cC a P
= t 1——
g <P,> - c+ Ky s > < Kp,p) i’

- pp + Dp,p(pphys - rho), (29)
and for the cytokine,
c = (pCTCC +pcﬁsta) KC,Cp—’— . - ch + Dc,c(cphys - C)- (30)

Note that even though Egs. (28)-(30) were originally developed
for wound healing modeling”” and follow a rich history of coupled
wound healing model development,””*""*” they can naturally cap-
ture the growth of tissues in response to stretch. One key idea is to
couple the dynamic equations for cell and cytokine densities to the
mechanical state of the wound through a mechanobiological vari-
able, much in the spirit of the one introduced in Eq. (19).”* Here,
however, the mechanobiology coupling is through the stress in the
cell t%, which is a product of solving the adhesion model illustrated
in Fig. 4. The other key coupling is to link the collagen production
by cells to the growth of the fibers, see Eq. (27). Together, this last
example showcases the type of multiscale description needed to
interrogate tissue growth and remodeling with a more detailed
account of the mechanobiology processes at the cell level. Solving
the coupled equations, it can be seen that the applied deformation
stays constant over time, but the elastic deformation 4° decays over
time as growth, /%, increases. Growth of collagen fibers is facilitated
by a dynamic response of cell density p, TGFf concentration c, col-
lagen mass fraction m, and cell contractility #*.

VI. OPEN PROBLEMS AND OPPORTUNITIES

The mesoscale models covered in Sec. V are able to bridge single
cell biophysics to the nonlinear mechanics of the tissue. Yet, represen-
tative volume elements (RVE) of the mesoscale are still not readily
usable in full field finite element simulations of tissues at the macro-
scale, where purely phenomenological approaches remain the default
option.'” The mesoscale models also might require simplifying
assumptions for the single-cell biophysics models in order to be com-
putationally manageable. A major roadblock in multiscale coupling is
the complexity of intra-cellular biophysics regulating gene expression
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and cell phenotype.'””"*” Thus, despite our current understanding of
cell mechanobiology at the microscale, and of the adaptation of tissues
through growth and remodeling at the macroscale, fully coupled mod-
els spanning all scales remain an open challenge.

In recent years, machine learning (ML) and artificial intelligence
(AT) have permeated into all fields of engineering and science. We argue
that physics-informed ML methods can be used to couple models of cell
mechanobiology at the microscale to models of ECM and tissue
mechanics at the macroscale. The obvious route is to use ML for the
acceleration of computationally intensive models. Physics-informed sur-
rogate models, such as artificial neural networks (ANN) and Gaussian
processes (GP), can be used to replace the computationally intensive
models, essentially extracting input-output maps. which capture the
underlying physics without the need for the computationally expensive
physics solvers. This strategy has proven successful in several applica-
tions. For instance, we have shown how model order reduction and GPs
can be used to replace computationally expensive finite element simula-
tions to enable optimization of reconstructive surgery procedures under
uncertainty.”’ We have also shown how ANNs can learn constitutive
models of the mechanical response of biopolymer gels."” Thus, ML and
Al tools can speed up simulations by orders of magnitude while retain-
ing accuracy, making fully coupled multiscale models of mechanobiol-
ogy a reachable target in the near future. On the other hand, ML and Al
are not magic bullets. Some of the possible pitfalls and challenges of try-
ing to use black-box models in biomedical engineering and multiscale
modeling have been outlined in a recent perspective article."” One prob-
lem is to guarantee that the surrogate model is evaluated in regions over
which there is sufficient confidence in the prediction. Alternatively, cre-
ating ML and AI models capable of transfer learning and extrapolation
beyond the observed data while satisfying some essential physics con-
straints are needed. A second major challenge is how to deal with uncer-
tainty. At the macroscale, the majority of models tend to assume
deterministic behavior. Yet, even at the macroscale this is too simplistic.
We have shown the role of uncertain material properties in biomedical
applications such as skin growth in tissue expansion.””’ Going down the
spatial scales, reality becomes even more uncertain. Not only are the
parameters specifying the models uncertain, but the process itself is sto-
chastic, e.g., the adhesion kinetics at the single integrin level, or the intra-
cellular events of mechanotransduction.'” Other challenges to integrate
ML and Al into multiscale modeling frameworks are how to deal with
sparsity of data, multi-fidelity and multi-modality data, and lack of
interpretability of many ML, Al models.

In addition to overcoming the computational challenges of
multiscale coupling, ML and AI can be particularly powerful to
learn representations of the processes linking the mechanical sig-
nals at the cell membrane to the gene expression of single cells
bypassing the complex intra-cellular signaling cascade dynam-
ics.””>""* For example, in the very recent work by Bonnevie
et al.,"”” the authors use artificial neural networks to predict the
mechanobiological state of individual cells in terms of YAP/TAZ
nuclear translocation based on biochemical inputs as well as cell
and nuclear morphology. This is contrast with mechanistic
approaches to model YAP/TAZ dynamics.'"® Similar to the chal-
lenges outlined above for the physics-based ML frameworks, ML
models that attempt to capture the biological processes inside the
cell have to be posed in a Bayesian way in order to deal with the
inherent variability and stochasticity of these processes.
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Multiscale integration of current models at the nano-, micro-,
and macroscales is needed. Yet, this does not mean that there are no
outstanding challenges when considering these separate scales. For
instance, for the microscale models, we have emphasized the modeling
cell-ECM adhesions and their downstream signaling pathways, e.g.,
Ref. 121. Yet, these models ignore some important energetic consider-
ations that can constrain the possible cellular response. The down-
stream effects of mechanotransduction pathways include remodeling
of the cytoskeleton, proliferation, generation of active stress, etc., all of
which depend on cell metabolism."”>"”” Cell migration in different
environments depends on the energy efficiency of different migration
mechanisms.' ™ The vertex models for epithelial tissues described in
Secs. [-V1I are based on energetic potentials. Thus, this kind of model
could be extended to capture the explicit coupling between metabolism
and mechanotransduction. Energy required for cellular activity could
also be included as additional constraints in the ODE-based models of
mechanotransduction such as Ref. 121.

At the tissue level, an active area of research is to build higher
fidelity models that can account for detailed geometry, accurate
boundary conditions, and tissue heterogeneities. For instance, recent
work on tendon biomechanics has shown the importance of heteroge-
neous mechanical properties to correctly determine the in vivo state of
stress of these tissues.”” Work along similar lines of investigation has
been done recently to determine the spatially varying properties of
aortic tissues and the lamina cribrosa.'”'*" Modeling interstitial fluid
is commonplace in computational models of bone but has not received
a similar level of attention in soft tissue.”

VII. CONCLUSION

In this review, a wide range of models spanning was covered,
from a single integrin binding to the substrate to a tissue growing in
response to stretch. The thread throughout has been the need to create
fully coupled models of mechanobiology that can span all scales.
These models are essential for a deeper understanding of how tissues
form during development, how they physiologically adapt to mechani-
cal cues, and how they maladapt in disease. We hope that this review
will bring together scientists from different sub-fields and inspire them
to tackle the outstanding challenges in multiscale modeling of
mechanobiology.

SUPPLEMENTARY MATERIAL

See the supplementary material for the code to generate the fig-
ures in this article, which are available in the public repository
https://github.com/abuganza/MultiscaleMechanobiology.
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