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ABSTRACT:

The accelerated warming conditions of the high Arctic have intensified the extensive thawing of permafrost. Retrogressive thaw slumps
(RTSs) are considered as the most active landforms in the Arctic permafrost. An increase in RTSs has been observed in the Arctic in
recent decades. Continuous monitoring of RTSs is important to understand climate change-driven disturbances in the region. Manual
detection of these landforms is extremely difficult as they occur over exceptionally large areas. Only very few studies have explored
the utility of very high spatial resolution (VHSR) commercial satellite imagery in the automated mapping of RTSs. We have developed
deep learning (DL) convolution neural net (CNN) based workflow to automatically detect RTSs from VHRS satellite imagery. This
study systematically compared the performance of different DLCNN model architectures and varying backbones. Our candidate CNN
models include: DeepLabV3+, UNet, UNet++, Multi-scale Attention Net (MA-Net), and Pyramid Attention Network (PAN) with
ResNet50, ResNet101 and ResNet152 backbones. The RTS modeling experiment was conducted on Banks Island and Ellesmere Island
in Canada. The UNet++ model demonstrated the highest accuracy (F1 score of 87%) with the ResNet50 backbone at the expense of
training and inferencing time. PAN, DeepLabV3, MaNet, and UNet, models reported mediocre F1 scores of 72%, 75%, 80%, and 81%
respectively. Our findings unravel the performances of different DLCNNs in imagery-enabled RTS mapping and provide useful

insights on operationalizing the mapping application across the Arctic.

1. INTRODUCTION

The Arctic is going through rapid changes in recent years. The
temperatures in the region are rising at two to fourfold the global
average (Screen, 2010). Due to the warming Arctic, the
occurrence of permafrost disturbances, such as retrogressive
thaw slumps (RTSs) has increased (Lants 2008). It is important
to perform continuous monitoring of these disturbances to
evaluate the impact on the Arctic environment. However,
monitoring these disturbances is difficult in the Arctic compared
to other parts of the world due to extreme weather, remoteness,
and logistical challenges.

RTSs are thermokarst features created by the rapid thaw of ice-
rich permafrost on slopes of permafrost. An active thaw slump
consists of an exposed headwall that defines the upslope
boundary of the RTS. Below the headwall, there is a scar zone
consisting of muddy exposed soil. The materials in the scar zone
can move downslope by creating a tongue-like shape at the other
end of the RTS (Figure 1).

scar zone
Figure 1. Retrogressive thaw slump headwall, scar zoe, and
debris tongue.

RTSs impact infrastructure, and aquatic and terrestrial
ecosystems (Kokelj et al. 2013). Sediment and solutes released
by RTS alter the properties of soils and surface waters. A mass
movement of sediments and runoff can change the turbidity of
adjacent rivers, lakes, and coastal environments. (Segal, 2015)

There are many attempts have been made to map RTSs in the
Arctic region. Most of the mapping has been done using remote
sensing images with manual techniques. There are only a few
attempts have been made to automatically map RTSs using
remote sensing images. Huang et al 2020 used Planet CubeSate
images of 3m resolution to map RTSs in Tibetian Platue with
DeepLabV3+. Recently Nitze et al. 2022 utilized PanetScope
satellite imagery of 3.15m resolution to map RTS using UNet and
UNet++. Witharana et. al 2022 employ high-resolution satellite
images of 0.5m resolution to detect RTS using UNet. In that, they
analyze the effect of different image tile sizes and spatial
resolutions on the deep learning model prediction performances.

The morphometric features of RTSs (headwall, scar zone, and
debris tongue) are well suited to be exploited with machine/deep
learning algorithms. We use Deep Learning Convolutional
Neural Networks (DL-CNN) to automatically detect RTSs. The
main objective of this study is to investigate how different DL-
CNN networks perform on RTSs detection using very high-
resolution satellite imagery. Based on five candidate DL-CNN
architectures, we systematically compared their training and
detection performances.

2. METHODS
2.1 Mapping of RTS using satellite images

We used a transfer learning strategy to train the
candidate DL-CNNSs. In transfer learning, we have
two stages. In the first stage, we use backbone CNN
and in the second stage, we use classifier network.
Figure 2 shows a schematic diagram for this
approach. The backbone CNN is used to extract
features from the images. The backbones of the
networks have been pre-trained on ImageNet
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datasets. Therefore, we can use a small number of
samples to train the CNN. The extracted features are
used to segment the RTSs in satellite images. We
use different CNN networks for the segmentation of
RTSs.
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Figure 2. Simplified schematic diagram of transfer learning in
convolutional neural networks. (Imagery © 2016 DigitalGlobe,
Inc).

We tasked three convolutional backbone networks, 1) ResNet50,
2) ResNetl01, and 3) ResNetl152 (He, 2016) in this study. We
used the pre-trained weights on the ImageNet dataset and froze
weight values while training on our custom RTS dataset. Our
comparative analysis entailed five semantic segmentation
algorithms: UNet (Ronneberger, 2015), Pyramid Attention
Network (PAN) (Li, 2018), Multi-scale Attention Net (MANet)
(Fan, 2020), and UNet++ (Zhou, 2018). Table 1 shows the
number of total parameters and the number of trainable
parameters in each network.

Model Backbone Number of | Number of
parameters | trainable
(millions) parameters
(millions)
UNet Resnet50 32M 9M
Resnet101 51M 9M
Resnet152 67M 9M
PAN Resnet50 24M M
Resnet101 43M M
Resnet152 58M 1M
MANet Resnet50 147M 123M
Resnet101 166M 123M
Resnet152 182M 123M
DeeplabV3 Resnet50 26M 3M
Resnet101 45M 3M
Resnet152 61M 3M
UNet++ Resnet50 48M 25M
Resnet101 67M 25M
Resnet152 83M 25M

Table 1. Comparison of the size variation of candidate DL-CNN
models

2.2 Model Training

The RTS modeling was conducted based on the high res satellite
imagery from Banks Island and Ellesmere Island in north Arctic
Canada (Figure 3). We selected 12 WorldView-2 satellite images
from Banks Island and 14 WorldView-2 satellite images from
Ellesmere Island to generate hand-annotated RTS training data.
Image scenes were acquired during July - Aug at 0.5m spatial
resolution with 4 spectral channels (red, green blue, and near
infra-red). Pansharpened and orthorectified imagery were

provided by the Polar Geospatial Center, University of
Minnesota.
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Figure 3. Selected study areas from Banks Island (left) and
Ellesmere Island (right) in Canada.

For the model training, 475 image tiles (2048 x 2048 pixels or ~
1km x 1km on the ground) were selected from each of the study
sites shown in Figure 3. The dataset was split into 80%, 10%,
and 10% for training, validations, and testing, respectively.

We utilized Adam optimization algorithms with a learning rate
of 10 for the first 25 epochs and 107 for the rest of the epochs.
We used dice loss for calculating training and value loss while
training. All models were trained across 100 epochs. We
employed 3 augmentations (horizontal flip, vertical flip, and
random 90-degree rotation) to the datasets with 50% probability
in each epoch.

Figures 4-8 show the training F1 scores for different CNN
architectures coupled with three backbone networks
ResNet50(blue), ResNetl101(orange), and ResNetl52(green).
Figure 4 shows the F1 scores for MANet. All backbone networks
achieved 97% accuracy at the end of epoch 50. Figure 5 shows
the F1 scores for the DeepLanV3 network. Here all three
backbones reported 96% accuracy at the end of the training.
Training accuracy for the UNet model is shown in Figure 6. At
the end of the training, all three backbones achieved 97%
accuracy. Figure 7 shows the training F1 scores for the PAN
network. All three backbone networks scored 96% accuracy. As
seen in Figure 8, UNet++ with Resnet50 showed elevated F1
scores (at epoch 50 it's around 98%) compared to the other two
backbones.
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Figure 4. F1 score for training with ResNet50(blue),

ResNet101(orange), and ResNetl152(green) for MANet
network.
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Figure 5. F1 score for training with ResNet50(blue),
ResNet101(orange) and ResNet152(green) for DeepLabV3
network.
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Figure 6. F1 score for training with ResNet50(blue),

ResNet101(orange) and ResNet152(green) for UNet network.
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Figure 7. F1 score for training with ResNet50(blue),

ResNet101(orange) and ResNet152(green) for PAN network.
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Figure 8. F1 score for training with ResNet50(blue),
ResNet101(orange) and ResNet152(green) for UNet++
network.

Based on the training accuracy budget (Figures 4-8), we selected
the UNet++ model with the ResNet50 backbone as our best-
performing model to detect RTSs in the study area. Automated
detection of RTSs using high-resolution imagery is a challenging
task. A typical 0.5m resolution image scene is about 20 km x 20
km in size and contains about 1.6 billion pixels. An image scene
as it is does not fit the GPU memory, therefore we need to split
the image scene into small tiles. As shown in Figure 9, we first
partitioned the image into 2000 x 2000 pixel tiles. Then we feed
these tiles into the trained DL-CNN model for predictions.
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Figure 9. Semantic diagram of high-resolution satellite imagery
workflow.

We used NVIDIA A100 GPU with 40Gb memory to run our DL-
CNN models. The different models were executed using the
PyTorch Segmentation Models library (Yakubovskiy 2019). We
further utilized other libraries such as OpenCV for image
processing, = GDAL for accessing satellite images, and
Albumentations for image augmentation.

3. RESULTS

3.1 Model Comparison

ResNet50 backbone network consistently performs better in the
training stage according to Figures 4-8. Figure 10 exhibits CNN
model performance with respect to the test dataset. Here we have
chosen ResNet50 which was the best performing network for
proceeding CNN model comparison. Accuracy scores from the
comparative model analysis (Figure 10) elected the UNet++
model as the best contender The lower F1 scores were reported
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by the DeepLab V3. The MANet and the UNet demonstrated the
second and third best performances, respectively.
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Figure 10. F1 score for training with ResNet50 with different

DL-CNNs. DeepLabV3(blue), MANet(orange), PAN(green),

UNet(red), UNet++(purple)

Figure 11 shows the training times for each model combination.
The UNet++ model is slower compared to the other models.
DeepLabV3 was the fastest among the candidate networks. The
use of a lighter Resnet50 is faster in training than a larger
backbone of Resnet152. Both PAN and UNet exhibited similar
training time to that of DeepLab V3.
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Figure 11. Time taken for training for different models with
different backbones combinations.

Figure 12 depicts the F1 scores pertaining to the test data. The
UNet++ outperforms the other CNN models on the test dataset.
UNet++ with ResNet50 showed the highest F1 and PAN
network with ResNet101 showed the lowest F1 score. ResNet50
backbone network consistently showed better F1 scores in all
combinations.
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Figure 12. Reported F1 scores on test data for models trained
with ResNet50(blue), ResNet101(orange), and
ResNet152(green) for different DL-CNNs.

Figure 13 shows three examples of detected RTSs and ground
truth annotations. Each row shows the image tile (left), ground
truth (middle), and predicted RTSs (right), respectively. Visual
inspections revealed that the UNet++ DL-CNN was able to
accurately detect and delineate RTSs. Some miss detections were
observed when the RTSs are smaller in size (see Figurel3, last
row).

Ground Truth Mask Predicted Mask

Predicted Mask

Image Ground Truth Mask Predicted Mask

Figure 13. Three image sample tiles of the test dataset and the
ground truths and predicted masks of those images. (Imagery ©
2016 DigitalGlobe, Inc).

Among different CNN model-encoder combinations, the
UNet++ model with the RsetnetS0 backbone demonstrated the
highest accuracy (F1 score of 87%) at the expense of training and
inferencing time. The PAN, DeepLabV3, MaNet, and UNet,
models reported mediocre F1 scores of 72%, 75%, 80%, and 81%
respectively.

3.2 RTS Prediction

We have applied the trained UNet++ model with the Reset50
backbone on satellite imagery from Banks Island and Ellesmere
Island Figure 14(a) shows example detection in Banks Island.
Over 90% of the RTS were correctly detected by the UNet++
with the ResNet50 backbone. Figures 14(b) show the zoomed-
inviews of example areas. The trained model was able to detect
the RTSs in Banks Island accurately. Figures 15(a) show the
example detection in Ellesmere Island. Similar to Banks Island,
over 90% of the RTS were correctly detected by the UNet++ with
ResNet50 backbone. Figures 15(b) shows the zoomed-in view of
example detections.

In all the cases the RTS headwall was correctly detected. In some
cases, the RTS only in the scar zone (refer to an anatomy of RTS
shown in Figure 1) was detected. In other instances the debris
tongue was also included, however, it was not consistent across
all predictions.
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Figure 14. (a) Model application in Banks Island. (b) Zoomed-
in views of the detections. (Imagery © 2016 DigitalGlobe, Inc).

Figure 16 demonstrates the potential of multi-temporal RTS
detection. Figure 16(a) and (b) correspond to images acquired in
2015 and 2019, respectively. The green outline represents
prediction based on the 2015 image and the yellow outline
represents the RTS detection based on the 2019 image. As shown
in the figures, we can clearly see the upward movement of the
headwall in 2019. The 2015 scar zone had been stabilized by
2019. This example elucidates the potential usage of the DLCNN
approaches for monitoring RTS activity using high-resolution
satellite imagery. Because of the sub-meter scale spatial
resolution, it is possible to differentiate RTS’ morphometric
variations.

Figure 15. (a) The model application is Ellesmere Island. (b)
Zoomed vies of the detections. (Imagery © 2016 DigitalGlobe,
Inc).

4. CONCLUSION

The central goal of this study was to understand the performances
of different deep learning CNN algorithms pertaining to
automated recognition of retrogressive thaw slumps from very
high spatial resolution commercial satellite imagery. Our
comparative analysis entailed five DL-CNN with three encoders
(backbone) types.

Our findings unravel the performances of different DLCNNs in
imagery-enabled RTS mapping and provided useful insights on
operationalizing the mapping application over large areas. We
also demonstrated that our method can be used to find temporal
changes in RTS accurately.

The headwalls of RTS have been detected in all the predictions.
But the detection of scar zone and debris tongue boundaries were
not consistent throughout the region. One reason for this can be
that there is no clear definition to annotate debris tongue and scar
zone. When we closely inspected RTS annotations from other
studies, it was evident that the annotation process lacks formality.
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Among many, some of the important questions that arise in the
annotation process include, should annotation include debris
flow? deposition area? if those should be included how far away
from the headwall?. In some instances, debris flow is way more
extensive than the RTS itself. So consistent agreement should be
prepared for consistent detection of RTS using deep learning
models.

The UNet++ model performs well in our study candidate study
sites. But to employ RTS detection in a circumpolar mapping
context, one has to test the selected model in other areas of the
Arctic. This requires a systematic model transferability analysis.
Our study area is one of the more challenging to be used in DL-
CNN models as there is no visible vegetation. With vegetation
cover, the RTS stands out. Thus, we think that the inclusion of a
substantial amount of training data representing the heterogeneity
of multiple permafrost landscapes would elevate the
interoperability of the UNet++ model.
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Figure 16. Multi-temporal RTS detection. (a) and (b)
represent satellite images acquired in 2015 and 2019,
respectively. The green outline corresponds to the RTS
detection based on the 2015 image whereas the yellow
outline corresponds to the RTS detection based on the 2019
image. (Imagery © 2016 DigitalGlobe, Inc).
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