High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

Xiaojun Dong Yunshu Wu Zhongqi Wang
University of California, Riverside University of California, Riverside University of Maryland, College Park
xdong038@ucr.edu ywu380@ucr.edu zqwang@umd.edu
Laxman Dhulipala Yan Gu Yihan Sun
University of Maryland, College Park University of California, Riverside University of California, Riverside
laxman@umd.edu ygu@cs.ucr.edu yihans@cs.ucr.edu

Abstract

Semisort is a fundamental algorithmic primitive widely used in the
design and analysis of efficient parallel algorithms. It takes input
as an array of records and a function extracting a key per record,
and reorders them so that records with equal keys are contiguous.
Since many applications only require collecting equal values, but
not fully sorting the input, semisort is broadly applicable, e.g., in
string algorithms, graph analytics, and geometry processing, among
many other domains. However, despite dozens of recent papers
that use semisort in their theoretical analysis and the existence
of an asymptotically optimal parallel semisort algorithm, most
implementations of these parallel algorithms choose to implement
semisort by using comparison or integer sorting in practice, due to
potential performance issues in existing semisort implementations.
In this paper, we revisit the semisort problem, with the goal of
achieving a high-performance parallel semisort implementation
with a flexible interface. Our approach can easily be extended to
two related problems, histogram and collect-reduce. Our algorithms
achieve strong speedups in practice, and importantly, outperform
state-of-the-art parallel sorting and semisorting methods for almost
all settings we tested, with varying input sizes, distribution, and
key types. On average (geometric means), our semisort implemen-
tation is at least 1.27X faster the best of the tested baselines. We also
test two important applications with real-world data, and show
that our algorithms improve the performance (up to 2.13X) over
existing approaches. We believe that many other parallel algorithm
implementations can be accelerated using our results.

CCS Concepts

« Theory of computation — Parallel algorithms; Shared mem-
ory algorithms; Sorting and searching.

Keywords

Semisort, Collect-reduce, Histogram, Sorting, Group-by, Parallel
Algorithms, Shared-Memory Parallelism

ACM Reference Format:
Xiaojun Dong, Yunshu Wu, Zhongqi Wang, Laxman Dhulipala, Yan Gu,
and Yihan Sun. 2023. High-Performance and Flexible Parallel Algorithms for

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

SPAA °23, June 17-19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9545-8/23/06.
https://doi.org/10.1145/3558481.3591071

Semisort and Related Problems. In Proceedings of the 35th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA °23), June 17-19, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3558481.3591071

1 Introduction

The semisort problem takes as input an array of records with as-
sociated keys, and returns a reordered array such that all records
with identical keys are contiguous. Importantly, the problem does
not require all keys to appear in sorted order in the output, nor all
records with distinct keys to be sorted. Several other important and
widely-applicable problems are closely related to semisort, such as
the histogram problem that counts the number of occurrences of
each key, and the more general collect-reduce problem that com-
putes the aggregate “sum” for each key, based on all the records.
The “sum” function can be defined based on any associative (some-
times also commutative) combine function (e.g., addition or maxi-
mum). Semisort, histogram, and collect-reduce are all widely used
in different areas, but are often referred to using different names,
e.g., groupBy/aggregation in databases [36, 58], frequency in
data analytics applications, reduceByKey/groupByKey in RDD in
Spark [79], the shuffle step in the MapReduce paradigm [27], and
others [49]. As an example of the applicability of these problems,
consider a database of sales receipts keeping the information of
each sold lineitem. Useful operations to analyze trends in this data
include quickly gathering lineitems from the same branch together
(semisort), counting the number of sold items in each month (his-
togram), and obtaining the total sale of lineitems of each brand
(collect-reduce).

Semisorting was first studied as a theoretical problem by Valiant
to efficiently simulate parallel machine models (e.g., the PRAM) with
other models [71]. Sequentially, it is easy to semisort in O(n) time
using a hash table, and theoretically-efficient parallel algorithms are
also known [48]. Today, in contrast to its initial development as a
theoretical tool for machine simulations, semisort is widely used in
the design and analysis of efficient and practical parallel algorithms,
for example for graph analytics [1, 2, 6, 14, 20, 22, 28, 30-32, 34, 35,
37, 38, 55, 56, 60, 63-65, 70], geometry problems [19, 44, 62, 73, 75],
sequence algorithms and many others [13, 17, 41, 46, 51, 52, 68, 69,
78]. However, there is a disconnect between theory and practice in
these parallel applications. In all of the above-mentioned papers,
semisort is only used in theoretical analysis to obtain better bounds
by the theoretically-efficient parallel semisort algorithm [48], but
is not used in practical implementations of these algorithms. In

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558481.3591071
https://doi.org/10.1145/3558481.3591071
https://doi.org/10.1145/3558481.3591071
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558481.3591071&domain=pdf&date_stamp=2023-06-17

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

particular, for the papers that implement and evaluate their parallel
algorithms, a comparison sort (usually samplesort in [9, 13, 18]) is
used. Although semisorting is asymptotically simpler than sorting,
semisorting is avoided in practice in favor of sorting the data.

The only known parallel semisort algorithm and implementation
is by Gu et al. [48] in 2015 (the GSSB algorithm), with O(n) expected
work (number of operations) and space, and O(log n) span (longest
dependencies) whp [17]. Despite the asymptotic guarantees, the al-
gorithm has not been widely used in practice for a few reasons. First,
the algorithm uses many random accesses and is I/O-unfriendly
since it heavily uses hash tables (see Tab. 4). Second, the algorithm
interface also incurs performance overhead. Specifically, the algo-
rithm assumes the records are associated with hashed keys with no
duplicates rather than arbitrary keys (more details in Sec. 2.3). This
assumption requires additional steps to hash the original keys and
resolve collisions subsequently, which may take time comparable to
semisort itself. Although none of these issues increase the asymp-
totic bounds, they both contribute to performance slowdowns that
are hard to avoid in a faithful implementation. Hence, the semisort
implementation in [48] is not faster than many recent sorting algo-
rithms [10, 13, 59] in practice. Meanwhile, the GSSB algorithm is
not stable or (internally-)deterministic (i.e., the result may depend
on runtime scheduling) due to the use of parallel hash tables.

In this paper, we revisit the semisort problem, with the goal
of achieving a high-performance parallel semisort implemen-
tation with a flexible interface. We propose new parallel semisort
algorithms that are efficient regarding work, I/O and space usage.
Our flexible interface for semisort can also be extended to sup-
port efficient and parallel histogram and collect-reduce. Our al-
gorithm takes any key type K, and a user-defined hash function
h: K [1,...,n*] to map keys to integers. In principle, the only
extra information we need is an equality test =g: K X K +— Boolean.
We observe that in most use cases, the key type also supports a
less-than test <g: K X K + Boolean to determine a total ordering,
which can be used to improve the performance. We refer to the
general semisort algorithm (only =g supported) and the version
with <k as semisort= and semisort<, respectively.

Our algorithm builds on the strengths of GSSB [48], but sub-
stantially redesigns several components to overcome the existing
performance issues of the GSSB algorithm. GSSB works in three
steps (we review more details in Sec. 2.3). It first uses samples to
determine the heavy (frequent) and light (infrequent) keys, and
constructs buckets for them based on estimated sizes from the sam-
ples. Each heavy key will be in a separate bucket, while multiple
light keys can be grouped into the same bucket. The algorithm
then scatters all records to their buckets by placing each record
to a random slot in their bucket (or linear probe when the slot is
occupied). Lastly, the algorithm refines each light bucket by radix
sorting (the hashed keys) in each light bucket. The main issue in
GSSB is that the scatter phase is implemented using a parallel hash
table, which causes excessive random memory access, some space
overhead, instability, and non-determinism.

To avoid the use of a parallel hash table, we propose an idea
inspired by the I/O-efficient parallel samplesort [18]: when con-
structing buckets and scattering records, we split the input into
consecutive subarrays, use auxiliary arrays to count the appear-
ance of each bucket in each subarray, and distribute the records in

342

Xiaojun Dong et al.

Any input type Integer input type

Ours.Ours. PLSS IPS*0|Ours-i- Ours-i. PLIS GSSB RS IPS’Ra

10 [1.03 1.00[259 1.22| 1.06
10%|1.00 1.00f1.32 1.03| 1.00 1.
510°|1.00 1.00{1.82 151 1.00 1.00
€107 | 1.00 1.00{1.43 1.06| 1.09 1.00 118
2 10°|1.00 1.15{1.57 1.11| 1.00 1.36
AVG|1.01 1.03/1.54 1.18| 1.03
1 [1.00 1.00/2.73 1.28] 1.01
£ 0.7|1.00 1.00{1.76 1.35| 1.00 1.45
§ 0.5|1.01 1.00/1.80 1.42| 1.01 1.45
§ 02100 1.00{1.74 151 101 1. 1.46
X 0.1]1.02 1.00/1.66 1.44| 1.02 1.00 1.40
AVG | 1.01 1.74 1.40
15[100 1. 1.03
. 12100 1.01{1.95 1.01
& 1 [1.00 1.08/1.36 1.16 1.00
208100 1.15/149 111} 1.00 1. 156 1.21
0.6 |1.00 1.16/1.57 1.12| 1.00 1.06 147 1.15
AVG|1.00 1.08)1.80 1.39| 1.01 1.03 1.9772:70
AVG | 1.00 1.04] 1.69 1.32| 1.02 1.03 1.98 1.98

:|l 1i1 1i2 1.'5 E;“ AVG = Geometric Mean

Figure 1: Heatmap of the relative performance of implementations
normalized to the fastest in each test (each row). n = 10°. 64-bit keys
and 64-bit values. The parameters in exponential distributions are multiplied

by 10*. The algorithm names and details are introduced in Tab. 2.

each subarray based on the counts. This approach enables a cache-
friendly access pattern to the input, allows us to obtain the exact
size of each bucket, and is stable and race-free (and thus determin-
istic). However, since samplesort and semisort are quite different,
using the idea in [18] does not directly enable high-performance.
The challenge lies in choosing the best parameters for the number
of heavy and light buckets. At a high-level, the samplesort in [18]
creates a bucket for every sampled key. However, using too many
buckets increases the size of the auxiliary counting array, which can
greatly increase memory accesses. On the other hand, having more
buckets is useful to improve parallelism, since each bucket can be
processed independently in parallel. Specifically for semisort, we
also wish to create more heavy buckets because heavy keys do not
need to be refined and are easier to process.

To create the heavy and light buckets in the best way, we pro-
pose novel algorithmic ideas for semisort. First, we control the
parameters to keep the number of buckets small, so that the aux-
iliary arrays fit in cache. This avoids excessive memory access to
the auxiliary arrays (see more details about the auxiliary arrays in
Sec. 3.2 and Fig. 2). Second, we deal with each light bucket recur-
sively in parallel. To enable efficient recursive calls, we carefully
design optimizations to avoid extra space in recursive calls. Our
new approach saves the main memory accesses for the auxiliary
arrays, and more interestingly, identifies more heavy keys than
GSSB with different degrees of “heaviness” using recursions. The
“relatively heavy” keys in each light bucket can be identified and
handled more efficiently and improve the overall performance.

In addition to algorithmic improvement for performance, we also
redesigned the algorithm interface. Our algorithm directly takes
the input with any key type, a user-defined hash function A, and an
equality test (or less-than for semisort<). This avoids the additional
pre- and post-processing in GSSB. Due to the more flexible interface
and algorithm design, our semisort algorithm can be easily extended

High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

to histogram and collect-reduce (see Sec. 3.5).

We tested our algorithms on a variety of benchmarks, with differ-
ent core counts, input sizes, key lengths, and distribution patterns
(uniform, exponential, and Zipfian). We summarize our results as a
heatmap in Fig. 1. We also test two applications: graph transposing
(reordering graph edge lists), and k-gram on English texts. Both
our semisort— and semisort< algorithms achieve high performance
on almost all tests. For example, on 10° input data with 64-bit keys
and 64-bit values over 15 distributions, our algorithm is 3.4X faster
than the GSSB algorithm, and at least 1.27x faster than the best of
the previous algorithms, both on average (geometric mean). Our
algorithms also consistently perform well on the two applications
with real-world data. In all but four application-input combinations
we tested in this paper, our algorithm is the fastest. Our code is
publicly available [40]. We present more results and analyses in the
full version of this paper [39].

2 Preliminaries

2.1 Problem Definitions

Given a sequence of records from a universe U, we define a key
function key : U + K to define the key for each record, where
K is the key type. We define =k as the equality test on K. When
applicable, we use < as the less-than test on K. Given a sequence
of records A, its key function key,, and the equality test =g on K,
the semisort problem is to reorder the records in A to A’ such that
all records with the same key are contiguous in A’. We also require
the user to provide a family of hash functions h: K — [1,...,n*],
for some constant k > 1. We call h(-) the user hash function.

Given A, key,, =k, and hy, the histogram problem is to emit an
array of key-value pairs G consisting of the unique keys of A, with
the value for each key equal to the number of times it appears in A.
The collect-reduce function takes the same arguments as semisort
and two additional functions: a map function M : U — E, and a
reduce monoid (®g, Ir). The map function maps a record to a value
of some type E. The reduce operation @ : E X E — E combines
values of type E with identity Ig. The collect-reduce function returns
the array of key-value pairs R € K X E consisting of the unique keys
of A, with the value associated with each key k equal to ®,¢s, M(r),
where S;. = {r € A| key,(r) =k k}. Note that histogram can be
expressed as collect-reduce where the map function is the constant
function 1, and the monoid is (+, 0). With clear context, we drop
the subscripts for these operations and functions.

2.2 Computational Models and Other Notations

We use the work-span (or work-depth) model for fork-join paral-
lelism with binary forking to analyze parallel algorithms [17, 25],
which is recently used in many papers on parallel algorithms [4, 5,
12, 16, 18, 19, 21, 23, 29, 33, 35, 43,47, 72, 76, 77]. We assume a set of
threads that share a common memory. A process can fork two child
software threads to work in parallel. When both children complete,
the parent process continues. The work of an algorithm is the total
number of instructions and the span (depth) is the length of the
longest sequence of dependent instructions in the computation. We
can execute the computation using a randomized work-stealing
scheduler (7, 24, 45] in practice.

To measure the memory access cost in an algorithm, we use the

343

SPAA 23, June 17-19, 2023, Orlando, FL, USA

classic I/O model [3, 42]. We assume a two-level memory hierarchy.
The processor is connected to the cache of size M, and the cache is
connected to an infinite-size main memory. Both cache and main
memory are divided into blocks (cachelines) of size B, so there are
M/ B cachelines in the cache. The CPU can only access the memory
on blocks resident in the cache and it is free of charge. We assume
an optimal offline cache replacement policy to transfer the data
between the cache and the main memory, and a unit cost for each
cacheline load and evict. The I/O cost of an algorithm is the total
cost to execute this algorithm on this model. Usually the sequential
/O cost is sufficient to predict the parallel performance [18, 45].

We say that a sorting/semisorting algorithm is stable if the
output preserves the relative order among equal keys from the
input order, and otherwise we say that the algorithm is unstable.

We say an algorithm is race-free when no two concurrent op-
erations in the algorithm can access the same memory access and
at least one of them is a write [25]. A race-free algorithm is (inter-
nally) deterministic [15], and has many advantages including ease
of reasoning about the code, verifying correctness, debugging, and
analyzing the performance. In our algorithms, all operations in the
algorithm are deterministic once we fix the random seed.

We use O(f(n)) with high probability (whp)in n to mean O(cf(n))
with probability at least 1 — n™¢ for ¢ > 1.

2.3 The GSSB Semisort Algorithm

We first review the existing GSSB semisort algorithm [48]. As men-
tioned, the practical performance of GSSB is limited due to its
excessive random memory accesses and restrictive interface. Our
algorithm builds on the strengths of the GSSB, while overcoming
the aforementioned limitations. The GSSB algorithm assumes the
input as a sequence of hashed keys in range [0, ..., n*] for some
constant k > 1, and semisorts the hashed keys.

Sampling and Bucketing. This is a key technique in GSSB to
handle heavily duplicate keys. GSSB first selects a sequence S of
samples from the input sequence A with sample rate p = O(1/logn).
The samples will be used to give an initial partition of the records
into buckets, such that the same key always goes to the same bucket.
Based on the samples, the keys are divided into heavy keys and
light keys otherwise. We call the records with heavy (light) keys
the heavy (light) records. The theory behind this idea is that if
sufficient (Q(log n)) samples for a key k can be obtained, one can
estimate the frequency of k (relatively) accurately. We call them
the heavy keys or heavy records. Let ny be the number of heavy
keys identified by the samples. The algorithm will construct ngy
heavy buckets, each for an individual heavy key. Meanwhile, a key
k with few (o(log n)) samples are unlikely to appear many times
in the input, and we call them light keys or light records. The
light records are grouped into ny = ©(n/log? n) light buckets by
using the hashed value to randomly map to one of the ny buck-
ets. Our new algorithm will also use a similar technique to detect
heavy (duplicate) keys, but with different parameters for better
performance.

Size Estimation and Scattering. For a bucket with s samples,
GSSB uses a size estimation function f(s) to upper bound bucket
size whp. The algorithm will allocate an array of size (1+¢€) f(s) for
this bucket for some constant € > 0. Then each record is scattered to

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

Input:
A[1l..n] input array of records in universe U
K key type of records
key(-) key:U — K extracts the key of a record
=K (or =) equality test on keys
<K (or <) less-than test on keys
h(-) user hash function; h : K + [0, n*]
Tunable Parameters:
1 subarray size
a base case threshold
nr =2% number of light buckets
Other notations used in the algorithm and description:
n’ problem size of the current recursion
S the set of samples. |S| = np logn
nyg number of heavy buckets, ngr = O(nr.)

H heavy table; Maps heavy keys to bucket ids
C counting matrix
X (column-major) prefix sum of C

Table 1: Notations and parameters used in our algorithms.

a random position in the corresponding bucket. This is performed
by using compare_and_swap, which atomically puts the record into
the position, and re-picking another position using linear probing
upon collisions or conflicts. Our new algorithms do not use this
approach.

Local Sort and Pack. After scattering, all the heavy keys are
collected in individual heavy buckets. Each light bucket can contain
more than one light key type. The records in a bucket may not be
contiguous due to the random scattering. GSSB then uses a radix
sort (on the hashed keys) to refine light buckets (comparison sort
is used in practice) and make them contiguous. A packing step is
needed for heavy buckets to put records in contiguous slots. Our
new algorithm also uses different approaches in this step.

The main performance issue in GSSB is the random access in the
scatter phase—each record is assigned to a random location, and
has to retry if necessary. GSSB hence needs O(n) random writes
for the scattering phase, which is I/O-inefficient. This also requires
more space (and thus memory footprint) since we need to ensure a
load factor ¢ < 1. We will show how to overcome this issue, as well
as to make our new algorithms stable and race-free in Sec. 3.

Another major issue of GSSB is its interface. GSSB assumes a
collision-free hash function h : K +— [1,...,n*] that maps arbi-
trary key types to random integers (hashed keys), and the algorithm
(and implementation) directly semisort the hashed keys, which are
random integers. When using more realistic and practical hash func-
tions with possible collisions, one has to perform preprocessing
and postprocessing to deal with collisions. While such pre/postpro-
cessing do not asymptotically increase the cost of the algorithm in
theory, they can in practice incur significant time overheads com-
parable to semisort itself (O(n)), and therefore make using semisort
in applications prohibitively costly, relative to sorting.

3 Our New Algorithms

In this section, we present our algorithms for semisort and related
problems. We present the useful notations in Tab. 1. We start by
overviewing the high-level idea, and then present more details in
Sec. 3.1 to 3.4. We discuss how to support histogram and collect-
reduce in Sec. 3.5. In Sec. 3.6, we present the theoretical analysis of

344

Xiaojun Dong et al.

Algorithm 1: The Semisort Algorithm

Input: The input array A, a user hash function h, and a comparison
function comp (= or <). The original (top-level) input size is
n, and the current subproblem size is n’.
Output: The semisort result in A (in-place)
Parameters:n; = 27: number of light buckets.
a: base case threshold.
I: subarray size.
1 if |A| < a then return BaseCase (A, h, comp)

// Base cases

Sampling and Bucketing:

2 S « ng logn’ sampled keys from A
3 Count the occurrences of each key in S
4 Initialize the heavy table H
5 id «— ng.
// This for-loop can also be performed in parallel theoretically
6 for each distinct key k € S do
7 if the occurrences of k in S is at least log n then
8 H.insert(k, id) // Assign bucket id i to heavy key k
9 id —id+1
10 ng < number of distinct keys in H
Blocked Distributing:
1 Initializing matrix C[][] with size (np + ng) x (n’/1)
2 parallel fori:0<i<n’/ldo
13 forj:i-1<j<(i+1)-ldo
14 id « GeETBUCckeTID(key(A[j]), H, h,nr)
// Cli]lid]: #records falling into bucket id in subarray i
Cli]lid] « C[i][id] +1
15 Initialize T of size n’

—-

-

// For each subarray

// X [i]1Jj]: offset in T for record in subarray i going to bucket j
Compute X[i][j] < Xjr<jor (jr=ji<iy ClI'1[J"]
16 parallel fori:0<i < np+ngdo
17 ‘ offsets[i] « X[i][0]
18 parallel fori:0<i<n'/ldo
19 forj:i-1<j<(i+1)-ldo

// For each subarray

20 id « GeETBUckeTID(key(A[j]), H, h,nr)

21 T[X[i][id]] < A[j]

22 X[i][id] « X[i][id] +1

23 AT // Avoided in implementation, see Sec. 3.4

Local Refining:

24 parallel fori:0<i<np do // Only for light buckets
25 ‘ SEMISORT (A[offsets[i]..offsets[i + 1]], h, comp)

26 return A

27 Function GETBuckeTID (K, H, h,)
if k is found in H then return the heavy id of k in H

29 else return h(k) mod np //'h(-) is the hash function

our algorithm, and discuss the choices of parameters in theory and
in practice.

Our semisort algorithm follows the same framework as GSSB,
but employs novel techniques to improve the performance for all
the steps. Our new algorithm is I/O-friendly, stable, and race-
free. In contrast to GSSB, we do not require pre-hashing the keys.
Our algorithm directly handles input records of any type, and ex-
tracts the hashed keys by applying the user hash function in the
algorithm when needed. This generality in the interface also im-
proves efficiency both in time and space—it avoids the pre- and
post-processing, as well as the hash table to pre-hash keys and

High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

resolve collisions, which can incur another O(n) random reads
and O(n) extra space. Our algorithm is stable—all records with the
same key will be kept in the same order in the output. This fea-
ture is useful for collect-reduce and histogram and increases their
generality, as discussed in Sec. 3.5. Our algorithm is also race-free,
which means no concurrent writes are needed to any shared mem-
ory position. This also makes our algorithms simple, practical, and
internally-deterministic (i.e., the output does not depend on runtime
scheduler).

Our algorithm consists of three steps: Sampling and Bucketing
(find heavy keys), Blocked Distributing (count the number records
in each bucket), and Local Refining (refine the ordering of records
in light buckets).

(1) Sampling and Bucketing. First, the algorithm performs sam-
pling to find the heavy keys. Similar to GSSB, each heavy key
uses an individual bucket, and multiple light keys share a bucket.
However, we pick a smaller number of buckets for a better over-
all memory-access pattern (see discussions in Sec. 4.1).
Blocked Distributing. Next, it counts the exact number of
records in each bucket. Given the bucket sizes, the algorithm
distributes input records to their associated buckets in an I/O-
friendly manner. By performing exact counting, the temporary
arrays used are only of size n, and no parallel hash tables are nec-
essary (as in GSSB). This distribution step makes the algorithm
stable and race-free.

Local Refining. After Step 2, the heavy keys are at their final
positions in the heavy buckets. For light buckets, unlike GSSB,
our algorithm recursively semisorts them until the recursive
input size is small enough (i.e., fitting in cache), at which point
the keys are semisorted sequentially. This approach allows the
algorithm to detect “medium-level” heavy keys in subsequent
recursive rounds and also reduce the total number of I/Os.

—
S
~

—
SY)
=

The pseudocode of our algorithm is given in Alg. 1, and a running
example is given in Fig. 2. Next, we introduce the details of each
step and explain why our decisions improve the performance of
our algorithm. Since our algorithm uses recursive calls, we use n as
the input size of the original (top-level) problem, and use n’ as the
current subproblem size in the recursive call.

3.1 Step 1: Sampling and Bucketing

The goal of the sampling and bucketing step is similar to GSSB—we
want to identify heavy and light keys, which decides the bucket id
for each record. Instead of having O(n/log? n) light buckets as in
GSSB, we use the number of heavy and light buckets (ng and ny)
as parameters. We use ny, as a tunable parameter, and set the upper
bound of npy accordingly as O(ny). We will later discuss in Sec. 3.6
about how to pick ny, to achieve the best practical performance.
To determine heavy keys, we take a sequence of samples S of size
©(nr log n) by selecting each record uniformly at random (Lines 2-
10 in Alg. 1). The light keys are keys appearing fewer than logn
times, which indicates that their actual number of occurrences
is small. We group multiple light keys into one bucket based on
the hash keys. We create ny light buckets by evenly partitioning
the range of hashed keys (given by the user hash function) into np,
buckets. For simplicity, we use ny = 2b asa power of 2, and the light
bucket id of a key k is obtained by taking the last (least significant)

345

SPAA 23, June 17-19, 2023, Orlando, FL, USA

b bits in the hash value of k, i.e., the bucket id is (h(k) modnr).

The heavy keys are those appearing at least log n times in the
samples; as in the analysis of GSSB, their actual number of occur-
rences is large whp. Given the sample size |S| = ©(nr logn), the
number of heavy keys ngr = O(nr). We will create ngy buckets with
ids in [ng, ng + ngg) (the first np buckets are for the light keys). We
use a sequential hash table H to store all heavy keys associated
with their bucket ids, referred to as the heavy table, so that the later
steps can look up whether a key is heavy in constant work.

3.2 Step 2: Blocked Distributing

Unlike GSSB, which uses a scattering step to place records to random
positions in the buckets, our algorithm uses a more I/O-friendly
and space-efficient approach. The goal of this step is to count the
exact number of records in each bucket, and distribute all records
to the associated buckets into contiguous slots. Since we have the
exact count, we only need an array T of size n for all the buckets,
making our algorithm space-efficient. This distribution step makes
our algorithm stable and race-free.

Our idea is inspired by recent sorting algorithms [10, 18, 597].
We first partition the sequence evenly into n’ /I subarrays, each
with [records (recall that n’ is the current subproblem size). We
then process all the subarrays in parallel (Line 12), but sequentially
within each individual subarray (Line 13). We count the number of
records in each bucket in a (n’/l) X (n + ny) matrix C, which is
referred to as the counting matrix. In particular, C;; is the number
of records in subarray i falling into bucket j. To do this, within
each subarray i, our algorithm determines which bucket each key k
belongs to using the GETBUCKETID function (Line 27). This function
first looks up the heavy table H to check if k is a heavy key, and if
so, it obtains the bucket id j from H. Otherwise, the bucket id of a
light key k is simply given by j = h(k) mod ny. We then increment
the corresponding cell in C;; by one (Line 14).

We then distribute all records in the input to their corresponding
buckets, using the information in C. To do so, we compute the offset
per subarray per bucket as a prefix array X that has the same size
as C. Array X can be computed using the prefix sum of C, but in the
column-major order (Line 15, see an illustration in Fig. 2). After the
prefix array X is computed, we once again process each subarray
and move each record to its corresponding bucket (Line 18-22) in
the temporary array T. This step takes O(1) work per record—we
use O(1) work to decide which bucket a record is in, and after that,
we move the record and increment the offset counter in X.

We noticed that when picking the appropriate parameters, our
approach is much faster than the corresponding step in GSSB in
practice, mainly due to smaller memory footprint and fewer mem-
ory accesses. We will later show the analysis in Sec. 3.6.

3.3 Step 3: Local Refining

After the previous step, we have all heavy keys stored contiguously
in their corresponding heavy buckets, which are also their final
positions in T. Light keys are still unsorted. We work on each light
bucket in parallel by recursively semisorting each of them. We
stop recursing and switch to the base case when the bucket size is
small enough and fits in cache, which is decided by the parameter
(Line 1). For our experiments with input sizes ranging from 102-10,
we typically need one more level of recursion before reaching the

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

Xiaojun Dong et al.

Stepl: Sample and Bucketing. Take samples to decide heavy keys. ~ Samples: Heavy keys:
Sampled? v v v VYV v x1 %3 Bucket O (light): last bit=0 Bucket 2 (heavy): key=2
nputA [3[3[2]6]4[5]1]3[2]6]2[5]3[2[5]2] [6] x1 [3] x3 Bucket1 (light): last bit=1 Bucket 3 (heavy): key=3
Step2: Blocked Distributing. Compute arrays C and X. Cj; = Count Buckets Prefix Buckets Implies the exact size
#records in subarray i falling into bucket j. X;; = the (column-major) ArrayC [0 1 2 3 ArrayX |0 1 2 3 of each bucket:
prefix-sum up to Cj; (exclusive). Work on all subarrays in parallel. "Subarray0[1,0 1 2 Subarray0|0 3 7 12 = T[0..2] :BucketO
Input4 |3 3 2 6/4513|2625(3252 - Subarray1{1(2 0 1 Subarrayl|1 3 8 14 T[3..6] :Bucketl
Bucketid (3 3 2 0/0 113|202 1|3 212 gg Subarray2{1(1 2 0 Subarray2|2 5 8 15 T[7..11] :Bucket2
Subarray 0 Subarray 1 Subarray 2 Subarray 3 % § Subarray3|0Y1 2 1 Subarray3|3 6 10 15 T[12..15]: Bucket 3
E.g., A[0] = 3isin subarray 0 and bucket 3, it will go to E o (X computes the prefix sum of C by column-major)
index X3 =12inT = » ArrayT[6[4]6[5[1]5]5[2[2[2[2[2]3]3]3[3]

’Step?,: Local Refining. Semisort all light buckets in parallel.

output [4[6]6[1[5[5[5]2[2][2]2]2]3]3]3]3]

Figure 2: Our algorithm with a running example. We consider an input with n = 16 records with keys given. |S| = 8 samples are taken, and keys with
more than 2 samples are heavy keys. ny = ng = 2 in this example. We have [= 4 subarrays each with 4 records. We compute the counting matrix C and
prefix array X as shown, and records can be distributed accordingly. Finally the local refining step recursively solves the 2 light buckets.

base case, if most of the keys are light keys. Since the base-case
size fits in cache, the time to semisort the base cases is small. We
provide two solutions for the base cases: semisort— and semisort<.

semisort=. In the base case, semisort= uses a sequential hash table
with chaining. We first build a hash table of size (1 + €)n’ for some
constant € > 0. Then, we iterate over all keys and insert each key to
the hash table with separate chaining. Finally, all records are packed
to the output by looping over the hash table in order. Chaining
allows the algorithm to maintain the order of the original input for
records with the same key, and thus our algorithm is stable. Since
each base case is small, the hash table can be maintained locally by
each thread.

semisort.. In the base case, semisort< uses a standard comparison
sort. By using a stable comparison sort, we can also guarantee the
stableness of our semisort.

3.4 In-place Optimization

Before the recursive call in Alg. 1, we copy the temporary array
T back to A (Line 23). This copy accesses the whole arrays A and
T, which is expensive in practice. We note that we can save this
copying by swapping the two arrays A and T in the recursive call.
Namely, we skip Line 23 and in Line 25 we sort the light buckets in
T, and use the corresponding part in A as the other array to take the
output. For the base cases and the heavy buckets, if they happen
to reside in T, we copy them back to A. By doing this, we avoid
the copying in Line 23. This reuses the auxiliary array T and also
avoids allocating new memory in every recursive level. Since in
most cases the recursion will reach the base case in two levels, the
entire algorithm copies the data twice per record, first from A to T,
and then from T back to A.

Here we use “in-place” to indicate that the input and output of
semisort are in the same array. Our algorithm still uses O(n) extra
space. We will discuss how to reduce space usage in Sec. 6.

3.5 Supporting Histogram and Collect-Reduce

Using our semisort algorithm, the histogram and collect-reduce
primitives can be supported with minor modifications. Here we
will elaborate on collect-reduce since histogram can be considered
as collect-reduce with values always equal to 1 for all records.

We still use the Sampling and Bucketing step to determine the
heavy keys. Then in the Blocked Distributing step, it is unneces-

346

sary to distribute the heavy keys to their corresponding buckets.
Instead, we first directly compute the reduced values (or counts for
histogram) for the heavy records in each subarray (all the subar-
rays can be processed in parallel), and then reduce the results of all
subarrays. In the base-case of the Local Refining step, we use the
version based on hash tables. When any duplication is identified,
we directly combine their values instead of chaining. Since the
algorithm is stable, it works on any associative reduce functions
(in particular, there is no need to be commutative).

Generally speaking, histogram and collect-reduce can be signifi-
cantly faster than semisort when there are many heavy duplicate
keys, as we do not need to distribute the heavy records and only
need to distribute the “locally reduced value” for each heavy key
in each subarray. When no or few duplicate keys are in the in-
put, histogram and collect-reduce can perform slightly slower than
semisort. This is because they perform almost identical computa-
tions as semisort to reorder records, but need an extra step to pack
the keys and reduced values into the output.

3.6 Analysis and Parameter Choosing

Our new semisort algorithm has three parameters: [(subarray size),
ny, (light bucket number), and « (base case size). Other parameters
(e.g., the number of heavy buckets ng) are set accordingly. The
values of [and ny, are fixed for all levels of recursions. To ensure
the space usage is O(n), we will assume ny < [since the sizes of
matrices C and X has size ©(ny, - n/l). We also assume the sample
set size |S| = ng logn = O(n). In the following, we will use n as the
original problem size, and use n’ as the current size of the recursion.

We will analyze the cost bounds and show that our semisort
algorithm is efficient under reasonable assumptions of modern multi-
core architecture. Then we will show how to select the parameters
in practice for the best practical performance.

Theoretical Analysis. We start with analyzing the number of
recursion levels in our algorithm.

Lemma 3.1. The number of recursion levels is O(log,,, (n/a)) whp
for both semisort— and semisort<.

Proof. From the same analysis from GSSB [48], the number of
records in each light bucket is O(n/nr) whp. Therefore, the light
bucket size shrinks by a factor of ©(ny) whp in each level of recur-
sion, and the number of recursive levels is O(log,,, (n/a)) whp. O

High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

For simplicity in stating the bounds, we use r = O(log,,, (n/a))
to denote the number of recursion levels. We start with the work
of the algorithms and present the result in Thm. 3.2.

THEOREM 3.2. The work of semisort= is O(rn) whp. The work of
semisort< is O(rn + nlog a) whp.

Proof. We first show the work analysis for semisort-. We start
with considering the top level of recursion. As assumed above, the
number of samples is O(ny logn) = O(n), and thus the Sampling
and Bucketing step has O(n) work. In the Blocked Distributing step,
it takes O(1) work per record to find the bucket it belongs to. As
mentioned above, we assume ny, < [so that the counting matrix C
and prefix array X have sizes O(n), and computing prefix sum also
has O(n) work. The step to distribute the records to array T (lines
18-22) is also O(n) since each record is processed once. For each
recursion level, this argument is still true, and the work of all the
subproblems in one level adds up to O(n). Assuming r recursion
levels, the work before entering the base cases is O(n) for both
semisort— and semisort<. For semisort—, the work of each base
case is O(n’), which gives O(n) total work for all base cases. For
semisort<, the work of each base case is O(n’ log n’), where n’ can
be at most a. Therefore the total base-case work is O(nlog &) for
semisort<. Combining the results gives the bounds in Thm. 3.2. O

Although semisort< has a higher work, the overhead is caused
by the comparison sort in base cases. However, the base cases fit
in cache and are highly-optimized. In the experiments semisort«
shows as good performance as semisort- in most cases.

We then analyze the span of semisort= and semisort<, and show
that they are highly parallel.

THEOREM 3.3. The span of semisort= is O((I+ng log n)r+a) whp.
The span of semisort< is O((l + ng log n)r + log n) whp.

Proof. The Sampling and Bucketing step is executed sequentially
with O(ny log n) span. We note that this step can be easily paral-
lelized [48], but our implementation still performs it sequentially,
since it is cheap anyway. For the distributing step, we have two
sequential for-loops (Lines 13 and 19), leading to O(l) span. Com-
puting the prefix sum (X from C) has O(logn) span. In total, the
span of one recursive level is O(I + np log n). Hence, considering
r recursive levels, both algorithms have O((I + np logn)r) span
before the base cases. semisort= uses sequential hash tables in base
cases, which leads to O(«) span. semisort< uses a comparison sort
in base case, which can achieve O(log n) span whp in theory [17]
(our implementation coarsens the base case by using a sequential
sort, since the base case size is small). Combining the results above
gives the bounds in Thm. 3.3. o

Considering both work and span, the parallelism (defined by
the ratio between work and span) for both algorithms is roughly
©(n/l) (in practice we choose I much larger than ny and). Given
the number of processors P in a machine, our semisort algorithm
achieves sufficient parallelism if we can set n/l = Q(P).

We analyze the I/O bound of the algorithms with our choices
of parameters to make the bound optimal (O(n/B)). We make the
assumption that M/B = Q(nl/ 2 (recall that M and B are cache size
and cacheline size, respectively). For reasonable values of n < 1012,
this assumption is true for both commodity machines (e.g., laptops)
as well as more powerful servers. We present our results in Thm. 3.4.

347

SPAA 23, June 17-19, 2023, Orlando, FL, USA

THEOREM 3.4. Assume M/B = Q(nl/z), using parameters ny, =
G)(nl/4), a= @(nl/z), andl = @(n3/4), both semisort= and semisort<
have I/O cost of O(n/B) whp.

Proof. Given the parameters in the theorem, the number of recur-
sive levels is r = O(1) whp. Therefore, we only analyze the top-level
recursion. Since the sizes of C and X are O(nr, - (n/1)) = O(\/n) =
O(M), all memory accesses to arrays C and X fully fit into cache
except for the first access. When M/B = Q(nl/z) and o = @(nl/z),
we can choose «a to fit the base cases in cache, such that the base
cases can be solved without using additional main memory ac-
cess after loading the data to the cache. The only cache misses are
when accessing the input array A and the buckets T. The accesses
to A are all serial accesses. For T, we are writing serially from
(ngr +nr) - (n/l) pointers as stored in the X matrix. Even when all
the pointers are non-consecutive, only (ng +nr) - (n/l) = O(nl/z)
cachelines are active at any time, and they all fit in cache. For every
pointer, there is one cache miss every B accesses to the array T.
Therefore, the total I/O cost to generate T is O(n/B). Note that this
analysis is true for both the root level (when input size is n), as well
as the recursive levels (the total sizes of C and X for all subproblems
in the same recursive level are still (ng +nz) - n/l = 0(n'/2)). In
summary, both semisort= and semisort< have I/O cost O(n/B) whp
assuming M/B = Q(nl/z), which improves the O(n) I/O bound of
GSSB by a factor of O(B). The bound is optimal, since loading the
input needs Q(n/B) I/Os. o

Since I/O-efficiency is one of our main design goals, we use the
parameters in Thm. 3.4 to present the work and span bounds below.

THEOREM 3.5. Assume M/B = Q(n'/2), and parameters ny =
0(n''Y), a = ©(n/?), and I = ©(n3/%). semisort— has O(n) work,
O(n3/4) span, and O(n/B) I/O cost. semisort< has O(nlogn) work,
O(n3/4) span, and O(n/B) I/O cost. All bounds are whp in n.

Parameters in our Implementations. The performance of our
semisort algorithm is reasonably consistent for a large parameter
range. The best parameters of each input instance can be different,
decided by input size, heavy record ratio, etc. In our implementation
and all experiments, we pick ny = 2%, 1 = n/5000 (at most 5000
subarrays in all subproblems in one recursive level), and a = 214,
These numbers satisfy the conditions in the theoretical analysis
in Thm. 3.5 when n = 108 to 10°. We set the number of samples
|S| = 500 log n, so we can have at most nyy = 500 heavy keys. We
set up these parameters to ensure that the matrices C and X and
the base cases are small enough to fit in the last-level cache for
modern multicore machines.

4 Comparisons with Existing Algorithms

4.1 Improvements over GSSB

In this section, we compare and discuss the improvements of our
algorithm(s) over the existing semisort algorithm GSSB.

Flexible Interface. Recall that GSSB requires hashed keys (inte-
gers) as input, which needs a pre- and post-processing to resolve
collisions. Our algorithm supports arbitrary key types K with =g
or <k, with a user hash function. For integer keys, we provide the
option to use the identity function, resulting in semisort-i- and
semisort-i<, which can be much faster in many cases, although we

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

note that these versions do not admit as good theoretical bounds.
Our interface also supports histogram and collect-reduce only with
minor changes.

Low Space Usage. In the Blocked Distributing step, we compute the
exact counts for the buckets, so when distributing the keys, the total
size of the buckets is n, instead of @(n) as in GSSB (their buckets
need to have a load factor smaller than 1 because of random scatter).
Other than space overhead, GSSB also needs a costly packing step.

I/0-Efficiency. Our algorithm also uses several techniques to en-
able a better memory access pattern. We pick a small number of
buckets (n; = 219), as opposed to O(n/log? n) of them in GSSB,
such that the counting matrix C and its prefix sum X in our algo-
rithms fit in cache (recall that we access them in column-major).
As such, the Blocked Distributing step incurs no random accesses
to the main memory.

Stability and Determinism. Due to avoiding using parallel hash
tables, our semisort algorithms (both semisort= and semisort<) are
stable and race-free. GSSB is not race-free (due to using parallel
hash tables), and is unstable (heavy keys are in random order), and
thus cannot support non-commutative operations in collect-reduce.

4.2 Relationship to Sample Sort and Integer Sort

Many ideas in our semisort algorithm are closely related to ideas
in sorting algorithms, as we will discuss in this section.

Samplesort. Samplesort is the general idea of using multiple piv-
ots in quicksort; clearly this algorithm can be used to solve the
semisort< problem. The algorithm selects p pivots, uses them to
partition the input into p + 1 buckets, and sorts all of the buckets
in parallel. We refer the audience to [10] for a detailed literature re-
view on samplesort. We compare to the state-of-the-art samplesorts
from ParlayLib [13] and IPS*o [10] in our experiments.

Similar to samplesort, our algorithm also partitions the input
into buckets and processes them in parallel. However, samplesort
is a comparison sort that requires the < operation, and has an
Q(nlogn) lower bound in work, whereas our semisort= algorithm
only requires O(n) work. The ParlayLib samplesort [13] uses one
level of partition. IPS*0 [10] (preliminary version as [61]) also uses a
small number of samples and sort recursively. They use an implicit
search tree (breadth-first traversing the tree that stores the sorted
pivots) to find the bucket for each record, which is not required in
our algorithm. They also use a smart approach for the distribution
step, and we discuss this in Sec. 6.

Integer sort. Integer sorting can be used to semisort integer keys
for semisort=, or to semisort the hash value of any key types with an
extra step to resolve collisions. Unlike the sequential radix sort that
starts from the least-significant bits, all parallel integer sort algo-
rithms are top-down and first look at the most-significant bits. We
refer to [59] for a detailed literature review for parallel integer sort.
We compare to the state-of-the-art integer sorts from ParlayLib [13],
RegionsSort [59], and IPS*Ra [10] in our experiments.

The major advantage of our semisort algorithm over integer
sorting is that our algorithm can identify heavy keys. Consider a
heavy key x and a light key x + 1. Our algorithm will put x in a
separate heavy bucket, and only deal with x + 1 in a light bucket
in the next steps. For existing integer sorts [10, 13, 59], both keys
are likely kept in the same bucket for all levels and separated only

348

Xiaojun Dong et al.

Name Stable Det. K comp Notes

Ours- Yes Yes Any = Our semisort- algorithm

Ours. Yes Yes Any < Our semisort< algorithm
Ours-i= Yes Yes Int = Our integer semisort- algorithm
Ours-i< Yes Yes Int < Our integer semisort< algorithm
Oursg Yes Yes Any = Our collect-reduce algorithm
PLSS Y/N Yes Any < ParlayLib sample sort [13]

PLIS Yes Yes Int < ParlayLib integer sort [13]
IPS%o No No Any < IPS*o sample sort [10]

IPS’Ra No No Int < IPS?Ra integer sort [10]

GSSB No No Int = GSSB semisort [48]

RS No No Int < RegionsSort [59]

PLCR Yes Yes Any < Collect-reduce from ParlayLib [13]

»

Table 2: Algorithms tested in our experiments. “Det” = determinism. “K’
= key type. “Any” = any input key type. “Int” = only allows for integer keys.
“comp” = required comparison function. PLSS has two implementations. We
use the faster but unstable version in our experiments.

in the last round, which can result in significant wasted work and
load imbalance.

5 Experiments

Experimental Setup. We run our experiments on a 96-core ma-
chine (with two-way hyper-threading) with 4 x 2.1 GHz Intel Xeon
Gold 6252 CPUs processors (with 36 MB L3 cache) and 1.5TB of main
memory. We implement our algorithms in C++ using ParlayLib [13]
for fork-join parallelism and some parallel primitives. We compile
our code using clang version 14.0.6 with -03 flag. We always use
numactl -i all to interleave the memory on all CPUs except for
sequential tests. We run each test six times and report the median
of the last five runs. All running times are given in seconds.

Baseline Algorithms. We compare our algorithms to the state-
of-the-art comparison and integer sorting algorithms and collect-
reduce algorithms. We provide the list of the baseline algorithms
we compare our algorithms against in Tab. 2. For fairness and
consistency, we require the output to be written to the input array
(i.e., in-place). We note that this is beneficial for PLSS, IPS%o, IPS?Ra,
and RS as they are originally designed for the in-place setting.
Some of the baselines only work for integer types (integer-only),
including PLIS, GSSB, RS, and IPS2Ra. IPS*0 and PLSS work on any
input types (any-type). For the any-type algorithms, semisort<,
PLSS and IPS%o require the less-than test <y, while our semisort=
only needs the equality-test =g. GSSB assumes the input keys are
already hashed and does not resolve collisions, so we also categorize
it as integer-only. Among all implementations, all our algorithms
and PLIS are stable. This also means that they can be applied to
collect-reduce with arbitrary (associative) reduce operations, while
the others also require the reduce operation to be commutative. We
note that there are two versions of samplesort in ParlayLib. The
stable one is slower and the unstable one is faster. Our experiments
use the unstable but faster version. When comparing the average
performance, we always use the geometric mean.

We also tested classic sequential sorting algorithm such as STL
sort and a sequential hash table. However, since they are not I/O
efficient, even their sequential performance is not as fast as the
sequential execution of the aforementioned parallel algorithms.
Hence, we do not include their running time in our experiment.

High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

SPAA 23, June 17-19, 2023, Orlando, FL, USA

Para- Dist. Max Heavy Any Type Integer Only
meter Keys Freq. Freq. | Ours= Ours< PLSS IPS%0 | Ours-i= Ours-ic PLIS GSSB RS IPS’Ra
10 10 100M 100% | 0730 0707 112 0.863 0.650 0615 192 277 127 3.77
g 103 1K M 100% | 0743 0740 0.975 0.762 0.693 0.693 137 413 153 1.66
5 10° 100K 10K 0% | 0725 0727 132 1.10 0.684 0.685 118 236 137 1.02
f‘g 107 10M 100 0% | 098 0984 1.41 1.05 0.950 0873 111 249 1.72 1.03
=} 10° 1B 1 0% 1.00 116 157 1.11 0.958 130 110 274 137 1.10
Avg. - - -] 0828 0846 1.26 0.966 0.775 0.802 131 284 145 1.49
1x107% 182K 100K 89.6% | 0723 0726 1.25 0.928 0.690 0.686 183 244 1.52 1.05
.Tg 7x107° 252K 700K 85.2% | 0730 0729 128 0.985 0.694 0.691 1.64 246 148 1.01
S| 5%x107° 343K 500K 79.3% | 0740 0733 132 1.04 0.699 0.695 148 245 140 1.01
S| 2x105 789K 200K 482% | 0765 0765 133 1.15 0.719 0709 118 253 141 1.04
£ 11x1075 147M 100K 0.00% | 0822 0.808 1.34 1.16 0.750 0738 112 260 1.40 1.03
M Avg. - - -1 0755 0752 130 1.05 0.710 0703 143 249 144 1.03
15 179M 383M 97.7% | 0.682 0686 2.07 1.56 0.663 0.643 237 250 171 6.50
- 12 347M 18IM 83.6% | 0767 0.773 1.50 1.21 0.676 0.667 181 246 170 3.31
& 1 210M 469M 422% | 0925 0997 1.25 1.08 0.815 0.841 139 265 154 1.67
& 0.8 525M 3.22M 532% 1.00 116 150 1.12 0.930 0971 113 275 145 1.12
N 0.6 756M 100K 0.10% 1.00 116 157 1.12 0.949 100 111 273 139 1.10
Avg. - - -] 0866 0934 156 1.21 0.797 0.811 149 262 155 2.13
Overall Geometric Mean | 0815 0841 137 107 | 0.760 0770 141 265 148 1.48

Table 3: Running times with different input distribution with n = 10°, 64-bit keys and 64-bit values. Underlined numbers are the fastest running
time in each distribution-input type instance. “parameter” = distribution parameters (i.e., ¢ in uniform, A in exponential, and s in zipfian distribution). “Distinct

» «

keys”,
means geometric mean numbers across multiple tests.

Our Algorithms. We use the two versions of our algorithm semisort<
and semisort= that work on any-type. In tables and figures, we also
use “Ours=" and “Ours<” to refer to them, and use “Oursg” to refer
to our collect-reduce implementation. When comparing with the
integer-only implementations, we use simplified versions without
hashing (see Sec. 4.1), and call them semisort-i— and semisort-i<
(or “Ours-i=” and “Ours-i<”), where the hash function is an iden-
tity function. The choices of parameters in our algorithms are in
Sec. 3.6.

Input Distributions. We use three distributions for evaluating
our algorithms: uniform(u), exponential(1), and Zipfian(s). If not
specified, the default setting is n = 10° with 64-bit keys and 64-bit
values. We also include tests of our algorithm on varying input
sizes and key lengths (Figs. 3b and 4). For uniform distribution, we
test p = 101, 103,10°, 107, 10°. For exponential distribution, we test
A=1x107%2x107%5x107°,7 x 107>,1 x 10~%. For Zipfian
distribution, we test s = 0.6,0.8,1,1.2,1.5. We use distribution-
param to denote the input distribution with parameter param (e.g.,
uniform-10%). We show relevant statistics of the inputs along with
our results in Tab. 3. We present the number of distinct keys, the
maximum frequency, and the ratio of keys with more than 500 log n
occurrences, which is noted as “Heavy Freq.” in Tab. 3. They are
measured for each distribution to indicate skewness of the data. For
the synthetic data, we always set the value type the same as the key
type. For most of the tests, we provide figures on one representative
distribution, and provide more results in the full version [39].

5.1 Overall Performance

We present the running time of all tested implementations with
n = 10° 64-bit keys with different distributions in Tab. 3, and a
heatmap (normalizing all running times to the fastest on each test)

349

maximum frequency”, and “heavy frequency” are statistics for each test (see details in Sec. 5). The algorithm names are described in Tab. 2. “Avg”

in Fig. 1. On all but four tests, our algorithms are always the best
two implementations. Among any-type algorithms, our semisort=
and semisort< are 1.02-2.28% and up to 2.27X faster (respectively)
over the best of the other algorithms. For integer-only algorithms,
our semisort-i= is 1.08-2.59X faster than the other algorithms. Our
semisort-i< is about 15% slower than PLIS in one test, and is up to
2.67x faster than all baselines on all other tests.

Overall, our algorithms are always faster than the baseline algo-
rithms using geometric mean. Note that some of the baselines are
competitive on some individual tests, such as IPS%0 on uniform—lO3
and uniform-10%, PLIS on uniform-10° and Zipfian-0.6, and IPS?Ra
on Zipfian-0.6. However, their performance can be unstable over
different distributions. IPS*o is relatively fast on uniform distribu-
tions but performs worse on skewed distributions. We also compute
the geometric means in Tab. 3 and Fig. 1 to compare the perfor-
mance on each distribution. Based on these numbers, semisort—
and semisort< have very close performance (within 5%). All the
other algorithms are at least 25% slower than both of our implemen-
tations on average. We also show relative performance for 32-bit
and 128-bit keys in the full version of this paper [39]. On average,
our algorithms are consistently the fastest. We note that not all
comparisons are apple-to-apple comparisons. PLSS and IPS*o work
for general sorting which is asymptotically harder than semisort.
PLIS, RS, and IPS?Ra are for integer sorting, which is also slightly
different than semisorting. Also, PLIS and all our implementations
are stable while others are not (see Tab. 2).

Interestingly, the integer sort algorithms can be slower than
comparison sorts on 64-bit keys. We tested on 32-bit and 128-bit
keys and show the running time in the full version of this paper.
Unsurprisingly, integer sort algorithms are usually faster than com-
parison sort algorithms on 32-bit keys, and get worse on 128-bit

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

)

R .=

N 48 Oursio —=— RS £ ——

20 —— Ours-i. —*— IPS'o //V'§" b

£Q4 —— (P)LSS —— :g: Ra P :\/‘\: g" i Sf;;‘ ::.
o e — =

= P = 2

3 F £ o2 =

SN 4 w0t

) A/’“ £ T

R So002 &

N & 0.01

1 2 4 8 24 48 96 96h 10 20

Number of hyper-threads (logscale)
(a)

26 mm 32bit
S mmm o4bit
\"_L4 Il 128-bit
(o]
£
'_
a0 2
£
s
-l iJ
3
* 5 O P&
P R g G \ S 13y
o o o ¢ @ & \Q 8%

Figure 4: Running time of our semisort implementations and other
implementations with different key-lengths on Zipfian-1.2. n = 10°.
We put crosses on RS and IPS?Ra because they do not support 128-bit keys.

keys (PLIS is the only integer sort in Tab. 2 that supports 128-bit
keys). On average, our algorithms are still the fastest on 32- and
128-bit keys, and the gap is smaller for 32-bit keys and larger for
128-bit keys.

One advantage of our algorithms is that they can identify heavy
keys and use little further work (no local refining needed) on them.
Thus, the running time of our algorithms decreases with more heavy
keys (see Tab. 3). Many baseline algorithms also use optimizations
on the heavy keys (e.g., PLSS), and they show a similar trend.

Parallel Scalability. We present the scalability curves using dif-
ferent number of threads in Fig. 3a on one representative distribu-
tion (Zipfian-1.2, n = 109), and for other distributions in the full
version of this paper. All of our semisort algorithms, as well as
PLSS, generally achieve the top-tier (almost linear) speedup, while
other algorithms also scale well with increasing core counts. The
self-speedup of semisort- and semisort< are 50-80%, The speedup
numbers are slightly worse for semisort-i— and semisort-i<(30-50%
speedups), as they save the work for the hashing step but can lead
to unbalanced subproblem partitioning (light buckets).

Input Size Scalability. We test all algorithms on input sizes from
107 to 10° on different distributions. A representative one (Zipfian-
1.2 is given in Fig. 3b), and others are given in the full version of
this paper. For very small test cases n < 2 x 107, PLSS is the fastest
on certain tests. However, in those cases, the running time is below
0.05s. For n > 5x 107, our algorithms are consistently faster than all
baselines. These results indicate that our algorithms perform well

50 100 200
Input size x 10° (logscale)
(b)

Figure 3: (a). Self-speedup of all tested implementations with increasing hyper-thread counts on Zipfian-1.2. n = 10°. (b). Scalability with
increasing input size (n) of all tested implementations on Zipfian-1.2. (c). Performance of collect-reduce with various Zipfian distributions.
n = 10°. Oursg is our collect-reduce algorithm. Ours- is our semisort- algorithm. PLCR is the collect-reduce in ParlayLib [13]. All three cases are on 64-bit
keys and 64-bit values.

350

Xiaojun Dong et al.

3.0
g£25
2.0
c
E15
& 1.0
05

More heavy keys

Fewer heavy keys

1.2 1.0 0.8 0.6
Distribution Parameter

(©)

500 1000 15

on reasonably small size and scale favorably well to large inputs.

Varying Key Lengths. In addition to 64-bit keys, we also tested
32-bit and 128-bit keys for n = 10°. We always set the value to be
the same type as the key. Full results are given in the full version
of this paper. Firstly, integer sort algorithms are sensitive to key
lengths. RS and IPS?Ra do not support 128-bit keys, and PLIS’s
performance on 128-bit keys is usually the slowest based on our
testing. On 32-bit keys, integer sort algorithms can achieve much
better (relative) performance than on 64-bit keys. Also, integer
sort algorithms generally perform poorly on highly-skewed data
(see discussion in Sec. 4.2). Other algorithms, including semisort
(ours and GSSB) and comparison sort (PLSS and IPS%0), are less
sensitive to key lengths. Hence, the trends on 32- and 128-bit are
similar to that on 64-bit. Our new algorithms generally perform
well since semisort is simpler than sorting, and we can apply special
optimizations (e.g., for heavy keys). In certain cases when not many
special optimizations can be used (e.g., uniform-10°), PLSS and
IPS*o perform similarly to our algorithms.

Cache Performance. To study the cache performance of our algo-
rithm, we measured the number of cache misses of each algorithm
on two representative input distributions: uniform-10° (mostly
heavy keys) and Zipfian-1.2 (with heavy duplicates), and showed
them in Tab. 4. Overall, the number of cache misses has a strong
correlation of the running time, given that all these algorithms have
O(nlogn) or similar work. In both cases, our algorithms incur the
fewest cache misses, while GSSB has the most. Between semisort«
and semisort—, semisort— generally has more cache misses but offset
by linear work, so generally their performances are comparable.

5.2 Collect-Reduce

We test our collect-reduce algorithm (histogram is a special case
for collect-reduce) and show the results on Zipfian distribution in
Fig. 3c. The full results for other distributions are given in the full
version of this paper. Recall that our collect-reduce algorithm is
similar to semisort=, but directly combines values for keys. The
values of the heavy keys are combined in the Blocked Distributing
step (no need to distribute), and the values of the light keys are
combined in the Local Refining step. The only existing parallel im-
plementation of collect-reduce that we know of is in ParlayLib [13]
(PLCR), and we compare with it. We also show the performance

High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

SPAA 23, June 17-19, 2023, Orlando, FL, USA

Di P Any Type Integer Only
1st. aram. Ours— Ours< PLSS IPS%o | Ours-i= Ours-ic PLIS GSSB RS IPS?Ra
#misses | 27.1B 24.8B 282B 36.1B 26.9B 24.8B 302B 63.1B 446B 27.7B
Uniform 10° .
Rel. time 1.00 115 157 111 1.00 136 115 286 143 1.15
- #misses | 28.8B 26.7B 41.4B 52.8B 28.6B 26.7B 33.7B 76.6B 557B 46.6B
tptian 1.2 Rel. time 1.00 101 195 158 1.01 100 271 369 255 4.97

Table 4: Number of cache misses and running time on two representative input distributions with n = 10, 64-bit keys and 64-bit values. “Dist”
= distribution. “Param” = distribution parameters. “Rel. time” = relative running time normalized to the fastest one. The number of cache misses is in billion.

n m Ngist fmax Theavy | Ours-i= Ours-ic PLSS IPS‘0c PLIS GSSB RS IPS’Ra

L) [11] 4.85M 69.0M 4.49M 139K 62.8K 0.042 0.045 0.075 0101 0.039 456 0.062 5.g.
TW [53] 417M 147B 357M 770K 74.8M 0.714 0.834 157 0814 0.900 to. 106 2.94
CM [54,74] | 32IM 161B 320M 17 0 0.791 1.04 184 110 0903 358 1.09 1.44
SD [57] 89.2M 2.04B 72.8M 234M 456M 0.916 108 210 116 1.24 sg. 137 2.82
Overall geometric mean 0.385 0.452 0.821 0.569 0.446 - 0.559 -

Table 5: Running time on graph transposing (in seconds). n = number of vertices. m = number of edges.

ngisy = number of distinct keys. fiuax =

maximum frequency. rpeqyy, = ratio of keys with more than 500 log n occurrences. “t.o.” = did not finish in one minute. “s.g” = segmentation fault.

n Ngist fmax Theavy| Ours= Ours< PLSS IPS%o
2-gram 68.0M 3.12M 2.18M 28.0%| 0.312 0.332 0.346 0.753
3-gram 224M 475M 319K 4.43% 144 180 2.00 3.26
Overall geometric mean 0.671 0.772 0.832 1.57

Table 6: Running time on semisorting n-grams [8] (in seconds). n =
number of records. ny = number of distinct keys. frngx = maximum
frequency. rpeqyy = ratio of keys with more than 500 log n occurrences.

of semisort- as a baseline in Fig. 3c. The operator that we test for
the reduce (on the values) is addition. We use Zipfian distributions
with varying parameters as it smoothly covers different amounts
of skew in the input. First, our collect-reduce is consistently faster
than ParlayLib’s implementation, and the gap is larger when the
distribution is more skewed. Furthermore, when heavy keys occur
more, collect-reduce is significantly faster than semisort=. This
is because we reduce the values for each bucket in the Blocked
Distributing step, and then combine them without moving them.
However, when few heavy keys exist, collect-reduce incurs more
work than semisort, because some additional work is needed in the
Local Refining step to pack the output since some keys are com-
bined, while in semisort the input size equals to output size and no
packing is needed. In conclusion, when the input is more skewed
(more heavy keys), collect-reduce is faster than semisort—, and vice
versa on more evenly-distributed data (more light keys).

5.3 Applications

We integrate our algorithms into two real-world applications—
graph transposing, where the input is edges, and n-grams, where
the input is strings—to test our algorithm in more realistic set-
tings. Unlike our previous experiments with synthetic distributions
for performance study, here we benchmark these applications on
real-world datasets and derive a more realistic understanding of
semisorting performance in practice.

Graph transposing. Our first application is to transpose a di-
rected graph G = (V,E), i.e., to generate GT = (V,ET), where
ET = {(u,0) : (v,u) € E}. This is a widely used primitive in
graph algorithms. For example, parallel algorithms for strongly

351

connected components [20, 32, 50, 67] require running reachability
searches both “forwards” and “backwards”. The backward reacha-
bility searches can be performed by running forward reachability
query on GT. In many existing graph libraries, the edges are stored
in the Compressed Sparse Row (CSR) format, where for each vertex
v, the other endpoints of edges from v are stored contiguously. Thus,
transposing the graph is exactly semisorting the CSR input using
the other endpoint. In some existing parallel graph libraries such
as Ligra [66] and GBBS [32], stable comparison sorts are used for
graph transposing to preserve the ordering of the first endpoint.

We evaluate transpose on four real-world directed graphs, soc-
LiveJournal (LJ) [11], twitter (TW) [53], Cosmo50 (CM) [54, 74], and
sd_arc (SD) [57], where the largest input has 2.04 billion directed
edges. For the social networks (L], TW) and web graph (SD), the
degree distributions are more skewed. For the k-NN graph CM, the
degrees are more evenly-distributed. We give more details about
these datasets in Tab. 5. We use the initial CSR versions of these
graphs and use our semisort< and semisort= algorithms to trans-
pose the graphs. We compare with all the baseline algorithms and
show the relative performance in Tab. 5. On all the graphs, the keys
(vertex id) are 32-bit. Since the input data are integers, we use our
integer version (identity hashing function).

Our semisort-i= is the fastest on three graphs (TW, CM, and SD),
and is within 15% slower than the fastest on the other graph (L]).
Our semisort-i< is competitive, and is within 20% slower than the
fastest on the other graphs. PLIS has relatively good performance on
all graphs; it is the fastest on L] (the smallest graph) and within 35%
on the others. On the average performance across the four graphs,
semisort-i- is significantly better than the others (1.15-2.13X faster).
semisort-i< and PLIS have similar performance on average (within
1%). They are at least 25% faster than other implementations.

N-Gram. Our second application is to process n-grams, where an
n-gram is a consecutive sequence of n items from a given sequence
(e.g., text or speech). We use the 2-gram and 3-gram datasets from
Wikipedia [8], and clean the data by only keeping alphabetical
characters and converting them to lowercase. Each n-gram record

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

consists of n consecutive words in the document. We use the first
n — 1 words of a record as the key, and use the last word as the
value. We note that in our algorithms, we compute the hash val-
ues of the words on the fly. Semisorting n-grams can be used to
identify all possible words after a given context, and to provide
recommendations for text inputs, and to learn the pattern of the
input sequences. Our results are shown in Tab. 6. On both 2-gram
and 3-gram, our semisort= is the fastest, while semisort< (within
25% slower) is competitive. The average performance of semisort—
is 15% faster than semisort<, 24% faster than PLSS, and 2.3x faster
than IPS*o.

6 Conclusions and Future Work

In this paper, we designed flexible and high-performance algorithms
for semisort and related problems. We presented two implementa-
tions, semisort= (only the equality-test is required), and semisort<
(the less-than-test is also available). Compared to previous semisort
algorithms, our new algorithms yield improvements in terms of
space-efficiency and I/O-friendliness, ensure stability and deter-
minism, and importantly, increase the flexibility of the interface.
On different input distributions, input sizes and key lengths, our
implementations achieve high performance, and outperform exist-
ing sorting and semisorting algorithms in most of the tests. For
example, on 10° 64-bit keys, on all the tested distributions, (one of)
our algorithms are always the fastest among all tested algorithms,
and the other one always performs similarly.

Based on our experiments, in-place versions of the sorting algo-
rithms (e.g., IPS*0) are competitive and sometimes more efficient
than the non-in-place versions (e.g., PLSS). The good performance
for the in-place algorithms is due to the I/O savings in the distribut-
ing step—they use the same array for both the input and the buckets
(A and T in Alg. 1). We note that the new techniques proposed in
this paper are independent of this distribution step. An interesting
future direction is to redesign this step (e.g., borrowing ideas from
IPS*0) to improve the overall performance and reduce the extra
space usage.

Acknowledgement

This work is supported by NSF grants CCF-2103483, IIS-2227669,
NSF CAREER award CCF-2238358, and UCR Regents Faculty Fel-
lowships. We thank anonymous reviewers for the useful feedbacks.

References
[1

Umut A Acar, Daniel Anderson, Guy E Blelloch, and Laxman Dhulipala. 2019.
Parallel batch-dynamic graph connectivity. In ACM Symposium on Parallelism in
Algorithms and Architectures. 381-392.

Umut A Acar, Daniel Anderson, Guy E Blelloch, Laxman Dhulipala, and Sam
Westrick. 2020. Parallel batch-dynamic trees via change propagation. In European
Symposium on Algorithms (ESA).

Alok Aggarwal and Jeffrey S. Vitter. 1988. The Input/Output Complexity of
Sorting and Related Problems. Commun. ACM 31, 9 (1988).

Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim Sukha, and
Robert Utterback. 2014. Provably Good Scheduling for Parallel Programs That Use
Data Structures Through Implicit Batching. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

Zafar Ahmad, Rezaul Chowdhury, Rathish Das, Pramod Ganapathi, Aaron Gre-
gory, and Mohammad Mahdi Javanmard. 2021. Low-Span Parallel Algorithms
for the Binary-Forking Model. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). 22-34.

Daniel Anderson, Guy E. Blelloch, and Kanat Tangwongsan. 2020. Work-Efficient
Batch-Incremental Minimum Spanning Trees with Applications to the Sliding-
Window Model. In ACM Symposium on lgarallelism in A};orithms and Architectures
(SPAA).

352

Xiaojun Dong et al.

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. 2001. Thread Scheduling for
Multiprogrammed Multiprocessors. Theory of Computing Systems (TOCS) 34, 2
(01 Apr 2001).

Javier Artiles and Satoshi Sekine. 2008. Tagged and Cleaned Wikipedia (TC
Wikipedia) and its Ngram. https://nlp.cs.nyu.edu/sekine/.

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. 2017. In-place
parallel super scalar samplesort (ipsssso). In European Symposium on Algorithms
(ESA).

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. 2022. En-
gineering in-place (shared-memory) sorting algorithms. ACM Transactions on
Parallel Computing (TOPC) 9, 1 (2022), 1-62.

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution. In
ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD).
44-54.

Naama Ben-David, Guy E. Blelloch, Jeremy T Fineman, Phillip B Gibbons, Yan
Gu, Charles McGuffey, and Julian Shun. 2018. Implicit Decomposition for Write-
Efficient Connectivity Algorithms. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib — a
toolkit for parallel algorithms on shared-memory multicore machines. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 507-509.
Guy E Blelloch, Laxman Dhulipala, Phillip B Gibbons, Yan Gu, Charles McGuffey,
and Julian Shun. 2021. The read-only semi-external model. In SIAM Symposium
on Algorithmic Principles of Computer Systems (APOCS). SIAM, 70-84.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.
Internally deterministic parallel algorithms can be fast. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP). 181-192.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan
Simhadri. 2011. Scheduling Irregular Parallel Computations on Hierarchical
Caches. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
355-366.

Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel
algorithms in the binary-forking model. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 89-102.

Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low
depth cache-oblivious algorithms. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA).

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel Write-
Efficient Algorithms and Data Structures for Computational Geometry. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Parallelism in
Randomized Incremental Algorithms. J. ACM 67, 5 (2020), 1-27.

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Randomized Incre-
mental Convex Hull is Highly Parallel. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. 2016. Parallel
Shortest Paths Using Radius Stepping. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 443-454.

Guy E. Blelloch and Margaret Reid-Miller. 1999. Pipelining with futures. Theory
of Computing Systems (TOCS) 32, 3 (1999), 213-239.

Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient Scheduling of
Multithreaded Computations. SIAM J. on Computing 27, 1 (1998).

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3rd edition). MIT Press.

Jeub cub [n.d.]. NVIDIA CUB library. https://nvlabs.github.io/cub/.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM (2008).

Laxman Dhulipala. 2020. Provably Efficient and Scalable Shared-Memory Graph
Processing. Ph.D. Dissertation. Carnegie Mellon University.

Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022. PaC-trees:
Supporting Parallel and Compressed Purely-Functional Collections. In ACM
Conference on Programming Language Design and Implementation (PLDI).
Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A Frame-
work for Parallel Graph Algorithms using Work-efficient Bucketing. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 293-304.
Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency graph
streaming using compressed purely-functional trees. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI). 918-934.

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically efficient
parallel graph algorithms can be fast and scalable. ACM Transactions on Parallel
Computing (TOPC) 8, 1 (2021), 1-70.

Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab Mirronki, and Jessica Shi.
2022. Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth.
arXiv preprint:2206.11654 (2022).

Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt: a frame-
work for static and incremental parallel graph connectivity algorithms. Proceed-
ings of the VLDB Endowment (PVLDB) 14, 4 (2020), 653-667.

8

[9

[12]

(13

[14

[15

[16

(17

[18

[19

™
=2

[21

[22

[23

[24

&
i

[26
[27]

[28

[29

[30

(31]

W@
&,

[33

[34

https://nlp.cs.nyu.edu/sekine/
https://nvlabs.github.io/cub/

High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

[35] Laxman Dhulipala, Charlie McGuffey, Hongbo Kang, Yan Gu, Guy E Blelloch,
Phillip B Gibbons, and Julian Shun. 2020. Semi-Asymmetric Parallel Graph
Algorithms for NVRAMs. Proceedings of the VLDB Endowment (PVLDB) 13, 9
(2020).

[36] Thanh Do, Goetz Graefe, and Jeffrey Naughton. 2023. Efficient sorting, duplicate

removal, grouping, and aggregation. ACM Transactions on Database Systems

(TODS) 47, 4 (2023), 1-35.

Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient Stepping

Algorithms and Implementations for Parallel Shortest Paths. In ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA). 184-197.

[38] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023. Provably Fast and

Space-Efficient Parallel Biconnectivity. ACM Symposium on Principles and Practice

of Parallel Programming (PPOPP) (2023), 52-65.

Xiaojun Dong, Yunshu Wu, Zhongqi Wang, Laxman Dhulipala, Yan Gu, and Yihan

Sun. 2023. High-Performance and Flexible Parallel Algorithms for Semisort and

Related Problems. arXiv preprint:2304.10078 (2023).

[40] Xiaojun Dong, Yunshu Wu, Zhongqi Wang, Laxman Dhulipala, Yan Gu, and
Yihan Sun. 2023. Parallel Semisort and Related Problems Implementations. https:
//github.com/ucrparlay/Parallel-Semisort.

[41] Jonas Ellert, Johannes Fischer, and Nodari Sitchinava. 2020. LCP-Aware Parallel
String Sorting. In European Conference on Parallel Processing (Euro-Par). Springer,
329-342.

[42] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
1999. Cache-Oblivious Algorithms. In IEEE Symposium on Foundations of Com-
puter Science (FOCS).

[43] Michael Goodrich, Riko Jacob, and Nodari Sitchinava. 2021. Atomic power in
forks: A super-logarithmic lower bound for implementing butterfly networks
in the nonatomic binary fork-join model. In ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2141-2153.

[44] Yan Gu. 2018. Write-Efficient Algorithms. Ph.D. Dissertation. Carnegie Mellon
University.

[45] Yan Gu, Zachary Napier, and Yihan Sun. 2022. Analysis of Work-Stealing and
Parallel Cache Complexity. In SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS). SIAM, 46-60.

[46] Yan Gu, Zachary Napier, Yihan Sun, and Letong Wang. 2022. Parallel Cover
Trees and their Applications. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). 259-272.

[47] Yan Gu, Omar Obeya, and Julian Shun. 2021. Parallel In-Place Algorithms: Theory
and Practice. In SIAM Symposium on Algorithmic Principles of Computer Systems
(APOCS). 114-128.

[48] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel
Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 24-34.

[49] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and Cosmin
Oancea. 2020. Compiling generalized histograms for gpu. In International Con-
ference for High Performance Computing, Networking, Storage, and Analysis (SC).
IEEE, 1-14.

[50] Yuede Ji, Hang Liu, and H Howie Huang. 2018. ispan: Parallel identification of
strongly connected components with spanning trees. In International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC). IEEE,
731-742.

[51] Tim Kaler, Tao B Schardl, Brian Xie, Charles E Leiserson, Jie Chen, Aldo Pareja,

and Georgios Kollias. 2021. PARAD: A Work-Efficient Parallel Algorithm for

Reverse-Mode Automatic Differentiation. In SIAM Symposium on Algorithmic

Principles of Computer Systems (APOCS). SIAM, 144-158.

Hongbo Kang, Phillip B Gibbons, Guy E Blelloch, Laxman Dhulipala, Yan Gu, and

Charles McGuffey. 2021. The Processing-in-Memory Model. In ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA). 295-306.

[53] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In International World Wide Web
Conference (WWW). 591-600.

[37

[39

[52

[54] YongChul Kwon, Dylan Nunley, Jeffrey P Gardner, Magdalena Balazinska, Bill
Howe, and Sarah Loebman. 2010. Scalable clustering algorithm for N-body
simulations in a shared-nothing cluster. In International Conference on Scientific
and Statistical Database Management. Springer, 132-150.

[55] Quanquan Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun. 2022.

Parallel Batch-Dynamic k-Core Decomposition and Related Graph Problems.
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2022).

353

[56]

[57]

[58

[59]

[60

o
fla

[62

[63]

[64

[65

(66

e
=

[74

[75

[78

[79

SPAA 23, June 17-19, 2023, Orlando, FL, USA

Quanquan C Liu. 2021. Scalable and Efficient Graph Algorithms and Analysis
Techniques for Modern Machines. Ph. D. Dissertation. Massachusetts Institute of
Technology.

Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014.
Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/
hyperlinkgraph.

Ingo Miiller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Far-
ber. 2015. Cache-efficient aggregation: Hashing is sorting. In ACM SIGMOD
International Conference on Management of Data (SIGMOD). 1123-1136.

Omar Obeya, Endrias Kahssay, Edward Fan, and Julian Shun. 2019. Theoretically-
efficient and practical paralfel in-place radix sorting. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA). 213-224.

Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, and Chi Wang. 2021.
Lightne: A lightweight graph processing system for network embedding. In ACM
SIGMOD International Conference on Management of Data (SIGMOD). 2281-2289.
Peter Sanders and Sebastian Winkel. 2004. Super scalar sample sort. In European
Symposium on Algorithms (ESA). Springer, 784-796.

Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequential Iterative
Algorithms Can Be Parallel and (Nearly) Work-efficient. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel clique counting
and peeling algorithms. SIAM, 135-146.

Jessica Shi and Julian Shun. 2020. Parallel algorithms for butterfly computations.
In SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS).
SIAM, 16-30.

Julian Shun. 2020. Practical parallel hypergraph algorithms. In ACM Symposium
on Principles and Practice of Parallel Programming (PPOPP). 232-249.

Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP). 135-146.

George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS
and coloring-based parallel algorithms for strongly connected components and
related problems. In IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 550-559.

Yihan Sun. 2019. Join-based Parallel Balanced Binary Trees. Ph.D. Dissertation.
Carnegie Mellon University.

Kanat Tangwongsan and Srikanta Tirthapura. 2019. Parallel streaming random
sampling. In European Conference on Parallel Processing (Euro-Par). Springer,
451-465.

Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. 2019. Batch-parallel eu-
ler tour trees. In 2019 Proceedings of the Twenty-First Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, 92-106.

Leslie G. Valiant. 1990. General Purpose Parallel Architectures. In Handbook of
Theoretical Computer Science (Vol. A), Jan van Leeuwen (Ed.). MIT Press, 943-973.
Letong Wang, Xiaojun Dong, Yan Gu, and Yihan Sun. 2023. Parallel Strong Con-
nectivity Based on Faster Reachability. In ACM SIGMOD International Conference
on Management of Data (SIGMOD).

Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-Efficient and Practical
Parallel DBSCAN. In ACM SIGMOD International Conference on Management of
Data (SIGMOD). 2555-2571.

Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2021.
GeoGraph: A Framework for Graph Processing on Geometric Data. ACM SIGOPS
Operating Systems Review 55, 1 (2021), 38-46.

Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast parallel algorithms
for euclidean minimum spanning tree and hierarchical spatial clustering. In ACM
SIGMOD International Conference on Management of Data (SIGMOD). 1982-1995.
Yifan Xu, Kyle Singer, and I-Ting Angelina Lee. 2020. Parallel determinacy race
detection for futures. In ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP). 217-231.

Yifan Xu, Anchengcheng Zhou, Grace Q Yin, Kunal Agrawal, I-Ting Angelina
Lee, and Tao B Schardl. 2022. Efficient Access History for Race Detection. In
Algorithm Engineering and Experiments (ALENEX). SIAM, 117-130.

Wentao Yang, Vipul Harsh, and Edgar Solomonik. 2022. Optimal Round
and Sample-Size Complexity for Partitioning in Parallel Sorting. arXiv
preprint:2204.04599 (2022).

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. In USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud).

https://github.com/ucrparlay/Parallel-Semisort
https://github.com/ucrparlay/Parallel-Semisort
http://webdatacommons.org/hyperlinkgraph
http://webdatacommons.org/hyperlinkgraph

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Computational Models and Other Notations
	2.3 The GSSB Semisort Algorithm

	3 Our New Algorithms
	3.1 Step 1: Sampling and Bucketing
	3.2 Step 2: Blocked Distributing
	3.3 Step 3: Local Refining
	3.4 In-place Optimization
	3.5 Supporting Histogram and Collect-Reduce
	3.6 Analysis and Parameter Choosing

	4 Comparisons with Existing Algorithms
	4.1 Improvements over GSSB
	4.2 Relationship to Sample Sort and Integer Sort

	5 Experiments
	5.1 Overall Performance
	5.2 Collect-Reduce
	5.3 Applications

	6 Conclusions and Future Work
	References

