Young death assemblages with limited time-averaging in rocky and *Posidonia oceanica* habitats in the Mediterranean Sea

Paolo G. Albano^{1,2*}, Quan Hua³, Darrell S. Kaufman⁴ and Martin Zuschin²

- ¹Department of Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- ²Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria
- ³Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
- ⁴School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA

© PGA, 0000-0001-9876-1024; QH, 0000-0003-0179-8539; DSK, 0000-0002-7572-1414; MZ, 0000-0002-5235-0198

*Correspondence: pgalbano@gmail.com

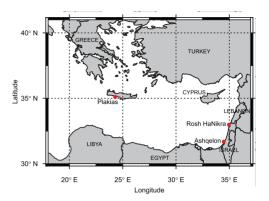
Abstract: Death assemblages (DAs) are increasingly recognized as a valuable source to reconstruct past ecological baselines, due to the accumulation of skeletal material of non-contemporaneous cohorts. We here quantify the age and time-averaging of DAs on shallow subtidal (5–25 m) rocky substrates and in meadows of *Posidonia oceanica* in the eastern Mediterranean. We show that such DAs are very young – median ages 9–56 years – with limited time-averaging, one to two orders of magnitude less than on even nearby soft substrates. On rocky substrates, out-of-habitat transport is likely the main cause of loss of older shells. In *Posidonia oceanica* meadows, the root and rhizome system creates a dense structure – the *matte* – that quickly entangles and buries shells and limits the potential for bioturbation. The *matte* is, however, a peculiar feature of *Posidonia oceanica*, and age and time-averaging in meadows of other seagrass species may be different. The young age of DAs in these habitats requires a careful consideration of their appropriateness as baselines. The large difference in DA age between soft substrates, subject to numerous studies, and hard and seagrass substrates, rarely inspected with geochronological techniques, implies that DA dating is important for studies aiming at using DAs as baselines.

Supplementary material: Details on methods and shell radiocarbon ages are available at https://doi.org/10.6084/m9.figshare.c.6315678

Death assemblages (DAs) are the taxonomically identifiable, dead or discarded organic remains encountered in a landscape (e.g. bones and the skeletal remains of other continental organisms) or seabed (e.g. teleost fish otoliths and hard parts of marine invertebrates) (Kidwell 2013). Due to their slow degradation and the generally low sedimentation rates, surficial DAs accumulate information on taxonomic and functional composition of ecosystems over decades to millennia (Kidwell and Tomašových 2013). This archiving capacity makes DAs precious sources of information on the ecosystem past that can be used as baselines to assess change due to natural or human activities (Dietl *et al.* 2015; Kidwell 2015).

In this perspective, two critical properties of DAs are their age and the degree of time-averaging, that is, the extent of temporal mixing caused by the fact

that skeletal remains are typically accumulated from multiple non-contemporaneous generations into a single assemblage. This is due to the combined effects of their high durability and the low burial rates in most settings. Age and time-averaging should be commensurate with the time frame of the studied processes to provide meaningful results. For example, if DAs are younger than the environmental changes of interest, they would represent an already shifted baseline and would thus lead to an underestimation of impacts.


Notwithstanding the importance of quantifying these properties when comparing death to living assemblages in order to infer ecosystem change, the cost of dating skeletal material and constraints on the minimum sample size for successful analysis hindered its broad application in the past. However, recent technical developments in amino acid

racemization (Miller et al. 2013) and radiocarbon dating (Bush et al. 2013; Gottschalk et al. 2018; Bright et al. 2021) have rendered dating individual shells affordable and applicable to ever-decreasing carbonate masses. Even so, the quantification of age and time-averaging of DAs has been mostly limited to soft substrates so far (e.g. Flessa and Kowalewski 1994; Carroll et al. 2003; Kidwell et al. 2005; Krause et al. 2010; Albano et al. 2016a; Harnik et al. 2017; Tomašových and Kidwell 2017), with a single study quantifying them in tropical seagrass substrates (Hyman et al. 2019). However, rocky substrates and seagrass meadows constitute important habitats for conservation as they host a higher biodiversity than soft substrates at similar depths (Guidetti 2000) and are under major human pressures such as coastal development, fisheries, sedimentation and global warming (Waycott et al. 2009; Bevilacqua et al. 2018; Rossi et al. 2022). The establishment of research protocols that include DA dating is an important step towards the application of live-dead comparisons to the assessment of their status.

Here, we quantify the median age and timeaveraging of DAs on shallow subtidal hard substrates and in meadows of the seagrass *Posidonia oceanica* in the eastern Mediterranean Sea. We then discuss the causes of the patterns we found and their consequences for the use of DAs in these habitats for conservation purposes.

Materials and methods

We sampled the rocky substrate in 2018 between 11 and 20 m depth off Ashqelon (31.69° N, 34.55° E) and west of Rosh HaNikra islands (33.07° N, 35.09° E), in the south and the north, respectively, of the Mediterranean Israeli shelf (Fig. 1). In Ashqelon, we collected on rocky reefs emerging from the siliciclastic soft substrates, whose DA were also sampled and dated by Albano et al. (2021). In Rosh HaNikra, we sampled large calcareous rock substrates. Due to the absence of Posidonia oceanica meadows in Israel (Boudouresque et al. 2006), we compare these results with those of a pristine meadow in Plakias, southwestern Crete, Greece, along a 5-20 m depth transect sampled in 2017 (35.18° N, 24.40° E) (Holzknecht and Albano 2022) (Fig. 1). In the meadow we deployed a suction sampler on the rhizomes after defoliation to enhance sampling efficacy (Bonfitto et al. 1998). This procedure collects material from the well-oxygenated sediment layer without penetrating the underlying mat, where the environment is characterized by sulfide production through high organic matter input and by oxygen supply through radial oxygen release from the roots (van der Heide et al. 2012). Details on

Fig. 1. Locations where the death assemblages from the rocky (Ashqelon and Rosh HaNikra in Israel) and seagrass (Plakias, Crete, Greece) substrates were collected.

the sampled locations can be found in Supplementary material S1.

At both locations, we sampled 1 m² quadrats with an air-lift suction sampler with a 0.5 mm mesh bag (Templado *et al.* 2010). This device collects organisms and the associated surface sediment enabling the contemporaneous collection of both the living and the death assemblages. Samples were then sieved, and shells for dating picked from the fractions coarser than 1 mm to ensure a minimum carbonate mass of 1 mg.

To quantify DA age and time-averaging, we radiocarbon dated ten valves per site of the bivalves Striarca lactea (Linnaeus, 1758) and Glans trapezia (Linnaeus, 1767) in Israel and Crete, respectively. These are common bivalves living byssally attached to hard substrates in the shallow subtidal. Bivalves are particularly suitable targets for dating because of their abundance and because of their shape that limits the retention of sediments and contaminants. Gastropods, equally abundant, have spires that are often filled with carbonate particles that either require a more time-consuming preparation or may bias the dating results. We selected both species based also on the presence of living individuals in our samples to avoid the truncation of the young end of the age frequency distribution.

Dating was conducted by accelerator mass spectrometry (AMS) using powdered carbonate targets (Bush *et al.* 2013; Bright *et al.* 2021) at the University of California Irvine, with a typical analytical precision of better than 0.6% (1 σ). Radiocarbon ages were converted to calendar years using OxCal v. 4.4.2 (Bronk Ramsey 2009), Marine20 data (Heaton *et al.* 2020), and a constant regional marine reservoir correction (ΔR) of -142 ± 66 years, which is the weighted mean of eight published pre-bomb ΔR values from Israel and Lebanon (Reimer and

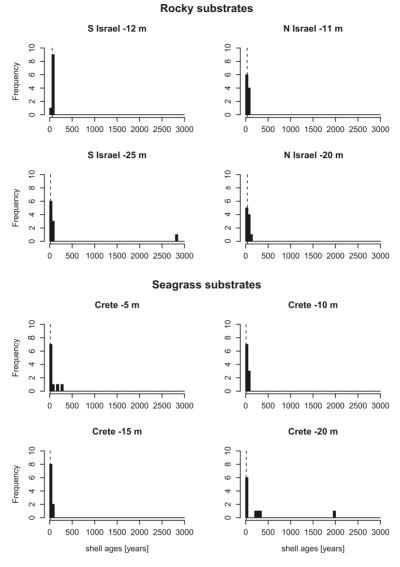
McCormac 2002; Boaretto *et al.* 2010). For samples younger than AD 1950, the fraction of modern carbon (F¹⁴C) was converted to calendar ages using a regional marine calibration curve and the calibration software OxCal v4.2. The post-1950 regional marine curve was constructed using 10 live-collected *Corbula gibba* shells collected along the coast of Israel. For details on the radiocarbon analysis and age calibration, please refer to section 1.3 of Supplementary material S1 and Albano *et al.* (2022). All ages are here reported in years before the year of collection. Dating results are reported in Supplementary material S2.

DA age was quantified by the median age of the dated shells, whereas time-averaging was quantified by the total age range, the 95% age range and the inter-quartile range (IQR). Computations and plotting were run in the R statistical environment (R Development Core Team 2019).

Results

All dated DAs showed a very young median age ranging between 18 and 56 years on rocky substrates and between 9 and 15 years in the *Posidonia oceanica* meadow (Table 1). Among the 80 dated shells, only two remarkable outliers were present: one shell of age 2810 years on the rocky reef at 25 m water depth, and one of age 1997 years in 20 m in the *Posidonia oceanica* meadow (Fig. 2, Supplementary material S2). Two and three shells of a few centuries old were also present in 5 and 20 m depth, respectively, in the meadow.

Consequently, at most sites, total and 95% age ranges are limited to a few decades (Table 1). The IQR ranges between 0 (rocky substrate, $-12 \, \text{m}$) and 251 (seagrass, $-20 \, \text{m}$) years (Table 1).

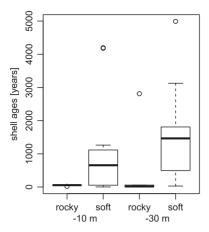

Discussion

The large majority of the shells from the rocky and seagrass DAs are only up to a few decades old. The young age of these assemblages strongly contrasts with older ages usually reported from shallow subtidal non-vegetated soft substrates, where median ages and inter-quartile ranges can be several hundreds to thousands of years (Flessa and Kowalewski 1994; Carroll et al. 2003; Kidwell et al. 2005; Krause et al. 2010; Harnik et al. 2017; Tomašových and Kidwell 2017). This result is even more evident when comparing the age distributions on the hard substrates with those of nearby (few hundred metres away) soft substrates sampled off Ashqelon in southern Israel (Fig. 3) reported by Albano et al. (2020). Shells collected from the soft substrate station at 10 m depth had a median age of 656 years and an IQR of 1062 years, in striking contrast with the

Fable 1. Median age and metrics of time-averaging of marine death assemblages on rocky substrates and in a Posidonia oceanica meadow

		Rocky substrate	bstrate			Posidonia oc	osidonia oceanica meadow	,
Locality	Ashqelon (Israel)	Ashqelon (Israel)	Rosh HaNikra (Israel)	Rosh HaNikra (Israel)	Plakias (Crete, Greece)	Plakias (Crete, Greece)	Plakias (Crete, Greece)	Plakias (Crete, Greece)
Water depth (m) Number of dated specimens Median age (years) Total age range (years) 95% age range (years) Inter-quartile range (IQR) (years)	12 10 56 36 (20–56) 20 (36–56) 0 (56–56)	25 10 18 2803 (7–2810) 1565 (7–1572) 51 (7–58)	11 10 33 51 (6–57) 46 (11–57) 35 (21–56)	20 10 37 117 (4-121) 87 (5-92) 44 (12-56)	5 10 14 259 (4–263) 227 (5–232) 40 (7–47)	10 10 9 51 (4-55) 51 (4-55) 49 (6-55)	15 10 11 50 (5–55) 50 (5–55) 18 (7–25)	20 10 15 1994 (3–1997) 1242 (4–1246) 251 (5–256)

P. G. Albano et al.


Fig. 2. Age frequency distributions (median probability ages in 50 year bins) based on calibrated radiocarbon ages for bivalve shells in rocky (upper panel) and seagrass (*Posidonia oceanica*) (lower panel) substrates. Dashed lines indicate median ages.

median age of 56 years and the null IQR on nearby hard substrates. At 30 m depth, the soft substrate shells had a median age of 1465 years and an IQR of 1312 years, contrasting the median age of 18 years and the IQR of 51 years of the nearby rocky reef.

Due to aboveground nuclear detonations mostly in the late 1950s and early 1960s, radiocarbon levels in the atmosphere, oceans and biosphere increased beginning in 1955 (Hua *et al.* 2022). As a result of fast transport of excess ¹⁴C from the atmosphere to

the surface ocean and then to deeper oceans, the surface ocean ¹⁴C level of a given site typically reached its peak in the 1970s and 1980s (Grottoli and Eakin 2007), depending on its local/regional ocean circulation, and then declined. This shape of a local/regional oceanic bomb ¹⁴C curve implies that for each measured F¹⁴C value of modern samples, two calendar ages are possible, one in the rising and the other in the falling arm of the curve, implying large confidence intervals. This uncertainty is limited to a few decades around the mid-1960s and therefore

Time-averaging in marine habitats

Fig. 3. Age distributions on nearby rocky and soft substrates off Ashqelon, southern Israel. The median age and the range of shell ages on hard substrates are one to two orders of magnitude smaller than on soft substrates.

does not undermine the main conclusions of the study.

The young median ages and short time-averaging may be due to different processes on hard substrates v. in seagrass habitats. On hard substrates, especially in shallow water, death assemblages are subject to intense hydrodynamic processes that enhance the transport of shells outside the habitat of production and hinders sedimentation and thus burial (Airoldi et al. 1996). This is even more marked when hard substrates have complex topographies with slopes and drop-offs, where gravity contributes to transporting shells away from the habitat of the living assemblage (Airoldi 2003). In seagrass habitats like those formed by Posidonia oceanica, the root and rhizome system creates a dense structure - the matte - that grows between 0.06 and 0.41 cm a⁻¹ (Mateo et al. 1997) with reported values up to 4 cm a⁻¹ (Marbà and Duarte 1998). This implies that shells are quickly entangled and buried in the thick and complex root network. Therefore, those that are sampled in the rhizome layer are the ones most recently produced. In contrast to rocky substrates, hydrodynamism is very low within the meadow, owing to the protective role of the leaf layer, that can be up to 40 cm long (Gobert et al. 2006), facilitating the deposition of fine sediments and avoiding out-of-habitat transport by storms and currents. However, the root network may make it more difficult for burrowing organisms to rework older shells upward from deeper sediment layers. It must be highlighted, however, that among seagrasses only Posidonia oceanica forms such an intricate and thick matte. The other Posidonia species, which are distributed around Australia, are horizontal spreaders with little vertical shoot production (Gobert *et al.* 2006). Other seagrass genera – including those in tropical seas – also do not produce the *matte* structure. Therefore, DAs in these seagrass meadows may show older median ages as well as larger time-averaging, as reported for seagrass habitats in the eastern Gulf of Mexico where bivalves showed median ages an order of magnitude older than in our study (Hyman *et al.* 2019).

Mismatch in structure and composition between living and death assemblages can be reliable evidence for major human impacts (Kidwell 2007, 2008, 2013; Kidwell and Tomašových 2013). Consequently, this approach is increasingly used to detect impact even in the absence of suitable baseline data (Albano and Sabelli 2011; Weber and Zuschin 2013; Korpanty and Kelley 2014; Negri et al. 2015; Zuschin and Ebner 2015; Albano et al. 2016a, b, 2021; Bizjack et al. 2017; Dietl and Smith 2017; Powell et al. 2017; Michelson et al. 2018; Tweitmann and Dietl 2018; Meadows et al. 2019; Haselmair et al. 2021). Live-dead comparisons for environmental assessment rely, however, on the archiving capacity of the DA. Its memory should be long enough to precede the onset of the pressures under study, otherwise the impact may be underestimated.

The significant amount of data available on DA ages in soft substrates is not matched by a proportionate effort on hard substrates and seagrass meadows, notwithstanding the latter are a significant target for marine conservation and DAs may be the only source of information on their ecological baselines. The large differences among habitats reported here and the very young DAs in these latter habitats show that the archival capacity of surficial DAs can also be low. Given the results of the above comparison, and the more affordable costs of dating techniques, we recommend the dating of DAs to become a common practice when using them for environmental assessment in conservation palaeobiology studies.

Acknowledgements We thank Jonathan Belmaker, Karolina Czechowska, Justina Givens, Martina Holzknecht, Angelina Ivkić, Shahar Malamud, Nadja Loferer, Denny Mochner and Jan Steger for assistance in the field in Israel and Crete. Jordon Bright prepared radiocarbon samples, which were then analysed at the University of California at Irvine Keck AMS Laboratory. Sampling in Israel was conducted under permit 41928 of the Israel Nature and Parks Authority. Stefano Dominici, Claudio De Francesco and an anonymous reviewer provided useful comments on the manuscript.

Competing interests The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Author contributions PGA: conceptualization (lead), data curation (lead), formal analysis (lead), funding acquisition (lead), investigation (lead), validation (lead), writing – original draft (lead), writing – review & editing (lead); **QH**: formal analysis (supporting), investigation (supporting), validation (supporting), writing – review & editing (supporting); **DSK**: formal analysis (supporting), investigation (supporting), validation (supporting), writing – review & editing (supporting); **MZ**: funding acquisition (supporting), validation (supporting), writing – review & editing (supporting), validation (supporting), writing – review & editing (supporting).

Funding This research is part of the project 'Historical ecology of Lessepsian migration' funded by the Austrian Science Fund (FWF) (P28983-B29, PI: PGA). Shell dating was supported by a grant of the University of Vienna to MZ.

Data availability All data generated or analysed during this study are included in its supplementary information files.

References

- Airoldi, L. 2003. The effects of sedimentation on rocky coast assemblages. *Oceanography and Marine Biol*ogy: an Annual Review, 41, 161–236.
- Airoldi, L., Fabiano, M. and Cinelli, F. 1996, Sediment deposition and movement over a turf assemblage in a shallow rocky coastal area of the Ligurian Sea. *Marine Ecology Progress Series*, 133, 241–251, https://doi. org/10.3354/meps133241
- Albano, P.G. and Sabelli, B. 2011. Comparison between death and living molluscs assemblages in a Mediterranean infralittoral off-shore reef. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, **310**, 206–215, https://doi.org/10.1016/j.palaeo.2011.07.012
- Albano, P.G., Filippova, N., Steger, J., Kaufman, D.S., Tomašových, A., Stachowitsch, M. and Zuschin, M. 2016a. Oil platforms in the Persian (Arabian) Gulf: living and death assemblages reveal no effects. *Continen*tal Shelf Research, 121, 21–34, https://doi.org/10. 1016/j.csr.2015.12.007
- Albano, P.G., Tomašových, A., Stachowitsch, M. and Zuschin, M. 2016b. Taxonomic sufficiency in a live-dead agreement study in a tropical setting. *Palaeo-geography*, *Palaeoclimatology*, *Palaeoecology*, **449**, 341–348, https://doi.org/10.1016/j.palaeo.2016.02.031
- Albano, P.G., Hua, Q., Kaufman, D.S., Tomašových, A., Zuschin, M. and Agiadi, K. 2020. Radiocarbon dating supports bivalve-fish age coupling along a bathymetric gradient in high-resolution paleoenvironmental studies. *Geology*, 48, 589–593, https://doi.org/10.1130/G47210.1
- Albano, P.G., Steger, J. et al. 2021. Native biodiversity collapse in the eastern Mediterranean. Proceedings of the Royal Society B: Biological Sciences, 288, https://doi.org/10.1098/rspb.2020.2469
- Albano, P.G., Sabbatini, A. et al. 2022. Alleged Lessepsian foraminifera prove native and suggest Pleistocene range expansions into the Mediterranean Sea. Marine

- *Ecology Progress Series*, **700**, 65–78, https://doi.org/10.3354/meps14181
- Bevilacqua, S., Guarnieri, G., Farella, G., Terlizzi, A. and Fraschetti, S. 2018. A regional assessment of cumulative impact mapping on Mediterranean coralligenous outcrops. *Scientific Reports*, 8, 1757, https://doi.org/ 10.1038/s41598-018-20297-1
- Bizjack, M.T., Kidwell, S.M., Velarde, R.G., Leonard-Pingel, J. and Tomašových, A. 2017. Detecting, sourcing, and age-dating dredged sediments on the open shelf, southern California, using dead mollusk shells. *Marine Pollution Bulletin*, 114, 448–465, https://doi. org/10.1016/j.marpolbul.2016.10.010
- Boaretto, E., Mienis, H.K. and Sivan, D. 2010. Reservoir age based on pre-bomb shells from the intertidal zone along the coast of Israel. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, **268**, 966–968, https://doi.org/10.1016/j.nimb.2009.10.075
- Bonfitto, A., Fellagara, I. and Gillone, G. 1998. Sampling techniques and structure of the malacofauna associated to the rhizome zone in *Posidonia oceanica* (L.) Delile. *Bollettino Malacologico*, **33**, 83–88.
- Boudouresque, C.F., Bernard, G. and Bonhomme, P. 2006. Préservation et conservation des herbiers à *Posidonia* oceanica. Ramoge.
- Bright, J., Ebert, C. *et al.* 2021. Comparing direct carbonate and standard graphite ¹⁴C determinations of biogenic carbonates. *Radiocarbon*, **63**, 387–403, https://doi.org/10.1017/RDC.2020.131
- Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. *Radiocarbon*, **51**, 337360, https://doi.org/10. 1017/S0033822200033865
- Bush, S.L., Santos, G.M., Xu, X., Southon, J.R., Thiagarajan, N., Hines, S.K. and Adkins, J.F. 2013. Simple, rapid, and cost effective: a screening method for ¹⁴C analysis of small carbonate samples. *Radiocarbon*, **55**, 631–640, https://doi.org/10.1017/S0033822200057787
- Carroll, M., Kowalewski, M., Simões, M.G. and Goodfriend, G.A. 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. *Paleobiology*, 29, 381–402, https://doi.org/10.1666/0094-8373(2003) 029<0381:QEOTIT>2.0.CO;2
- Dietl, G.P. and Smith, J.A. 2017. Live-dead analysis reveals long-term response of the estuarine bivalve community to water diversions along the Colorado River. *Ecological Engineering*, **106**, 749–756, https://doi.org/10.1016/j.ecoleng.2016.09.013
- Dietl, G.P., Kidwell, S.M., Brenner, M., Burney, D.A., Flessa, K.W., Jackson, S.T. and Koch, P.L. 2015. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. *Annual Review of Earth and Planetary Sciences*, **43**, 79–103, https://doi.org/10.1146/annurev-earth-040610-133349
- Flessa, K.W. and Kowalewski, M. 1994. Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. *Lethaia*, 27, 153–165, https://doi.org/10.1111/j.1502-3931.1994. tb01570.x
- Gobert, S., Cambridge, M.L. et al. 2006. Biology of Posidonia. In: Seagrasses: Biology, Ecology and Conservation. Springer-Verlag, Berlin, 387–408, https://doi.org/10.1007/1-4020-2983-7_17

- Gottschalk, J., Szidat, S. et al. 2018. Radiocarbon measurements of small-size foraminiferal samples with the mini carbon dating system (MICADAS) at the University of Bern: implications for paleoclimate reconstructions. Radiocarbon, 60, 469–491, https://doi.org/10.1017/RDC.2018.3
- Grottoli, A.G. and Eakin, C.M. 2007. A review of modern coral δ¹⁸O and Δ¹⁴C proxy records. *Earth-Science Reviews*, 81, 67–91, https://doi.org/10.1016/j.ear scirev.2006.10.001
- Guidetti, P. 2000. Differences among fish assemblages associated with nearshore *Posidonia oceanica* seagrass beds, rocky–algal reefs and unvegetated sand habitats in the Adriatic Sea. *Estuarine*, *Coastal and Shelf Science*, 50, 515–529, https://doi.org/10.1006/ecss.1999.0584
- Harnik, P.G., Torstenson, M.L. and Williams, M.A. 2017. Assessing the effects of anthropogenic eutrophication on marine bivalve life history in the northern Gulf of Mexico. *Palaios*, 32, 678–688, https://doi.org/10. 2110/palo.2017.033
- Haselmair, A., Gallmetzer, I., Tomašových, A., Wieser, A.M., Übelhör, A. and Zuschin, M. 2021. Basin-wide infaunalisation of benthic soft-bottom communities driven by anthropogenic habitat degradation in the northern Adriatic Sea. *Marine Ecology Progress Series*, 671, 45–65, https://doi.org/10.3354/meps13759
- Heaton, T.J., Köhler, P. et al. 2020. Marine20 the marine radiocarbon age calibration curve (0–55 000 cal BP). Radiocarbon, 62, 779–820, https://doi.org/10.1017/ RDC.2020.68
- Holzknecht, M. and Albano, P.G. 2022. The molluscan assemblage of a pristine *Posidonia oceanica* meadow in the eastern Mediterranean. *Marine Biodiversity*, 52, 59, https://doi.org/10.1007/s12526-022-01292-2
- Hua, Q., Turnbull, J.C. et al. 2022. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon, 64, 723–745, https://doi.org/10.1017/RDC.2021.95
- Hyman, A.C., Frazer, T.K., Jacoby, C.A., Frost, J.R. and Kowalewski, M. 2019. Long-term persistence of structured habitats: seagrass meadows as enduring hotspots of biodiversity and faunal stability. *Proceedings of the Royal Society B: Biological Sciences*, 286, 20191861, https://doi.org/10.1098/rspb.2019.1861
- Kidwell, S.M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. *Proceedings of the National Academy of Sciences*, **104**, 17701–17706, https://doi.org/10.1073/ pnas.0707194104
- Kidwell, S.M. 2008. Ecological fidelity of open marine molluscan death assemblages: effects of post-mortem transportation, shelf health, and taphonomic inertia. *Lethaia*, 41, 199–217, https://doi.org/10.1111/j. 1502-3931.2007.00050.x
- Kidwell, S.M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. *Palaeontology*, 56, 487–522, https://doi.org/10.1111/pala.12042
- Kidwell, S.M. 2015. Biology in the Anthropocene: Challenges and insights from young fossil records. *Proceedings of the National Academy of Sciences*, 112, 4922–4929, https://doi.org/10.1073/pnas.1403660112
- Kidwell, S.M. and Tomašových, A. 2013. Implications of time-averaged death assemblages for ecology and conservation biology. Annual Review of Ecology,

- Evolution, and Systematics, 44, 539–563, https://doi.org/10.1146/annurev-ecolsys-110512-135838
- Kidwell, S.M., Best, M.M.R. and Kaufman, D.S. 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic v. carbonate facies. *Geology*, 33, 729–732, https://doi.org/10.1130/G21607.1
- Korpanty, C.A. and Kelley, P.H. 2014. Molluscan live-dead agreement in anthropogenically stressed seagrass habitats: siliciclastic v. carbonate environments. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, **410**, 113–125, https://doi.org/10.1016/j.palaeo.2014.05.014
- Krause, R.A., Barbour, S.L., Kowalewski, M., Kaufman, D.S., Romanek, C.S., Simões, M.G. and Wehmiller, J.F. 2010. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. *Paleobiology*, 36, 428–452, https://doi. org/10.1666/08072.1
- Linnaeus, C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata (10th revised edn). Holmiae, Laurentius Salvius. 1.
- Linnaeus, C. 1767. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 & 2. Holmiae, Laurentii Salvii.
- Marbà, N. and Duarte, C.M. 1998. Rhizome elongation and seagrass clonal growth. *Marine Ecology Progress Series*, 174, 269–280, https://doi.org/10.3354/meps174269
- Mateo, M.A., Romero, J., Pérez, M., Littler, M.M. and Littler, D.S. 1997. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass *Posidonia oceanica. Estuarine, Coastal and Shelf Science*, 44, 103–110, https://doi.org/10.1006/ecss. 1996.0116
- Meadows, C.A., Grebmeier, J.M. and Kidwell, S.M. 2019. High-latitude benthic bivalve biomass and recent climate change: testing the power of live-dead discordance in the Pacific Arctic. *Deep Sea Research Part II: Topical Studies in Oceanography*, **162**, 152–163, https://doi.org/10.1016/j.dsr2.2019.04.005
- Michelson, A.V., Kidwell, S.M., Boush, L.E.P. and Ash, J.L. 2018. Testing for human impacts in the mismatch of living and dead ostracode assemblages at nested spatial scales in subtropical lakes from the Bahamian archipelago. *Paleobiology*, 44, 758–782, https://doi.org/ 10.1017/pab.2018.20
- Miller, G.H., Kaufman, D.S. and Clarke, S.J. 2013. Amino acid dating. *In*: Elias, S.A. and Mock, C.J. (eds) *Encyclopedia of Quaternary Science*, 2nd edn. Elsevier, Amsterdam, 37–48, https://doi.org/10.1016/B978-0-444-53643-3.00054-6
- Negri, M.P., Sanfilippo, R., Basso, D. and Rosso, A. 2015. Comparison of live and dead molluscan assemblages suggests recent human-driven decline in benthic diversity in Phetchaburi (NW Gulf of Thailand). *Continental Shelf Research*, 111, 9–30, https://doi.org/10.1016/j. csr.2015.10.014
- Powell, E.N., Kuykendall, K.M. and Moreno, P. 2017. The death assemblage as a marker for habitat and an indicator of climate change: Georges Bank, surfclams and ocean quahogs. *Continental Shelf Research*, 142, 14–31, https://doi.org/10.1016/j.csr.2017.05.008

- R Development Core Team 2019. R: a language and environment for statistical computing, http://www.r-project.org
- Reimer, P.J. and McCormac, F.G. 2002. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean seas. *Radiocarbon*, 44, 159–166, https://doi.org/10.1017/S0033822200064766
- Rossi, S., Bramanti, L. et al. 2022. Protecting global marine animal forests. Science (New York, NY), 376, 929–929, https://doi.org/10.1126/science.abq7583
- Templado, J., Paulay, G., Gittenberger, A. and Meyer, C. 2010. Sampling the marine realm. *In*: Eymann, J., Degreef, J., Häuser, C., Monje, J.C., Samyn, Y. and VandenSpiegel, D. (eds) *Manual on Field Recording Techniques and Protocols for all Taxa Biodiversity Inventories*. ABC Taxa, 8, 273–302.
- Tomašových, A. and Kidwell, S.M. 2017. Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf. *Proceedings of the Royal Society B*, **284**, 20170328, https://doi.org/10.1098/rspb. 2017.0328
- Tweitmann, A. and Dietl, G.P. 2018. Live-dead mismatch of molluscan assemblages indicates disturbance from

- anthropogenic eutrophication in the Barnegat Bay–Little egg harbor estuary. *Journal of Shellfish Research*, **37**, 615–625, https://doi.org/10.2983/035.037.0314
- van der Heide, T., Govers, L.L. *et al.* 2012. A three-stage symbiosis forms the foundation of seagrass ecosystems. *Science (New York, NY)*, **336**, 1432–1434, https://doi.org/10.1126/science.1219973
- Waycott, M., Duarte, C.M. et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106, 12377–12381, https://doi.org/10.1073/ pnas.0905620106
- Weber, K. and Zuschin, M. 2013. Delta-associated molluscan life and death assemblages in the northern Adriatic Sea: implications for paleoecology, regional diversity and conservation. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 370, 77–91, https://doi.org/10.1016/j.palaeo.2012.11.021
- Zuschin, M. and Ebner, C. 2015. Compositional fidelity of death assemblages from a coral reef-associated tidal-flat and shallow subtidal lagoon in the northern Red Sea. *Palaios*, 30, 181–191, https://doi.org/10.2110/palo. 2014.032