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Abstract

In recent years, anthropogenic activities and climate change have significantly increased exposure
of plants to environmental stresses (single or multiple) and pollutants, with negative consequences
for the survival and productivity of vegetation. Plants may activate an armament of defenses
against stresses. Isoprene, the most abundant biogenic volatile organic compound (BVOC) emitted
by plants, is supposed to have a direct or indirect antioxidant role by quenching reactive oxygen
species (ROS) or by reprogramming gene expression for antioxidant activation. On the other hand,
isoprene is involved in the chemistry of troposphere, further contributing to a build up of pollutants
when mixing with anthropogenic gases. In this review, we summarize present knowledge on the
impact of air and soil pollutants on isoprene emission by plants, indicating possible feedback and
feedforward mechanisms that may affect whole ecosystem functioning and evolution of plant

species.

Keywords: Isoprene emission; biogenic volatile compounds; environmental stress; air

chemistry, soil pollution; belowground communications, climate change
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Introduction

Plants are sessile but not passive components of the ecosystems, and they interact with the
environment in several ways. Biogenic volatile organic compounds (BVOCs) are gases that are
emitted by organisms in all terrestrial and marine ecosystems (Loreto et al. 2014). Plants emit
worldwide more than 1 Pg C per year as BVOCs (Guenther et al. 1995, 2012), about half of
which is isoprene (Guenther et al. 2006). Leaf BVOCs may be constitutively emitted (generally
leaf life-long) or induced by abiotic and biotic stresses (Loreto and Schnitzler 2010). Some
constitutive BVOCs may also be induced by stresses (Harrison et al. 2013). More than 1700
BVOCs have been identified, which are emitted by 90 different plant families belonging to both
angiosperms and gymnosperms (Knudsen et al. 2006), and including also ferns and mosses
(Hanson et al. 1999). As the detection systems get more accurate and high-throughput, the idea
that all plants emit BVOCs is becoming realistic.

Synthesis of most significant BVOCs occurs through three pathways: the lipoxygenase
(LOX), the shikimic acid, and the terpenoid pathways (Pichersky and Gershenzon 2002).
Terpenoids or isoprenoids are the largest group of specialized plant metabolites and derive from
two precursors: isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP)
(McGarvey and Croteau 1995). Among terpenoids, isoprene (CsHg) is the simplest and most
volatile BVOC. Isoprene is formed by the chloroplastic methyl erythritol 4-phosphate (MEP)
pathway through isoprene synthase (IspS), which catalyzes the removal of pyrophosphate (PPi)
from DMAPP. Constitutive, light-dependent emissions of volatile isoprenoids are generally
limited to large amounts of isoprene, especially from fast-growing plants (Loreto and Fineschi
2015), and of monoterpenes from some families of trees and bushes (Loreto and Schnitzler
2010). Emission of isoprene is a metabolic cost for plants, but benefits may outweigh the cost,
especially under high temperature (Jardine et al. 2012) and oxidative stress (Vickers et al. 2009).
Isoprene was thought to quench reactive oxidative species (ROS) such as hydrogen peroxide
(H20») (Loreto and Velikova 2001), singlet oxygen (10»), (Affek and Yakir 2002) or reactive
nitrogen species (RNS) (Velikova et al. 2005), and to stabilize chloroplast membranes (Velikova
et al. 201 1a) facilitating photosynthetic electron transport rate (Pollastri et al. 2019). The
antioxidant role of isoprene is now revised, as the capacity of isoprene emission induces a

reprogramming of the entire genome and metabolome (Monson et al., 2021; Dani and Loreto,
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2022) that improve the ability of plants to tolerate various stresses. The general role of isoprene
as a stress protective agent remains unquestioned.

Stress tolerance is improved because of carbon allocated for constitutive BVOC
biosynthesis but also because of stress-induced BVOCs (Paré and Tumlinson 1999; Mithéfer and
Boland 2012), especially after herbivores or pathogens attacks (Dicke and Baldwin 2010), or
after abiotic stresses such as drought, high temperatures, or oxidative pollutants (Loreto and
Schnitzler 2010).

Isoprene plays several roles in atmosphere chemistry, all of which are due to its oxidation
(Heald et al. 2009; Archibald et al. 2010). When anthropogenic volatile pollutants such as
nitrogen oxides (NOx) are absent, isoprene further cleanses the atmosphere of ozone. In the
presence of NOx, however, isoprene participates in reactions leading to increased ozone
formation (Fehsenfeld et al. 1992) under a well-established stoichiometry (Kanakidou et al.
2005). As the emission of isoprene to the atmosphere is so prevalent, the impact of
environmental factors such as light intensity, atmospheric CO> concentration, temperature,
relative humidity, and nutrient status on isoprene emission has attracted great attention (Loreto
and Schnitzler 2010; Harrison et al. 2013). Climate change impact on isoprene emission has been
mainly attributed to positive long-term (enzyme-driven) and short-term (substrate-driven)
feedback of rising temperature (Lehning et al. 2001; Rennenberg et al. 2006), implying that
future emissions of isoprene will also increase (Arneth et al. 2008). This may be counteracted by
an often large (and largely unexplained) inhibition of isoprene in rising CO:2 (Rosenstiel et al.
2003; Guidolotti et al. 2011). However, the inhibitory impact of rising CO; seems to be lost as
the temperature gets higher, and the overall impact of climate change is therefore expected to
lead to a heavier load of isoprene in the atmosphere (Sharkey and Monson 2017). It may be also
hypothesized that, in response to increasing environmental stresses and global warming, a shift
of native plants toward species and genotypes able to emit isoprene constitutively or an induced
manner will occur (Lerdau 2007). Here, we focus on reviewing anthropogenic atmospheric and
soil pollutants and climate change that could also affect isoprene emission by natural vegetation
and thus alter further the load of isoprene in the atmosphere.

Focus on isoprene and air pollution

a) Isoprene and the chemistry of the troposphere.
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Most of the plant BVOCs have relatively short lifetimes in the atmosphere ranging from less
than a minute to few hours depending on the atmospheric conditions (Blande et al. 2014). In the
case of isoprene, rapid reaction with NOx leads not only to ozone production, but also to the
appearance of secondary products of isoprene oxidation, mainly methylvinyl-ketone (MVK),
methacrolein (MACR) and 2-methyltetrols like 2-methylthreitol and 2-methylerythritol that have
been found in the natural aerosol of Amazonia forest (Claeys et al. 2004).

Formaldehyde is also produced by isoprene oxidation and, despite the low yield (<10%),
this BVOC has been used as an important proxy of isoprene natural planetary sources by satellite
inspection (Palmer et al. 2006). MVK and MACR are markers of isoprene oxidation also in
planta and therefore it is possible for these secondary BVOC:s to be directly emitted by plants
and not only formed by isoprene reactions in the atmosphere (Jardine et al. 2012). Recent results,
however, suggest that MVK and MACR might be produced in planta by pathways other than
isoprene oxidation (Kai et al. 2012), and that MVK may even be further oxidized to methyl ethyl
ketone (MEK), making the pattern of interactions between plant BVOCs and atmospheric
chemistry even more complex (Cappellin et al. 2019).

Indeed, ozonolysis (Pinto-Zevallos et al. 2010) results in the formation of many
secondary organic aerosols (SOAs) (Seinfeld and Pandis 2006; Laothawornkitkul et al. 2009)
with relevant climatic impacts (Claeys et al. 2004; Paulot et al. 2009). Isoprene, monoterpenes,
and other terpenoids characterized by high emission rates and high reactivity with the
atmospheric oxidants that are present in polluted and urban areas (NOj3", ozone, hydroxyl radical
(OH-), are major contributors of SOA burden (Kanakidou et al. 2005; Goldstein and Galbally
2007). Field studies have shown that under conditions with moderate to high BVOC levels, NO3
predominantly reacts with BVOCs (Brown and Stutz 2012) to produce multifunctional
compounds such as organic nitrates (ONs) (Nah et al. 2015; Faxon et al. 2017).

b) Impact of main atmospheric determinants of climate change on isoprene.

The two main atmospheric constituents affecting isoprene emission are carbon dioxide (CO2) and
ozone (O3). Anthropogenic CO; emission is the most important forcing variable affecting
changes in climate since the beginning of the industrial era. Over time, CO> concentrations have
continued to increase in the atmosphere, reaching 417 ppm (IPCC 2021) with further increases
each year. A recent meta-analysis (Feng et al. 2019) summarized decades of experimental data

(e.g. Possell, Hewitt, and Beerling 2004; Rosenstiel et al. 2003) showing a largely negative
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impact of rising CO> on isoprene emission, while emission of monoterpenes is substantially
unaffected by CO2 accumulation. The negative impact of rising CO: on isoprene has surprised
scientists, as isoprene is almost totally made by photosynthetic carbon (Delwiche and Sharkey
1993), and photosynthesis is stimulated by CO (Long et al. 2004). It has been suggested that the
decrease of isoprene emission when COz increases is related to 1) photorespiration inhibition, and
to the consequent reduction of pyruvate available to the MEP pathway (Rosenstiel et al. 2003);
or ii) to competition for phosphoenol pyruvate (PEP) a cytosolic substrate that may support
chloroplastic demand (Loreto and Fares 2007); or iii) to an inhibitory effect on IspS activity
(Scholefield et al. 2004). A hypothesis that the CO; inhibition was related to a triose phosphate
utlilization limitation of photosynthesis was recently ruled out (Lantz et al.) Guidolotti et al.
(2011) found an inverse relationship between isoprene and intercellular CO; concentration (C),
which holds even at currently ambient CO> concentration (> 400 ppm). This supports the notion
that the CO»-dependent reduction of isoprene reflects fine biochemical adjustments. However,
the inhibitory impact of rising CO- seems to be lost as the temperature gets higher (a necessary
consequence of CO, accumulation as CO; is a greenhouse gas), and the overall impact of climate
change is therefore expected to lead to a heavier load of isoprene in the atmosphere (Sharkey and
Monson 2017). Moreover, CO; may also indirectly stimulate isoprene emission at whole canopy
and ecosystem level, because of higher photosynthesis, growth rate and biomass accumulation,
made possible by the increase in CO> availability (Arneth et al. 2007). However, several lines of
evidence indicate that CO2 does not always increase linearly with an increase in photosynthesis
and plant growth/productivity. Moreover, there is a significant interspecific variability in [CO2]-
responsiveness of isoprene emission that is unexplained. Such variability in emission reduction
could be caused by a significant variation in the size, composition of the precursor pools
responsible for isoprene emissions (Niinemets et al. 2021). Squire et al. (2014) found that
climate change, which includes both rising temperature and CO», increased isoprene emissions
by natural vegetation and the effect is expected to continue as long as CO, overfertilizes plants
(Squire et al. 2014). Future increase of isoprene emission by natural vegetation is expected when
accounting for rising temperature only (Sanderson et al. 2003; Lathi¢ere et al. 2005; Wu et al.
2012). By modelling temperature and CO- interaction (which includes direct and indirect CO»
effects) indeed it is confirmed that isoprene emissions will be stimulated over the 21% century

(Arneth et al. 2007; Heald et al. 2009). A framework modeling study based on a scenario where
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the effect of climate and natural vegetation changes (driven by the rising of temperature and by
the expansion of broadleaf forests respectively) co-occur, suggests an increase of isoprene
emission by ~42% by 2050, which drops to ~4% if CO; inhibition of isoprene emission is also
included (Tai et al. 2013).

We speculate that both effects of climate change and environmental stress could lead to
an increase of isoprene-emitting species in polluted environments in response to the negative
effects (e.g oxidative stress) resulting from increased air and soil contaminants (Figure 1).

The other gas that has received large attention for its feedback on isoprene is ozone. While
generally, CO; improves plant growth (Long et al. 2004), ozone is a serious environmental stress
that causes heavy damage to photosynthesis. Indeed, when ozone enters the leaf, it is degraded to
other ROS, which can cause oxidative stress and damage to lipo-proteic bilayer of the
photosynthetic membranes, with consequent rapid chloroplast degradation (Loreto et al. 2001).

High doses of ozone could cause an initial stimulation of isoprene emission (Velikova et
al. 2005) due to higher expression of IspS and its activity (Fares et al. 2006). It seems that this
upregulation is more evident in leaves developing under enriched O3 atmosphere and that build
up a better resistance to pollutants (Fares et al. 2006). However, plants adapted to high Os are not
able to further stimulate isoprene emission when exposed to a following stimulus (Calfapietra et
al. 2008). If O3 does not damage photosynthesis, isoprene emission is maintained and as already
mentioned, often stimulated. Under these conditions, isoprene may scavenge ROS made by Os
(Velikova et al. 2004) or may make the photosynthetic membranes more resistant to ROS-
dependent oxidation (Pollastri et al. 2019; Velikova et al. 2011a). As isoprene is also stimulated
by high temperatures, when high O3 episodes are more frequent, the antioxidant role of isoprene
becomes more relevant when associated with heat waves (Jardine et al. 2012). A first line of
defense against Os is stomatal closure. Loreto and Fares (2007) showed that leaf damage is
associated to O3 concentration inside leaves rather than to the atmospheric Os. However, under
prolonged or chronic exposure to O3 that overcomes the epidermal barrier, photosynthesis is
severely impaired and consequently also isoprene emission is restrained. Indeed, O3 often
irreversibly damages plant tissues leading to reduced crop yields and forest growth (Mills et al.
2010). The uptake of O3 inside mesophyll causes oxidation of cell wall components, damages
photosynthetic apparatus with detrimental effects on growth rate and biomass production, and

accelerates leaf senescence (Ashmore 2005; Fares et al. 2006; Wittig et al. 2009). Meta-analysis
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data show that isoprene and photosynthesis are reduced to similar extent (10%) by high O3
exposure (Feng et al. 2019). However, isoprene emission is significantly increased by exposure
of leaves to high UV-b (Harley et al. 2006; Tiiva et al. 2007) and UV-a (Pallozzi et al. 2013)
radiation, which is a requisite for O3 formation in the atmosphere. Thus, the overall impact of air
pollution on isoprene emission needs additional field testing where all factors dynamically
interact together.

Figure 1 summarizes the interaction between plant isoprene and atmospheric pollutants in
cities and industrial areas, which may have two effects: on one hand this interaction may increase
the O3 load and high O3 episodes may exacerbate environmental stresses; on the other hand, this
same interaction may favor evolution of a vegetation that is resistant to Oz pollution and
associated oxidative stresses. As isoprene is involved in antioxidant protection (Loreto and
Schnitzler 2010) this may lead to higher isoprene emission by both native and alien (invasive)
species (Lerdau 2007). The two effects may feedback on each other, and the loop may cause
unpredictable consequences. Llusia et al. (2010) suggested that protection against multiple
environmental stress conferred by high capacity to emit terpenoids accounted for the success of
invasive plant species in Hawaii. Similarly, establishment and proliferation of Artemisia vulgaris
in a new habitat seems to be related to its capacity to emit BVOCs (Barney et al. 2005). On the
other hand, it is also conceivable that human-driven land use change, by replacing natural
vegetation with agricultural crops, has also selected against high isoprene emitters (Loreto and
Fineschi 2015). Changes in natural vegetation (reduction of isoprene emitting species) could
affect air quality (Tai et al. 2013; Hantson et al. 2017). Clearly, understanding the future effects
of climate change on isoprene emission is a very complex task, because of the wide range of
multiple and concomitant environmental factors that could have synergistic or antagonistic
effects.

The future rising of environmental stresses (known to trigger oxidative stresses) related to
anthropogenic processes could lead to a positive feedback for isoprene (both constitutive and
induced, Figure 1) and other BVOCs biosynthesis and emission, acting as a plant-defense-system
in response to climate change and warming (Pefuelas and Llusia 2003). For example, field
measurements showed that white oak tree canopies have higher isoprene emission rates when
exposed to more sunlight, reduced water availability, and high temperature (Sharkey et al. 1996).

Interestingly, these plants did not show any anomalies in their growth and an increased
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thermotolerance (Singsaas et al. 1997) and it is suggested that the quenching of ROS by isoprene
could be an effective way to reduce the negative effects of oxidative stress compounds (Velikova
et al. 2005).

Focus on isoprene and soil pollution

Soils may also contribute to the exchange of BVOC:s, as sinks or sources, depending on the very
diverse soil composition in terms of microorganisms, flora and fauna, thus expanding functional
considerations on trophic interactions from the aboveground to the belowground plant
compartment (Penuelas et al. 2014). While the complex relationships between isoprene and
atmospheric pollution have been largely investigated, much less is known about the impact of
soil pollution on isoprene. One could speculate that isoprene antioxidant action also improves
resistance to soil pollution. “Soil pollution” refers to the presence of a chemical or substance out
of place and/or present at a higher-than-normal concentration that has adverse effects on any
non-targeted organism (FAO and ITPS 2015). Soil pollution acts as an abiotic stress on plants. It
triggers ROS production, leading to adaptive plant responses including the improvement of the
primary antioxidant redox system and the increase of the biosynthesis of secondary metabolites.

Except natural areas with specific geological conditions, the major soil pollutants are
related to anthropogenic (industrial) activities that release different kinds of pollutants, from
complex hydrocarbons released by oil industries to very simple chemical elements such as heavy
metals released as byproducts of several processes or nutrient elements such as nitrates from
excess fertilization or phosphates from commercial cleaning industries.

Heavy metals soil pollution is a problem of major importance for plant productivity and
survival (Salt et al. 1998; Foy et al. 2003; Fargasova and Molnarova 2010). There are several
cases in which the effect of heavy metal pollution on BVOC emissions has been investigated.
Velikova et al. (2011b) suggested that heavy metal (Ni) pollution increases both constitutive
(isoprene) and induced (monoterpenes and sesquiterpenes) isoprenoid emissions. Indeed, other
reports indicate that high doses of Cu could induce BVOCs (Obara et al. 2003; Mithdfer et al.
2004) some of which characterize the interplay plants-herbivores (Winter et al. 2012). Soil
cadmium stress seems to increase total leaf VOC emission (Lin et al. 2022). A time course with
cadmium stress induced an upregulation of isoprene synthase (Li et al. 2017). Moreover,

isoprene affects heavy metals detoxification transcriptome (Zuo et al. 2019).
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The impact of nutrients on isoprene emission has received even wider coverage. Nutrient
excess is often a consequence of pollution and over-fertilization, and finally eutrophication
(Shortall 2013). Nitrates seem to generally elicit production and emission of isoprene, possibly
making more N available for isoprene synthase biosynthesis (Litvak et al. 1996; Fernandez-
Martinez et al. 2017). On the other hand, excess of phosphorus in soils has a clear inhibitory
effect on isoprene emission, assessed in different experiments (Fares et al. 2008; Cocozza et al.
2019, 2020) but never explained physiologically. Intuitively, high phosphorous should be
beneficial for the synthesis of a molecule that requires large inputs of phosphorylated substrates,
like ATP and NADPH (Sharkey and Yeh 2001). High phosphorous also stimulates
photosynthesis which supplies carbon for isoprene synthesis. However, uncoupling of isoprene
synthesis and photosynthesis is often observed, for example under elevated CO> (cfr. see above),
or under water and salt stress (Loreto and Schnitzler 2010). It was proposed that competition
with mitochondrial respiration for pyruvate or phosphoenolpyruvate is responsible for the
inhibition of isoprene emission under high phosphorous nutrition (Fares et al. 2008), similar to
what may occur under elevated CO> (Rosenstiel et al. 2003), although we think that all pyruvate
for isoprene synthesis comes from the Calvin-Benson cycle Sharkey et al. 2020.

While different nutrients may have opposite effects on isoprene emission, a reduction of
the intensity of emitted BVOC:s in plants cultivated under high level of fertilization seems to be a
convergent result (Fernandez-Martinez et al. 2017), which may also explain why storage of
BVOC:s into reservoirs is a lost trait in recently evolved angiosperm crops. Evolution against
emission of BVOCs may have an important trade-off in terms of improved plant productivity in
absence of stress, but losing the capacity to synthesize and emit BVOCs may not pay off when
plants must defend themselves from abiotic stresses or must communicate with other organisms.
We eventually hypothesize that native and pioneer plants of polluted areas emit more isoprene
(constitutive and induced) and speculate that the capacity to produce large amounts of isoprene
may confer an adaptive advantage in a rapidly changing climate characterized by more frequent
extreme events and pollution episodes.

Water and salt are important components of soils. Isoprene synthesis and emission
continues even under drought or high salinity, despite concurrent photosynthesis inhibition

(Brilli et al. 2007). The massive literature covering the impact of these stresses on isoprene was
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often reviewed (e.g. Loreto and Schnitzler 2010) and the topic is beyond the scope of this work
aiming at reviewing only impacts of soil pollutants.

Soil structure and composition influence the development and morphology of the root
system. The root is the anchorage system of plants and is critical for the uptake of nutrients
required for plant growth and physiology, including the isoprene pathway. If for the
aboveground part of plants (leaves) there is much scientific evidence on the effects and activities
of in-situ emission of isoprene, less well studied is whether belowground heterotrophic tissues
(roots) can also emit isoprene, and if roots are also influenced when plants acquire or enhance
their capacity to emit isoprene. Although it is mainly emitted from leaves, there is evidence that
the root systems of poplar (Ghirardo et al. 2011) and transgenic Arabidopsis (Loivamaiki et al.
2007; Miloradovic van Doorn et al. 2020) emit a small amount of isoprene. It is shown that the
constitutive promoter of isoprene synthase (PcISPS) is present and active in specific regions of
roots (Cinege et al. 2009; Miloradovic van Doorn et al. 2020).

There are reports of isoprene affecting root development. Miloradovic van Doorn et al.
(2020) recently proposed a ROS-related role of isoprene in roots, showing an altered lateral root
development and differences in ROS accumulation in roots. ROS are known to be involved in
many pathways, especially under a challenging environment, being signals able to activate
defenses responses also coordinating the developmental processes with environmental conditions
(Locato et al. 2018). An interplay between ROS and hormones, in particular auxin, ethylene, and
abscisic acid has also been reported (Xia et al. 2015). Isoprene also seems to interfere with many
hormones, especially those sharing the same MEP pathway (cytokinins and abscisic acid) but
possibly also with auxins (Dani and Loreto 2022). The effect of these interactions on roots is
unknown, but a possible scheme of signaling function of internal isoprene in roots in relation
with ROS was proposed (Miloradovic van Doorn et al. 2020). ROS signaling affects hormonal
networks and signaling processes that regulate response to environmental drivers (Mittler 2017).
It was proposed that isoprene could adjust ROS by quenching (direct) or changing gene
expression (indirect) and so regulate all ROS—related pathways, including those involved phyto-
hormones. Even if the molecular mechanism of this interplay is still relatively unknown, this
could influence the growth of the root system in particular the lateral roots (Miloradovic van
Doorn et al. 2020). Isoprene affects also root proteome and many of the proteins affected are

involved in redox and stress responses (Miloradovic van Doorn et al. 2020).
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Soil pollutants directly affect root development and the determinants of root system
architecture (Lombardi et al. 2021) and this might also contribute to change BVOC emission by
aboveground and belowground plant organs (Figure 1,2), in turn altering plant capacity to cope
with pollution and environmental constraints (e.g. drought stress). Finally, root volatiles often are
key elements of plant-plant communication and for interactions of plants with soil microbiome
(Figure 2), with positive consequences on priming defensive responses, facilitating root nutrient
uptake or counteracting the negative effects of pollutants. For example, BVOCs emitted from
roots may facilitate interactions with arbuscular mycorrhizal fungi, expanding their beneficial
functions, from improving resistance to soil stresses to enhancing nutrient availability (Asensio
et al. 2012). However, whether these same functions may be attributed to isoprene is unclear. We
hypothesize that this beneficial interaction (BVOCs-soil microbiome) could lead to better plant
tolerance to soil stress and have positive feedback on plant biomass (Figure 2). In leaves,
isoprene does not seem to be a messenger able to induce priming of receiving plants (Giordano et
al. 2021), and does not influence insect feeding (Brilli et al. 2009). This may very well be the
case in roots as well, where the emission of isoprene by plants is also elusive, and possibly tiny.

Soil constraints increase ROS formation, and it was shown that ROS, and ROS
scavenging enzymes, play crucial roles in early-stage root-mycorrhiza interaction (Baptista et al.
2007; Nanda et al. 2010; Ditengou et al. 2015). Several studies shown that the intensity of ROS
burst is important for root-microbes (mutualistic or pathogen) interaction and contact (Baptista et
al. 2007; Nanda et al. 2010) and plant redox balance could be fundamental to differentiate
between the various microbes. ROS adjustment by isoprene (direct or indirect) could be crucial
for regulating root redox balance and root isoprene emission could facilitate the interaction and
communication with soil microbiome (Figure 2). It is known that volatiles are a signal for
aboveground plant communication (Ninkovic et al. 2021) but it was reviewed that root volatiles
might play a role in belowground communication (plant-plant; plant-soil microbiome) (Abbas et
al. 2022).

The role of isoprene in belowground communication is unclear and unknown while for
root volatiles (BVOCs) with their diversity and their specificity are have been extensively
analyzed in the belowground communication (Schenkel et al. 2015; Abbas et al. 2022). So, we

suggest that in polluted environments, root-induced BVOCs might lead to a further increase in

12
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this communication between plants via belowground, and thus they might ameliorate the

negative effect of soil constraints (Figure 2).

Conclusion and future directions

Over the past few years, isoprene emission has been well-studied for its effects on atmospheric
pollution and on plant defense, but the reciprocal impact of isoprene, soil and atmospheric
pollutants is more elusive and complicated, especially when considering that direct
measurements of isoprene emission are missing (soil) and that long-term responses at whole
plant and community level have not been extensively investigated (both in soil and air).

Future studies should evaluate the long-term effect of pollutants, including evolutionary
impacts on the composition of natural and semi-natural forests around cities and industrial areas
where anthropogenic pollution may be persistent over time. This allows a better evaluation on
how policies of re-forestation and afforestation of these areas may impact on air quality,
considering climate change pressures, which may lead to regional expansion of broadleaf forests,
the main emitters of isoprene (Wu et al. 2012), and in boreal areas. Finally, soil pollution impacts
on isoprene is largely uninvestigated, and the impact of soil microorganisms is also basically
unknown, although preliminary experiments indicate that beneficial microorganisms such as
mycorrhiza (Pollastri et al. 2018) and plant growth-promoting rhizobacteria (Brunetti et al. 2021)
may stimulate isoprene emission.
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Fig. 1 Dynamic of plant isoprene emission and settlement of alien isoprene-emitting species
induced by anthropogenic processes determining environmental stresses or by climate change.
Positive or negative feedback (+/-) refers to the direct effects of pollutants on the isoprene

emission capacity. T represent the direct effects of anthropogenic processes and climate change
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on the increasing of air and soil determinants and settlement of new isoprene emitter species.

Figure was created with BioRender.com.
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Fig. 2 Soil pollutants effects on root ROS generation and root-related BVOCs and the
communication plant-plant and plant-microbiome through the soil. + or — refer to the direct
effect of isoprene or BVOCs while 1 to the direct effects of soil pollution. Only for this purpose
we refer to BVOCs only for unclear evidence of isoprene belowground communication. Figure

was created with BioRender.com.
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Figure 1 Dynamic of plant isoprene emission and settlement of alien isoprene emitting species induced by anthropogenic processes
determining environmental stresses or by climate change. + or — refer to the direct effects of contaminants on the emission of
isoprene while 1 represent the effects of anthropogenic processes and climate change on air and soil determinants and settlement
of alien species.
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Figure 2 Soil pollutants effects on root ROS generation and root-related BVOCs and the communication plant-plant and plant-
microbiome through the soil. + or — refers to the direct effect of isoprene or BVOCs while 1 to the direct effects of soil pollution.
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