Manuel Bellucci^{1,2}, Vittoria Locato¹, Thomas D. Sharkey³, Laura De Gara¹, Francesco Loreto^{2,4*} ¹Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University, Rome, Italy ²Department of Biology, Agriculture and Food Science, National Research Council of Italy, Rome, Italy ³MSU-DOE Plant Research Laboratory, Plant resilience Institute and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA. ⁴Department of Biology, University of Naples Federico II, Naples, Italy * Corresponding author Manuel Bellucci (m.bellucci@unicampus.it); Francesco Loreto (francesco.loreto@unina.it) **ORCID** Manuel Bellucci: 0000-0002-7902-2522 Laura De Gara 0000-0001-5938-7113 Vittoria Locato 0000-0003-0267-5039 Francesco Loreto: 0000-0002-9171-2681 Thomas D Sharkey 0000-0002-4423-3223

Isoprene emission by plants in polluted environments

30	
31	Abstract
32	In recent years, anthropogenic activities and climate change have significantly increased exposure
33	of plants to environmental stresses (single or multiple) and pollutants, with negative consequences
34	for the survival and productivity of vegetation. Plants may activate an armament of defenses
35	against stresses. Isoprene, the most abundant biogenic volatile organic compound (BVOC) emitted
36	by plants, is supposed to have a direct or indirect antioxidant role by quenching reactive oxygen
37	species (ROS) or by reprogramming gene expression for antioxidant activation. On the other hand,
38	isoprene is involved in the chemistry of troposphere, further contributing to a build up of pollutants
39	when mixing with anthropogenic gases. In this review, we summarize present knowledge on the
40	impact of air and soil pollutants on isoprene emission by plants, indicating possible feedback and
41	feedforward mechanisms that may affect whole ecosystem functioning and evolution of plant
42	species.
43	Keywords: Isoprene emission; biogenic volatile compounds; environmental stress; air
44	chemistry, soil pollution; belowground communications, climate change
45	
73	
46	
47	
48	
40	
49	
50	
51	
J1	
52	
53	
54	
J 4	
55	
56	

Introduction

Plants are sessile but not passive components of the ecosystems, and they interact with the environment in several ways. Biogenic volatile organic compounds (BVOCs) are gases that are emitted by organisms in all terrestrial and marine ecosystems (Loreto et al. 2014). Plants emit worldwide more than 1 Pg C per year as BVOCs (Guenther et al. 1995, 2012), about half of which is isoprene (Guenther et al. 2006). Leaf BVOCs may be constitutively emitted (generally leaf life-long) or induced by abiotic and biotic stresses (Loreto and Schnitzler 2010). Some constitutive BVOCs may also be induced by stresses (Harrison et al. 2013). More than 1700 BVOCs have been identified, which are emitted by 90 different plant families belonging to both angiosperms and gymnosperms (Knudsen et al. 2006), and including also ferns and mosses (Hanson et al. 1999). As the detection systems get more accurate and high-throughput, the idea that all plants emit BVOCs is becoming realistic.

Synthesis of most significant BVOCs occurs through three pathways: the lipoxygenase (LOX), the shikimic acid, and the terpenoid pathways (Pichersky and Gershenzon 2002). Terpenoids or isoprenoids are the largest group of specialized plant metabolites and derive from two precursors: isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) (McGarvey and Croteau 1995). Among terpenoids, isoprene (C₅H₈) is the simplest and most volatile BVOC. Isoprene is formed by the chloroplastic methyl erythritol 4-phosphate (MEP) pathway through isoprene synthase (IspS), which catalyzes the removal of pyrophosphate (PPi) from DMAPP. Constitutive, light-dependent emissions of volatile isoprenoids are generally limited to large amounts of isoprene, especially from fast-growing plants (Loreto and Fineschi 2015), and of monoterpenes from some families of trees and bushes (Loreto and Schnitzler 2010). Emission of isoprene is a metabolic cost for plants, but benefits may outweigh the cost, especially under high temperature (Jardine et al. 2012) and oxidative stress (Vickers et al. 2009). Isoprene was thought to quench reactive oxidative species (ROS) such as hydrogen peroxide (H₂O₂) (Loreto and Velikova 2001), singlet oxygen (¹O₂), (Affek and Yakir 2002) or reactive nitrogen species (RNS) (Velikova et al. 2005), and to stabilize chloroplast membranes (Velikova et al. 2011a) facilitating photosynthetic electron transport rate (Pollastri et al. 2019). The antioxidant role of isoprene is now revised, as the capacity of isoprene emission induces a reprogramming of the entire genome and metabolome (Monson et al., 2021; Dani and Loreto,

2022) that improve the ability of plants to tolerate various stresses. The general role of isoprene as a stress protective agent remains unquestioned.

Stress tolerance is improved because of carbon allocated for constitutive BVOC biosynthesis but also because of stress-induced BVOCs (Paré and Tumlinson 1999; Mithöfer and Boland 2012), especially after herbivores or pathogens attacks (Dicke and Baldwin 2010), or after abiotic stresses such as drought, high temperatures, or oxidative pollutants (Loreto and Schnitzler 2010).

Isoprene plays several roles in atmosphere chemistry, all of which are due to its oxidation (Heald et al. 2009; Archibald et al. 2010). When anthropogenic volatile pollutants such as nitrogen oxides (NO_x) are absent, isoprene further cleanses the atmosphere of ozone. In the presence of NO_x, however, isoprene participates in reactions leading to increased ozone formation (Fehsenfeld et al. 1992) under a well-established stoichiometry (Kanakidou et al. 2005). As the emission of isoprene to the atmosphere is so prevalent, the impact of environmental factors such as light intensity, atmospheric CO₂ concentration, temperature, relative humidity, and nutrient status on isoprene emission has attracted great attention (Loreto and Schnitzler 2010; Harrison et al. 2013). Climate change impact on isoprene emission has been mainly attributed to positive long-term (enzyme-driven) and short-term (substrate-driven) feedback of rising temperature (Lehning et al. 2001; Rennenberg et al. 2006), implying that future emissions of isoprene will also increase (Arneth et al. 2008). This may be counteracted by an often large (and largely unexplained) inhibition of isoprene in rising CO₂ (Rosenstiel et al. 2003; Guidolotti et al. 2011). However, the inhibitory impact of rising CO₂ seems to be lost as the temperature gets higher, and the overall impact of climate change is therefore expected to lead to a heavier load of isoprene in the atmosphere (Sharkey and Monson 2017). It may be also hypothesized that, in response to increasing environmental stresses and global warming, a shift of native plants toward species and genotypes able to emit isoprene constitutively or an induced manner will occur (Lerdau 2007). Here, we focus on reviewing anthropogenic atmospheric and soil pollutants and climate change that could also affect isoprene emission by natural vegetation and thus alter further the load of isoprene in the atmosphere.

Focus on isoprene and air pollution

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

a) Isoprene and the chemistry of the troposphere.

Most of the plant BVOCs have relatively short lifetimes in the atmosphere ranging from less than a minute to few hours depending on the atmospheric conditions (Blande et al. 2014). In the case of isoprene, rapid reaction with NO_x leads not only to ozone production, but also to the appearance of secondary products of isoprene oxidation, mainly methylvinyl-ketone (MVK), methacrolein (MACR) and 2-methyltetrols like 2-methylthreitol and 2-methylerythritol that have been found in the natural aerosol of Amazonia forest (Claeys et al. 2004).

Formaldehyde is also produced by isoprene oxidation and, despite the low yield (<10%), this BVOC has been used as an important proxy of isoprene natural planetary sources by satellite inspection (Palmer et al. 2006). MVK and MACR are markers of isoprene oxidation also *in planta* and therefore it is possible for these secondary BVOCs to be directly emitted by plants and not only formed by isoprene reactions in the atmosphere (Jardine et al. 2012). Recent results, however, suggest that MVK and MACR might be produced *in planta* by pathways other than isoprene oxidation (Kai et al. 2012), and that MVK may even be further oxidized to methyl ethyl ketone (MEK), making the pattern of interactions between plant BVOCs and atmospheric chemistry even more complex (Cappellin et al. 2019).

Indeed, ozonolysis (Pinto-Zevallos et al. 2010) results in the formation of many secondary organic aerosols (SOAs) (Seinfeld and Pandis 2006; Laothawornkitkul et al. 2009) with relevant climatic impacts (Claeys et al. 2004; Paulot et al. 2009). Isoprene, monoterpenes, and other terpenoids characterized by high emission rates and high reactivity with the atmospheric oxidants that are present in polluted and urban areas (NO₃-, ozone, hydroxyl radical (OH·), are major contributors of SOA burden (Kanakidou et al. 2005; Goldstein and Galbally 2007). Field studies have shown that under conditions with moderate to high BVOC levels, NO₃- predominantly reacts with BVOCs (Brown and Stutz 2012) to produce multifunctional compounds such as organic nitrates (ONs) (Nah et al. 2015; Faxon et al. 2017).

b) Impact of main atmospheric determinants of climate change on isoprene.

The two main atmospheric constituents affecting isoprene emission are carbon dioxide (CO₂) and ozone (O₃). Anthropogenic CO₂ emission is the most important forcing variable affecting changes in climate since the beginning of the industrial era. Over time, CO₂ concentrations have continued to increase in the atmosphere, reaching 417 ppm (IPCC 2021) with further increases each year. A recent meta-analysis (Feng et al. 2019) summarized decades of experimental data (e.g. Possell, Hewitt, and Beerling 2004; Rosenstiel et al. 2003) showing a largely negative

impact of rising CO₂ on isoprene emission, while emission of monoterpenes is substantially 149 unaffected by CO₂ accumulation. The negative impact of rising CO₂ on isoprene has surprised 150 scientists, as isoprene is almost totally made by photosynthetic carbon (Delwiche and Sharkey 151 1993), and photosynthesis is stimulated by CO₂ (Long et al. 2004). It has been suggested that the 152 decrease of isoprene emission when CO₂ increases is related to i) photorespiration inhibition, and 153 to the consequent reduction of pyruvate available to the MEP pathway (Rosenstiel et al. 2003); 154 155 or ii) to competition for phosphoenol pyruvate (PEP) a cytosolic substrate that may support chloroplastic demand (Loreto and Fares 2007); or iii) to an inhibitory effect on IspS activity 156 (Scholefield et al. 2004). A hypothesis that the CO₂ inhibition was related to a triose phosphate 157 utlilization limitation of photosynthesis was recently ruled out (Lantz et al.) Guidolotti et al. 158 159 (2011) found an inverse relationship between isoprene and intercellular CO_2 concentration (C_i), 160 which holds even at currently ambient CO₂ concentration (> 400 ppm). This supports the notion that the CO₂-dependent reduction of isoprene reflects fine biochemical adjustments. However, 161 162 the inhibitory impact of rising CO₂ seems to be lost as the temperature gets higher (a necessary consequence of CO₂ accumulation as CO₂ is a greenhouse gas), and the overall impact of climate 163 164 change is therefore expected to lead to a heavier load of isoprene in the atmosphere (Sharkey and Monson 2017). Moreover, CO₂ may also indirectly stimulate isoprene emission at whole canopy 165 and ecosystem level, because of higher photosynthesis, growth rate and biomass accumulation, 166 made possible by the increase in CO₂ availability (Arneth et al. 2007). However, several lines of 167 168 evidence indicate that CO₂ does not always increase linearly with an increase in photosynthesis 169 and plant growth/productivity. Moreover, there is a significant interspecific variability in [CO₂]responsiveness of isoprene emission that is unexplained. Such variability in emission reduction 170 could be caused by a significant variation in the size, composition of the precursor pools 171 172 responsible for isoprene emissions (Niinemets et al. 2021). Squire et al. (2014) found that 173 climate change, which includes both rising temperature and CO₂, increased isoprene emissions 174 by natural vegetation and the effect is expected to continue as long as CO₂ overfertilizes plants (Squire et al. 2014). Future increase of isoprene emission by natural vegetation is expected when 175 accounting for rising temperature only (Sanderson et al. 2003; Lathière et al. 2005; Wu et al. 176 177 2012). By modelling temperature and CO₂ interaction (which includes direct and indirect CO₂ effects) indeed it is confirmed that isoprene emissions will be stimulated over the 21st century 178 (Arneth et al. 2007; Heald et al. 2009). A framework modeling study based on a scenario where 179

the effect of climate and natural vegetation changes (driven by the rising of temperature and by the expansion of broadleaf forests respectively) co-occur, suggests an increase of isoprene emission by \sim 42% by 2050, which drops to \sim 4% if CO₂ inhibition of isoprene emission is also included (Tai et al. 2013).

We speculate that both effects of climate change and environmental stress could lead to an increase of isoprene-emitting species in polluted environments in response to the negative effects (e.g oxidative stress) resulting from increased air and soil contaminants (Figure 1). The other gas that has received large attention for its feedback on isoprene is ozone. While generally, CO₂ improves plant growth (Long et al. 2004), ozone is a serious environmental stress that causes heavy damage to photosynthesis. Indeed, when ozone enters the leaf, it is degraded to other ROS, which can cause oxidative stress and damage to lipo-proteic bilayer of the photosynthetic membranes, with consequent rapid chloroplast degradation (Loreto et al. 2001).

High doses of ozone could cause an initial stimulation of isoprene emission (Velikova et al. 2005) due to higher expression of IspS and its activity (Fares et al. 2006). It seems that this upregulation is more evident in leaves developing under enriched O₃ atmosphere and that build up a better resistance to pollutants (Fares et al. 2006). However, plants adapted to high O₃ are not able to further stimulate isoprene emission when exposed to a following stimulus (Calfapietra et al. 2008). If O₃ does not damage photosynthesis, isoprene emission is maintained and as already mentioned, often stimulated. Under these conditions, isoprene may scavenge ROS made by O₃ (Velikova et al. 2004) or may make the photosynthetic membranes more resistant to ROSdependent oxidation (Pollastri et al. 2019; Velikova et al. 2011a). As isoprene is also stimulated by high temperatures, when high O₃ episodes are more frequent, the antioxidant role of isoprene becomes more relevant when associated with heat waves (Jardine et al. 2012). A first line of defense against O₃ is stomatal closure. Loreto and Fares (2007) showed that leaf damage is associated to O₃ concentration inside leaves rather than to the atmospheric O₃. However, under prolonged or chronic exposure to O₃ that overcomes the epidermal barrier, photosynthesis is severely impaired and consequently also isoprene emission is restrained. Indeed, O₃ often irreversibly damages plant tissues leading to reduced crop yields and forest growth (Mills et al. 2010). The uptake of O₃ inside mesophyll causes oxidation of cell wall components, damages photosynthetic apparatus with detrimental effects on growth rate and biomass production, and accelerates leaf senescence (Ashmore 2005; Fares et al. 2006; Wittig et al. 2009). Meta-analysis

data show that isoprene and photosynthesis are reduced to similar extent (10%) by high O₃ exposure (Feng et al. 2019). However, isoprene emission is significantly increased by exposure of leaves to high UV-b (Harley et al. 2006; Tiiva et al. 2007) and UV-a (Pallozzi et al. 2013) radiation, which is a requisite for O₃ formation in the atmosphere. Thus, the overall impact of air pollution on isoprene emission needs additional field testing where all factors dynamically interact together.

Figure 1 summarizes the interaction between plant isoprene and atmospheric pollutants in cities and industrial areas, which may have two effects: on one hand this interaction may increase the O_3 load and high O_3 episodes may exacerbate environmental stresses; on the other hand, this same interaction may favor evolution of a vegetation that is resistant to O₃ pollution and associated oxidative stresses. As isoprene is involved in antioxidant protection (Loreto and Schnitzler 2010) this may lead to higher isoprene emission by both native and alien (invasive) species (Lerdau 2007). The two effects may feedback on each other, and the loop may cause unpredictable consequences. Llusìa et al. (2010) suggested that protection against multiple environmental stress conferred by high capacity to emit terpenoids accounted for the success of invasive plant species in Hawaii. Similarly, establishment and proliferation of *Artemisia vulgaris* in a new habitat seems to be related to its capacity to emit BVOCs (Barney et al. 2005). On the other hand, it is also conceivable that human-driven land use change, by replacing natural vegetation with agricultural crops, has also selected against high isoprene emitters (Loreto and Fineschi 2015). Changes in natural vegetation (reduction of isoprene emitting species) could affect air quality (Tai et al. 2013; Hantson et al. 2017). Clearly, understanding the future effects of climate change on isoprene emission is a very complex task, because of the wide range of multiple and concomitant environmental factors that could have synergistic or antagonistic effects.

The future rising of environmental stresses (known to trigger oxidative stresses) related to anthropogenic processes could lead to a positive feedback for isoprene (both constitutive and induced, Figure 1) and other BVOCs biosynthesis and emission, acting as a plant-defense-system in response to climate change and warming (Peñuelas and Llusià 2003). For example, field measurements showed that white oak tree canopies have higher isoprene emission rates when exposed to more sunlight, reduced water availability, and high temperature (Sharkey et al. 1996). Interestingly, these plants did not show any anomalies in their growth and an increased

thermotolerance (Singsaas et al. 1997) and it is suggested that the quenching of ROS by isoprene could be an effective way to reduce the negative effects of oxidative stress compounds (Velikova et al. 2005).

Focus on isoprene and soil pollution

Soils may also contribute to the exchange of BVOCs, as sinks or sources, depending on the very diverse soil composition in terms of microorganisms, flora and fauna, thus expanding functional considerations on trophic interactions from the aboveground to the belowground plant compartment (Penuelas et al. 2014). While the complex relationships between isoprene and atmospheric pollution have been largely investigated, much less is known about the impact of soil pollution on isoprene. One could speculate that isoprene antioxidant action also improves resistance to soil pollution. "Soil pollution" refers to the presence of a chemical or substance out of place and/or present at a higher-than-normal concentration that has adverse effects on any non-targeted organism (FAO and ITPS 2015). Soil pollution acts as an abiotic stress on plants. It triggers ROS production, leading to adaptive plant responses including the improvement of the primary antioxidant redox system and the increase of the biosynthesis of secondary metabolites.

Except natural areas with specific geological conditions, the major soil pollutants are related to anthropogenic (industrial) activities that release different kinds of pollutants, from complex hydrocarbons released by oil industries to very simple chemical elements such as heavy metals released as byproducts of several processes or nutrient elements such as nitrates from excess fertilization or phosphates from commercial cleaning industries.

Heavy metals soil pollution is a problem of major importance for plant productivity and survival (Salt et al. 1998; Foy et al. 2003; Fargasová and Molnárová 2010). There are several cases in which the effect of heavy metal pollution on BVOC emissions has been investigated. Velikova et al. (2011b) suggested that heavy metal (Ni) pollution increases both constitutive (isoprene) and induced (monoterpenes and sesquiterpenes) isoprenoid emissions. Indeed, other reports indicate that high doses of Cu could induce BVOCs (Obara et al. 2003; Mithöfer et al. 2004) some of which characterize the interplay plants-herbivores (Winter et al. 2012). Soil cadmium stress seems to increase total leaf VOC emission (Lin et al. 2022). A time course with cadmium stress induced an upregulation of isoprene synthase (Li et al. 2017). Moreover, isoprene affects heavy metals detoxification transcriptome (Zuo et al. 2019).

The impact of nutrients on isoprene emission has received even wider coverage. Nutrient excess is often a consequence of pollution and over-fertilization, and finally eutrophication (Shortall 2013). Nitrates seem to generally elicit production and emission of isoprene, possibly making more N available for isoprene synthase biosynthesis (Litvak et al. 1996; Fernández-Martínez et al. 2017). On the other hand, excess of phosphorus in soils has a clear inhibitory effect on isoprene emission, assessed in different experiments (Fares et al. 2008; Cocozza et al. 2019, 2020) but never explained physiologically. Intuitively, high phosphorous should be beneficial for the synthesis of a molecule that requires large inputs of phosphorylated substrates, like ATP and NADPH (Sharkey and Yeh 2001). High phosphorous also stimulates photosynthesis which supplies carbon for isoprene synthesis. However, uncoupling of isoprene synthesis and photosynthesis is often observed, for example under elevated CO₂ (cfr. see above), or under water and salt stress (Loreto and Schnitzler 2010). It was proposed that competition with mitochondrial respiration for pyruvate or phosphoenolpyruvate is responsible for the inhibition of isoprene emission under high phosphorous nutrition (Fares et al. 2008), similar to what may occur under elevated CO₂ (Rosenstiel et al. 2003), although we think that all pyruvate for isoprene synthesis comes from the Calvin-Benson cycle Sharkey et al. 2020.

While different nutrients may have opposite effects on isoprene emission, a reduction of the intensity of emitted BVOCs in plants cultivated under high level of fertilization seems to be a convergent result (Fernández-Martínez et al. 2017), which may also explain why storage of BVOCs into reservoirs is a lost trait in recently evolved angiosperm crops. Evolution against emission of BVOCs may have an important trade-off in terms of improved plant productivity in absence of stress, but losing the capacity to synthesize and emit BVOCs may not pay off when plants must defend themselves from abiotic stresses or must communicate with other organisms. We eventually hypothesize that native and pioneer plants of polluted areas emit more isoprene (constitutive and induced) and speculate that the capacity to produce large amounts of isoprene may confer an adaptive advantage in a rapidly changing climate characterized by more frequent extreme events and pollution episodes.

Water and salt are important components of soils. Isoprene synthesis and emission continues even under drought or high salinity, despite concurrent photosynthesis inhibition (Brilli et al. 2007). The massive literature covering the impact of these stresses on isoprene was

often reviewed (e.g. Loreto and Schnitzler 2010) and the topic is beyond the scope of this work aiming at reviewing only impacts of soil pollutants.

Soil structure and composition influence the development and morphology of the root system. The root is the anchorage system of plants and is critical for the uptake of nutrients required for plant growth and physiology, including the isoprene pathway. If for the aboveground part of plants (leaves) there is much scientific evidence on the effects and activities of in-situ emission of isoprene, less well studied is whether belowground heterotrophic tissues (roots) can also emit isoprene, and if roots are also influenced when plants acquire or enhance their capacity to emit isoprene. Although it is mainly emitted from leaves, there is evidence that the root systems of poplar (Ghirardo et al. 2011) and transgenic Arabidopsis (Loivamäki et al. 2007; Miloradovic van Doorn et al. 2020) emit a small amount of isoprene. It is shown that the constitutive promoter of isoprene synthase (PcISPS) is present and active in specific regions of roots (Cinege et al. 2009; Miloradovic van Doorn et al. 2020).

There are reports of isoprene affecting root development. Miloradovic van Doorn et al. (2020) recently proposed a ROS-related role of isoprene in roots, showing an altered lateral root development and differences in ROS accumulation in roots. ROS are known to be involved in many pathways, especially under a challenging environment, being signals able to activate defenses responses also coordinating the developmental processes with environmental conditions (Locato et al. 2018). An interplay between ROS and hormones, in particular auxin, ethylene, and abscisic acid has also been reported (Xia et al. 2015). Isoprene also seems to interfere with many hormones, especially those sharing the same MEP pathway (cytokinins and abscisic acid) but possibly also with auxins (Dani and Loreto 2022). The effect of these interactions on roots is unknown, but a possible scheme of signaling function of internal isoprene in roots in relation with ROS was proposed (Miloradovic van Doorn et al. 2020). ROS signaling affects hormonal networks and signaling processes that regulate response to environmental drivers (Mittler 2017). It was proposed that isoprene could adjust ROS by quenching (direct) or changing gene expression (indirect) and so regulate all ROS-related pathways, including those involved phytohormones. Even if the molecular mechanism of this interplay is still relatively unknown, this could influence the growth of the root system in particular the lateral roots (Miloradovic van Doorn et al. 2020). Isoprene affects also root proteome and many of the proteins affected are involved in redox and stress responses (Miloradovic van Doorn et al. 2020).

Soil pollutants directly affect root development and the determinants of root system architecture (Lombardi et al. 2021) and this might also contribute to change BVOC emission by aboveground and belowground plant organs (Figure 1,2), in turn altering plant capacity to cope with pollution and environmental constraints (e.g. drought stress). Finally, root volatiles often are key elements of plant-plant communication and for interactions of plants with soil microbiome (Figure 2), with positive consequences on priming defensive responses, facilitating root nutrient uptake or counteracting the negative effects of pollutants. For example, BVOCs emitted from roots may facilitate interactions with arbuscular mycorrhizal fungi, expanding their beneficial functions, from improving resistance to soil stresses to enhancing nutrient availability (Asensio et al. 2012). However, whether these same functions may be attributed to isoprene is unclear. We hypothesize that this beneficial interaction (BVOCs-soil microbiome) could lead to better plant tolerance to soil stress and have positive feedback on plant biomass (Figure 2). In leaves, isoprene does not seem to be a messenger able to induce priming of receiving plants (Giordano et al. 2021), and does not influence insect feeding (Brilli et al. 2009). This may very well be the case in roots as well, where the emission of isoprene by plants is also elusive, and possibly tiny.

Soil constraints increase ROS formation, and it was shown that ROS, and ROS scavenging enzymes, play crucial roles in early-stage root-mycorrhiza interaction (Baptista et al. 2007; Nanda et al. 2010; Ditengou et al. 2015). Several studies shown that the intensity of ROS burst is important for root-microbes (mutualistic or pathogen) interaction and contact (Baptista et al. 2007; Nanda et al. 2010) and plant redox balance could be fundamental to differentiate between the various microbes. ROS adjustment by isoprene (direct or indirect) could be crucial for regulating root redox balance and root isoprene emission could facilitate the interaction and communication with soil microbiome (Figure 2). It is known that volatiles are a signal for aboveground plant communication (Ninkovic et al. 2021) but it was reviewed that root volatiles might play a role in belowground communication (plant-plant; plant-soil microbiome) (Abbas et al. 2022).

The role of isoprene in belowground communication is unclear and unknown while for root volatiles (BVOCs) with their diversity and their specificity are have been extensively analyzed in the belowground communication (Schenkel et al. 2015; Abbas et al. 2022). So, we suggest that in polluted environments, root-induced BVOCs might lead to a further increase in

this communication between plants via belowground, and thus they might ameliorate the negative effect of soil constraints (Figure 2).

Conclusion and future directions

Over the past few years, isoprene emission has been well-studied for its effects on atmospheric pollution and on plant defense, but the reciprocal impact of isoprene, soil and atmospheric pollutants is more elusive and complicated, especially when considering that direct measurements of isoprene emission are missing (soil) and that long-term responses at whole plant and community level have not been extensively investigated (both in soil and air).

Future studies should evaluate the long-term effect of pollutants, including evolutionary impacts on the composition of natural and semi-natural forests around cities and industrial areas where anthropogenic pollution may be persistent over time. This allows a better evaluation on how policies of re-forestation and afforestation of these areas may impact on air quality, considering climate change pressures, which may lead to regional expansion of broadleaf forests, the main emitters of isoprene (Wu et al. 2012), and in boreal areas. Finally, soil pollution impacts on isoprene is largely uninvestigated, and the impact of soil microorganisms is also basically unknown, although preliminary experiments indicate that beneficial microorganisms such as mycorrhiza (Pollastri et al. 2018) and plant growth-promoting rhizobacteria (Brunetti et al. 2021) may stimulate isoprene emission.

Author contribution: Conceptualization: Manuel Bellucci and Francesco Loreto; Writing original-draft preparation: Manuel Bellucci and Francesco Loreto; Writing review and editing: Manuel Bellucci, Laura de Gara, Vittoria Locato, Francesco Loreto and Thomas D Sharkey Funding acquisition: Laura De Gara and Francesco Loreto Supervision: Laura De Gara, Vittoria Locato, Francesco Loreto, and Thomas D Sharkey. All authors read and approved the final manuscript.

Funding: This work was supported by the Project PRIN 2017 by the Italian Ministry of University and Research): 'Plant multitROphic interactions for bioinspired Strategies of PEst

University and Research): 'Plant multitROphic interactions for bioinspired Strategies of PEst ConTrol (PROSPECT)'; Consiglio Nazionale delle Ricerche (CNR) fellowship to Manuel Bellucci and by 'The Company of Biologists' Travel Fellowship award number DEVTF2210892. Funding at Michigan State University was from the U.S. National Science

393 Foundation, award number IOS-2022495. Michigan AgBioResearch provided partion support for T.D.S. 394 Data availability: Not applicable 395 Code availability: Not applicable 396 397 **Declarations Ethic approval:** All authors have approved the submission of this paper 398 399 Consent to participate: Not applicable 400 **Consent to publication:** All authors consent to the submission of this paper **Competing interest:** The authors have no competing interests 401 402 References 403 Abbas F, O'Neill Rothenberg D, Zhou Y, et al (2022) Volatile organic compounds as mediators of plant communication and adaptation to climate change. Physiol Plant 174:e13840. 404 https://doi.org/10.1111/ppl.13840 405 Affek H, Yakir D (2002) Protection by Isoprene against Singlet Oxygen in Leaves. Plant Physiol 406 129:269–277. https://doi.org/10.1104/pp.010909 407 408 Archibald A, Cooke M, Utembe S, et al (2010) Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene. Atmos Chem Phys 10:. 409 410 https://doi.org/10.5194/acp-10-8097-2010 411 Arneth A, Miller P, Scholze M, et al (2007) CO2 inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry. Geophys Res Lett 34:. 412 https://doi.org/10.1029/2007GL030615 413 Arneth A, Schurgers G, Hickler T, Miller P (2008) Effects of species composition, land surface 414 cover, CO2 concentration and climate on isoprene emissions from European Forests. Plant 415 Biol (Stuttg) 10:150–162. https://doi.org/10.1055/s-2007-965247 416 417 Asensio D, Rapparini F, Penuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress 418 conditions or after jasmonic acid application. Phytochemistry 77:149–161. 419 https://doi.org/10.1016/j.phytochem.2011.12.012 420

421 422	Ashmore M (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964. https://doi.org/10.1111/j.1365-3040.2005.01341.x
423 424 425	Baptista P, Martins A, Pais MS, et al (2007) Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza 17:185–193. https://doi.org/10.1007/s00572-006-0091-4
426 427 428	Barney J, Hay A, Weston L (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247–265. https://doi.org/10.1007/s10886-005-1339-8
429 430	Blande J, Holopainen J, Niinemets Ü (2014) Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant Cell Environ 37:. https://doi.org/10.1111/pce.12352
431 432 433	Brilli F, Barta C, Fortunati A, et al (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254. https://doi.org/https://doi.org/10.1111/j.1469-8137.2007.02094.x
434 435 436 437	Brilli F, Ciccioli P, Frattoni M, et al (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552. https://doi.org/https://doi.org/10.1111/j.1365-3040.2009.01948.x
438 439	Brown S, Stutz J (2012) Nighttime Radical Observations and Chemistry. Chem Soc Rev 41:6405–6447. https://doi.org/10.1039/c2cs35181a
140 141 142 143	Brunetti C, Saleem AR, Della Rocca G, et al (2021) Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L.) DC. in response to water deficit. J Biotechnol 331:53–62. https://doi.org/https://doi.org/10.1016/j.jbiotec.2021.03.008
144 145 146	Calfapietra C, Scarascia Mugnozza G, Karnosky DF, et al (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytol 179:55–61. https://doi.org/10.1111/j.1469-8137.2008.02493.x
147 148	Cappellin L, Loreto F, Biasioli F, et al (2019) A mechanism for biogenic production and emission of MEK from MVK decoupled from isoprene biosynthesis. Atmos Chem Phys

449	19:3125–3135. https://doi.org/10.5194/acp-19-3125-2019
450 451 452	Cinege G, Louis S, Hänsch R, Schnitzler J-P (2009) Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol Biol 69:593–604. https://doi.org/10.1007/s11103-008-9441-2
453 454 455	Claeys M, Graham B, Vas G, et al (2004) Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science 303:1173–1176. https://doi.org/10.1126/science.1092805
456 457 458	Cocozza C, Brilli F, Miozzi L, et al (2019) Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. Plant Sci 289:110260. https://doi.org/10.1016/j.plantsci.2019.110260
459 460 461 462	Cocozza C, Brilli F, Pignattelli S, et al (2020) The excess of phosphorus in soil reduces physiological performances over time but enhances prompt recovery of salt-stressed Arundo donax plants. Plant Physiol Biochem PPB 151:556–565. https://doi.org/10.1016/j.plaphy.2020.04.011
463 464	Dani KGS, Loreto F (2022) Plant volatiles as regulators of hormone homeostasis. New Phytol 234:804–812. https://doi.org/https://doi.org/10.1111/nph.18035
465 466	Delwiche C, Sharkey T (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591
467 468 469	Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the "cry for help". Trends Plant Sci 15:167–175. https://doi.org/10.1016/j.tplants.2009.12.002
470 471 472	Ditengou FA, Müller A, Rosenkranz M, et al (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279. https://doi.org/10.1038/ncomms7279
473	FAO, ITPS (2015) Status of the World's Soil Resources (SWSR) - Main Report. Rome, Italy
474 475	Fares S, Barta C, Brilli F, et al (2006) Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the

476	pollutant. Physiol Plant 128:456–465. https://doi.org/10.1111/j.1399-3054.2006.00750.x
477	Fares S, Brilli F, Nogues I, et al (2008) Isoprene emission and primary metabolism in Phragmites
478	australis grown under different phosphorus levels. Plant Biol (Stuttg) 10:38-43.
479	https://doi.org/10.1055/s-2007-965429
480	Fargasová A, Molnárová M (2010) Assessment of Cr and Ni phytotoxicity from cutlery-washing
481	waste-waters using biomass and chlorophyll production tests on mustard Sinapis alba L.
482	seedlings. Environ Sci Pollut Res Int 17:187-194. https://doi.org/10.1007/s11356-009-
483	0136-2
484	Faxon C, Hammes J, Pathak R, Hallquist M (2017) Characterization of organic nitrate
485	constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of
486	limonene using High-Resolution Chemical Ionization Mass Spectrometry. Atmos Chem
487	Phys Discuss 18:1–25. https://doi.org/10.5194/acp-18-5467-2018
488	Fehsenfeld F, Calvert J, Fall R, et al (1992) Emissions of volatile organic compounds from
489	vegetation and the implications for atmospheric chemistry. Global Biogeochem Cycles
490	6:389–430
491	Feng Z, Yuan X, Fares S, et al (2019) Isoprene is more affected by climate drivers than
492	monoterpenes: A meta-analytic review on plant isoprenoid emissions. Plant Cell Environ
493	42:1939–1949. https://doi.org/10.1111/pce.13535
494	Fernández-Martínez M, Llusia J, Filella I, et al (2017) Nutrient-rich plants emit a less intense
495	blend of volatile isoprenoids. New Phytol 220:. https://doi.org/10.1111/nph.14889
496	Foy CD, Chaney R, White M (2003) The Physiology of Metal Toxicity in Plants. Annu Rev
497	Plant Physiol 29:511–566. https://doi.org/10.1146/annurev.pp.29.060178.002455
498	Ghirardo A, Gutknecht J, Zimmer I, et al (2011) Biogenic Volatile Organic Compound and
499	Respiratory CO2 Emissions after 13C-Labeling: Online Tracing of C Translocation
500	Dynamics in Poplar Plants. PLoS One 6:e17393
501	Giordano D, Facchiano A, D'Auria S, Loreto F (2021) A hypothesis on the capacity of plant
502	odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. Elife
503	10:e66741. https://doi.org/10.7554/eLife.66741

504	Goldstein AH, Galbally IE (2007) Known and unknown organic constituents in the Earth' s
505	atmosphere. Environ Sci Technol 41:1514–1521. https://doi.org/10.1021/es072476p
506	Guenther A, Hewitt CN, Erickson D, et al (1995) A global model of natural volatile organic
507	compound emissions. J Geophys Res 100:8873–8892. https://doi.org/10.1029/94JD02950
508	Guenther A, Jiang X, Heald C, et al (2012) The Model of Emissions of Gases and Aerosols from
509	Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling
510	biogenic emissions. Geosci Model Dev Discuss 5:. https://doi.org/10.5194/gmdd-5-1503-
511	2012
512	Guenther A, Karl T, Harley P, et al (2006) Estimates of global terrestrial isoprene emissions
513	using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem
514	Phys 6:3181–3210. https://doi.org/10.5194/acp-6-3181-2006
515	Guidolotti G, Calfapietra C, Loreto F (2011) The relationship between isoprene emission, CO2
516	assimilation and water use efficiency across a range of poplar genotypes. Physiol Plant
517	142:297–304. https://doi.org/10.1111/j.1399-3054.2011.01463.x
518	Hanson DT, Swanson S, Graham LE, Sharkey TD (1999) Evolutionary significance of
519	isopreneemission from mosses. Am J Bot 86:634-639.
520	https://doi.org/https://doi.org/10.2307/2656571
521	Hantson S, Knorr W, Schurgers G, et al (2017) Global isoprene and monoterpene emissions
522	under changing climate, vegetation, CO2 and land use. Atmos Environ 155:35-45.
523	https://doi.org/https://doi.org/10.1016/j.atmosenv.2017.02.010
524	Harley P, Deem G, Flint S, Caldwell M (2006) Effects of growth under elevated UV-B on
525	photosynthesis and isoprene emission in Quercus gambelii and Mucuna pruriens. Glob
526	Chang Biol 2:149–154. https://doi.org/10.1111/j.1365-2486.1996.tb00060.x
527	Harrison SP, Morfopoulos C, Dani KGS, et al (2013) Volatile isoprenoid emissions from plastid
528	to planet. New Phytol 197:49–57. https://doi.org/10.1111/nph.12021
529	Heald C, Wilkinson M, Monson RK, et al (2009) Response of isoprene emission to ambient CO2
530	changes and implications for global budgets. Glob Chang Biol 15:1127-1140.
531	https://doi.org/10.1111/j.1365-2486.2008.01802.x

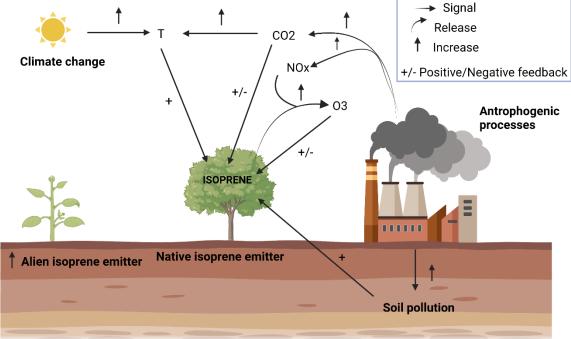
532	IPCC (2021) Intergovernmental Panel on Climate Change sixth assessment report on climate
533	change 2021: AR6 Climate Change 2021: The Physical Science Basis synthesis report
534	Jardine K, Monson R, Abrell L, et al (2012) Within-plant isoprene oxidation confirmed by direct
535	emissions of oxidation products methyl vinyl ketone and methacrolein. Glob Chang Biol
536	18:973–984. https://doi.org/10.1111/j.1365-2486.2011.02610.x
537	Kai H, Hirashima K, Matsuda O, et al (2012) Thermotolerant cyclamen with reduced acrolein
538	and methyl vinyl ketone. J Exp Bot 63:4143–4150. https://doi.org/10.1093/jxb/ers110
539	Kanakidou M, Seinfeld J, Pandis S, et al (2005) Organic aerosol and global climate modelling: a
540	review. Atmos Chem Phys 5:1053–1123
541	Knudsen J, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and Distribution of Floral Scent.
542	Bot Rev 72:1–120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
543	Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic
544	compounds in the Earth system. New Phytol 183:27-51. https://doi.org/10.1111/j.1469-
545	8137.2009.02859.x
546	Lathière J, Hauglustaine DA, de Noblet N, et al (2005) Past and future changes in biogenic
547	volatile organic compound emissions simulated with a global dynamic vegetation model.
548	Geophys Res Lett 32:. https://doi.org/10.1029/2005GL024164
549	Lehning A, Zimmer W, Zimmer I, Schnitzler J-P (2001) Modeling of annual variations of oak
550	(Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys
551	Res 106:3157–3166. https://doi.org/10.1029/2000JD900631
552	Lerdau M (2007) ECOLOGY: A Positive Feedback with Negative Consequences. Science
553	316:212–213. https://doi.org/10.1126/science.1141486
554	Li M, Xu J, Algarra Alarcon A, et al (2017) In Planta Recapitulation of Isoprene Synthase
555	Evolution from Ocimene Synthases. Mol Biol Evol 34:2583–2599.
556	https://doi.org/10.1093/molbev/msx178
557	Lin T, Zhu G, He W, et al (2022) Soil cadmium stress reduced host plant odor selection and
558	oviposition preference of leaf herbivores through the changes in leaf volatile emissions. Sci

559	Total Environ 814:152728. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.152728
560	Litvak M, Loreto F, Harley P, et al (1996) The response of isoprene emission rate and
561 562	photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant Cell Environ 19:549–559
563	Locato V, Cimini S, De Gara L (2018) ROS and redox balance as multifaceted players of cross-
564 565	tolerance: epigenetic and retrograde control of gene expression. J Exp Bot 69:3373–3391. https://doi.org/10.1093/jxb/ery168
566	Loivamäki M, Gilmer F, Fischbach RJ, et al (2007) Arabidopsis, a Model to Study Biological
567	Functions of Isoprene Emission? Plant Physiol 144:1066–1078.
568	https://doi.org/10.1104/pp.107.098509
569	Lombardi M, De Gara L, Loreto F (2021) Determinants of root system architecture for future-
570	ready, stress-resilient crops. Physiol Plant 172:2090-2097.
571	https://doi.org/https://doi.org/10.1111/ppl.13439
572	Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants
573	FACE the future. Annu Rev Plant Biol 55:591–628.
574	https://doi.org/10.1146/annurev.arplant.55.031903.141610
575	Loreto F, Dicke M, Schnitzler J-P, Turlings TCJ (2014) Plant volatiles and the environment.
576	Plant Cell Environ 37:1905–1908. https://doi.org/10.1111/pce.12369
577	Loreto F, Fares S (2007) Is Ozone Flux Inside Leaves Only a Damage Indicator? Clues from
578	Volatile Isoprenoid Studies. Plant Physiol 143:1096–1100.
579	https://doi.org/10.1104/pp.106.091892
580	Loreto F, Fineschi S (2015) Reconciling functions and evolution of isoprene emission in higher
581	plants. New Phytol 206:578–582. https://doi.org/10.1111/nph.13242
582	Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154-
583	166. https://doi.org/10.1016/j.tplants.2009.12.006
584	Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus
585	against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellula

586	membranes. Plant Physiol 127:1781–1787
587	McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026.
588	https://doi.org/10.1105/tpc.7.7.1015
589	Mills G, Hayes F, Simpson D, et al (2010) Evidence of widespread effects of ozone on crops and
590	(semi-)natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk
591	maps. Glob Chang Biol 17:592–613. https://doi.org/10.1111/j.1365-2486.2010.02217.x
592	Miloradovic van Doorn M, Merl-Pham J, Ghirardo A, et al (2020) Root isoprene formation alters
593	lateral root development. Plant Cell Environ 43:2207–2223.
594	https://doi.org/https://doi.org/10.1111/pce.13814
595	Mithöfer A, Boland W (2012) Plant Defense Against Herbivores: Chemical Aspects. Annu Rev
596	Plant Biol 63:431–450. https://doi.org/10.1146/annurev-arplant-042110-103854
597	Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants:
598	evidence for common signals. FEBS Lett 566:1-5.
599	https://doi.org/10.1016/j.febslet.2004.04.011
600	Mittler R (2017) ROS Are Good. Trends Plant Sci 22:11-19.
601	https://doi.org/10.1016/j.tplants.2016.08.002
602	Monson RK, Weraduwage SM, Rosenkranz M, et al (2021) Leaf isoprene emission as a trait that
603	mediates the growth-defense tradeoff in the face of climate stress. Oecologia 197:885-902.
604	https://doi.org/10.1007/s00442-020-04813-7
605	Nah T, Sanchez J, Boyd C, Ng N (2015) Photochemical Aging of α-pinene and β-pinene
606	Secondary Organic Aerosol formed from Nitrate Radical Oxidation. Environ Sci Technol
607	50:. https://doi.org/10.1021/acs.est.5b04594
608	Nanda AK, Andrio E, Marino D, et al (2010) Reactive oxygen species during plant-
609	microorganism early interactions. J Integr Plant Biol 52:195-204.
610	https://doi.org/10.1111/j.1744-7909.2010.00933.x
611	Niinemets Ü, Rasulov B, Talts E (2021) CO(2) -responsiveness of leaf isoprene emission: Why
612	do species differ? Plant Cell Environ 44:3049_3063 https://doi.org/10.1111/nce.14131

Ninkovic V, Markovic D, Rensing M (2021) Plant volatiles as cues and signals in plant 613 614 communication. Plant, Cell & Environ 44:1030–1043. https://doi.org/https://doi.org/10.1111/pce.13910 615 616 Obara N, Hasegawa M, Kodama O (2003) Induced Volatiles in Elicitor-treated and Rice Blast Fungus-inoculated Rice Leaves. Biosci Biotechnol Biochem 66:2549–2559. 617 618 https://doi.org/10.1271/bbb.66.2549 619 Pallozzi E, Marino G, Fortunati A, et al (2013) Effect of Exposure to UVA Radiation on Photosynthesis and Isoprene Emission in Populus × Euroamericana. In: Kuang T, Lu C, 620 621 Lixin Z (eds) Photosynthesis research for food, fuel and the future. Springer, Berlin, Germany, pp 763–767 622 623 Palmer P, Abbot D, Fu T-M, et al (2006) Quantifying the Seasonal and Interannual Variability of North American Isoprene Emissions Using Satellite Observations of the Formaldehyde 624 Column. J Geophys Res Atmos 111:. https://doi.org/10.1029/2005JD006689 625 Paré PW, Tumlinson JH (1999) Plant Volatiles as a Defense against Insect Herbivores. Plant 626 627 Physiol 121:325–332. https://doi.org/10.1104/pp.121.2.325 Paulot F, Crounse JD, Kjaergaard HG, et al (2009) Unexpected epoxide formation in the gas-628 phase photooxidation of isoprene. Science 325:730–733. 629 https://doi.org/10.1126/science.1172910 630 631 Penuelas J, Asensio D, Tholl D, et al (2014) Biogenic volatile emissions from the soil. Plant Cell 632 Environ 37:. https://doi.org/10.1111/pce.12340 633 Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109. https://doi.org/10.1016/S1360-1385(03)00008-6 634 Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for 635 pollinator attraction and defense. Curr Opin Plant Biol 5:237–243. 636 https://doi.org/10.1016/s1369-5266(02)00251-0 637 Pinto-Zevallos D, Blande J, Souza S, et al (2010) Plant Volatile Organic Compounds (VOCs) in 638 639 Ozone (O3) Polluted Atmospheres: The Ecological Effects. J Chem Ecol 36:22–34. https://doi.org/10.1007/s10886-009-9732-3 640

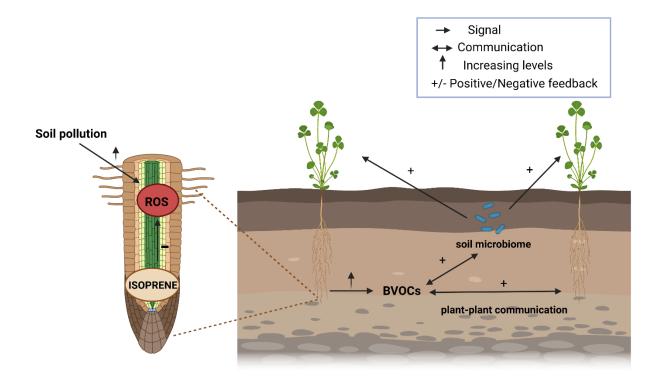
641	Pollastri S, Jorba I, Hawkins TJ, et al (2019) Leaves of isoprene-emitting tobacco plants
642	maintain PSII stability at high temperatures. New Phytol 223:1307-1318.
643	https://doi.org/10.1111/nph.15847
644	Pollastri S, Savvides A, Pesando M, et al (2018) Impact of two arbuscular mycorrhizal fungi on
645	Arundo donax L. response to salt stress. Planta 247:573–585.
646	https://doi.org/10.1007/s00425-017-2808-3
647	Possell M, Hewitt CN, Beerling D (2004) The effects of glacial atmospheric CO2 concentrations
648	and climate on isoprene emissions by vascular plants. Glob Chang Biol 11:60-69.
649	https://doi.org/10.1111/j.1365-2486.2004.00889.x
650	Rennenberg H, Loreto F, Polle A, et al (2006) Physiological responses of forest trees to heat and
651	drought. Plant Biol (Stuttg) 8:556–571. https://doi.org/10.1055/s-2006-924084
652	Rosenstiel TN, Potosnak MJ, Griffin KL, et al (2003) Increased CO2 uncouples growth from
653	isoprene emission in an agriforest ecosystem. Nature 421:256-259.
654	https://doi.org/10.1038/nature01312
655	Salt DE, Smith RD, Raskin I (1998) PHYTOREMEDIATION. Annu Rev Plant Physiol Plant
656	Mol Biol 49:643–668. https://doi.org/10.1146/annurev.arplant.49.1.643
657	Sanderson M, Jones CD, Collins W, et al (2003) Effect of Climate Change on Isoprene
658	Emissions and Surface Ozone Levels. Geophys Res Lett 30:1936
659	Schenkel D, Lemfack MC, Piechulla B, Splivallo R (2015) A meta-analysis approach for
660	assessing the diversity and specificity of belowground root and microbial volatiles. Front
661	Plant Sci 6:707. https://doi.org/10.3389/fpls.2015.00707
662	Scholefield P, Doick K, Herbert B, et al (2004) Impact of rising CO2 on emissions of volatile
663	organic compounds: Isoprene emission from Phragmites australis growing at elevated CO2
664	in a natural carbon dioxide spring. Plant Cell Environ 27:393-401.
665	https://doi.org/10.1111/j.1365-3040.2003.01155.x
666	Seinfeld JH, Pandis S (2006) Atmospheric Chemistry and Physics: From Air Pollution to
667	Climate Change, 2nd edn.

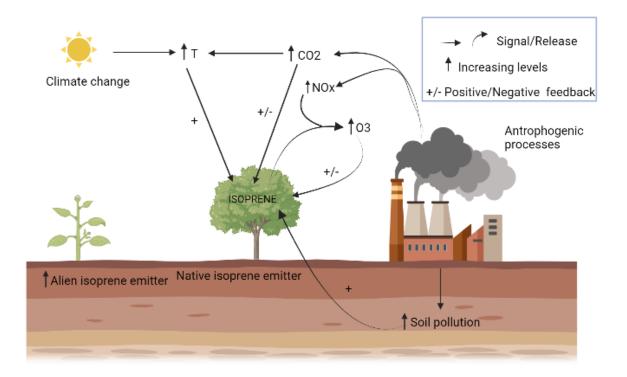

Sharkey T, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol. 668 Annu Rev Plant Physiol Plant Mol Biol 52:407–436. 669 https://doi.org/10.1146/annurev.arplant.52.1.407 670 671 Sharkey TD, Monson RK (2017) Isoprene research - 60 years later, the biology is still enigmatic. Plant Cell Environ 40:1671–1678. https://doi.org/10.1111/pce.12930 672 673 Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene 674 emission from trees in response to temperature and light. Tree Physiol 16:649–654. https://doi.org/10.1093/treephys/16.7.649 675 676 Shortall OK (2013) "Marginal land" for energy crops: Exploring definitions and embedded assumptions. Energy Policy 62:19–27. 677 https://doi.org/https://doi.org/10.1016/j.enpol.2013.07.048 678 Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene Increases Thermotolerance of 679 680 Isoprene-Emitting Species. Plant Physiol 115:1413–1420. https://doi.org/10.1104/pp.115.4.1413 681 Squire OJ, Archibald AT, Abraham NL, et al (2014) Influence of future climate and cropland 682 expansion on isoprene emissions and tropospheric ozone. Atmos Chem Phys 14:1011–1024. 683 https://doi.org/10.5194/acp-14-1011-2014 684 Srikanta Dani KG, Loreto F (2022) Plant volatiles as regulators of hormone homeostasis. New 685 Phytol. https://doi.org/10.1111/nph.18035 686 687 Tai A, Mickley L, Heald C, Wu S (2013) Effect of CO2 inhibition on biogenic isoprene 688 emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use. Geophys Res Lett 40:. https://doi.org/10.1002/grl.50650 689 690 Tiiva P, Rinnan R, Faubert P, et al (2007) Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytol 176:346–355. https://doi.org/10.1111/j.1469-691 8137.2007.02164.x 692 Velikova V, Edreva A, Loreto F (2004) Endogenous isoprene protects Phragmites australis 693 694 leaves against singlet oxygen. Physiol Plant - PHYSIOL PLANT 122:219–225.

https://doi.org/10.1111/j.0031-9317.2004.00392.x

696 Velikova V, Pinelli P, Pasqualini S, et al (2005) Isoprene decreases the concentration of nitric 697 oxide in leaves exposed to elevated ozone. New Phytol 166:419–425. https://doi.org/10.1111/j.1469-8137.2005.01409.x 698 699 Velikova V, Tsonev T, Loreto F, Centritto M (2011a) Changes in photosynthesis, mesophyll 700 conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess 701 nickel. Environ Pollut 159:1058–1066. https://doi.org/10.1016/j.envpol.2010.10.032 702 Velikova V, Várkonyi Z, Szabó M, et al (2011b) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant 703 Physiol 157:905–916. https://doi.org/10.1104/pp.111.182519 704 Vickers C, Possell M, Cojocariu C, et al (2009) Isoprene synthase protects transgenic tobacco 705 706 plants from oxidative stress. Plant Cell Environ 32:520–531. https://doi.org/10.1111/j.1365-3040.2009.01946.x 707 708 Winter TR, Borkowski L, Zeier J, Rostás M (2012) Heavy metal stress can prime for herbivoreinduced plant volatile emission. Plant Cell Environ 35:1287–1298. 709 710 https://doi.org/10.1111/j.1365-3040.2012.02489.x Wittig V, Ainsworth E, Naidu S, et al (2009) Quantifying the impact of current and future 711 712 tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Glob Chang Biol 15:. https://doi.org/10.1111/j.1365-2486.2008.01774.x 713 714 Wu S, Mickley L, Kaplan J, Jacob D (2012) Impacts of changes in land use and land cover on 715 atmospheric chemistry and air quality over the 21st century. Atmos Chem Phys 12:. 716 https://doi.org/10.5194/acp-12-1597-2012 Xia X-J, Zhou Y-H, Shi K, et al (2015) Interplay between reactive oxygen species and hormones 717 in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856. 718 https://doi.org/10.1093/jxb/erv089 719 720 Zuo Z, Weraduwage SM, Lantz AT, et al (2019) Isoprene Acts as a Signaling Molecule in Gene Networks Important for Stress Responses and Plant Growth. Plant Physiol 180:124–152. 721

722


https://doi.org/10.1104/pp.18.01391


Fig. 1 Dynamic of plant isoprene emission and settlement of alien isoprene-emitting species induced by anthropogenic processes determining environmental stresses or by climate change. Positive or negative feedback (+/-) refers to the direct effects of pollutants on the isoprene emission capacity. ↑ represent the direct effects of anthropogenic processes and climate change

on the increasing of air and soil determinants and settlement of new isoprene emitter species.

Figure was created with **BioRender.com**.

Fig. 2 Soil pollutants effects on root ROS generation and root-related BVOCs and the communication plant-plant and plant-microbiome through the soil. + or - refer to the direct effect of isoprene or BVOCs while \uparrow to the direct effects of soil pollution. Only for this purpose we refer to BVOCs only for unclear evidence of isoprene belowground communication. *Figure was c*reated with <u>BioRender.com</u>.

Created in BioRender.com bio

Figure 1 Dynamic of plant isoprene emission and settlement of alien isoprene emitting species induced by anthropogenic processes determining environmental stresses or by climate change. + or - refer to the direct effects of contaminants on the emission of isoprene while \uparrow represent the effects of anthropogenic processes and climate change on air and soil determinants and settlement of alien species.

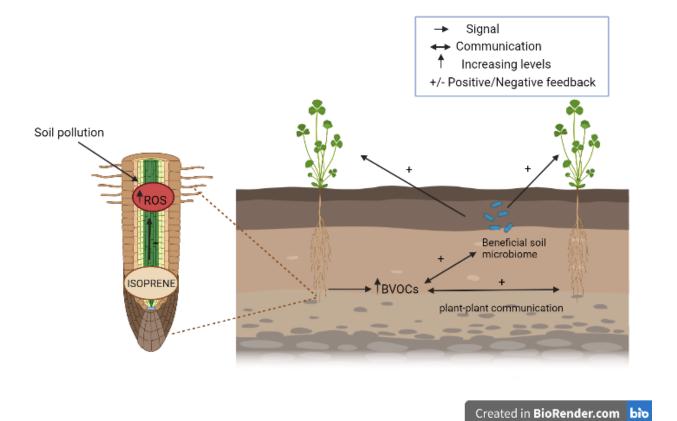


Figure 2 Soil pollutants effects on root ROS generation and root-related BVOCs and the communication plant-plant and plant-microbiome through the soil. + or - refers to the direct effect of isoprene or BVOCs while \uparrow to the direct effects of soil pollution.