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Abstract

For many drug targets, it has been shown that the kinetics of drug binding (e.g. on

rate and off rate) is more predictive of drug efficacy than thermodynamic quantities

alone. This motivates the development of predictive computational models that can be
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used to optimize compounds on the basis of their kinetics. The structural details un-

derpinning these computational models are not only found in the bound state, but also

in the short-lived ligand binding transition state: the highest free energy point along

the (un)binding pathway. Although this transition state cannot be directly observed

experimentally, due to its extremely short lifetime, recent successes have demonstrated

that modeling of the ligand binding transition state is possible with the help of en-

hanced sampling methods for molecular dynamics. In our previous work we analyzed

the transition state ensemble for an inhibitor of soluble epoxide hydrolase (sEH) with

a residence time of 11 minutes. Here we computationally modeled unbinding events

for five additional inhibitors of sEH with residence times ranging from 14.25 to 31.75

minutes, with our results recapitulating these experimental residence times to within

an order of magnitude. The unbinding ensembles are analyzed in detail, focusing on

features of the ligand binding transition state. We find that ligands with similar struc-

tures and similar bound poses can show significant differences in their ligand binding

transition states, in terms of their spatial location and their interactions with specific

protein residues. However we also find similarities across the transition state ensem-

bles when examining more general features such as ligand degrees of freedom. Together

these findings show significant challenges for rational, kinetics-based drug design.

Introduction

Structure based drug design (SBDD) has matured over the past few decades from a handful

of success stories1–5 into a near-ubiquitous tool to guide the discovery and optimization of

potential drug molecules.6 SBDD approaches – including docking- and AI-assisted virtual

screens,7,8 MM-PBSA methods9 and free energy perturbation10,11 – all utilize the knowledge

of the 3D structure of a target protein and its probable binding site to design potential drug

molecules by optimizing the binding free energy, or approximations thereof. In principle, this

provides an incomplete picture of the drug-target interaction; since the in vivo environment
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is far from thermodynamic equilibrium, the binding kinetics are also necessary to thoroughly

model drug efficacy.12–14 In practice, it has been shown that residence time – the average

duration of a given drug-target binding event – can be the central feature related to drug

efficacy in some systems,15 including soluble epoxide hydrolase (sEH),16,17 studied here. In

contrast to the binding free energy, which is a path-independent state function relying only

on the bound and unbound states, the unbinding rate constant depends on the details of the

transition path ensemble of (un)binding events. Specifically, it is related by the Arrhenius

equation to the free energy of activation of the unbinding event, which is the difference in

free energy of bound state and the ligand binding transition state. Hence, to fully engage

the tools of SBDD for kinetics-based rational design, we need to consider the molecular

structures of both the bound state and the transition state.

This poses a monumental challenge, because unlike ligand bound states, for which there

are hundreds of thousands of available experimentally-determined structures, there are no ex-

perimental observations of ligand binding transition state structures, due to their extremely

short lifetimes. Ligand binding transition states are also challenging to model in silico. Al-

though the transition state lifetimes are short, they are often at the top of extremely large

energy barriers, with mean first passage times (MFPTs) of unbinding events that range up to

minutes or even hours in duration. This is 6-8 orders of magnitude beyond the current capa-

bilities of even specialized supercomputers for molecular dynamics, which are still restricted

to the µs to ms regime.18 Also, transition state ensembles for ligand binding are likely to be

much more diverse than bound ensembles and are unable to be captured in a single struc-

ture. There is substantial possibility of a ligand unbinding from a protein using multiple

pathways and within each pathway there are conformational fluctuations that change partic-

ular ligand-protein interactions.19–23 This requires not just generation of a single unbinding

event, but of a representative ensemble of unbinding events. Finally, even with an ensem-

ble of (un)binding transition paths, identification of the transition state ensemble requires

additional analysis techniques that calculate the unbinding committor probability for each
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conformation. The introduction of biasing forces in methods such as metadynamics24 and

τ -random acceleration molecular dynamics25 introduces further uncertainty to the definition

of the transition state, as biasing forces can change the underlying energy landscapes. Recent

studies have sought to bypass explicit identification of the TSE by combining biased dynam-

ics methods with machine learning approaches that can identify relevant structural features

of the transition in a data-driven manner.26–29 While these could be promising approaches

to predict rates for specific systems, it is difficult to extract direct structural insight into the

TSE of the unbiased transition paths.

Here we apply an alternative enhanced sampling method that can generate long-timescale

ligand unbinding events without applying biasing forces. The weighted ensemble method30

is a general framework for path sampling where an ensemble of trajectories, each with an

associated statistical weight, is evolved forward together in time.31 Periodically, the ensem-

ble of trajectories is “resampled”: the number copies of each trajectory are changed in order

to better direct the computational effort towards a pre-defined objective,32 here, the gener-

ation of ligand unbinding events. We have previously shown that variants of the weighted

ensemble algorithm33,34 can efficiently generate a thorough sampling of possible ligand un-

binding transition paths.19,34–36 As these paths are all generated using the unbiased energy

function, this provides us with the clearest window through which to examine properties of

the TSE. We analyze the resulting trajectory sets with Markov state models (MSM)37–39

that are constructed using the trajectory weights from the WE sampling method, and are

history-augmented (haMSM,40) in that they only include trajectories originating from the

bound state. This allows for quantitative predictions of ligand unbinding rate constants (koff)

both through the MSMs and directly from the WE simulations.41–43

The target protein studied here is the enzyme soluble epoxide hydrolase (sEH), which

is present in mammalian tissues and metabolizes epoxy fatty acids (EpFAs) to their cor-

responding dihydroxy fatty acids.44 EpFAs are a novel class of lipid mediators that play

critical roles in blood pressure regulation, inflammation, pain perception and ER stress.45
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Epoxyeicosatrienoic acid (EET), one of the most studied EpFAs, is antihypertensive, anti-

inflammatory, analgesic and neuroprotective.46 Inhibitors of sEH can raise EET levels and

thus have been developed as potential treatments for these medical conditions.47,48 As it

has been previously shown that the residence time is a key quantity for determining the

efficacy of sEH inhibitors in these contexts,16,17 our long-term goal is the development of

new molecules with longer sEH residence times.

The binding site of sEH is large and deeply buried inside the protein. The reference

crystal structure (PDB ID: 4OD0), which is used in our study, reveals that the large bind-

ing site of sEH is separated into two compartments by a center pinch resulting from two

flexible loops of the protein (Fig. 1). Previously we also used weighted ensemble simula-

tion techniques to simulate the unbinding mechanism and estimate unbinding rates for 1-

trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)-urea (TPPU), achieving a rough agree-

ment with the experimental rate (42 seconds predicted versus 660 seconds experimental),

and offering the first structural hints for the TSE.35 We found that while the TSE was struc-

turally diverse, there were a small number of specific protein ligand interactions that could

potentially be targeted for kinetics-driven SBDD. However, a key question remained: could

we extend this information to give us insight into the transition states of other structurally-

related inhibitors? Put another way, how robust is the ligand binding transition state?

Here we tackle this question using simulations of five sEH inhibitors that are structurally

related to TPPU. Their inhibition constants and residence times were measured experi-

mentally and directly compared with residence times from simulations. We develop broad

models of the ligand binding energy landscape for each ligand by maximizing the average

agreement with experimental residence times. The transition path ensembles are then iden-

tified, analyzed and compared across the set of ligands, focusing on 1) spatial location, 2)

ligand-protein interactions, 3) internal ligand degrees of freedom, and 4) solvent accessibility.

We then discuss the implications of these results for kinetics-driven SBDD.
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Methods

Soluble epoxide hydrolase inhibitors

The inhibitors studied here share a common piperidyl phenyl-urea scaffold with a few differ-

ent functional groups at the open-ends of the scaffold. The N-atom of the piperidine group

connects to a secondary keto-alkyl group. On the other side of the scaffold the phenyl group

has substitution in the meta and/or para position. Fig. 1 describes the chemical structure

of the inhibitor candidates. The inhibitor candidates (Ligands 10, 28, 29, 50 and 51) are

referred to using an internal numbering scheme, which does not correspond to any ligand

properties, or have any special significance.

Figure 1: sEH protein and its inhibitors: (A) 2-D representation of sEH inhibitors, (B) The
combined epoxide-phosphatase domain, (C) The Ligand28 bound sEH protein with the two
most interacting residues in the bound state.
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Experimental determination of rates

General information about the sourcing, synthesis and characterization of the ligand com-

pounds is given in Supplemental Methods. The measurement of unbinding rates (koff) for

ligands 28, 29, 50 and 51 were previously reported.16,49 The unbinding rate for ligand 10 is

reported here and was determined using the same FRET-displacement assay. The sEH en-

zyme (8 µM) was pre-incubated with the selected inhibitor (8.8 µM, 100 mM PB buffer, pH

7.4, 0.01% gelatin) for 1.5 h at room temperature. The sEH-inhibitor complex was diluted

40 times with ACPU (20 µM, 100 mM sodium phosphate buffer, pH 7.4, 0.01% gelatin). The

fluorescence (λexcitation at 280 nm, λemission at 450 nm) intensity was monitored immediately

for every 30 s up to 5100 s. The resulting λemission versus time curve was fitted to a single

exponential growth equation to calculate the relative koff.

To prevent the leaching of fluorescence impurities from the plastic tube and loss of sEH

inhibitor due to non-specific binding, the inhibitor stock solution (10 mM, DMSO) was

stored in glass vials. All buffer used in this assay was filtered with a sterilized filtration unit

(Millipore®Durapore PVDF Membrane, pore size: 0.22 um). All the measurements for the

FRET-based displacement assays in a 96-well plate format was done in a Biotek Synergy

Neo Plate Reader. To prevent non-specific binding of sEH or inhibitor on the 96-well plate,

the 96-well plates were pre-incubated with PB buffer with 0.1% gelatin overnight at room

temperature. The gelatin coats the plate and prevents the non-specific binding of sEH and

sEH inhibitors to the plate. The buffer was discarded and the plate was dried before use.

System preparation for molecular dynamics

The bound pose of the inhibitors inside sEH were obtained by aligning the central scaffold of

each inhibitor with the bound pose of TPPU in sEH from Ref. Lotz and Dickson 35 and then

minimizing with CHARMM36 force field. This conserves the previously mentioned important

bound pose interactions between the ligand and protein amino acids (Asp334, Tyr383 and

Tyr466). The structure from PDB ID 4od0 was used to generate initial conformations for
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all ligands examined here.16 The catalytic domain was isolated by selecting residues 231 -

547 and preserving the positions of associated water molecules in the crystal structure. The

ligands were parameterized using CGenFF.50,51 We ensured that the key previously reported

protein-ligand non-bonded interactions in the bound pose are conserved after alignment

across all the ligands. A representation of the bound pose of one of the ligands (28) is

provided in Fig. 1C. The system was solvated in TIP3 water up to a cutoff of 10 Å from

the protein to the edge of the periodic box. The system was charge neutralized in slightly

different ways across the ligand sets. Ligand 10 used 7 sodium atoms, ligands 28 and 29

used 7 potassium atoms, and ligands 50 and 51 added 17 potassium and 10 chlorine atoms

to achieve an ionic strength of 150 mM. We do not expect that these differences had a

significant impact on the kinetics or the transition paths.

The OpenMM simulation engine52 was used for all of the minimization and dynamics

steps in this work. CHARMM-GUI was used to generate the systems, as well as the scripts for

minimization and heating.53 The system was energy minimized using the L-BFGS algorithm

with a maximum number of 5000 steps and an energy tolerance of 100 kcal/mol. The

system was run at 303.15 K for 1 ns using a 0.001 ps timestep with harmonic positional

restraints on the protein backbone (force constant 400 kJ/mol/nm2) and protein sidechains

(force constant 40 kJ/mol/nm2). A force switch method was used to handle the non-bonded

interactions with a switch-on distance of 10 Å and a switch-off distance of 12 Å. The Particle

mesh Ewald method was used to handle the electrostatic cutoff, with an error tolerance of

0.0005. All covalent bonds with hydrogen were constrained. The protein restraints were

then removed and the system was equilibrated for 10 ns using a 0.002 ps timestep. An

isotropic Monte Carlo barostat was used to maintain a constant pressure of 1.0 bar, with a

pressure coupling frequency of 100 steps. The final structure was used to initialize subsequent

weighted ensemble simulations, which use the same simulation conditions as the second

equilibration step.
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Generation of ligand unbinding paths with the REVO weighted

ensemble method

As mentioned above, weighted ensemble methods seek to shift the focus of the ensemble

towards under-sampled regions. It achieves this by “cloning” certain members of the en-

semble, dividing the weight of the parent walker to be distributed evenly across the clones.

Typically, trajectories are run with a stochastic integrator, such as a Langevin integrator, so

that the clones diverge to explore independent paths as the simulation continues. To save

computational expense, pairs of trajectories can also be “merged”. This typically occurs in

over-sampled regions of space near local or global free energy minima. When two trajectories

A and B are merged, the resulting walker takes on the sum of the weights (wA + wB), and

adopts either the conformation of walker A (with probability wA/(wA + wB)) or walker B

(with probability wB/(wA + wB)). The exact nature of this random choice is important to

ensure that the expectation value of the flow of probability is zero between any two regions

of space.54

The REVO algorithm is a particular implementation of weighted ensemble that was

designed to efficiently sample rare events while using an ensemble size that is as small as

possible.34 It achieves this by using a fixed ensemble size (here, 48) and proposing coupled

merging and cloning events that are either accepted or rejected. To decide whether to accept

these events it computes the value of an objective variable termed the “trajectory variation”,

V :

V =
∑

i

∑

j

dij
d0

α

φiφj (1)

both before and after the proposed events. This quantifies the variation between members

of the trajectory set, using a measurement of distance dij, which is discussed in the next

paragraph. The constant d0 is a characteristic distance to make the variation unit-less,

but does not affect resampling outcomes. The function φi determines the importance of

individual trajectories and is defined as a function of the walker weight: φ(wi) = log(wi) −
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log(pmin/C), where pmin is a predefined minimum walker weight allowed in the simulation,

and C is a constant, set here to 100 following previous work.55–57 If the proposed cloning and

merging event increases the value of V , then it is executed and another coupled merging and

cloning event is proposed. This continues until V reaches a local maximum, at which point

the ensemble is propagated forward in time by the molecular dynamics integrator. Here, a

round of 20 ps of dynamics for each trajectory followed by a round of resampling is called

a “cycle”. For each ligand, we run between 5 and 6 independent runs, each containing at

least 2000 cycles with an ensemble size of 48. The ensemble size was chosen to be large

enough to capture a diversity of snapshots along the ligand unbinding pathway, while being

as small as possible to enable extension of the runs as far as possible in time. For efficient

implementation, an ensemble size that is divisible by the number of GPU cards on a node

(in our case, 8) is also ideal. A summary of the number of cycles in each run is given in

Table 1. In total, the results presented here combined 82.9 µs of total sampling time.

The distance between trajectories (dij) is calculated by aligning the binding site residues

of the two trajectories and computing the root mean squared distance (RMSD) between

the ligand atoms. The set of binding site residues are defined as those within a cutoff of

5.0 Å from the ligand in the equilibrated bound pose. This distance metric captures both

1) movements of the ligand with respect to the binding site and 2) movement of ligand

internal degrees of freedom. By maximizing the variation with respect to this distance, we

can enhance observations of not only one unbinding path, but a broad ensemble of ligand

unbinding paths.

The simulations were run in the “unbinding ensemble”, in which trajectories originate in

the bound state and are terminated when they cross into the unbound state, which at run

time was defined as having at least 10 Å of clearance between the ligand and the protein.

Trajectories that unbind are re-initialized in the bound state, but keeping the same weight.

In practice, these are quickly merged into other high weight trajectories in the bound state
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Table 1: Details of the REVO simulations run for each ligand. The aggregated sampling is
summed across all trajectories in a given run.

Lig. ID Num. Walkers Run Index Num. Cycles Aggregated sampling (µs)

Lig10 48

0 2986 2.97
1 2751 2.64
2 2453 2.35
3 2224 2.13
4 2450 2.35
5 2470 2.37

Lig28 48

0 3257 3.13
1 3295 3.16
2 3274 3.14
3 3294 3.16
4 3275 3.14

Lig29 48

0 4000 3.84
1 4000 3.84
2 3885 3.73
3 4000 3.84
4 4000 3.84

Lig50 48

0 4000 3.84
1 4000 3.84
2 3414 3.28
3 2799 2.69
4 3518 3.38

Lig51 48

0 3400 3.26
1 3400 3.26
2 3400 3.26
3 3400 3.26
4 3400 3.26
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by the resampling algorithm. The simulations were conducted using the Wepy software,58

which is a Python implementation of the REVO resampler.

Markov state modeling and transition state definition

An overview of the Markov state modeling workflow is given in Fig. 2. Each frame of each

trajectory is projected onto a set of features, which form the basis of the Markov state models

used to define the transition state ensembles and calculate the unbinding rates. The features

are a set of 336 distances calculated between a set of 56 backbone atoms in the binding site

from residues Phe267, Asp335, Trp336, Ile363, Phe381, Tyr383, Gln384, Phe387, Met419,

Leu328, Tyr466, Val498, Leu499, and Met503 and six ligand atoms (as shown in Fig. S1)

for all the frames in each simulation trajectories. The ligand atoms were chosen along the

common central scaffold to facilitate comparison of features between ligands.

For analyses where time-independent component analysis (tICA59,60) is used, we pro-

cess the features into a Deeptime61 time-lagged dataset object using the sliding windows

function from Wepy. Separately for each ligand, we randomly choose a subset of 500,000

time-lagged dataset members to train a tICA model, which is then used to transform the

entire dataset for that ligand. The reduced tICA variables are clustered into a number of

states using the KMeans algorithm and each frame of the trajectories is labeled with a cluster

index. For analyses where tICA is not used, the complete set of feature vectors are used as

the basis for clustering with KMeans.

In both cases, transition count matrices are build by counting the inter-state transitions

between two states across a certain lag time, again using the sliding windows function

from Wepy. Unless specified otherwise below, transitions contribute to the count matrix

according to the weight of the trajectory at the end of the time interval. These are used

to generate conformation space network (“CSN”) objects from the CSNAnalysis package.62

For all clusters we compute the average ligand RMSD to the initial reference structure. If

this RMSD value is less than 2.5 Å, the cluster is labeled as “bound”. We also compute the
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minimum distance dunb-min between the ligand and the sEH binding site for each frame in

the simulation. If any members of a cluster have dunb-min > 5.0 Å then the cluster is labeled

as “unbound”. Note that this is a more relaxed definition than the minimum distance of

10 Å used during run time. We consider the dunb-min > 5.0 Å to be more appropriate for

describing unbinding rates that are measured by competitive binding assays, as it is more

sensitive as to whether the binding site has been vacated. Using these definitions of the

bound and unbound basins, unbinding committor probabilities63 and the unbinding mean

first passage times are computed using CSNAnalysis. Transition state ensembles were chosen

by selecting all conformations belonging to clusters within a given committor range across

the unbinding committor of 0.5.

Direct rate calculation

In addition to the rates from the Markov state models we also directly calculate unbinding

rates using the flux into the unbound state. The flux is simply calculated as the sum of the

weights of the unbinding trajectories divided by the elapsed time.

koff =

∑
(i,t)∈U wi,t

T
(2)

where U is the set of tuples denoting the trajectory indices i and the time points t where

the unbinding events occurred, wi,t is the weight of the trajectory at that time point, and T

is the total elapsed time of the simulation. Eq. 2 is also known as the “Hill’s equation”.

For comparison, we also compute the fluxes corresponding to the more relaxed unbound

state definition: dunb-min > 5.0 Å, defined in the previous subsection. This is done by

identifying the set of crossing points into the relaxed unbound state (U∗). To mimic an

absorbing boundary condition, we add crossing points starting from cycle 0 and only add a

new crossing point if none of its predecessors have been added to U∗.
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Figure 2: (A) The scheme of extracting TSE from weighted ensemble MD data with Markov
state models. (B) Visual representation of the interatomic ligand-binding site distance fea-
tures for a ligand. (C) All ligand conformations from a particular microstate after clustering
all the frames based on distance features. (D) Microstates and their connectivity from a
transition probability matrix, (E) Conformational space network (CSN) of ligand 50, with
ligand RMSD being the scale of color. The densely populated bound state is shown in dark
blue and the sparsely connected unbound states are shown in yellow/red.

Results

Unbinding Pathways of five sEH ligands

For each of the five ligands, we performed a set of weighted ensemble simulations with the

REVO algorithm that starts from an equilibrated bound pose. We observed unbinding events

for all five ligands that we simulated. In our study, a ligand is defined to be unbound from

the protein when it has a minimum distance of 5 Å or more from the residues that make

up the binding site (Fig. S2). The number of unbinding events for each ligand along with

the cumulative unbinding weights and simulation time are provided in the Table 2. The

number of cycles in each run varies, ranging from from 2224 to 4000 (see Table 1), with all

the ligands having achieved at least 14.7 µs of combined sampling.
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Table 2: Details of the REVO simulations for each ligand. The cumulative simulation
time for each ligand is combined over all 48 trajectories in each independent run. The total
unbinding weight is the sum of the weights of all trajectories at the point of unbinding.
Specific unbinding events were manually labeled as utilizing either the “left” or “right”
pathway to determine the weight fractions.

Lig. ID Cumulative sim. No of unb. Runsunb / Total unb. Weight fraction Weight fraction
time (µs) events Runstotal weight (left pathway) (right pathway)

Lig10 14.72 34 2/6 3.39e-10 0.000 1.000
Lig28 15.74 7 2/5 1.19e-11 0.499 0.501
Lig29 19.09 4 1/5 6.92e-12 1.000 0.000
Lig50 17.02 8 3/5 3.28e-10 0.993 0.007
Lig51 16.32 4 2/5 1.45e-07 0.000 1.000

Upon inspection of the unbinding trajectories for each ligand, we noticed that the ligand

unbinding in sEH can be broadly divided into two categories: (i) Unbinding through the right

side of the cavity, (ii) unbinding through left side of the cavity of sEH. For Ligand 10 and

51, all of their unbinding events occur through the right side of the cavity, whereas ligand 29

accesses the left side only during unbinding. Ligands 28 and 50 have at least one unbinding

pathway through either side of the cavity. The right and left sides of the sEH cavity are

highlighted in Fig. S3 and exemplary unbinding trajectories through each cavity are shown

in Fig. S4. In a weighted ensemble simulation, the cavity-specificity of a ligand should not

be determined based on the mere existence of binding paths, but should take into account

the relative weights of the trajectories that exit through those pathways. For example, the

weight fractions from Table 2 indicate that despite having at least one unbinding pathway

through the right, ligand 50 will almost always preferentially unbind through the left cavity.

In contrast, we find that ligand 28 has an almost equal probability of unbinding through

either of the cavities.

Fig. 3 shows the conformation space networks (CSN) of all the ligands, where each node

represents a particular cluster of ligand-protein conformations. These are obtained from

the same transition probability matrices used to build Markov state models, as described
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Figure 3: Conformational space networks of ligand unbinding from sEH in the scale of ligand
RMSD. Three frames from the most probable unbinding pathways are highlighted for ligand
50 (cavity specificity: left) and ligand 51 (cavity specificity: right). The states corresponding
to those frames are highlighted in the CSNs. In each panel, the ligands are shown in licorice
while the amino acid residues within 2.5 Å of the ligands are depicted in CPK representation,
with the binding site Asp335 and Tyr383 highlighted in VdW representation.

in Methods. Each network shows 1200 nodes that are colored according to ligand RMSD,

with the dark blue clusters corresponding to the bound states. The networks are oriented

such that the left and right branches extending from the bound region in each network

correspond to structures with the ligand occupying the left and right cavities. This reveals

that although ligands 29 and 51 did not register full unbinding trajectories through the right

and left cavities, respectively, we were able to sample trajectories that progressed along both

directions. In contrast, ligand 10 only accesses the right side of the cavity and hence has no

left branch.

The unbinding pathways with the highest weights contribute most strongly to the tran-

sition path ensemble. We present three snapshots from the highest-weighted unbinding

pathways obtained for ligand 51 (right panels) and ligand 50 (left panels) in Fig. 3. The

snapshots at the bottom show the bound pose for both the ligands. The middle snapshots

on each side show vertical ligand poses inside the cavity which is a characteristic feature for
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all unbinding pathways of all the ligands. The top snapshots are further along the pathway

and show only sparse interactions with the outer surface of the protein. Additional sets of

snapshots for ligands 10 and 28 are shown in Fig. S5. Interestingly, ligand 29 has equal

unbinding probability in all four of its pathways. These unbinding events all originated from

the same starting trajectory, sharing a common vertical pose as an unbinding intermediate

(Fig. S6).

We observe a slight correlation between the total weight of the unbinding trajectories

and the number of unbinding events generated. Opposing this trend, ligand 51 showed

the highest total unbinding weight, but registered only 4 unbinding events. As trajectories

within a run are inter-related through cloning and merging events in the weighted ensemble

algorithm, not all of the unbinding events are independent observations. However, unbinding

events between runs can be considered to be completely independent. For all ligands except

for ligand 29, we obtained unbinding events from at least two runs.

Kinetics of Ligand Unbinding

Rates of unbinding can be calculated either directly from the sum of the transition rates

(Eq. 2), or indirectly through construction of a Markov state model. These can be compared

with unbinding rates determined experimentally using a FRET-displacement assay, which

correspond to mean first passage times ranging from 14 to 32 min. We note that these

MFPTs are at least tens of millions of times longer than the cumulative simulation times

from our MD simulations. Despite this extreme difference of timescales, we are able to

achieve root mean squared log-errors (RMSLE) of 2.3 for our direct rate calculations and

0.9 for our Markov state model results. The latter indicates an average agreement with

experimental quantities that is within an order of magnitude. Values for experimental and

computational MFPTs are summarized in Table 3 and log-scale RMSEs are shown in Fig.

4.
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Figure 4: (A) Computational prediction of MFPTs for each ligand with all Markov state
models are plotted together as a swarmplot. The full feature space MSMs (black circles)
perform better compared to tICA-based MSMs (red circles). The experimental data (green
asterices) are plotted along with the median of all computational estimates (blue boxes).
(B) Comparison of the root mean squared log-10 error plotted for various MSMs (red, blue
and green) and direct estimates from WE weights (violet). The MSM using the full feature
set has the lowest RMS log-10 error, while the unweighted MSM has the highest RMS log-10
error. The horizontal line marks an average error of one order of magnitude.

The larger error for our direct rate calculations is primarily due to the inadequate sam-

pling of exit points. In the direct rate calculation method, the rates are entirely dependent

on the weights of the unbinding trajectories. Although we observe unbinding events for all

the ligands, the number of these events is limited to only a handful (a range of 4 to 34) per

ligand. On the other hand, MSMs are not as susceptible to the sampling of the unbinding

events, as they are built with all the simulation data and consider the non-reactive trajec-

tories as well. Hence, trajectories far away from the bound pose that may not go on to

unbind because of the finite length of the simulation will still contribute statistically in rates
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Table 3: MFPT (in minutes) of ligand unbinding by experimental assay, Hill’s equation
and Markov state modeling. The “best model” for the WE-MSM uses the full feature set
(without tICA) and 1200 clusters.

Lig. ID Expt. MFPT Comp. MFPT Comp. MFPT Comp. MFPT Comp. MFPT
(unbinding (Hill’s eq., (Hill’s eq., (WE-MSM, (WE-MSM,

kinetics assay) 5 Å cutoff) 10 Å cutoff) best model) median)

Lig10 14.25 723.44 1346.9 3.1 2.1
Lig28 31.75 21984.8 40971.1 227.1 115.1
Lig29 17.31 45952.9 45952.9 282.1 122.7
Lig50 27.14 864.1 1083.3 1.2 1.1
Lig51 25.37 1.87 12512.8 11.6 6.7

determined from the MSM.

While predicting the MFPTs, we have considered both (i) tICA-based MSMs and (ii)

feature distance based MSMs. Fig. 4A is a swarmplot showing MFPTs estimated from all

MSMs constructed for each ligand. The experimental data and the median of the compu-

tational estimates are also plotted. The RMSLE between the experimental data and the

computational medians is 0.97. We observe that the tICA-based models perform worse than

the full feature distance clustered MSMs, particularly for ligand 51. We discussed probable

reasons for this below in the Discussion section. We also calculated MFPTs from MSMs

where the transitions in the counts matrix were not scaled by the weighted ensemble proba-

bility, rather, all transitions between microstates were given an equal weight of 1. As shown

in Fig. 4B, unweighted MSMs deviate from the MFPTs by over 8 orders of magnitude. This

is due to a systematic underestimation of the MFPT, resulting from improper weighting of

state-to-state transitions in the MSM.

Both types of weighted MSMs perform significantly better than the MFPT calculated

from only the unbinding flux. The feature distance based MSMs (“no-TICA”) have RMSLE

0.93 for all three different cluster numbers, while tICA based MSMs have a higher RMSLE

of 1.8. In examining different numbers of clusters for the MSM, we find that 500, 800 and

1200 all have similarly low RMSLEs. We find MSMs with 1200 clusters have the highest

Spearman’s rank coefficient and Kendall’s rank coefficient (Table S1). MFPTs from these
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MSMs are shown in Table 3 as “WE-MSM best model”.

Robustness of Transition State Ensembles

The structural determinants that underlie the unbinding rates are found in the transition

state ensembles (TSEs) for each ligand. We developed a workflow to isolate and characterize

the TSEs from the weighted ensemble simulation data (Fig. 2), which was guided by the

kinetics results in the previous section. We use a Markov state model constructed using the

complete set of distance features (e.g. no tICA) and 1200 states, as it resulted in the best

agreement with experimental unbinding rates. However, the number of states was not found

to significantly impact the location of the TSE (Fig. S7). We also estimated the variance

among the TSE ligand poses and their average RMSD to the bound state and observed

that those structural parameters are similar across MSMs built with different numbers of

microstates (Tables S2 and S3).

Figure 5: (Top row) Density plots of the ligand unbinding TSEs: different ligands are plotted
in different colors. The two binding site residues Asp335 and Tyr383 are shown in licorice
representation, while the overall binding region is highlighted by red color. Each surface is
plotted in VMD using the same density cutoff (“isovalue”) of 0.05. (Bottom row) Weights of
conformations used to build the TS ensembles are plotted in log-scale for each ligand. The
horizontal axis shows the number of independent snapshots in the TSE. The vertical axis
shows the log10 of the weight of that snapshot.

Density volume maps for all TSEs in sEH are illustrated in Fig. 5. These TSEs were
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constructed using all trajectory frames that were assigned to a cluster with a committor

probability in the range (0.3, 0.7). Fig. 5B shows the distribution of probabilities of these

trajectory frames, which were computed using the equilibrium probabilities of the clusters

computed from the MSM. Although the ligands share a common scaffold, the spatial density

of the TSEs show significant variation. These densities are in accordance with the corre-

sponding most probable unbinding pathways mentioned earlier. Ligands 10 and 51 have

spatial density primarily on the right side of the cavity, ligand 29 is mostly to the left side,

while ligands 28 and 50 are distributed across both sides. The numbers of snapshots in the

TSEs range from 140 to 5000. Higher numbers of snapshots indicate better sampling of

transition paths, though not necessarily higher unbinding rates. We do not observe a strong

relationship between the number of shapshots and the volume of the TSE density plots.

This is expected as the TSEs are generated probabilistically using the MSM weights and the

density plots show only the regions of space with a probability density above a cutoff of 0.05

for all ligands. Generally, we find that the TSEs of all the ligands are structurally closer

to the unbound ensemble compared to the bound ensemble. This can be observed in the

probability distributions of ligand RMSDs within the bound, TS and unbound ensembles

(Fig. S8). The heterogeneity in the TSEs can lead to a wide variety of specific sEH-ligand

interactions, which we study next.

Fig. 6A shows the protein residues with the most stable contacts with the ligand for

the bound ensemble and the TSE. We define a contact to be present when the minimum

distance for a residue-ligand pair is below 2.5 Å; the fraction of frames in which the contact

is formed is shown as a heatmap. The cutoff is carefully chosen based on the maximum

range of H-bond (2.2 Å) and VdW (∼ 3.0 Å) interatomic distances. For both the bound

state and transition state, we show all residues that have a probability of interaction greater

than 5% for at least one of the ligands. The axis denotes the ligand IDs with the right cavity

specific ligands (10, 28 and 51) positioned first followed by the left cavity specific ligands

(29 and 50). For the TSE heatmap, the residues are arranged so as to move from residues

21

https://doi.org/10.26434/chemrxiv-2023-n6lk7 ORCID: https://orcid.org/0000-0002-9640-1380 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0



Figure 6: Protein-ligand interactions in the ligand unbinding TS ensembles of sEH: (A)
Heatmap of interaction probabilities in bound and TSE for the ligands, colorbar denotes the
measure of probability, (B) Pie-chart describing the category of protein-ligand interactions
based on the type of the amino acids, averaged over all the ligands, (C) Representations of
a few of the most probable interactions in TS ensembles for ligands 10, 29 and 51.

in the left cavity (on top) to the middle region to the right cavity (on the bottom). In the

bound ensemble, the protein-ligand interactions are largely consistent from one ligand to

another, with binding site residues Tyr383 and Asp335 having the maximum probabilities

of contact formation. The protein-ligand interactions are substantially more varied in the

TS ensembles. The types of amino acids and atomic interactions also change considerably:

we notice that non-polar amino acids such as VAL(380, 500, 416), PRO(364, 379, 501),

ILE(363), LEU(499), PHE(497) are more highly represented in the TSE, in contrast to

interactions with polar amino acids. This is quantified in Fig. 6B, which shows protein-
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ligand interactions based on the type of the amino acids, averaged over all the ligands. It is

evident that – moving from the bound ensemble to the TSE – there is a significant increase

( 18%) in the interactions with non-polar residues, which are predominantly hydrophobic

interactions. Visual representations of some of the most probable contacts in ligand 10, 29

and 51 are provided in Fig. 6C. These snapshots show the high ligand-to-ligand variation

in the specific interactions formed in the TSE as well as the predominance of hydrophobic

interactions. Interestingly, although the specific interactions vary from ligand-to-ligand, the

shift towards hydrophobic protein-ligand interactions in the TSE is consistent across the set

of ligands examined here (Fig. S9).

Irrespective of the cavity preference of the ligand unbinding TSEs, all ligands have sub-

stantial hydrophobic interaction with sEH. The non-polar isopropyl group attached to the

aryl end of ligand 10 has a higher hydrophobicity compared to mildly lipophilic -OCF3 or -

CF3 counterparts connected to other ligands. Consistently, we find that this isopropyl group

has stable hydrophobic interactions with sEH non-polar residues such as Pro379, Val380

(Fig. 6A, C) in the TSE, while in other ligand TSEs, the piperidyl end primarily accounts

for the protein-ligand hydrophobic interactions. Fig. 6C illustrates the interactions between

the piperidyl end of ligand 29 and 51 with non-polar residues such as Ile363, Leu499 and

Pro501. Interestingly, we notice that protein-ligand interactions mediated by -OCF3 or -CF3

groups are not significant in the TSE. From the perspective of rational kinetics driven drug

discovery, to increase the residence time one can consider chemical changes to the ligand

that destabilize favorable interactions in the TSE. The shift from isopropyl to -OCF3 groups

could be seen in this context, where -OCF3 disrupts some favorable transition state inter-

actions without destabilizing the bound ensemble, thus contributing to a longer residence

time.

In the context of structure based drug design, it is also important to understand the

changes in the ligand degrees of freedom along the transition pathway. For instance, dif-

ferences in the orientation of a rotatable bond between the bound state and TSE could be
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exploited to destabilize transition states, leading to longer residence times. Here we examine

a set of eight common rotatable bonds and we measure their corresponding angular prob-

ability distributions in both the bound and transition state ensembles. All the rotatable

bonds are illustrated in Fig. S10, with the four constituent atoms highlighted. Wasserstein

distances are computed between the bound and TS probability distributions for each rotat-

able bond across all the ligands (Fig. S11). This is a metric of dissimilarity between two

histograms, with a higher value indicating higher dissimilarity between the distributions.

We find that the C1-N2-C2-C3 rotatable bond has the most significant dissimilarity in the

bound and TS ensemble (Fig. 7). This dihedral is more restricted in the bound ensemble

due to steric effects for all of the ligands examined here. In the TSE, these distributions are

substantially broadened, showing a more heterogeneous ensemble of conformations. It is in-

teresting to note that the variation in the rotatable bond in TSE is unidirectional in nature,

i.e., the lower bound of the angle decreases in the TSE compared to bound ensemble. The

differences between these distributions implies that making chemical changes that hinder or

freeze this rotational degree of freedom could entropically destabilize the transition state (as

well as the unbound state) with respect to the bound state.

Discussion

Mean first passage times of pharmacologically relevant ligands often occur on time-scales

ranging up to hours in length. Although molecular dynamics can be a powerful tool to

characterize biomolecular processes and predict mean first passage times, it is still a challenge

even for state-of-art enhanced sampling methods to model long-timescale unbinding events

with statistical significance. We have previously found that the enhanced sampling method

used here (“REVO”) performs excellently for standard millisecond-timescale protein-ligand

unbinding events such as trypsin-benzamidine. Unbinding transition rates for this system

quickly and reproducably converged to within an order of magnitude of the experimental
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Figure 7: (A) The atoms corresponding to the rotatable bond with the largest difference
between the bound ensemble and the TSE are shown in van der Waals representation, with
other atoms in licorice. (B) Probability distributions of this angle are shown for each ligand
in both the bound ensemble (top) and TSE (bottom).

value.19,34 The sEH-inhibitor systems studied here pose additional challenges, as the ligands

are larger, with more rotatable bonds, and the sEH binding pocket is deeply buried, which

requires a multi-step unbinding process. These systems thus display a significantly increased

complexity and variety in the unbinding mechanism. In addition, the experimental values

for these mean first passage times are six orders of magnitude larger than the trypsin-

benzamidine system. Here, using a combination of REVO and Markov state modeling, our

root mean squared log error (RMSLE) in the unbinding rate averaged 0.94, indicating that

our average agreement with experiment was also within an order of magnitude. This was
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much better than we originally anticipated, given that our individual trajectories are only

tens of nanoseconds in length.

With a total of 82.9 µs of ligand unbinding REVO simulations, we obtain a handful of

unbinding events for five pharmacologically relevant ligands from sEH protein. Although the

weights of these trajectories can be used to directly compute MFPTs using the Hill relation,

the low number of trajectories results in a high uncertainty and increased RMSLE > 2

compared to experimental values. This is consistent with previous results on the sEH-TPPU

system studied with the WExplore algorithm,33,35 where the MFPT (42 s) underestimated

the experimental value (660 s) by more than 15 times. As all of the underlying trajectories

are generated without biasing forces, we can use them to build a history-augmented Markov

state model (“haMSM”40) where all trajectories originate in the bound state. The rates

calculated by these haMSMs are potentially more accurate and robust, as they take into

account not only the small set of fully reactive trajectories, but all of the transitions from

the non-reactive trajectories as well. Here we find that the RMSLE of MFPTs in the MSM-

REVO scheme are significantly lower by more than an order of magnitude than the directly

estimated MFPTs from the weights of reactive trajectories. An important note is that

the trajectory weights from the REVO simulations were used to build the transition count

matrix of the haMSM. This led to a dramatic reduction in the RMSLE and demonstrates

the powerful synergy of weighted ensemble methods with Markov state modeling.

In the context of Markov state modeling, dimensionality reduction is particularly im-

portant to account for redundancy and noise in the features before they are clustered. For

studying kinetic properties associated with slow dynamical motions in biological systems,

tICA has been an excellent tool to identify important collective variables.64,65 When dimen-

sion reduction is carried out with 5 or 10 time-lagged independent components, we notice

that tIC-1 separates the bound and unbound frames and tIC-2 distinguishes the cavity speci-

ficity consistently for all the ligands (Fig. S12). However, the RMSLE in MFPTs obtained

from haMSMs built with clustered tICA data is higher compared to its full feature space
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counterpart. Moreover, the variation of MFPTs obtained from tIC-clustered MSMs is much

larger compared to variation of MFPTs obtained from the full feature space MSMs (Fig.

4A). Although we are unable to identify a particular reason behind the lower accuracy of

MSMs with tICA components, it should be noted that our feature space itself (the set of

ligand-protein distances) is carefully chosen to describe the ligand unbinding process. Hence,

although our feature set was highly redundant, we found that the transformation into a

smaller set of linearly independent components decreased the quality of the clustering, likely

grouping together trajectories that were less similar in their unbinding committor values. Di-

mension reduction schemes, including tICA, but also machine learning approaches66 such as

VAMPnets67 or RAVE68 could be more useful for more heterogeneous sets of input features,

such as those that describe solvation, ion densities, distances and ligand degrees of freedom.

These approaches, and their combination with weighted ensemble sampling algorithms, are

the subject of ongoing work.

The mean first passage time depends upon the bound to transition state activation energy

barrier. Hence to engineer ligands with higher residence time, one needs to understand how

changes to the ligand will differentially affect the bound and transition state ensembles. This

can include both protein-ligand molecular interactions as well as conformational changes of

the ligand. The five ligands have an identical aryl piperidyl-urea scaffold, which may lead

to the assumption that the transition states along the ligand unbinding pathways could be

similar for these ligands. However, in our molecular simulations we find many differences

between the transition paths. We did not observe a connection between the path specificity

and the MFPT: ligands with both shorter (ligand 10) and longer (ligand 28) MFPTs were

found to unbind through the right-side transition path. The location of the transition state

as well as the specific ligand-protein interactions formed, varied considerably from ligand-to-

ligand. However, we find a number of similarities in the transition state ensembles that could

be exploited for kinetics-driven drug design. TSEs for all of the ligands show an increased

extent of hydrophobic interactions. Additionally, the probability distributions along the
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C1-N2-C2-C3 dihedral angle show a similar shift between the ligands. Finally, although

not completely conserved, the most probable protein-ligand contacts in TSEs show some

common elements. Ligands 10, 28 and 51 unbind through the right side of the sEH cavity

and have substantial contacts with Pro739, Val380 and Phe497 , while the ligands preferring

the left side of the cavity (29 and 50) have contacts with Pro364 and Met503.

These findings present a mixed outlook for kinetics-oriented drug design. On the one

hand, the diversity of specific protein-ligand interactions formed in the TSE from ligand-to-

ligand makes attempts to rationally modulate the strength of TSE interactions unfeasible.

More rigorous attempts such as free energy perturbation calculations for entire ensembles of

bound and transition state structures will likely also suffer from poor overlap of the transition

state ensembles between ligands. On the other hand, we have identified some structural

properties of the TSEs that are consistent across all ligands examined here. The rotatable

bond C1-N2-C2-C3 is rigid in the bound ensemble but shows considerable fluctuation in the

transition state ensemble. This suggests that restricting rotation of this bond could stabilize

the bound state with respect to the transition state, increasing the free energy barrier to

dissociation.

A characteristic feature of the sEH binding pocket is a deeply buried binding cavity. As a

result, ligand unbinding is hindered by multiple stable interactions along the pathway. The

depth of the binding site in the cavity could increase the number of probable unbinding path-

ways, making it more difficult to thoroughly sample the transition state ensemble. Moreover,

contrary to intuition, we observe that even when the bound state ligand-protein contacts

are completely broken, the ligands can still be far from committing to the unbound states.

This results in TS ensembles for all the ligands that are closer to the unbound state, on the

surface of the protein. It remains to be seen whether TSEs from shallower protein-ligand

interactions will have similar characteristics in terms of solvent accessibility and conforma-

tional heterogeneity. It is possible that the TSE of a moiety unbinding from a protein with

a shallower binding site can be more robust, with a more focused set of unbinding pathways.
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