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ABSTRACT: Ligand design problems involve searching chemical
space for a molecule with a set of desired properties. As chemical
space is discrete, this search must be conducted in a pointwise
manner, separately investigating one molecule at a time, which can
be inefficient. We propose a method called “Flexible Topology”,
where a ligand is composed of a set of shapeshifting “ghost” atoms,
whose atomic identities and connectivity can dynamically change
over the course of a simulation. Ghost atoms are guided toward
their target positions using a translation-, rotation-, and index-
invariant restraint potential. This is the first step toward a
continuous model of chemical space, where a dynamic simulation
can move from one molecule to another by following gradients of a
potential energy function. This builds on a substantial history of alchemy in the field of molecular dynamics simulation, including the
Lambda dynamics method developed by Brooks and co-workers [X. Kong and C.L. Brooks III, J. Chem. Phys. 105, 2414 (1996)],
but takes it to an extreme by associating a set of four dynamical attributes with each shapeshifting ghost atom that control not only
its presence but also its atomic identity. Here, we outline the theoretical details of this method, its implementation using the
OpenMM simulation package, and some preliminary studies of ghost particle assembly simulations in vacuum. We examine a set of
10 small molecules, ranging in size from 6 to 50 atoms, and show that Flexible Topology is able to consistently assemble all of these
molecules to high accuracy, beginning from randomly initialized positions and attributes.

■ INTRODUCTION

Many problems in computational chemistry�such as search-
ing for stable ligand-bound poses, or predicting the folded
structure of a protein�involve searching “conformational
space”: a high-dimensional space where each point represents a
molecular conformation. Conformational space could be
searched manually, by making moves along individual degrees
of freedom and assessing their impact, but this strategy would
be ineffective for complex systems as biomolecular motions are
often intricately coupled, combining both solute and solvent
degrees of freedom. Molecular dynamics (MD) is a useful tool
to navigate conformational space; by following the high-
dimensional gradients of the energy function, it naturally
generates and harnesses these collective motions. Although
trajectories can sometimes get caught in local energy minima,
there have been a myriad of advancements in algorithms that
can efficiently use dynamics to sample even very rough energy
landscapes.1−12

A similar concept invoked in the field of drug discovery is
“chemical space”: a space that contains the set of all possible
chemical structures that could in theory be developed as small-
molecule ligands to bind a given target.13 This can be used to
visualize different steps of drug discovery, where, say, an initial
virtual screen evaluates activity at a large number of points
scattered around the space. Hit-to-lead (H2L) and lead

optimization typically involve a series of small chemical
changes to a molecule with known activity, which can be
thought of as steps along a path that winds through chemical
space. Of course, chemical space and conformational space are
coupled, as chemical changes to the ligand can induce
structural changes in a protein binding site.14−16 Conversely,
protein conformational changes�for example, those induced
by complexation with cofactors, or post-translational mod-
ifications�can also affect the relative activity of different
ligands.17,18

In contrast to conformational space, chemical space is
discrete and cannot be explored in a continuous fashion. This
typically limits chemical space exploration to pointwise
investigations in which the conformational space is explored
separately for each ligand. A notable exception to this is
alchemical methods,19 where an external parameter, normally
denoted by λ, is used to “turn on” or “turn off” additional terms
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in a potential energy function: U(X, λ) = U0(X) + λ Upert(X).
Alchemical approaches have been used to calculate free energy
differences between protonated and deprotonated states20−22

and are commonly used to calculate both relative and absolute
free energies of binding.23−25 These methods form continuous
paths in chemical space that connect either two compounds or
connect one compound with the “null” state, a point in
chemical space representing the absence of a ligand. This
approach has also been used in the lambda dynamics
method,26−31 where each λ is considered as a dynamical
variable. That is, λ feels a force according to: Fλ = −∂U/∂λ, and
has a velocity vλ and a mass mλ. In chemical space, the lambda
dynamics method provides a network of continuous paths
between structures using a large number of λ variables that
control the presence of different ligand side chains.32−34

However, as λ-based methods are limited to interpolating
between structures, we set out to create a more general model
of a continuous chemical space that could be used for chemical
discovery.

To enable such an algorithm, we need to introduce the
concept of flexible molecular topology. In the framework of a
classical MD simulation, “topology” describes the identities of
each atom and their covalent connectivity in the system. The
atomic identities are extensive; for instance, the CHARMM36
protein force field has 20 different types of carbon where each
atom type has unique parameters for the partial charge, bond
lengths, and rotation around chemical bonds.35 A harmonic
energy function defines the bonds between atoms, which can
vibrate around a minimum energy position but can never
break. The system’s topology for the classical MD simulation is
thus determined at the beginning of the simulation and
remains fixed for the duration of a trajectory.

Here we introduce the Flexible Topology method, which
allows the topology to change over the course of the simulation
by treating the attributes that define atomic identities as
dynamic variables. To enable the continuous and dynamic
description of chemical identities in the Flexible Topology
method, we separate external interactions from internal ones
and treat them separately. While internal interactions are
complex and involve a multitude of atom-type-specific
parameters, external interactions are composed of only
Lennard-Jones and electrostatic interactions that can be wholly
described by only three parameters: partial charges (q),
Lennard-Jones well depths (ϵ) and Lennard-Jones radii (σ).
In Flexible Topology, each atom is assigned a dynamic λ
variable, as well as three parameters qi, ϵi, and σi. These are all
treated as dynamical variables that change as a function of time
and together we refer to them as “attributes” denoted by Ai =
{qi, ϵi, σi, λi} for atom i and AGP for the complete set. These
variables, like λ, have masses (mq, mϵ, and mσ) and their
motion follows the gradients of an extended Hamiltonian
energy function. These dynamic variables are used to model
nonbonded interactions of the shapeshifting ligand atoms,
which we refer to as “ghost particles”, using conventional
Lennard-Jones and Coulomb equations. The ghost particle
positions and attributes both change together over the course
of a trajectory and are influenced both by their surrounding
environment and symmetry-invariant restraint terms that
encourage the particles to assemble to one or more target
molecular structures. Importantly, the environment�binding
site residues and water molecules�can in turn respond to the
presence of the ghost particles, providing a mechanism to
model ligand-induced conformational change.

In this paper, we introduce the Flexible Topology method
and assess its performance on small ligand-only systems,
determining suitable algorithmic parameters to help pave the
way for more complex applications of the method. We first
describe the mathematical framework of Flexible Topology and
explain its implementation in the OpenMM molecular
dynamics package. We define atomic environment vectors
(AEVs) using functions from Behler and Parrinello that are
used to both (1) map (or “assign”) ghost particles to atoms of
the target ligand and (2) define the loss function that guides
the ghost particles toward the target structures. We find that
for small ligands (20 atoms or less), this loss function is
sufficient to reliably guide the assembly of the target ligand.
For larger ligands, additional “second-order” restraints that
bring together specific pairs of atoms are useful to guide
assembly. To thoroughly assess the performance of the
algorithm and determine suitable parameters, we run assembly
simulations with a set of 10 target ligands in vacuum and define
an appropriate metric for the quality of assembly. Finally, we
conclude with a discussion of the challenges and future work of
the Flexible Topology method, looking toward applications
such as the prediction of bound poses, calculation of relative
binding free energies, and simultaneous exploration of
chemical and conformational space.

■ METHODS

Framework of Flexible Topology. The goal of the
Flexible Topology method is to model a set of atoms that can
continuously transform between different molecules. To
implement this method, we use MD simulations that are
coupled with an ML-based external force (MLForce)36 that
slowly nudges a set of ghost particles to become a drug-like
molecule (Figure 1).

MLForce consists of three components: a molecular
representation model, an assignment algorithm, and a loss
function. The molecular representation model defines a set of
symmetry-invariant atomic environment vectors (AEVs) using
functions introduced by Behler and Parrinello.37 The AEVs,

Figure 1. Framework of the Flexible Topology method. The gray and
blue spheres show the ghost particles. MD simulations start with an
initial structure of the protein of interest and randomly initialized
ghost particles. The MLForce plugin computes external forces on the
ghost particle positions and attributes using a loss function, L. XGP

denotes the ghost particle positions, AGP represents the atomic
attributes of ghost particles, M shows the mapping function, and FGP

and FT show ghost particle and target ligand features, respectively.
Final output shows the ghost particles assembled into a target
structure in the binding pocket of the protein.
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concatenated with the ghost particle attributes, determine the
set of features for each atom that describe both its environment
and its identity. We discuss these aspects in detail in the next
section.

The second component is an algorithm to solve an
assignment problem to determine an optimal mapping
between the ghost particles and target ligand atoms. In our
implementation, we employ the Hungarian algorithm38 to find
an assignment with a minimum cost between the ghost
particles and target ligand atoms. The cost matrix is
determined by calculating the Euclidean norm between the
ghost particle features (FGP) and target molecule features (FT).
The Hungarian algorithm has polynomial time complexity and
we used a C++ implementation from Cong Ma (The original
code is implemented in Matlab by Buehren) https://github.
com/mcximing/hungarian-algorithm-cpp.git. The output of
this algorithm is a mapping M that minimizes the cost. The
cost, which we refer to as the “loss function” is defined as

= | | | |

=

L F F M F F( )
i

N

M i i

1

GP, ( ) T,
2

GP T
(1)

where ∥ on the right denotes the squared L2 norm computed
over all of the atoms.

The loss function L is used to define the restraint potential
that guides the ghost particles to adopt their target
configurations. Gradients of L yield external forces on both
the positions and attributes of the ghost particles. These forces
are applied to the ghost particles to change their positions and
attributes at each dynamic step, gradually transforming them
into a drug-like molecule in an orientation that fits the protein
of interest. This loss function is discussed in detail in the Loss
Function and Flexible Topology Restraint Energy section.

Implementation of the MLForce plugin follows the
architecture of the OpenMM library.39 It includes multiple
layers, which are as follows: (1) an OpenMM public
Application Programming Interface (API) to generate the
MLForce object with an embedded PyTorch model, (2) a
platform-independent layer to load the model, and (3) a
computational kernel layer for executing the model and
computing the gradients. All of the layers are written in C++
and the computational kernels are implemented for CUDA,
OpenCL, and Reference (CPU) platforms in OpenMM. Here,
we utilize TorchANI40 a PyTorch41 implementation of the
Behler−Parrinello symmetry functions to compute features,
and we use Torch functions to calculate the loss function
derivatives with respect to the positions of ghost particles.
Symmetry-Invariant Molecular Features. The atomic

environment vectors that guide the assembly of the ghost
particles are mostly composed of a customized set of Behler-
Parinello symmetry functions.37 These functions capture the
radial and angular information of the surrounding atoms for
each individual atom. Each feature is invariant to translation
and rotation operations and are differentiable with respect to
atomic positions. The local radial environment of an atom is
defined by the sum of Gaussian terms multiplied by a cutoff
function

=G e f R( )i
R

i j

R R
ij

( )

c
R ij s

R 2

(2)

where Rij is the distance between atoms i and j, and fc is the
cutoff function that goes from 1 to 0 as Rij surpasses a cutoff
distance Rc to approximate local atomic environment. The

parameter ηR controls the width, and Rs
R determines the

location of the Gaussian functions. Using a set of different
values for Rs

R allows for capturing information in particular
regions of the radial environment around i. The cutoff function
is defined as follows
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where Rc is the cutoff distance.
The angular functions are defined for an atom i using the

sum of cosine terms for all possible angles centered at atom i

= +
+( )G e

f R f R

2 (1 cos( ))

( ) ( )

i
A

j k i

ijk s
R R R

ij ik

1

,

1
2
( )

c c

A ij ik s
A

2

(4)

where ηA and Rs
A have the same role to modify the width and

location of radial Gaussian functions, and the parameters ζ and
θs control the width and location of different angular regions.
Note that these angular functions are the modified versions of
original Behler-Parinello symmetry functions37 and reflect the
changes made by Smith et al.42 Using multiple values of ηR, Rs

R,
ηA, Rs

A, θs, and ζ enables us to construct a set of symmetry
functions that can describe the local environment of an atom in
high detail.

Although we employ the TorchANI module40 to compute
the symmetry functions, there are some significant differences
in our implementation. First, whereas in ANI, atoms have a
fixed elemental type (e.g., H, C, N, or O), here we consider all
of the atoms to have the same type. However, we found that
symmetry functions with one atom type struggle to couple
chemical and geometrical information properly in some cases.
Therefore, we added an additional set of radial functions to
describe the atomic environment not only in terms of density
but also atomic charge. We employ the radial function defined
in eq 2 while using the following cutoff function that considers
the charge of the pair atom (qj)
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The resulting features are denoted Gi
Rq.

The full set of features for atom i is then: Fi = ({Gi
R}, {Gi

Rq},
{Gi

A}, {Ai}), where the {} brackets for the G functions denote a
list over all permutations of the parameters ζR, Rs

R, ηA, Rs
A, θs,

and ζ. {Ai} is the set of the four attributes for atom i, namely,
qi, ϵi, σi, and λi. The parameter values used to construct the
features are given in Table 1. In total, there are 24 radial
features and 128 angular features, along with another 24 radial
features using the charged cutoff function fcq, and the four
atomic attributes, for a total of 180 features per atom.

We denote the list of the ghost particle feature vectors as
FGP. Note that while FGP is invariant to translation and
rotation, it is not invariant to the re-indexing of atoms.
However, the mapped set of features, M(FGP) is symmetric to
re-indexing. In this way, our loss function, energies, and forces
are invariant to all three symmetries.
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Loss Function and Flexible Topology Restraint
Energy. Note that although we refer to the value in eq 1 as
a loss function, and it is computed from a PyTorch model, it
currently does not have any trainable parameters and thus
requires no training data. The target features FT are pre-
computed prior to the simulation and the ghost particle
features FGP are deterministic functions of the coordinates XGP.
This loss is transformed into a perturbative energy according to

=U X A
s
L X A( , ) ( , )FT GP GP GP GP

(6)

where we explicitly show the loss and potential energy as a
function of the ghost particle coordinates (XGP) and attributes
(AGP). β is the inverse temperature, and s is a unitless
parameter called the “MLForce Scale” that scales the Flexible
Topology energy against the other energies in the system. We
then add this term to the system energy function U

= +

+

U X X A U X U X X A

U X A

( , , ) ( ) ( , , )

( , )

GP GP 0 nb GP GP

FT GP GP (7)

where Unb(X, XGP, AGP) is the nonbonded interaction energy
between the ghost particle atoms and the remainder of the
system (X). The forces on the positions and attributes of the
ghost particles are determined by the negative gradients of U.
Eq 7 makes clear that these depend both on UFT (and in turn,
the loss function L) and Unb. The relative contributions of
these forces to the motion of the particles and attributes are
again determined by the parameter s.
Simulation Details. The simulations in this work are

conducted in vacuum, where the Flexible Topology particles
are the only particles in the system. To initialize the system, we
begin by randomly introducing 22 particles in a 6 by 6 by 6 Å
cube. Ghost particles are inserted one at a time and trial
positions are only accepted if the atom is farther than 0.4 from
all system atoms and all ghost particles inserted so far. Ghost
particle attributes σ, ϵ, and q are selected randomly from the
bounds in Table 2. The λ attributes are initialized uniformly at
0.7.

The simulations are conducted using OpenMM.39 To create
a simulation object, first empty system and topology objects
are created and the ghost particles are added. To ensure
adequate stability at the desired simulation conditions (a
timestep of 2 fs and a temperature of 300 K), each particle is
given a mass of 100 amu. A number of forces are then added to
the system as described below.

A custom external force that we call a “continuity force” is
added, which ensures that the particles form an unbroken
network of interactions. More precisely, if we imagine the
particles as nodes of a network and draw an edge between
particles that are closer than a cutoff distance (d), then the
nodes would all be in the same component of the network. In
other words, there exists a path of some length between any
two nodes i and j. The continuity force achieves this by
classifying particles into components on the fly and adding an
attractive force between pairs of particles belonging to different
components. The particles are chosen for each dynamics step
as the closest possible pairs between the two components. The
attractive force is of the form E(r) = k(r − d)2, where r is the
separation between the particles and d is a user-defined cutoff
distance. Here, we employ d = 0.18 nm and k = 100 kJ/mol/
nm2, which was sufficient to ensure that the particles do not fly
away from each other, even when the MLForce is inactive (s =
0).

The custom force called MLForce that implements the loss
function was then added to the system. This is initialized using
a PyTorch model to calculate the AEVs, loss function values,
and derivatives, as well as a set of target features. This can also
include a set of distance restraints between ghost particles that
we refer to as “second-order restraints” since they use
assignments of two atoms to define a restraint energy. Unless
otherwise noted below, we use a distance restraint between
every pair of atoms in the molecule that takes a harmonic form:
E(r) = kr(r − r0)

2, where r0 is the distance between those
atoms in the target structure and kr is a force constant. Note
that the s parameter (eq 6) modulates the entire MLForce
energy, including the second-order restraints.

Lastly, we add a separate nonbonded force for the ghost
particles to ensure that they do not overlap in space. This is a
purely repulsive version of a Lennard-Jones force: ELJ−rep = ϵ
(r/σ)12, where ϵ and σ are not related to the dynamic particle
attributes and are simply constant values of 2.0 kJ/mol and 0.4
Å, respectively.

Note that if there were other nonghost particles in the
system (e.g., water molecules, proteins, or other solutes), then
additional nonbonded forces would be required that take into
account the dynamical attributes ({σi}, {ϵi}, {qi}). While these
are not included in the work presented here, examples that
implement these interactions are the subject of future work
and are already available to the reader in the Flexible Topology
repository.43

The dynamics of both the positions and the attributes are
propagated by a custom OpenMM integrator. The source code
for the integrator (CustomHybridIntegratorConst-
Charge) is given in the Flexible Topology code repository
(src/flexibletopology/utils/integrator-
s.py). For this integrator, Langevin dynamics with a friction
coefficient of 1 ps−1 and an integration step size of 2 fs is used
for advancing the atomic positions. Each atomic attribute (a) is
evolved using Brownian dynamics as follows

Table 1. Parameter Values for Behler−Parrinello Functions,
Grouped into Radial and Angular Componentsa

var. values nvals Nfeat

radial ηR (nm−2) 1600 1 24

Rs
R (nm) 0.090, 0.169, ···, 0.708 24

Rc
R (nm) 1.0 1

angular ηA (nm−2) 800 1 128

Rs
A (nm) 0.090, 0.155, ···, 0.545 8

θs
A (radians) π/16, 2π/16, ···, π 16

ζ 32 1

Rc
A (nm) 0.5 1

aThe number of values used for each parameter is shown in the nvals

column. The product of nvals is the total number of features for each
component (Nfeat).

Table 2. Minimum and Maximum Parameter Values for
Ghost Particle Attributes

min. max.

q (Debye) −0.7 0.7

σ (nm) 0.022 0.23

ϵ (kJ/mol) 0.037 2.63

λ 0.0 1.0
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where δt is the timestep and R(t) is a memory-less Gaussian
process with mean 0 and variance 1. Note that for each
attribute only the product of the friction coefficient (γ) and
attribute mass (m) is required. Appropriate values of these
parameters were determined by equalizing the relaxation
timescales of the attributes and are reported in Table 3. As
each attribute has different units, the units of γm differ for each
attribute and are also given in Table 3.

The term U

a
can be expressed as the sum of two terms

= +
U

a

U

a

U

a

nb FT

(9)

To balance these with respect to one another, an additional
scaling factor (Φa) is used within the loss function

=L f f( )A

i a A

a a M i a iGP, , ( ) T, ,
2

(10)

where LA represents the component of the loss function arising
from discrepancies in the attributes, A is the set of attributes
(q, σ, ϵ, λ), f GP,a,M(i) is the value of attribute a of the ghost
particle that maps to target atom i, and f T,a,i is the value of
attribute a of target atom i. Appropriate values for Φa were
determined by increasing their value until adequate con-
vergence of the attributes was achieved. The factors {Φa} are
given in Table 3. Finally, another feature of the integrator used
here is that it keeps the sum of the ghost particle partial
charges equal to a constant value, which is set to zero for all
molecules simulated here, but could be set to an integer value
for charged molecules.

■ RESULTS

Assembly Simulations. As it is guaranteed that M(FGP) =
FT marks the global minimum of UGP and that the influence of
UGP can be made arbitrarily strong by the s parameter,
successful assembly is not guaranteed. First, it is possible that
the set of molecular features is not descriptive enough to
reproduce the target structures to high enough accuracy, that
is, the system could obtain very low loss values while still not
reaching low root-mean-square distances (RMSD) to the
target structure. Second, it is possible that UGP is not smooth
with respect to XGP and AGP, and that the particles get caught
in local energy minima. To address both of these possibilities,
we run assembly simulations in vacuum where the positions
and attributes of the ghost particles are randomly initialized. In
this approach, we employ the loss function in eq 1, with a

single set of target features. We initialize s (“MLForce Scale”)
at zero and progressively increase it following a sigmoidal
function to a maximum value smax. Ideally, as the UGP term
grows stronger, the attributes and orientation of the ghost
particles will gradually transform to resemble those of the
target molecule. This is quantified by the loss per particle (L/
n) and by the assembly root-mean-squared deviation (RMSD),
which employs the atom assignments to assess the global
structure of the molecule. One difficulty with the assembly
RMSD is to take into account atoms that have identical or
almost-identical atomic environment vectors, arising from
symmetry or pseudo-symmetry in the target molecule. To
account for this we enumerate all sets of atoms with near-
identical AEVs, using a cutoff of ∑i( f i − f j)

2 < 3.0, and create
an exhaustive list of mappings using each possible permutation
of equivalent atoms. We then compute the RMSD using each
mapping. As all of the features are nonchiral�that is, they are
invariant to reflection�we also compute the RMSD to a
reflected copy of the target molecule for each mapping. The
lowest RMSD value is then used as the assembly RMSD.

We randomly selected 10 molecules (Figure 2) from the
OpenChem dataset44 to use as target structures in the

assembly simulations. These molecules range from 6 to 50
atoms in size and vary widely in their structures. The set
includes heterocycles, branched hydrocarbons, and many
examples of both symmetry and pseudo-symmetry, thus
providing a challenging test set for assembly. Examples of
time series analysis of the assembly simulations for three of
these molecules are given in Figure 3. These simulations were
conducted with a maximum MLForce Scale of 5000, which
was increased over 100 cycles (of 500 dynamics steps each)
and then held constant for an additional 50 cycles. A “two-
body” distance restraint was used with a force constant of 0.5
kJ/mol/nm2; note that the effective strength of this term is also
modulated by the MLForce Scale. Lastly, for these results, the
assignments were determined once every 10 cycles, or once
every 10 ps.

In all three of the time series plots in Figure 3, the loss per
particle roughly corresponds to the assembly RMSD and both
quantities decrease over the course of the simulation in a
fashion that roughly mirrors the sigmoidal increase of the

Table 3. Parameters Governing the Forces and Dynamics of
Particle Attributesa

γm units Φ units
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aFriction coefficient times mass (γm).

Figure 2. Assembly simulation target molecules randomly chosen
from the OpenChem dataset44 are shown in their 2D structures. The
number of atoms for each molecule is written under it. The 2D
structures are generated and drawn by MarvinSketch using implicit
hydrogens.
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MLForce Scale when viewed on the logarithmic scale.
Significant dips or spikes in the loss per particle are more
often than not reflected in the assembly RMSD as well,
although in some cases decreases in the loss per particle are not
reflected in the assembly RMSD, which could possibly be the
result of inaccuracies in atom assignments between pseudo-
symmetric atoms with ∑i( f i − f j)

2 > 3.0 and thus not
considered by our RMSD calculations. For this reason, we use
the loss per particle as our standard measure of accuracy. In
these simulations, we have found that a useful threshold for
separating “good” from “bad” assembled structures is a loss per
particle value of 0.002, which is marked on the time series plots
in Figure 3 by a horizontal dashed line. Across all of the
examples considered here, we find that 89% of the snapshots
with L/n < 0.002 also have very high structural fidelity (RMSD
< 0.5 Å) (Figure S1), addressing the first concern outlined at
the beginning of this section.

To more rigorously assess the assembly performance across
a range of different parameters, we selected a central point in
“parameter space” and examined a series of perturbations along
individual parameters. For each set of parameters, a set of 10
assembly simulations was performed for each of the targets in
Figure 2. The quality of the assembly simulations was assessed
using the minimum value of the loss per particle obtained
during the assembly trajectory. Figure 4 shows a series of box
plots of the minimum loss per particle. The horizontal black
line marks our quality threshold of 0.002, and in general, we
observe that assembly for smaller targets is more robust than
assembly of larger targets, as expected.

Figure 4A examines the number of steps per cycle. A larger
number of steps per cycle gives the particles more time to
adapt to the gradually increasing restraint forces that encourage
assembly; however, they also increase the computational cost
of the simulation. As all simulations here use 2 fs timesteps and
150 cycles, the total length of the trajectories ranges from 30 ps
(for 100 steps/cycle) to 150 ps (for 500 steps/cycle).
Generally, we observe an increase in the quality of the
assembly with increasing steps per cycle, with 500 steps (green
bars) showing median values that are at or below our quality
threshold for all of the cases examined here.

As discussed above, the assignment algorithm uses the
current values of the atomic environment vectors to match the
ghost particles to atoms in the target molecule. Figure 4B
examines the periodicity of the assignment calculation,
including both extreme cases: fixing the assignments
throughout the entire simulation (“fixed”, pink) and allowing
the assignments to change at every dynamics step (“1”,
yellow). We find, surprisingly, that fixing the assignments gives
adequate performance, and too-frequent assignments can lead
to poor assembly performance, especially in larger molecules.
Computing assignments every 5000 dynamics steps (blue) also
yields good accuracy, while computing assignments every 500
steps (green) did not result in the successful assembly of the
larger targets.

All assignments used a sigmoidal MLForce Scale scheme, as
shown in Figure 3. To examine the impact of MLForce Scale
on assembly accuracy, we conducted a set of simulations where
the maximum value of this sigmoid was scaled to either 500,

Figure 3. Time series analysis of the per particle loss (blue) and the assembly RMSD (gray) for successful assembly trajectories for molecule 8
(top), 20 (middle), and 40 (bottom). 2D structures are shown in Figure 2. A dashed line showing a loss-per-particle value of 0.002 is shown on
each graph, which can be used across systems as an indicator of excellent assembly accuracy. The structures on the right show snapshots of the
molecule at intermediate stages of assembly and correspond to the three black circles on the graphs on the left-hand side. The structures are shown
in size-charge representation, where the radius of each particle roughly corresponds to its σ value and the color shows its charge (q), with blue
being positive, red being negative, and white being neutral. The target structures show the conformers that were used to generate the target set of
features that are almost indistinguishable from the 125 ps structures in each case.
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1000, 2000, or 5000 (Figure 4C). Here, we find a very clear

trend of decreasing per particle loss values with increasing

MLForce Scale. While in some cases a maximum value of 2000

for the MLForce Scale (green) appears to be sufficient, a value

of 5000 (yellow) consistently leads to better performance,

which is particularly clear when examining the average value of

the loss per particle over the final 50 cycles of the trajectory

(Figure S2).

Figure 4. Performance of the Flexible Topology algorithm upon parameter perturbation. Each panel shows a set of box plots that show the
minimum loss per particle achieved in a set of 10 independent assembly trajectories for each target. The boxes show the interquartile range,
whiskers show 150% of the IQR, and outliers are shown as circles. The orange lines in each box mark the median datapoint of each set. A single
parameter is explored in each panel: the number of steps per cycle (A), the periodicity of atom assignment (B), the value of the MLForce Scale
(C), and the strength of the second-order bond restraints (D). All parameter values were perturbations from the central point of: 500 steps per
cycle, 5000 step assignment period, 2000 MLForce Scale, and 0.5 bond restraint strength.

Table 4. Flexible Topology Assembly Performance for Different Parameter Setsa

small targets (≤20 atoms) large targets (>20 atoms)

Cmax kr nsteps Tupdate ⟨Lmin/n⟩ ⟨Lavg/n⟩ ⟨Rmin⟩ ⟨Ravg⟩ ⟨Lmin/n⟩ ⟨Lavg/n⟩ ⟨Rmin⟩ ⟨Ravg⟩

2000 0.5 500 5000 0.0016 0.0030 0.19 0.43 0.0018 0.0030 0.29 0.51

2000 0.5 100 1000 0.0026 0.0047 0.54 0.73 0.0041 0.0094 0.59 0.88

2000 0.5 200 2000 0.0024 0.0047 0.56 0.76 0.0016 0.0027 0.41 0.55

2000 0.5 500 fixed 0.0012 0.0019 0.18 0.28 0.0015 0.0020 0.22 0.28

2000 0.5 500 500 0.0011 0.0027 0.15 0.36 0.6610 2.14

2000 0.5 500 1 0.0016 0.0053 0.18 0.55 0.0592 2.94

500 0.5 500 5000 0.0049 0.0108 0.36 0.92 0.0073 0.0022 0.62 1.43

1000 0.5 500 5000 0.0026 0.0052 0.26 0.62 0.0030 0.0075 0.38 0.75

5000 0.5 500 5000 0.0013 0.0020 0.20 0.33 0.0012 0.0016 0.30 0.41

2000 off 500 5000 0.0018 0.0027 0.76 1.03 0.0043 0.0050 3.20 3.70

2000 0.1 500 5000 0.0023 0.0032 0.52 0.83 0.0026 0.0043 0.71 1.15

2000 1.0 500 5000 0.0017 0.0037 0.14 0.32 0.0013 0.0026 0.22 0.39

2000 1.5 500 5000 0.0014 0.0043 0.13 0.32 0.0015 0.24

5000 0.5 100 1000 0.0028 0.0041 0.59 0.71

5000 0.5 200 2000 0.0023 0.0036 0.55 0.65 0.0012 0.0018 0.46 0.53

5000 0.5 100 5000 0.0027 0.0030 0.37 0.50 0.0019 0.0022 0.43 0.51

5000 0.5 200 5000 0.0019 0.0024 0.27 0.39 0.0016 0.0022 0.40 0.53

5000 0.5 1000 5000 0.0010 0.0019 0.16 0.28 0.0009 0.0013 0.25 0.36
aPerformance is measured separately on the small (≤20 atoms) and large (>20 atoms) targets, which contain five compounds each. The ⟨⟩
notation denotes averages over the five compounds and the ten trajectories per compound. Lmin and Rmin are the minimum values of the loss and
RMSD obtained in a trajectory, respectively. Lavg and Ravg are the average values of those quantities obtained in the final 50 cycles of a trajectory,
respectively. Parameter sets above the horizontal line correspond to the data shown in Figure 4. Dashes indicate that instabilities in one or more
simulations caused exploded conformations that distorted the data.
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Finally, Figure 4D examines the “second-order” bond
restraints that act on the distances between pairs of assigned
atoms. Turning these restraints off has little or no effect on the
assembly of smaller targets, but we find that a restraint strength
of at least 0.5 is needed to reliably assemble targets of 20 atoms
or more. However, we also find that these restraints can hinder
the assembly of some smaller targets, particularly molecule 10,
which has high symmetry. We also have observed some
numerical instabilities in simulations with bond restraint values
> 1.0. For this reason, we see a value of 0.5 to be a good
compromise.

The performance of all of these parameter sets is
summarized in Table 4. A number of parameter sets show
excellent performance (⟨Lmin/n⟩ < 0.002) on both large and
small targets, which are highlighted in bold. However, Lmin/n
only requires a single trajectory frame to achieve a low loss
value. All parameter sets that satisfy the more stringent criteria
(⟨Lavg/n⟩ < 0.002) were obtained with a maximum MLForce
Scale value of 5000. To further probe the performance of
Flexible Topology at this parameter value we ran an additional
series of simulations (below the horizontal line in Table 4). We
find that the best performance is obtained by increasing the
number of steps per cycle, but that excellent performance can
still be obtained with as little as 200 steps per cycle, or 60 ps
for each assembly trajectory.

For some combinations of parameters, we found that the
trajectories were unstable: integration errors due to the finite
timestep would accrue and compound catastrophically, as is
common in molecular dynamics simulations that are
performed with a step size that is too high for a particular
energy landscape and temperature. The two biggest drivers of
instability were the frequency of assignment updates and the
strength of the second-order distance restraints. This is
intuitive, as the assignment algorithm used here only takes
into account the similarity of the atomic environment vectors
between the ghost particles and the target atoms. Changes in
the assignments could thus introduce discontinuities in the
energy and energy gradients that are destabilizing. To
minimize the impact of these assignment changes, we
recommend that assignment updates are carried out relatively
infrequently; we found 5000 steps to be a suitable interval for
assignment updates.

■ DISCUSSION AND CONCLUSIONS

Here we have presented a novel method for molecular
dynamics simulation called Flexible Topology that allows for
both atomic connectivity and atomic identity to change over
the course of a molecular simulation. In Flexible Topology, the
identity of atoms is defined by a set of four continuous
dynamical variables: partial charge (q), particle size (σ), and
Lennard-Jones well depth (ϵ), as well as presence variable (λ)
for each atom. These are guided to assemble into a target
ligand using a deterministic loss function defined by the
difference of atomic environment vectors (AEVs) of the atoms
with the AEVs of the target atoms. The AEVs are modified
versions of Behler−Parrinello symmetry functions,37 which
describe the local environment around each atom in a way that
is invariant to translation and rotation operations. Derivatives
of the loss function are used to define atomic forces that are
added to an OpenMM MD simulation, implemented using a
PyTorch model that incorporates features from the TorchA-
NI40 package. This was achieved with an external force plugin
for the OpenMM tool, referred to as “MLForce”,36 which has

already been made freely available on Github. MLForce is
responsible for loading the TorchScript file of a TorchANI
model and computing the internal force on the ghost particles.
This approach is agnostic to the content of the TorchScript
file; it can be easily swapped out with a model that computes
different AEVs, or with a model that implements a different
loss function that involves a deep neural network.

One of the main challenges of this project was finding a
molecular representation that could uniquely describe a given
molecule. For this purpose, we originally tried features from a
method called “Geometric Scattering for Graphs”,45 which
provides truly index-invariant features by “scattering” atomic
signals over the molecular graph structure, and storing
summations of different moments of the scattered signals as
features. We had shown previously that this approach could
predict partition coefficients for small molecules to high
accuracy.46,47 We attempted to use these GSG features by
themselves, as well as GSG features computed with the
Behler−Parrinello symmetry functions as signals, and none of
these feature sets were able to generate proper models for
Flexible Topology simulations. In these cases, we found that
minimizing the loss function was not sufficient to achieve the
desired ligand structures. In other words, many structures were
possible that were far from the target ligand structure, but still
reproduced the features exactly. The current implementation,
which directly compares atomic feature values after an on-the-
fly Hungarian algorithm mapping step, was found to be
superior to the graph scattering approach. A limitation of the
approach used here is that a single set of target features
enforces a single rigid conformation of the ligand. While there
are some ways to alleviate this, such as including multiple sets
of target features corresponding to different local minima, this
approach is likely unsuitable for more flexible ligands.

Sets of parameters were identified that consistently achieved
high assembly accuracy for ligands up to 50 atoms in size.
Some key elements of the approach that enabled the assembly
of the larger ligands were: (1) long assignment intervals, (2)
second-order restraints, and (3) strong MLForce scales. We
found that increasing the strength of the second-order
restraints led to instabilities in the integrator, especially when
combined with shorter assignment intervals. This could
possibly be alleviated with a better assignment algorithm that
takes the energy of the second-order assignments into account.
Unfortunately, such an assignment algorithm could be far more
costly than the Hungarian algorithm. One approach could be
to use the Hungarian algorithm as an initial assignment, which
is refined by a set of Monte Carlo assignment swaps that are
accepted or rejected using the full restraint energy (including
the second-order assignments). As this only needs to be run
periodically, this could be introduced with a reasonable impact
on performance. Another possible improvement would be to
learn a set of scaling parameters for the loss function

=L w F F( )
i

i

i i

scaled GP T
2

(11)

where wi is the scale factor for feature i. This would allow us to
“train” the loss function for optimal performance in assembly
simulations. We reserve these lines of investigation for future
work.

As the s parameter gradually increases the strength of the
MLForce restraint, we can measure the work performed by the
restraint on the system. These trajectories can be thought of as
nonequilibrium processes in which the system is driven from
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the disassembled state (s = 0) to the assembled state (s = smax).
The total work applied over the course of these trajectories can
be related to their free energy difference using the Jarzynski
equality.48 By calculating this free energy difference�ΔGA, the
free energy of assembly�in different environments we can
calculate transfer free energies between different media, or
even binding free energies. This has the potential to offer some
gains in efficiency compared to alchemical approaches for
determining the absolute binding free energy, as the disordered
state allows for rapid sampling of different bound orientations
and solvation configurations within the binding pocket. In
addition, the perturbation between the disordered and ordered
state could be smaller than the standard alchemical
perturbation between the λ = 1 state (full pocket) and λ = 0
state (empty pocket). Practical concerns, such as how many
trajectories are required and how slowly the restraints can be
turned on, will dictate whether this approach will be
competitive compared to other alchemical approaches.

Another potential application of this method is to the
prediction of ligand-bound poses. By assembling the ligand in
the binding pocket of a protein of interest, the assembled
conformation constitutes a prediction of the ligand binding
pose. This could offer advantages compared with approaches
like docking, as it can explicitly simulate ligand-induced fit and
collective relaxation of water molecules in a binding site. Again,
it is likely that a slower introduction of the restraints would be
necessary in order to allow the binding pocket and water
molecules to adapt to the presence of the ligand. Here we find
that successful assembly can be achieved in as little as 60 ps.
To observe meaningful conformational adaptation in a protein
binding pocket we would likely need to slow this down
considerably.

A long-term goal of this work is to build a method that can
be used to run dynamics in a joint chemical-conformational
space that is entirely continuous. This would allow for the
exploration of chemical space while using molecular dynamics
(MD) to model ligand-induced conformational changes in the
receptor as well as water molecules’ effects on ligand-receptor
interactions. For large datasets, such a method would have the
potential for dramatic gains in efficiency. To illustrate this, it is
helpful to consider the example of a protein searching its
conformational landscape to find its folded state. Levinthal’s
paradox states that there are an enormous number of possible
protein conformations (10300)49 and if all of the conformations
of protein are sampled one by one at a rate of 1 conformation
per millisecond, then it would take the universe’s age to find its
folded conformation. However, in nature, protein folding does
not require sampling all of the high-energy conformations; the
protein is automatically drawn toward low-energy conforma-
tions due to the funnel-shaped nature of the energy
landscape.50 The same reasoning is valid for a coupled
chemical-conformational landscape approach as its search
space will also be funnel-shaped with the lowest-energy target
molecules at its bottom. In this way, we can simply avoid
sampling all of the high-energy ligands and conformations and
be gradually drawn toward the best chemicals and structures
with each simulation step.

Some modifications to the algorithm are needed before
these applications can be realized. The loss function used here
is defined using only a single set of target features. One
modification is to employ a loss function with multiple minima
that represent either different ligands

= | | +L M F Fmin( ( ) )
i

i iGP T, (12)

where only one set of target features FT,i in a (possibly large)
set ( ) is used to determine L and an offset for each target (ςi)
can be used to balance their relative probabilities. For instance,
if we are running a long simulation, or a large ensemble of
simulations, ςi could be progressively increased for each frame
that ligand is correctly assembled. This would discourage
repeated assembly of the same ligands and result in a more
diverse ensemble of hits. A practical challenge to overcome is
handling mismatches in the number of atoms between ligands.
The total number of ghost particles needs to be larger or equal
to the number of atoms in the largest ligand in . To match
smaller ligands, the λ values of the unmatched atoms should go
to zero. The value with which unmatched atoms contribute to
the loss for a given ligand should be nonzero and tuned
empirically to ensure sampling is as even as possible across all
ligand sizes.

There are many other methods emerging for ligand design
that use the structure of the binding site as input. Flexible
Topology presents a means of incorporating these strategies
into a physics-based simulation framework. For instance,
generative models,51−53 informed by the current structure of
the binding pocket, and/or the positions and attributes of the
ghost particles, could propose new target ligands on the fly.
Another approach is to replace L with a general machine-
learned potential from a diffusion model.54,55 This could be
trained using many conformations of a single ligand, or with
conformations from a large ligand set.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00409.

Scatter plot of minimum loss per particle vs. minimum
RMSD (Figure S1) and average loss per particle for
varying MLForce Scale values (Figure S2) (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Alex Dickson − Department of Biochemistry & Molecular
Biology, Michigan State University, East Lansing, Michigan
48824, United States; Department of Computational
Mathematics, Science & Engineering, Michigan State
University, East Lansing, Michigan 48824, United States;

orcid.org/0000-0002-9640-1380; Email: alexrd@
msu.edu

Authors

Nazanin Donyapour − Department of Computational
Mathematics, Science & Engineering, Michigan State
University, East Lansing, Michigan 48824, United States

Fatemeh Fathi Niazi − Department of Computational
Mathematics, Science & Engineering, Michigan State
University, East Lansing, Michigan 48824, United States

Nicole M. Roussey − Department of Biochemistry &
Molecular Biology, Michigan State University, East Lansing,
Michigan 48824, United States

Samik Bose − Department of Biochemistry & Molecular
Biology, Michigan State University, East Lansing, Michigan
48824, United States

Complete contact information is available at:

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00409
J. Chem. Theory Comput. 2023, 19, 5088−5098

5096

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00409?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00409/suppl_file/ct3c00409_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alex+Dickson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9640-1380
https://orcid.org/0000-0002-9640-1380
mailto:alexrd@msu.edu
mailto:alexrd@msu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nazanin+Donyapour"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fatemeh+Fathi+Niazi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicole+M.+Roussey"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samik+Bose"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


https://pubs.acs.org/10.1021/acs.jctc.3c00409

Author Contributions

A.D. designed the project; N.D. implemented the method; all
authors collected and analyzed the data; A.D. and N.D.
prepared the manuscript; and all authors provided edits and
feedback.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by R01GM130794 from the National
Institutes of Health and by DMS 1761320 from the National
Science Foundation.

■ REFERENCES

(1) Liu, P.; Kim, B.; a Friesner, R.; Berne, B. J. Replica exchange with
solute tempering: a method for sampling biological systems in explicit
water. Proc. Nat. Acad. Sci. U.S.A. 2005, 102, 13749−13754.
(2) Cérou, F.; Guyader, A. Adaptive Multilevel Splitting for Rare

Event Analysis. Stochastic Anal. Appl. 2007, 25, 417−443.
(3) Tiwary, P.; Parrinello, M. From Metadynamics to Dynamics.
Phys. Rev. Lett. 2013, 111, No. 230602.
(4) Dickson, A.; III, C. L. B. WExplore: Hierarchical exploration of

high-dimensional spaces using the weighted ensemble algorithm. J.
Phys. Chem. B 2014, 118, 3532−3542.
(5) Zimmerman, M. I.; Bowman, G. R. FAST Conformational

Searches by Balancing Exploration/Exploitation Trade-Offs. J. Chem.
Theory Comput. 2015, 11, 5747−5757.
(6) Ahn, S. H.; Grate, J. W.; Darve, E. F. Efficiently sampling

conformations and pathways using the concurrent adaptive sampling
(CAS) algorithm. J. Chem. Phys. 2017, 147, No. 074115.
(7) Chen, W.; Tan, A. R.; Ferguson, A. L. Collective variable

discovery and enhanced sampling using autoencoders: Innovations in
network architecture and error function design. J. Chem. Phys. 2018,
149, No. 072312.
(8) Donyapour, N.; Roussey, N. M.; Dickson, A. REVO: Resampling

of ensembles by variation optimization. J. Chem. Phys. 2019, 150,
No. 244112.
(9) Zhang, J.; Gong, H. Frontier expansion sampling: a method to

accelerate conformational search by identifying novel seed structures
for restart. J. Chem. Theory Comput. 2020, 16, 4813−4821.
(10) Bonati, L.; Rizzi, V.; Parrinello, M. Data-Driven Collective

Variables for Enhanced Sampling. J. Phys. Chem. Lett. 2020, 11,
2998−3004.
(11) Wan, H.; Voelz, V. A. Adaptive Markov state model estimation

using short reseeding trajectories. J. Chem. Phys. 2020, 152,
No. 024103.
(12) Votapka, L. W.; Stokely, A. M.; Ojha, A. A.; Amaro, R. E.

SEEKR2: Versatile Multiscale Milestoning Utilizing the OpenMM
Molecular Dynamics Engine. J. Chem. Inf. Model. 2022, 62, 3253−
3262.
(13) Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res.
2015, 48, 722−730.
(14) Frimurer, T. M.; Peters, G. H.; Iversen, L. F.; Andersen, H. S.;

Møller, N. P. H.; Olsen, O. H. Ligand-induced conformational
changes: Improved predictions of ligand binding conformations and
affinities. Biophys. J. 2003, 84, 2273−2281.
(15) Provasi, D.; Artacho, M. C.; Negri, A.; Mobarec, J. C.; Filizola,

M. Ligand-induced modulation of the free-energy landscape of G
protein-coupled receptors explored by adaptive biasing techniques.
PLoS Comp. Bio. 2011, 7, No. e1002193.
(16) Bai, Q.; Pérez-Sánchez, H.; Zhang, Y.; Shao, Y.; Shi, D.; Liu, H.;

Yao, X. Ligand induced change of beta2 adrenergic receptor from
active to inactive conformation and its implication for the closed/
open state of the water channel: insight from molecular dynamics

simulation, free energy calculation and Markov state model analysis.
Phys. Chem. Chem. Phys. 2014, 16, 15874−15885.
(17) Altucci, L.; Leibowitz, M. D.; Ogilvie, K. M.; de Lera, A. R.;

Gronemeyer, H. RAR and RXR modulation in cancer and metabolic
disease. Nat. Rev. Drug Discovery 2007, 6, 793−810.
(18) Pioszak, A. A.; Hay, D. L. RAMPs as allosteric modulators of

the calcitonin and calcitonin-like class B G protein-coupled receptors.
Adv. Pharmacol. 2020, 88, 115−141.
(19) Tembre, B. L.; Mc Cammon, J. A. Ligand-receptor interactions.
Comput. Chem. 1984, 8, 281−283.
(20) Khandogin, J.; Brooks, C. L. Constant pH molecular dynamics

with proton tautomerism. Biophys. J. 2005, 89, 141−157.
(21) Chen, W.; Morrow, B. H.; Shi, C.; Shen, J. K. Recent

development and application of constant pH molecular dynamics.
Mol. Simul. 2014, 40, 830−838.
(22) Radak, B. K.; Chipot, C.; Suh, D.; Jo, S.; Jiang, W.; Phillips, J.

C.; Schulten, K.; Roux, B. Constant-pH molecular dynamics
simulations for large biomolecular systems. J. Chem. Theory Comput.
2017, 13, 5933−5944.
(23) Klimovich, P. V.; Shirts, M. R.; Mobley, D. L. Guidelines for the

analysis of free energy calculations. J. Comp.-Aided Mol. Des. 2015, 29,
397−411.
(24) Mobley, D. L.; Graves, A. P.; Chodera, J. D.; McReynolds, A.

C.; Shoichet, B. K.; Dill, K. A. Predicting absolute ligand binding free
energies to a simple model site. J. Mol. Bio. 2007, 371, 1118−1134.
(25) Chodera, J. D.; Mobley, D. L.; Shirts, M. R.; Dixon, R. W.;

Branson, K.; Pande, V. S. Alchemical free energy methods for drug
discovery: progress and challenges. Curr. Opin. Struct. Bio. 2011, 21,
150−160.
(26) Kong, X.; Brooks III, C. L. λ-dynamics: A new approach to free

energy calculations. J. Chem. Phys. 1996, 105, 2414−2423.
(27) Guo, Z.; Durkin, J.; Fischmann, T.; Ingram, R.; Prongay, A.;

Zhang, R.; Madison, V. Application of the λ-dynamics method to
evaluate the relative binding free energies of inhibitors to HCV
protease. J. Med. Chem. 2003, 46, 5360−5364.
(28) Guo, Z.; Brooks, C. L. Rapid screening of binding affinities:

application of the λ-dynamics method to a trypsin-inhibitor system. J.
Am. Chem. Soc. 1998, 120, 1920−1921.
(29) Banba, S.; Guo, Z.; Brooks, C. L. Efficient sampling of ligand

orientations and conformations in free energy calculations using the λ-
dynamics method. J. Phys. Chem. B 2000, 104, 6903−6910.
(30) Banba, S.; Brooks III, C. L. Free energy screening of small

ligands binding to an artificial protein cavity. J. Chem. Phys. 2000, 113,
3423−3433.
(31) Damodaran, K.; Banba, S.; Brooks, C. L. Application of

multiple topology λ-dynamics to a host- guest system: β-cyclodextrin
with substituted benzenes. J. Phys. Chem. B 2001, 105, 9316−9322.
(32) Knight, J. L.; Brooks, C. L. Multisite lambda dynamics for

simulated structure-activity relationship studies. J. Chem. Theory
Comput. 2011, 7, 2728−2739.
(33) Raman, E. P.; Paul, T. J.; Hayes, R. L.; III, C. L. B. Automated,

Accurate, and Scalable Relative Protein−Ligand Binding Free-Energy
Calculations Using Lambda Dynamics. J. Chem. Theory Comput. 2020,
16, 7895−7914.
(34) Robo, M.; Hayes, R.; Ding, X.; Pulawski, B.; Vilseck, J.

Achieving Rapid Free Energy Estimates from lambda-Dynamics with
Bias Updated Gibbs Sampling, PREPRINT, 2022 https://doi.org/10.
21203/rs.3.rs-1551844/v1.
(35) Huang, J.; MacKerell Jr, A. D. CHARMM36 all-atom additive

protein force field: Validation based on comparison to NMR data. J.
Comp. Chem. 2013, 34, 2135−2145.
(36) Donyapour, N.; Roussey, N. M.; Dickson, A.; Fathi Niazi, F.;

Bose, S. MLForce. https://github.com/ADicksonLab/mlforce.
(37) Behler, J.; Parrinello, M. Generalized neural-network

representation of high-dimensional potential-energy surfaces. Phys.
Rev. Lett. 2007, 98, No. 146401.
(38) Kuhn, H. W. The Hungarian method for the assignment

problem. Nav. Res. Logistics Q. 1955, 2, 83−97.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00409
J. Chem. Theory Comput. 2023, 19, 5088−5098

5097

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00409?ref=pdf
https://doi.org/10.1073/pnas.0506346102
https://doi.org/10.1073/pnas.0506346102
https://doi.org/10.1073/pnas.0506346102
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1103/PhysRevLett.111.230602
https://doi.org/10.1021/jp411479c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp411479c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00737?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00737?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4999097
https://doi.org/10.1063/1.4999097
https://doi.org/10.1063/1.4999097
https://doi.org/10.1063/1.5023804
https://doi.org/10.1063/1.5023804
https://doi.org/10.1063/1.5023804
https://doi.org/10.1063/1.5100521
https://doi.org/10.1063/1.5100521
https://doi.org/10.1021/acs.jctc.0c00064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00535?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00535?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5142457
https://doi.org/10.1063/1.5142457
https://doi.org/10.1021/acs.jcim.2c00501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar500432k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0006-3495(03)75033-4
https://doi.org/10.1016/S0006-3495(03)75033-4
https://doi.org/10.1016/S0006-3495(03)75033-4
https://doi.org/10.1371/journal.pcbi.1002193
https://doi.org/10.1371/journal.pcbi.1002193
https://doi.org/10.1039/C4CP01185F
https://doi.org/10.1039/C4CP01185F
https://doi.org/10.1039/C4CP01185F
https://doi.org/10.1039/C4CP01185F
https://doi.org/10.1038/nrd2397
https://doi.org/10.1038/nrd2397
https://doi.org/10.1016/bs.apha.2020.01.001
https://doi.org/10.1016/bs.apha.2020.01.001
https://doi.org/10.1016/0097-8485(84)85020-2
https://doi.org/10.1529/biophysj.105.061341
https://doi.org/10.1529/biophysj.105.061341
https://doi.org/10.1080/08927022.2014.907492
https://doi.org/10.1080/08927022.2014.907492
https://doi.org/10.1021/acs.jctc.7b00875?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00875?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10822-015-9840-9
https://doi.org/10.1007/s10822-015-9840-9
https://doi.org/10.1016/j.jmb.2007.06.002
https://doi.org/10.1016/j.jmb.2007.06.002
https://doi.org/10.1016/j.sbi.2011.01.011
https://doi.org/10.1016/j.sbi.2011.01.011
https://doi.org/10.1063/1.472109
https://doi.org/10.1063/1.472109
https://doi.org/10.1021/jm030040o?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm030040o?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm030040o?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja973418e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja973418e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp001177i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp001177i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp001177i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1287147
https://doi.org/10.1063/1.1287147
https://doi.org/10.1021/jp010361g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp010361g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp010361g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200444f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200444f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00830?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00830?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00830?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.21203/rs.3.rs-1551844/v1
https://doi.org/10.21203/rs.3.rs-1551844/v1
https://doi.org/10.1002/jcc.23354
https://doi.org/10.1002/jcc.23354
https://github.com/ADicksonLab/mlforce
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(39) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao,
Y.; Beauchamp, K. A.; Wang, L.-P.; Simmonett, A. C.; Harrigan, M.
P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S.
OpenMM 7: Rapid development of high performance algorithms for
molecular dynamics. PLoS Comp. Bio. 2017, 13, No. e1005659.
(40) Gao, X.; Ramezanghorbani, F.; Isayev, O.; Smith, J. S.;

Roitberg, A. E. TorchANI: a free and open source PyTorch-based
deep learning implementation of the ANI neural network potentials. J.
Chem. Inf. Model. 2020, 60, 3408−3415.
(41) Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,

G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.;
Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy,
S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S. Advances in Neural
Information Processing Systems 32; Wallach, H.; Larochelle, H.;
Beygelzimer, A.; d’Alché Buc, F.; Fox, E.; Garnett, R., Eds.; Curran
Associates, Inc., 2019; pp 8024−8035.
(42) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible

neural network potential with DFT accuracy at force field computa-
tional cost. Chem. Sci. 2017, 8, 3192−3203.
(43) Donyapour, N.; Roussey, N. M.; Dickson, A.; Fathi Niazi, F.

F l e x ib l eTopo logy . h t tp s : //g i thub . com/ADick sonLab/
flexibletopology.
(44) Korshunova, M.; Ginsburg, B.; Tropsha, A.; Isayev, O.

OpenChem: A Deep Learning Toolkit for Computational Chemistry
and Drug Design. J. Chem. Inf. Model. 2021, 61, 7−13.
(45) Gao, F.; Wolf, G.; Hirn, M.Geometric Scattering for Graph Data
Analysis, International Conference on Machine Learning, 2019; pp
2122−2131.
(46) Donyapour, N.; Hirn, M.; Dickson, A. ClassicalGSG:

Prediction of log P using classical molecular force fields and
geometric scattering for graphs. J. Comput. Chem. 2021, 42, 1006−
1017.
(47) Donyapour, N.; Dickson, A. Predicting partition coefficients for

the SAMPL7 physical property challenge using the ClassicalGSG
method. J. Comp.-Aided Mol. Des. 2021, 35, 819−830.
(48) Jarzynski, C. Nonequilibrium equality for free energy

differences. Phys. Rev. Lett. 1997, 78, 2690.
(49) Levinthal, C. Mossbauer Spectroscopy in Biological Systems,

Proceedings of a meeting held at Allerton House; Debrunner, P.;
Tsibris, J. C. M.; Munck, E., Eds.; University of Illinois Press: Urbana,
IL, 1969.
(50) Leopold, P. E.; Montal, M.; Onuchic, J. N. Protein folding

funnels: a kinetic approach to the sequence-structure relationship.
Proc. Natl. Acad. Sci. 1992, 89, 8721−8725.
(51) Luo, S.; Guan, J.; Ma, J.; Peng, J. A 3D Generative Model for

Structure-Based Drug Design. 2021, pp 6229−6239.
(52) Wang, M.; Hsieh, C.-Y.; Wang, J.; Wang, D.; Weng, G.; Shen,

C.; Yao, X.; Bing, Z.; Li, H.; Cao, D.; Hou, T. RELATION: A Deep
Generative Model for Structure-Based De Novo Drug Design. J. Med.
Chem. 2022, 65, 9478−9492.
(53) Adams, K.; Coley, C. W. Equivariant Shape-Conditioned

Generation of 3D Molecules for Ligand-Based Drug Design, arXiv,
2022 http://arxiv.org/abs/2210.04893.
(54) Salimans, T.; Ho, J. Should EBMs model the energy or the

score? Energy Based Models Workshop - ICLR 2021. 2021.
(55) Arts, M.; Satorras, V. G.; Huang, C.-W.; Zuegner, D.; Federici,

M.; Clementi, C.; Noé, F.; Pinsler, R.; van den Berg, R. Two for One:
Diffusion Models and Force Fields for Coarse-Grained Molecular
Dynamics. 2023.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00409
J. Chem. Theory Comput. 2023, 19, 5088−5098

5098

 Recommended by ACS

NNP/MM: Accelerating Molecular Dynamics Simulations
with Machine Learning Potentials and Molecular Mechanics
Raimondas Galvelis, Gianni De Fabritiis, et al.
SEPTEMBER 11, 2023
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

tinyIFD: A High-Throughput Binding Pose Refinement
Workflow Through Induced-Fit Ligand Docking
Darren J. Hsu, Jens Glaser, et al.
MAY 19, 2023
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Validation of the Alchemical Transfer Method for the
Estimation of Relative Binding Affinities of Molecular Series
Francesc Sabanés Zariquiey, Gianni De Fabritiis, et al.
APRIL 12, 2023
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

To Design Scalable Free Energy Perturbation Networks,
Optimal Is Not Enough
Mary Pitman, David L. Mobley, et al.
MARCH 06, 2023
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Get More Suggestions >

https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1021/acs.jcim.0c00451?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00451?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://github.com/ADicksonLab/flexibletopology
https://github.com/ADicksonLab/flexibletopology
https://doi.org/10.1021/acs.jcim.0c00971?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00971?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.26519
https://doi.org/10.1002/jcc.26519
https://doi.org/10.1002/jcc.26519
https://doi.org/10.1007/s10822-021-00400-x
https://doi.org/10.1007/s10822-021-00400-x
https://doi.org/10.1007/s10822-021-00400-x
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1073/pnas.89.18.8721
https://doi.org/10.1073/pnas.89.18.8721
https://doi.org/10.1021/acs.jmedchem.2c00732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.2c00732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://arxiv.org/abs/2210.04893
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

