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Polymer-networked nanoparticles are the basis for advanced materials useful wearable electron-
ics, drug delivery, autonomous computing and other applications. To characterize and predict the
physics and underlying mechanisms of the network connections in 2D and 3D engineered nanopar-
ticle (ENP) arrays, we developed an analogous Potts model of 3-state sites. Together with dissipa-
tive particle dynamics (DPD) simulations, we found that the network structures in polymer-linked
nanoparticle assemblies are generally dominated by the number of nearest neighbors and not the
topology of the lattice. When the E-field regulates the network connections, the links along the
E-field direction always dominate the overall network structure.

Polymer-based complex networked materials have ap-
plications in a variety of areas, [IH5] such as stretchable
bioelectronics, [6] self-healing materials, [7] gas separa-
tion, [8] drug delivery, [OHI1] high performance materi-
als with strong mechanical properties, [I2HI5] and au-
tonomous computing materials. [I6], [I7] For example,
a high performance electronic material consisting of a
stretchable polymer network and electrical conductive
polymers has been seen to achieve the strong mechan-
ical properties and high electrical conductivity needed
to realize an electronic skin. [6] The controlled release
of a peptide drug has been realized by applying a hy-
drogel network made of oxidized starch nanoparticles
(NPs) and carboxymethyl chitosan. [I8] Different types
of logic gates have also been realized using percolated
networks made of silver micro-flakes and thermoplastic
polyurethane. [17] The properties of these advanced ma-
terials are directly related to their corresponding network
structures.

Computational methods play an important role in
uncovering the fundamental structure-property relation-
ships in complex materials through theoretical models,
[19-23] Molecular Dynamics (MD), [24H30] Monte Carlo
(MCQC), [24,131] and Machine Learning (ML) methods. [32]
Combining experiments and mathematical modeling, Yu
et al. [21] found that the temperature dependent me-
chanical properties in polymer-NP networks are associ-
ated with combined entropy-driven and enthalpy-driven
mechanisms. The bond lifetime in dynamic polymer net-
works has been determined through rheology and dielec-
tric spectroscopy experiments together with the lifetime
renormalized analytical model. [I9] 20] The effects of
polymer chain length and connection bonding energy on
rheology properties of polymer networks were revealed

through MD and MC.[24] MD simulations together with
network models have revealed thermal transport mecha-
nisms in amorphous polymers and polymer composites.
[277, 28] Moreover, unique phononic applications of ther-
mal networks have been seen when heat flux is regulated
spatio-temporally. [22] 23] Our recent simulations have
also indicated that 2D regular square arrays of polymer
linked engineered nanoparticle (ENP) networks have po-
tential applications in brain-like data storage and com-
puting. [I6, 29, B0] As noted in Ref. [29], regular ar-
rays of nanoparticles in 2D can be fabricated by e-beam
lithography, nanosphere lithography, and self-assembly
of polymer grafted nanoparticles.[33], [34] In three dimen-
sions, DNA-coated nanoparticles have been shown to as-
semble into regular lattices in which the nanoparticles are
sufficiently far apart that additional polymer links could
be formed and regulated by external drivers such as tem-
perature and external fields. [35] In parallel, 2D regular
square arrays have been fabricated in experiments and
exhibited plasmonic switching regulated by temperature
or pH changes. [30]

Revealing the physics of dynamic network connections
is critical to predicting network structures in complex
systems. [I] Using thermodynamic perturbation theory
and a colloidal particle simulations, Howard et al. [25] [26]
reported that the phase behavior and structural proper-
ties of polymer-NP networks were affected by polymer
molecular weight, concentration, and flexibility. Com-
bining transmission electron microscopy (TEM), small-
angle X-ray scattering (SAXS) experiments and reverse
MC simulations, Musino et al. [31] characterized the net-
work structures in silica NP and styrene-butadiene com-
posites. However, their simple hard sphere model did not
account for the elastic properties of the polymer tethered
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FIG. 1.  Scheme of electric field induced network structure
changing in 2D SQ regular arrays. The detailed simulation
model is described in Ref. [29] and Fig. S1 in [37].

silica NPs which might lead to different quantitative and
qualitative behavior. One alternative would be to use ML
methods to propagate such large complex networks with
high accuracy [32], but it comes at the price of hiding the
physics within the machine.

In this work, we developed a Spin-Ising Potts model
with 3-state spins to describe the complex network
connections in polymer linked soft materials. The
Potts model is generalizable from 2D to 3D archi-
tectures. We also use Dissipative Particle Dynam-
ics (DPD) models to simulate polymer network con-
nections in different regular arrays of ENPs—uwiz. 2D
Square (SQ), 2D Hexagonal (HEX), 3D Simple Cu-
bic (CUB), and 3D Hexagonal Close Packing (HCP)
structure; see Scheme S1 in [37]. We use the DPD
force field to simulate poly(allylamine hydrochloride)s
(PAHs). [3843] Both Coulombic and Lennard-Jones
potentials are used to model gold nanoparticle (AuNP)
and PAH interactions. [39H4T], 44 45] Implicit solvent en-
vironment is applied by setting the dielectric constant
to 80 and using the Langevin thermostat. The simu-
lation model was optimized according to experimental
[13, [46H48] and simulation [39], 49, [50] benchmarks. The
Large-scale Atomic Molecular Massively Parallel Simula-
tor (LAMMPS) package [51] is used to conduct all MD
simulations; see Fig. S1 in [37] for simulation details. The
Potts models implemented here describe simplified net-
works limited to nearest neighbor links in 2D SQ, 2D
HEX, and 3D CUB arrays shown in Schemes S1 and S2 in
[37], and is amenable to Mean Field Theory (MFT) and
MC. [29, 52] More importantly, we have demonstrated
that the network connection can be regulated by an exter-
nal E-field using both Potts model and DPD simulations;
see Fig. [l This ENP network property is an experimen-
tally accessible order parameter which has been used for
characterization and control in drug delivery, [9H11] wear-
able electronics, [6] and computing materials.[16]

The positions of link n in the selected arrays are
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FIG. 2. Comparisons of network connections in (a) 2D SQ,
(b) 2D HEX, (c) and 3D CUB at T ranging from 30 to 500
K under no E-field. Observations of DPD simulations are
compared to the Potts model from MFT and MC. Diamond
symbols represent the sum of nearest neighbor links. Small
dots represent nearest neighbor links in each direction. Black
solid lines represent other types of links. The normalization
factor IV is the total number of ENPs in the array; here, N
= 100 in both 2D SQ and 2D HEX, N = 125 in 3D CUB.

noted in Schemes. S1 and S2 in [37]. A link site
takes on values {0,1,—1} when there is no link, a di-
rected link from left to right and a link from right

to left, respectively; see Scheme. S3 in [37]. The full
Hamiltonians, H5® (nf;, nf’j), HUEX (nl, nY5 ) and

HOUB (nf’j’k,n?’j,k,nf’j’k) are provided in the methods
section in SM [37], and are characterized by three effec-
tive energies, €1, €5 and €g, corresponding to the acti-
vation of links, the interaction between neighbor links,
and the applied field, respectively. Their values are kept
constant across different arrays to allow for direct com-
parison. The resulting MFT Hamiltonians are available
in SM [37]; for the 2D square array, it takes the form,

S
hyer (N, 1) = €1 (Jna] + ny])+
€2 |ng| * 2(my + 2my )+
€2 |ny| * 2(my + 2my)—+

€ER, * Ny

(1)

where m, is the mean-field estimate of the average links
in the z-direction which results from taking the mean of
the effective force on the link sites.

The MFT equations for the Potts model are solved by
considering a representative linking site for each of the
the linking directions; e.g. in 2D SQ, there are two link
sites, n, and n,. MC for Potts model is performed by



applying the full Hamiltonian on the same regular ar-
rays as in DPD model; e.g. 10x10 2D SQ array. The
correspondence between the DPD and Potts models is
established by fixing the parameters {e,} in Eq. [l| such
that the MFT predictions match DPD at intermediate
temperatures; see Fig. [2| and Fig. S2 in [37]. The result-
ing values are e; = 1.0kcal/mol, e3 = 0.4 kcal/mol, and
eg varies from —0.6 to —1.2 kcal/mol. Notably, the ac-
tivation energy is at the same order of magnitude with
that in Ref. 24l which found bonding energy equal to a few
kgT in an analogous polymer network. Without E-field,
the network structure is isotropic but depends on tem-
perature. The E-field creates a symmetry breaking that
can align (or drive the formation of) links; see Fig. [l|and
Scheme S2 in [37].

We compare DPD to MFT and MC in Fig. [2] for cases
with no applied E-field. The mean connectivity is con-
nected to the overall transfer of energy or electrons across
the network. In isotropic network systems, the mean
connectivity represents the overall network structure, be-
cause there is no preferred direction. More details for
the 2D SQ model are available in Fig. S3 in [37]. Al-
though our Potts model only considers nearest neighbors,
we find that MFT and MC generally capture the DPD
behavior in 2D SQ; see Fig.[2] (a). At high temperatures,
T > 400 K, DPD simulations exhibit a large number of
links beyond the nearest neighbors, which cannot be cap-
tured by the Potts model by its construction. We also
observe that MFT and MC agree better at low temper-
atures, but MFT over-predicts at high temperatures as
expected from its overestimation of neighbor interactions.

We also report results for the 2D HEX and 3D CUB
models from DPD and Potts models in Figs. [2 (b) and
(c), respectively. Additional observables are available in
Figs. S4-S5 in [37]. Without E-field, we find agreement
in the 2D HEX array for the mean link occupancy across
each of the directions, (ny), (ny) and (ny) at different
temperatures, confirming that the network structure is
isotropic. This symmetry was also confirmed for the 3D
CUB array in Fig.|2|(c) from the agreement between (ny),
(ny) and (n,).

Although the network connection energy could vary
across the 2D SQ, 2D HEX and 3D CUB arrays, here
the energy constants in the corresponding Potts models
are set the same. We found that in the Potts model,
MFT and MC for both 2D HEX and 3D CUB still agree
with DPD. For example, in 2D HEX, the nearest links,
(nu), (ny) and (ny) match with MFT and MC very well.
In 3D CUB, the nearest links, (nx), (ny) and (n,), match
well with MFT and MC, up to T' ~ 320 K, but we also
see deviations T ~ 400 — 500 K. in Fig.[2| (¢). This arises
because the Potts model only includes nearest neighbor
links, and the DPD model makes a significant number of
other links at high temperatures, 7' > 320 K.

Increases in the non-nearest neighbor links was seen to
reduce the nearest neighbor links in the DPD simulations.
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FIG. 3. Comparison of links across 2D SQ, 2D HEX, 3D
CUB, and 3D HCP arrays. The 1st, 2nd and 3rd columns
correspond to DPD, Potts model MFT, and Potts model MC,
respectively. The first row reports the total numbers of links.
The second row reports the average number of links in the
z-direction. The normalization factor N = 100, 100, 125, and
180 in 2D SQ, 2D HEX, 3D CUB, and 3D HCP, respectively.
The other links and sum of nearest neighbor links from DPD
simulations are available in Fig. S7 in [37].

As the PAH chains have more space to move in 3D CUB
than in 2D HEX, the number of other links in 3D CUB
is also larger than in 2D HEX at 500 K.

Figure |3| compares the number of links for the 2D SQ),
2D HEX, 3D CUB and 3D HCP zero-field models at
different temperatures. In this limit, the temperature
driven network structures are isotropic. We use averaged
z-link numbers for the comparison in different arrays.
The 2D SQ, 2D HEX and 3D CUB arrays in Fig. [2| have
4, 6 and 6 nearest neighbors next to each ENP and each
link is a nearest neighbor to 6, 10 and 10 other links, re-
spectively. The network structures in 2D HEX are quite
different from those in 3D CUB. The 3D HCP array has
not been mapped into Potts model because the latter re-
quires each link to have 22 nearest neighbor links, which
leads to a numerically expensive representation. Never-
theless, the behavior of 3D HCP DPD simulations were
observed and available in Fig. S6 in [37].

In the DPD and Potts models of the different arrays,
we thus find that link numbers increase with increasing
temperature as they are activated with increasing fre-
quency; see Fig. The total links in the DPD sim-
ulations increase with the number of nearest neighbor
links—wiz. 3D HCP > 3D CUB ~ 2D HEX > 2D SQ,
upper row in Fig. The average links in each direc-
tion, shown in the bottom row of Fig. ] are reduced
when the number of nearest neighbor links increases due
to the competing interactions between neighbors. Al-
though 2D HEX and 3D CUB have similar (n¢ta1), 2D
HEX has larger (n,), while 3D CUB has larger (nother);
see Fig. 3l and Fig. S7 in [37]. Similar to 3D CUB, we
also see a significant number of (negher) in the 3D HCP
array in Fig. S7 (a) because the 3D topology gives more
free space for the polymer to make other links. Mean-
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FIG. 4. Total links (solid lines), and links along the E-field
z-direction (dotted lines) of the MFT and MC of the Potts
model for the 2D SQ and 2D HEX, and 3D CUB arrays driven
by a nonzero E-field, eg varying from —0.6 to —1.2 kcal/mol,
at temperatures from T'= 2 — 500 K. Here €; = 1.0 kcal/mol
and ez = 0.4 kcal/mol are kept constant.

while, more non-neighbor links ({(nether)) are found in 2D
SQ than in 2D HEX. The Potts model helps confirm the
relationships of the number of total links—wiz. 3D HCP
> 3D CUB ~ 2D HEX > 2D SQ, and the number of
nearest neighbor links—uwviz. 3D HCP < 3D CUB ~ 2D
HEX < 2D SQ. MFT and MC also predict that both
2D HEX and 3D CUB have fewer links, (n;), than 2D
SQ. However, as the Potts model does not account for
other links, it cannot capture the corresponding features
in DPD. For example, (nother) in 3D CUB is much larger
than 2D HEX, resulting in a reduction of (n;).

With an E-field applied on the ENP network, all links
align along the E-field direction. Although in DPD simu-
lations, upon setting an E-field of F, ~ +0.0002 V/A7 a
simulation time of 60 million steps was not long enough to
reach equilibrium, we found the links are polarized along
the z-axis; see Figs. S8 - S11 in [37]. This property plays
a key role in characterizing the degree to which this ma-
terial is useful for changing and maintaining states, which
can be important in enabling autonomous computing. [16]
We use MFT and MC solutions from the Potts model
to provide theoretical predictions for the E-field polar-
ized network connection link numbers. We choose e =
—0.6 to —1.2 kcal /mol as an approximate E-field strength
range using 7' from 2 K to 500 K for mapping the DPD

model; see Fig. [4

In 2D SQ arrays, the number of total and z-links in-
crease with increasing E-field strength from —0.6 to —1.2
kcal/mol (first row in Fig. [4). At high temperatures,
z-links that could be induced by the E-field are sup-
pressed by the isotropic thermal effects. Thus, both MEFT
and MC predict diminishing network connections in this
limit. At low temperatures, the number of z-links is the
major contribution to the total links. We found that at
2 K with the magnitude of eg larger than activation en-
ergy €1 = 1.0 kcal/mol, E-field can activate and induce
a polarized network. The MFT approximation did not
give rise to a polarized network at 2 K when eg = —1.0
kcal/mol for the neighbor interaction ez = 0.4 kcal/mol.
However, MC does result in more links as can be seen
in comparing the left and right figures in the first row of
Fig. [

The second and third rows of Figure 4| report the
Potts model predictions for 2D HEX and 3D CUB ar-
rays. In general, the observations reported above for 2D
SQ are also seen in 2D HEX and 3D CUB arrays. At
2 K eg < —1.0 kcal/mol, the network can be polarized
along the z-direction, and the MC method can predict

links using the full Hamiltonians—viz. H5? (n? iy j),
HEX (,H .V U CUB (,z y z
HIEX (0 ny ;) and H ("m‘,k’ i g ko ”m',k) '

MFT also leads to better convergence with increasing
number of neighbors and increasing dimensionality in 2D
HEX and 3D CUB. However, the MFT approximations
deviate more strongly from MC in 2D HEX and 3D CUB,
due to the mean-field treatment of nearest neighbor links
giving rise to too many neighbor-neighbor interactions
and reducing the number of links.

In this paper, we developed a Potts model —wviz. a Spin
Ising model with 3 possible spin states— that captures
the network connections in a unique class of soft mate-
rials consisting of an array of nanoparticles imbedded in
a polymer matrix. The Potts model is generalizable to
different 2D and 3D architectures with a simple Hamil-
tonian of 3 energetic interaction terms. One important
finding from this work is that the network connections
can be regulated by an external electric field. We found
that generic properties of polymer-nanoparticle networks
are dominated by the number of nearest neighbors and
not the topology of the lattice. Moreover, while increas-
ing the number of nearest neighbors can increase the
number of total links, the competing interaction among
nearest neighbors leads to a decreasing average number
of links to a given neighbor. We also found that when the
E-field directs the network connections, the links along
the E-field direction always dominate the overall network
structure independent of the array topology.
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