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Improper reaction coordinates can pose significant problems for path-based binding free
energy calculations. Particularly, omission of long timescale motions can lead to over-
estimation of the energetic barriers between the bound and unbound states. Many
methods exist to construct the optimal reaction coordinate using a pre-defined basis
set of features. Although simulations are typically conducted in explicit solvent, the solvent
atoms are often excluded by these feature sets—resulting in little being known about their
role in reaction coordinates, and ultimately, their role in determining (un)binding rates and
free energies. In this work, analysis is done on an extensive set of host-guest unbinding
trajectories, working to characterize differences between high and low probability
unbinding trajectories with a focus on solvent-based features, including host-ion
interactions, guest-ion interactions and location-dependent ion densities. We find that
differences in ion densities as well as guest-ion interactions strongly correlate with
differences in the probabilities of reactive paths that are used to determine free
energies of (un)binding and play a significant role in the unbinding process.

Keywords: free energy, binding affinity, molecular dynamics, weighted ensemble, ligand unbinding, mechanisms,
SAMPL system

1 INTRODUCTION

Atomistic simulations are a broadly used method to better understand the microscopic interactions
that govern ligand binding and unbinding and to calculate critical values such as transition rates and
free energies. Both rates and free energies can in principle be computed with straightforward
molecular simulations, starting in either the bound or unbound state. However, the cost required to
simulate binding transition paths is typically prohibitive due to high energetic barriers separating the
bound and unbound states. To overcome these barriers, a variety of enhanced sampling techniques
can be employed, which commonly require the use of a predefined reaction coordinate: a single
collective variable that describes the progress of the (un)binding reaction.

The use of proper reaction coordinates can lead to improvements in the convergence of free
energies for enhanced sampling methods Tiwary and Berne (2016) and is necessary for accurate
path-based free energy calculations in biological systems Zhang and Voth (2011). Many methods
have been developed to seek out optimal reaction coordinates including but not limited to
VAMPnets Mardt et al. (2018), DiffNets Ward et al. (2021), Deep-TICA Bonati et al. (2021),
SGOOP Tiwary and Berne (2016), and AMINO Ravindra et al. (2020). All of the above methods
construct a reaction coordinate from a set of candidate features that are either predefined or require
user intuition of the (un)binding process.

Significant effort has been dedicated to understanding the role of water in the ligand (un)binding
process, including binding pocket solvation effects and bulk and single molecule effects Chau (2004);
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FIGURE 1 | The OA-G3 and OA-G6 systems. The OA host molecule (left). The G3 (top right) and G6 (bottom right) guest molecules.

Tiwary et al. (2015); Maurer and Oostenbrink (2019); Rizzi et al.
(2021). Water molecule density has been included in reaction
coordinates through the utilization of Deep-LDA Bonati et al.
(2020). This method successfully found a complex reorganization
of the water structure in unbinding for use as a reaction
coordinate and has been able to produce accurate binding free
energies Rizzi et al. (2021). The role of ions along molecular
binding pathways is much less understood. Ion distributions
surrounding molecules such as double stranded DNA
Kolesnikov et al. (2021) and RNA Auffinger et al. (2004) have
been studied and it has been found that ion affinity for molecules
such as cyclodextrins and DNA is dependent on the force field
used Erdos et al. (2021) as well as the water model employed
Kolesnikov et al. (2021). A difference in unbinding rates has been
found between implicit and explicit ions in simulation, with
implicit ion representations overestimating unbinding rates
across a broad range of ion concentrations Erbas et al. (2018).
However, it appears that little is known about the effects of
changes in ion densities along ligand (un)binding pathways.
Recent studies have demontrated that adaptations of the
weighted ensemble method Huber and Kim (1996); Dickson
and Brooks, (2014); Donyapour et al. (2019) can efficiently
generate ligand binding and unbinding pathways that can then
be used to determine rates and binding free energies Dixon
et al. (2018); Lotz and Dickson (2018b); Hall et al. (2020).
Specifically, an extensive analysis was conducted on a series of
host-guest systems containing small, organic guest molecules
(“G3” and “G6”) interacting with “octa-acid” hosts (“OA”)
(Figure 1), which were originally part of the SAMPL6
(Statistical Assessment of the Modeling of Proteins and
Ligands) SAMPLing challenge Rizzi et al. (2018, 2020). The
REVO variant of the weighted ensemble method allowed for
efficient generation of large numbers of binding and unbinding
events without employing biasing forces that could perturb the
(un)binding mechanism. This is notable as mean first passage
times of unbinding ranged up to hundreds of seconds for these
systems. It accomplishes this by running an ensemble of
trajectories and periodically “resampling” this ensemble to
shift computational emphasis toward unique trajectories
that are moving towards a target state, and adjusting the
probabilities of the trajectories accordingly. As a result,
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FIGURE 2 | General WE Framework. Every circle represents a trajectory

in the ensemble. Colors represent conformations and circle size represents
probability, with all trajectories beginning with the same conformation and
probability. Trajectories are run for a predetermined number of steps
(dynamics), followed by a resampling step containing merging and cloning
procedures. This cycle repeats until the end of the simulation.

each unbinding pathway has an associated statistical weight
(ranging from 107" to 107°) that governs how strongly it
contributes to the calculation of observables, including the
unbinding rate constant, k..

During these resampling steps, only the geometric relationship
between the host and guest molecules was used; the positions of
the water molecules and ions were neglected. Here, a time- and
probability-dependent analysis of solvent based features
including water and ions is presented for unbinding
trajectories from the OA-G3 and OA-G6 SAMPL systems. We
explore the significant differences in guest-ion interactions
between high- and low-probability unbinding events, also
referred to as “exit points”, as well as differences in spatial
arrangements of ions during unbinding. In these simulations,
we have found that the generation of the most probable reactive
paths requires fluctuations toward low ion densities within
certain regions of the simulation box, particularly in the space
immediately above the binding pocket. Differences in these ion
densities along transition paths are associated with up to 10°-fold
differences in unbinding probabilities, which motivates the future
inclusion of ion densities in (un)binding progress variables.
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2 MATERIALS AND METHODS
2.1 Weighted Ensemble Sampling

The simulations analyzed here were previously generated
Dixon et al. (2018); Hall et al. (2020) with a variant of the
weighted ensemble (WE) Huber and Kim (1996) method
called “REVO” Donyapour et al. (2019) utilizing the Wepy
Lotz and Dickson (2020) software package. A generalized
framework for WE is as follows (Figure 2). WE uses an
ensemble of trajectories that are evolved forward in time in
a parallel fashion. Each trajectory carries with it a statistical
weight (w) that governs the extent to which it contributes to
ensemble averages. Generally, WE simulations include two
main steps: 1) An MD simulation step that moves trajectories
forward in time by a predetermined time interval, and 2) a
resampling step that include cloning and merging operations.
Resampling is designed to both use cloning to increase the
number of trajectories that have a desirable value for a feature
of interest, and to decrease redundancy by merging
trajectories that are similar based on the feature of interest.
Together, this process aims to diversify the trajectories within
the ensemble with the goal of increasing the probability of
sampling rare or long-timescale events of interest for a given
system. When cloning a trajectory, two new independent
trajectories with the same conformation are created with
half the probability, or weight (w) of the original. Merging
two trajectories A and B leads to the creation of trajectory C
with weight w, = w, + w,. Trajectory C inherits either
conformation A or B with a probability proportional to w,
or wy, respectively.

A central feature of a WE simulation is the resampling
function (also referred to as a “resampler”) that determines
which trajectories are selected for cloning and which are
selected for merging. The resampler takes in an initial set of
trajectories and returns a new set, which is the outcome of a series
of merging and cloning steps following the rules described above.
These new trajectories thus have conformations that are a subset
of the initial conformation set and the sum of trajectory weights is
unchanged (typically equal to 1).

In order to determine transition rates, these WE simulations
were run in a nonequilibrium ensemble, where trajectories are
created in the bound state and terminated in the unbound state.
The unbound state was defined using a boundary condition (BC)
that is satisfied when the minimum host-guest distance is greater
than 1.0 nm, following previous work Lotz and Dickson (2018a).
When the BC is reached, the trajectory contributes to the reactive
flux calculation according to its weight at the time of crossing,
which we refer to as its “exit point probability”. The exit point
probability can be anything between the minimum and
maximum values set when the simulation was run. An exit
point or unbinding event being considered “high-weight” or
“low-weight”is relative, with this being dependent on the
weights of all exit points within the dataset. The weights of
trajectories vary because they are changed during the
resampling steps that are done between rounds of dynamics in
the weighted ensemble algorithm.

lon Densities Influence Transition Paths

2.2 Resampling of Ensembles by Variation
Optimization

Resampling of Ensembles by Variation Optimization (REVO)
Donyapour et al. (2019) is a resampling algorithm for use with
Wepy that works by maximizing a function called the trajectory
variation (V). Vis a scaled sum of the all to all pairwise distances
between trajectories in the ensemble (Eq. (1)), where dj; is the
distance between trajectory i and trajectory j and V; is the
variation for trajectory i.

di\"
V:ZVi:ZZ<d*J> $:9; (1)
i i j

The measurement of distance between two trajectoies can be
arbitrarily defined in the REVO method. In this case it was
defined as the root mean squared deviation of the ligand after
aligning the host molecules. As the host molecules have four-fold
symmetry, four separate distances were calculated after aligning
the hosts in the four symmetrically-equivalent postitions, upon
which the smallest such distance was used for dj;. ¢; is a non-
negative function referred to as a “novelty” that signifies the
importance of individual trajectories. In this work is was solely a
function of walker weight. dy, the “characteristic distance” is the
average distance after one cycle of dynamics, and is only used to
make the varation function unitless. The « parameter balances the
value of the distance and novelty terms and was set equal to 4.
Other methodological details pertinent to data generation are
available in Ref. Dixon et al. (2018) and Ref. Hall et al. (2020). The
overall goal of REVO is to optimize the value of V by cloning
trajectories with a high value of V; and merging trajectories with a
low value of V. See Ref. Donyapour et al. (2019) for more details
of the REVO method.

2.3 Dataset Information

The weighted ensemble data used for this analysis comes from
papers published in 2020 Hall et al. (2020) (the primary OA-G6
data set) and 2018 Dixon et al. (2018) (OA-G3 data set and a
secondary OA-G6 data set). Briefly, the primary OA-G6 data set
contains 10 simulations with 48 trajectories each and 1,500 cycles
per trajectory that begin in the initial OA-G6-0 pose provided in
the SAMPL6 SAMPLing challenge Rizzi et al. (2020). The 2018
data sets contain five simulations each with 48 trajectories and
2000 cycles per trajectory, each beginning at one of the five initial
poses for the corresponding system. Reactive paths begin in the
bound state and end in the unbound state when a BC is hit. The
BC is defined as a 1.0 nm minimum distance between the host
and guest molecules.

3 RESULTS

We find that each reactive path can be split into two phases: 1)
initial departure from the bound state, and 2) full separation of
the host and guest. There are often many cycles between the guest
physically leaving the binding pocket of the host and the BC being
hit. It was determined that in all of the reactive paths generated, a
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FIGURE 3| Analysis of to poses. (A) The OA host molecule with the G6 ligand in the starting pose (multi-color) and example to poses (pastels). Some atoms from the
host have been removed in A for clarity. (B) Average probabilities from -30 cycles to the final unbinding event organized by unbinding probability for the 2020 OA-G6 data
set. (C) The average number of cycles between ty and the unbinding event for OA-G3 (blue) and the 2020 OA-G6 data set (gray) organized by unbinding probability.

OAG6
= OAG3

- N
o o

Num Cycles
>

0
e-06 e-07 e-08 e-09 e-10 e-11 e-12
Exit Point Probability

TABLE 1 | The number of observed unbinding events grouped by exit point
probability. The OA-G6 row corresponds to the OA-G6 2020 dataset.

107 107 1078 107° 1071° 10" 10712

OA-G6 0 7 17 112 359 6562 2220
OA-G3 10 18 88 195 483 1,116 4103

center-of-mass (COM) to COM distance of 0.7 nm indicated an
irreversible transition between these two parts (Supplementary
Figure S1). This can be seen as a physical “commitment to
unbinding” point after which rebinding does not occur, where the
guest has just been released from the partially solvated binding
pocket (Figure 3A). The cycle corresponding to this point is
found for all reactive paths and used for analysis; we refer to this
point as f,.

When the BC is hit for the reactive paths, the unbinding
probabilities varied between 107'* and 107 for OA-G3 and
between 107'* and 10~ for OA-G6. The low probability exit
points are highly abundant for both OA-G6 and OA-G3, whereas
the high probability exit points occur with a very low frequency
for both systems. Overall, the number of exit points increases as
the probability of the exit points decreases (Table 1).

At and before the f, point, the probabilities of the reactive
paths are roughly the same, with a value of 10~ with only the
probabilities following t, varying based on exit point probability
(Figure 3B). The number of cycles between £, and the unbinding
event also correlates to the exit point probability, with high
probability exit points having ~5 cycles between the two
points, and ~20 cycles for low probability exit points
(Figure 3C). There is a steady increase in the average number
of cycles between #, and the unbinding event as the probability of
the trajectories decreases.

These differences prompt the question: are there differences
in physical features associated with this large variation in exit
point probability? To answer this question, a set of physical
features was chosen and the values of those features were
calculated for every cycle of every reactive path generated.
The features in question include the number of waters in the

binding site of the host, the number of ions around the upper
negative charges of the host molecule, the number of ions
around the guest, and the number of waters around the guest
molecule (Figure 4A). To calculate these features, a continuous
logistic function was used: f(r) =1- m where r is the
minimum atomic distance between the two entities. We use two
different sets of values for the interaction radius (r,) and
steepness (S) parameters: rq = 3A,8=17 or r, = 5A and
S =12) (Figure 4A). The sum of f(r) across all ions (or waters) is
a continuous count of the number of molecules of that species
surrounding the host (or guest) for that cycle.

It was found that some features were consistent or had only a
slight variation across all exit point probabilities, such as the
number of binding site waters and the number of waters
surrounding the guest molecule (Supplementary Figure S2).
However, some features were found to show trends that
differentiated the high- and low-probability exit points. These
features included the total number of positive ions surrounding
the upper negative charges of the host (Figure 4B,C) and the
number of positive jons surrounding the guest molecule
(Figure 4D,E). In both OA-G6 and OA-G3 there is a general
trend of the number of ions surrounding the upper negative
charges of the host increasing as the exit point probability
increases, although this is not observed for le — 7 exit points in
the OA-G6 dataset. There is also a clear trend of increasing guest-
Na' interaction as the exit point probability decreases including
before, at, and after the f, point. Similar trends were observed for
features on the 3 A scale (Supplementary Figure S3).

As we find that the interaction between the guest and Na" ions
correlates with the probability of the unbinding trajectories, we
now examine Na" ion densities in the region of space directly
above the host. Specifically, we examine a cylindrical region of
space beginning immediately above the host and ending at the top
of the box (Figure 5A). We find that this region is critical to
determine the outcome of dissociation trajectories that have
reached f#,. The autocorrelation of ion density in this region
(C(1)) is surprisingly long-lived; it follows a single exponential
decay with a timescale of 77 ns (Figure 5B).

Figure 5C shows the average number of ions in the cylinder
for cycles [ty — 3, to + 3] for each reactive trajectory. An average of
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FIGURE 4 | Feature Analysis. (A) A visualization of the region of space considered for the guest-ion features using the G6 ligand. The maximum distance for the 5 A
scale is in gray and the 3 A scale is in blue (top). The two logistic functions used to determine the molecule counts (bottom). (B-E) Molecule counts for Na* ions with
results organized by both time and exit point probability. The legend in C applies to all four plots. The average total ion count (5 A scale) around the upper negative
charges of the host for (B) OA-G6 and (C) OA-G3. The average total ion count (5 A scale) around the guest for (D) OA-G6 and (E) OA-G3. OA-G6 results
correspond to the 2020 data set.
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FIGURE 5 | lon Density Analysis. (A) A diagram showing the simulation box and the cylindrical space above the host where the number of ions (4(t)) is determined.
The equation for calculating the autocorrelation of this quantity (C(1)) is shown. (B) An autocorrelation plot of the cylindrical ion density (#(t)) is calculated using all reactive
and non-reactive trajectory data. (C) The average number of ions in the cylinder space above the host for OA-G3 (dark blue), OA-G6 (2020, gray), and OA-G6 (2018,
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1.47 ions was found in upper cylinder space when averaged over
all available data (including reactive and non-reactive
trajectories). The cylinder ion densities of reactive trajectories
were found to be significantly lower than the bulk average
regardless of exit point probability. A striking relationship was
observed between this ion density and the exit point probability
that was consistent across all data sets with highly weighted exit
point probabilities (Figure 5C), where highly-weighted exit
points had a significantly lower average number of ions in the
cylinder. Overall, highly weighted exit points had less ions above
the host, and subsequently near the guest at t,, with this number

gradually increasing as the exit point probability decreased
(Supplementary Figure S4).

To explain these findings, we first analyzed the electrostatic
forces on the guest molecule for all OA-G6 reactive trajectories at
the t, point for one ensemble of the OA-G6 2020 data set. This
was done by first removing all forces from the system other than
the nonbonded (electrostatic) forces. Then the force on the ligand
was determined at key points along the unbinding trajectories
and average forces were determined for each exit point
probability group. Results are shown for the initial bound
cycles (cycles 0-6) and for the t,-surrounding cycles used for
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FIGURE 6 | Exit Point Analysis. (A) Unbinding event locations for exit points with probabilities 107 (red) and 1072 (gray VolMap) for OA-G8. (B) Unbinding event
locations for exit points with probabilities 107° (red) and 1072 (gray VolMap) for OA-G3. The surfaces show a density contour (Isoval) of 0.0001 in both panels.

the cylinder-ion analysis (Supplementary Figure S5). We find
that the net electrostatic force is pushing the guest outward from
the host, and that the magnitude of this force is about 20 kJ/mol/
A higher in the initial pose (80 kJ/mol/A) than it is at ¢, (60 kJ/
mol/A). No significant difference is found for exit points of
different weights for both the overall magnitude of the
electrostatic force or the z-axis contribution to the force
(Supplementary Figure S5A,B). We found no significant
difference at f, across all exit point probabilities despite the
difference in cylinder ion-occupancy.

An alternative explanation is that differences in occupancy
change the likelihood of ion interaction after the #, point. This is
consistent with our observations in Figure 4D,E and would
increase the number of cycles required to hit the BC
(Figure 3C) as well as the extent of their exploration of the
simulation box. Exit point locations were determined for both the
highest and lowest probability exit points for both OA-G6 (107
and 107'?) and OA-G3 (107 and 107'2). For both systems, it was
found that for high probability exit points, most guest molecules
reach the BC directly above the host, whereas the low probability
exit points hit the BC at a wide distribution of points surrounding
the host molecule (Figure 6).

4 DISCUSSION

In summary, we find that location-dependent ion densities play a
significant role in the unbinding process for the OA-G6 and OA-G3
systems. These systems are widely used for both the testing and
development of force fields and numerous computational methods
Rizzi et al. (2020, 2018); Dixon et al. (2018); Papadourakis et al.
(2018); Song et al. (2018); Yin et al. (2016) necessitating a thorough
understanding of the mechanics of their unbinding. It is likely that
ion densities play such a prominent role due to the charged nature of
these systems (-8 for the host and -1 for the guest). Similar effects
might also be observed in biological systems with even more
significant charge densities such as calsequestrin Yano et al.
(2009), a protein necessary for muscle relaxation/contraction,
with a net charge of -64, as well as systems with nucleic acids,
which have a charge of -1 per nucleotide.

Further exploration and utilization of the effects of ion densities
on ligand (un)binding could be done via various methods.
Constraints on spatial densities of ions could be included in
simulations to further examine the relationship between ion
densities and unbinding rates or free energies. One possible
strategy would be to conduct 2D Umbrella Sampling Park and
Im (2013); Dickson et al. (2015) simulations that include a direct
descriptor of (un)binding, such as the host-guest center-of-mass
distance, and the ion density added as a second collective variable.
Ton densities (and other features of interest) could also be utilized for
resampling purposes for weighted ensemble simulations for the
determination of distances between trajectories. This could
encourage cloning operations of trajectories with ions in desirable
locations, potentially allowing for more efficient generation of high
probability unbinding events.

In weighted ensemble sampling, the equilibrium probability of a
state is obtained by summing over the weights of all trajectories that
have visited that state. This is similarly true for reactive paths: the
overall probability of a path is determined by a weighted sum of
trajectories. The analysis above breaks down a reactive trajectory set
by weight, but it is important to note that relationship between the
weight of a trajectory and the probability of the corresponding
reaction path is not one-to-one. While high-weight trajectories in
general sample from high-probability regions of space, it is possible
that a low-weight trajectory could visit a high-probability reaction
path. For this reason, we should consider the low-probability
trajectories (e.g. p = 107'?) as a heterogeneous group that could
contain observations of high-probability reaction paths. However,
the high-weight trajectories (by definition) correspond only to high-
probability paths.

Opverall, these results suggest that greater attention may be
required for ligand-ion interactions across various simulation
methods, including those that require a predefined reaction
coordinate. We find that there are many microscopic
trajectories that contribute to the unbinding path ensemble,
some of which are much more likely than others. Methods
that only sample unlikely reactive paths could have difficulty
computing accurate measurements of transition rates and free
energies. In addition, incorrect transition states (including
inaccuracies in solvent degrees of freedom) can lead to
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incorrect hypotheses about the molecular interactions that
govern kinetics. This work underscores the importance of
proper consideration of ion densities along unbinding
pathways, especially for charged systems.
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