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Many economic and causal parameters depend on nonparametric or high dimen-
sional first steps. We give a general construction of locally robust/orthogonal moment
functions for GMM, where first steps have no effect, locally, on average moment func-
tions. Using these orthogonal moments reduces model selection and regularization
bias, as is important in many applications, especially for machine learning first steps.
Also, associated standard errors are robust to misspecification when there is the same
number of moment functions as parameters of interest.

We use these orthogonal moments and cross-fitting to construct debiased machine
learning estimators of functions of high dimensional conditional quantiles and of dy-
namic discrete choice parameters with high dimensional state variables. We show that
additional first steps needed for the orthogonal moment functions have no effect, glob-
ally, on average orthogonal moment functions. We give a general approach to estimat-
ing those additional first steps. We characterize double robustness and give a variety of
new doubly robust moment functions. We give general and simple regularity conditions
for asymptotic theory.

KEYWORDS: Local robustness, orthogonal moments, double robustness, semipara-
metric estimation, bias, GMM.

1. INTRODUCTION

MANY ECONOMIC AND CAUSAL PARAMETERS DEPEND on nonparametric or high dimen-
sional first steps, denoted as γ, such as conditional expectations. Examples include dy-
namic discrete choice, games, average exact consumer surplus, and treatment effects. This
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paper shows how to construct moment functions for GMM estimators that are locally
robust, referred to henceforth as orthogonal. Orthogonal moment functions are those
where γ has no local effect on average moment functions, that is, the average moment
functions are insensitive to small perturbations in γ around the probability limit (plim)
γ0 of an estimator γ̂. We show that such moment functions can be constructed by adding
to identifying moment functions the first step influence function (FSIF) that gives the ef-
fect of γ on average identifying moment functions under general misspecification. Such
orthogonal moments reduce bias from estimation of γ and lead to standard errors for
parameters of interest that are robust to misspecification when there is the same number
of moment functions as parameters. In constructing sample moments, we also cross-fit, a
form of sample splitting where the moment function for each observation is evaluated at
γ̂ that only use other observations, which further reduces bias. A GMM estimator based
on orthogonal moment functions with cross-fitting is referred to here as debiased GMM.

Debiased GMM has several advantages over plug-in GMM where only the identifying
moment functions are used. First, standard confidence intervals for debiased GMM are
valid under local alternatives when γ̂ uses model selection, as in Chernozhukov, Hansen,
and Spindler (2015), but for plug-in GMM are typically biased and invalid, similar to
Leeb and Potscher (2005). Second, for a regularized first step γ̂, debiased GMM is typi-
cally much less biased than plug-in GMM. Thus, debiased GMM is preferred over plug-in
GMM in the many applications where γ̂ involves model selection and/or regularization.
Third, orthogonal moment functions will be doubly robust when they are linear or affine
in γ, meaning that average moments do not depend on γ in those cases. We give this dou-
ble robustness characterization and use it to derive new classes of doubly robust moment
functions. Fourth, in important settings, debiased GMM has faster remainder rates than
plug-in GMM, for example, Newey and Robins (2017). In addition, regularity conditions
for debiased GMM are general and simple relative to those for plug-in GMM. We show
asymptotic normality for debiased GMM for any γ̂ where certain mean-square consis-
tency conditions hold and either one (under double robustness) or two (more generally)
mean-square rates hold and that these conditions are generally not sufficient for plug-in
GMM. Debiased GMM is computationally more complicated than plug-in GMM in re-
quiring estimation of a first step α in addition to γ, although estimation of α is required
anyway for standard errors for plug-in GMM, as in Newey (1994a).

Machine learning is useful for estimating economic and causal models where there are
high dimensional covariates or state variables, for example, as in Belloni, Chen, Cher-
nozhukov, and Hansen (2012), Robins et al. (2013), Belloni, Chernozhukov, and Hansen
(2014), Farrell (2015), Belloni, Chernozhukov, Fernandez-Val, and Hansen (2017), and
Athey, Imbens, and Wager (2018). Machine learning methods that are useful for these
purposes include Lasso, Dantzig, boosting, neural nets, random forests, and others. Or-
thogonal moment functions reduce model selection and/or regularization biases which
are common for machine learning first steps. Cross-fitting for debiased GMM also re-
duces bias and avoids the need for Donsker conditions, which are not known to hold for
many machine learning first steps. The large sample theory given here imposes only mean-
square convergence properties which will hold for a variety of machine learning first steps.
The advantages of debiased GMM make it preferred to plug-in GMM for many machine
learning first steps.

The orthogonal moment functions we give open the way to debiased GMM estimation
of many objects of interest. We illustrate by constructing debiased GMM estimators for
functionals of quantile regressions and for parameters of dynamic discrete choice models.
The quantile regression estimator allows for high dimensional regressors. The dynamic
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discrete choice estimator is based on machine learners of conditional choice probabilities
allowing for high dimensional state variables. The estimator incorporates a novel Lasso
estimator where the left-hand-side variable is a function of a machine learner. The esti-
mator and the results we give provide a prototype for using machine learning for dynamic
structural models. The relationship of the orthogonal moments in this paper to previous
literature is discussed in Section 4.

Debiased GMM is more robust to the additional first step α than previously recognized
in the literature. We show that the average of orthogonal moment functions does not de-
pend on α when γ is equal to the plim γ0 of γ̂. Consequently, estimators of α are not
required to converge faster than n−1/4, where n is the sample size. We also give automatic
estimators of α that use orthogonality in their construction and generalize Chernozhukov,
Newey, and Robins (2018) and Chernozhukov, Newey, and Singh (2018) to general mo-
ment functions and a larger set of first steps.

Doubly robust moment functions have been constructed by Robins, Rotnitzky, and
Zhao (1994), Robins and Rotnitzky (2001), Graham (2011), and Firpo and Rothe (2019).
This paper innovates by characterizing double robustness and deriving large classes of
new doubly robust moment functions, including affine functionals of least squares re-
gressions and other first steps obtained from orthogonality of residuals and instrumental
variables.

Targeted maximum likelihood (van der Laan and Rubin (2006)) based on machine
learners has been considered by van der Laan and Rose (2011). Here we focus on de-
biased GMM.

Recent work on debiased machine learning by Chernozhukov et al. (2018), Cher-
nozhukov, Newey, and Robins (2018), and Chernozhukov, Newey, and Singh (2018) is
partly based on and is also generalized by this paper. The construction of orthogonal mo-
ments given here was described in Chernozhukov et al. (2018), which cited this paper for
that construction and contains no results from this paper. The asymptotic theory in this
paper uses the orthogonal moment construction here to improve on the asymptotic the-
ory of Chernozhukov et al. (2018), as described in Section 6. The doubly robust moment
conditions considered in Chernozhukov, Newey, and Robins (2018) and Chernozhukov,
Newey, and Singh (2018) were derived in the first version of this paper, Chernozhukov,
Escanciano, Ichimura, and Newey (2016), and the asymptotic theory in those other papers
uses theory given in this paper. The automatic machine learner given here for the addi-
tional unknown functions α generalizes that in Chernozhukov, Newey, and Singh (2018).
In addition, Newey and Robins (2017) and Hirshberg and Wager (2019) were concerned
with linear functions of a regression that are formulated here. Furthermore, Bonhomme
and Weidner (2018) have shown the importance of orthogonal moment functions in speci-
fication analysis, Foster and Syrgkanis (2019) in deriving rates of convergence for machine
learners, Semenova (2018) for machine learning for partially identified models, and Singh
and Sun (2019) for machine learning of complier effects

There are other biases arising from nonlinearity of moment conditions in the first
step γ̂. Cattaneo and Jansson (2018) and Cattaneo, Jansson, and Ma (2018) gave use-
ful bootstrap and jackknife methods that reduce nonlinearity bias. Newey and Robins
(2017) showed that one can also remove this bias by cross-fitting in some settings. We use
cross-fitting in this paper.

Section 2 describes orthogonal moment functions and debiased GMM. Section 3 gives
the quantile and dynamic discrete choice examples. Section 4 shows and discusses orthog-
onality. Section 5 gives novel classes of doubly robust moment functions and characterizes
double robustness. Section 6 provides general and simple asymptotic theory for debiased
GMM. Proofs and precise bias results for plug-in estimators are given in the appendixes.
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2. DEBIASED GMM

This section describes the orthogonal moment functions, cross-fitting, and automatic
estimators of α we use for debiased GMM. We begin with an example.

EXAMPLE 1: An illustrative example has data observation W = (Y�X�Z) and param-
eter of interest θ0 = E[Zγ0(X)] = E[α0(X)γ0(X)] for γ0(X) = E[Y|X] and α0(X) =
E[Z|X]. This example is of interest in its own right as the component of the expected con-
ditional covariance E[Cov(Z�Y|X)] = E[ZY ] − θ0 that depends on unknown functions.
This covariance is useful for the analysis of covariance and for estimation of a partially
linear model (Robinson (1988)). We specify the identifying moment function as zγ(x) −θ
and the plim of γ̂ to be E[Y|X], so that γ̂ is a nonparametric regression estimator. Model
selection and/or regularization of γ̂ will typically lead to large biases in a plug-in estima-
tor θ̃ = ∑n

i=1 Ziγ̂(Xi)/n as previously mentioned, for n data observations Wi. An orthog-
onal moment function can be constructed by adding the FSIF, which for the identifying
moment function zγ(x) − θ was shown to be α(x)[y − γ(x)] in Proposition 4 of Newey
(1994a). The orthogonal moment function is the sum of the identifying moment function
and the FSIF, given by

ψ(w�γ�α�θ) := zγ(x) − θ+ α(x)
[
y − γ(x)

]
�

In this example, it follows by iterated expectations and subtracting and adding θ0 that

E
[
ψ(W�γ�α�θ)

] =E
[
α0(X)γ(X)

] − θ+E
[
α(X)

{
γ0(X) − γ(X)

}]
= θ0 − θ−E

[{
α(X) − α0(X)

}{
γ(X) − γ0(X)

}]
� (2.1)

Here departures of (γ�α) from (γ0�α0) have only a second-order effect on the average
orthogonal moment function, leading to small bias from first step estimation.

2.1. Constructing Orthogonal Moment Functions

To describe debiased GMM in general, let θ denote a finite dimensional parameter
vector of interest, γ be the unknown first step function from the Introduction, and W a
data observation with unknown cumulative distribution function (CDF) F0. We assume
that there is a vector g(w�γ�θ) of known functions of a possible realization w of W , γ,
and θ such that

E
[
g(W�γ0� θ0)

] = 0�

where E[·] is the expectation under F0 and γ0 is the probability limit (plim) under F0 of a
first step estimator γ̂. Here we assume that θ0 is identified by these moments, that is, that
θ0 is the unique solution to E[g(W�γ0� θ)] = 0 over θ in some set �.

The identifying moment functions g(w�γ�θ) and γ̂ can be used to estimate the parame-
ter of interest θ0. Let W1� � � � �Wn be a sample of i.i.d. data observations. Estimated sample
moment functions can be formed by plugging the first step estimator γ̂ into g(Wi�γ�θ) and
averaging over data observations to obtain

∑n

i=1 g(Wi� γ̂� θ)/n. One could form a “plug-
in” GMM estimator by minimizing a quadratic form in these estimated sample moments,
but such an estimator will be highly biased by first step model selection and/or regular-
ization as discussed in the Introduction. This bias can be reduced by using orthogonal
moment functions.
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The orthogonal moment functions we give are based on influence functions. To describe
them, we need a few additional concepts and notation. Let F denote a possible CDF for
a data observation W and suppose that the plim of γ̂ is γ(F) when F is the true distribu-
tion of a data observation W . Here γ(F) is the plim of γ̂ under general misspecification,
similar to Newey (1994a), where F is unrestricted except for regularity conditions such
as existence of γ(F) or the expectation of certain functions of the data. For example, if
γ̂(x) is a nonparametric estimator of E[Y|X = x], then γ(F)(x) = EF [Y|X = x] is the
conditional expectation function when F is the true distribution of W , which is well de-
fined under the regularity condition that EF [|Y |] is finite. We assume that γ(F0) = γ0,
consistent with γ0 being the plim of γ̂ when F0 is the CDF of W .

Next, let F0 again denote the true distribution of W , H be some alternative distribution
that is unrestricted except for regularity conditions, and Fτ = (1 − τ)F0 + τH for τ ∈
[0�1]. We assume that H is chosen so that γ(Fτ) exists for τ small enough and possibly
other regularity conditions are satisfied. We make the key assumption that there exists a
function φ(w�γ�α�θ) such that

d

dτ
E

[
g
(
W�γ(Fτ)� θ

)] =
∫

φ(w�γ0�α0� θ)H(dw)�

E
[
φ(W�γ0�α0� θ)

] = 0� E
[
φ(W�γ0�α0� θ)2

]
< ∞�

(2.2)

for all H and all θ. Here α is an unknown function, additional to γ, on which only
φ(w�γ�α�θ) depends, α0 is the α such that equation (2.2) is satisfied, and d/dτ is the
derivative from the right (i.e., for nonnegative values of τ) at τ = 0. This equation is a
well-known Gateaux derivative characterization of the influence function φ(w�γ0�α0� θ)
of the functional μ(F) = E[g(W�γ(F)� θ)], as in Von Mises (1947), Hampel (1974), and
Huber (1981). The restriction that γ(Fτ) exists allows φ(w�γ0�α0� θ) to be the influence
function when γ(F) is only well defined for certain types of distributions, such as when
γ(F) is a conditional expectation or pdf. Also, φ(w�γ0�α0� θ) is unique because we are
not restricting H except for regularity conditions. Here γ0 and α0 can depend on θ, equa-
tion (2.2) is assumed to hold for each θ ∈ �, and F0 and H do not depend on θ.

We refer to φ(w�γ�α�θ) as the first step influence function (FSIF) because it character-
izes the local effect of the first step plim γ(F) on the average moment function μ(F) as
Fτ varies away from F0 in any direction H. The FSIF can be calculated from the deriva-
tive in equation (2.2) by evaluating it where H is a point mass, for example, as shown in
Ichimura and Newey (2021), or as a solution to equation (3.9) of Newey (1994a). Equa-
tion (2.1) (and equation (3.9) of Newey (1994a)) is a strong condition with existence
of φ(w�γ�α�θ) generally equivalent to E[g(W�γ(F)� θ)] having a finite semiparamet-
ric variance bound. This φ(w�γ�α�θ) coincides with the “adjustment term” of Newey
(1994a) that accounts for the nonparametric estimator γ̂ in the asymptotic variance of
plug-in GMM when model selection and regularization biases are small. Equation (2.2) is
essentially equivalent to equation (3.9) of Newey (1994a), with the requirement that equa-
tion (2.2) be satisfied for all H in a regular, rich enough class replacing the requirement
that equation (3.9) of Newey (1994a) be satisfied for all regular parametric submodels, as
further explained in Ichimura and Newey (2021).

Orthogonal moment functions can be constructed by adding the FSIF to the identifying
moment functions to obtain

ψ(W�γ�α�θ) = g(W�γ�θ) +φ(W�γ�α�θ)� (2.3)
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This vector of moment functions has two key orthogonality properties. The first property
is that, for the set � of possible directions of departure of γ(F) from γ0, which we assume
to be linear,

d

dt
E

[
ψ(W�γ0 + tδ�α0� θ)

] = 0 for all δ ∈ � and θ ∈ �� (2.4)

where t is a scalar and the derivative is evaluated at t = 0. Here δ represents a possible
direction of deviation of γ(F) from γ0 and t the size of a deviation. This property means
that varying γ away from γ0 has no effect, locally, on E[ψ(W�γ�α0� θ)]. The second prop-
erty is that for the set A of α0 such that equation (2.2) is satisfied for some F0,

E
[
φ(W�γ0�α�θ)

] = 0 for all θ ∈ � and α ∈A� (2.5)

Consequently, varying α will have no effect, globally, on E[ψ(W�γ0�α�θ)] = E[g(W�γ0�
θ)] +E[φ(W�γ0�α�θ)] = E[g(W�γ0� θ)]. These properties are shown in Section 4.

EXAMPLE 1—continued: Equation (2.1) gives E[ψ(W�γ0 + tδ�α0� θ)] = θ0 − θ and
iterated expectations gives E[φ(W�γ0�α�θ)] = E[α(X){Y − γ0(X)}] = 0, so that both of
equations (2.4) and (2.5) are satisfied.

Constructing orthogonal moment functions is greatly facilitated by the wide variety of
known φ(W�γ�α�θ). For first step least squares projections (including conditional ex-
pectations), density weighted conditional means, and their derivatives φ(W�γ�α�θ) are
given in Newey (1994a). Hahn (1998) and Hirano, Imbens, and Ridder (2003) used those
results to obtain φ(W�γ�α�θ) for treatment effect estimators. Bajari, Hong, Krainer, and
Nekipelov (2010) derived φ(W�γ�α�θ) for some first steps used in structural estimation.
Hahn and Ridder (2013, 2019) derived φ(W�γ�α�θ) for generated regressors that de-
pend on first step conditional expectations. Chen and Liao (2015) derived φ(W�γ�α�θ)
for a first step that approximately minimizes the sample average of a function of a data
observation and γ. Ai and Chen (2007, p. 40) and Ichimura and Newey (2021) gave
φ(W�γ�α�θ) for first step estimators of functions satisfying conditional moment and or-
thogonality conditions, respectively. Semenova (2018) derived φ(W�γ�α�θ) for support
functions used in partial identification. This wide variety of known φ(W�γ�α�θ) can be
used to construct orthogonal moment functions in many settings.

2.2. Cross-Fitting

We combine orthogonal moment functions with cross-fitting, a form of sample splitting,
to construct debiased sample moments; for example, see Bickel (1982), Schick (1986),
Klaassen (1987), and Chernozhukov et al. (2018). Partition the observation indices (i =
1� � � � � n) into L groups I
 (
 = 1� � � � �L). Consider γ̂
, α̂
, and an initial estimator θ̃
 that
are constructed using all observations not in I
. Debiased sample moment functions are

ψ̂(θ) = ĝ(θ) + φ̂� ĝ(θ) = 1
n

L∑

=1

∑
i∈I


g(Wi� γ̂
� θ)�

φ̂ = 1
n

L∑

=1

∑
i∈I


φ(Wi� γ̂
� α̂
� θ̃
)�

(2.6)
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Large sample properties are given in Section 6 for fixed L. The choice of L = 5 works well
based on a variety of empirical examples and in simulations, for medium sized data sets
of a few thousand observations; see Chernozhukov et al. (2018). The choice L = 10 works
well for small data sets with the larger L providing more observations for construction of
γ̂
 and α̂
.

The cross-fitting used here, where ψ̂(θ) is an average over observations not used to
form γ̂
 and α̂
, eliminates bias due to averaging over observations that are used to con-
struct the first step. Eliminating such “own observation” bias helps remainders converge
faster to zero, for example, as in Newey and Robins (2017), and can be important in
practice, for example, as in the jackknife instrumental variables estimators of Angrist
and Krueger (1995) and Blomquist and Dahlberg (1999). It also eliminates the need for
Donsker conditions for γ̂
 and α̂
, which is important for many machine learning first
steps that are not known to satisfy such conditions, as discussed in Chernozhukov et al.
(2018).

A debiased GMM estimator is

θ̂ = arg min
θ∈�

ψ̂(θ)′ϒ̂ψ̂(θ)� (2.7)

where ϒ̂ is a positive semi-definite weighting matrix and � is the set of parameter values.
A choice of ϒ̂ that minimizes the asymptotic variance of θ̂ will be ϒ̂ = �̂−1, for

�̂ = 1
n

L∑

=1

∑
i∈I


ψ̂i
ψ̂
′
i
� ψ̂i
 = g(Wi� γ̂
� θ̃
) +φ(Wi� γ̂
� α̂
� θ̃
)�

There is no need to account for the presence of γ̂
 and α̂
 in ψ̂i
 because of the orthogo-
nality of ψ(w�γ�α�θ). An estimator V̂ of the asymptotic variance of

√
n(θ̂− θ0) is

V̂ = (
Ĝ′ϒ̂Ĝ

)−1
Ĝ′ϒ̂�̂ϒ̂Ĝ

(
Ĝ′ϒ̂Ĝ

)−1
� Ĝ= ∂ĝ(θ̂)

∂θ
� (2.8)

The initial estimator θ̃
 can be based on only the identifying moment conditions and
constructed as

θ̃
 = arg min
θ∈�

ĝ
(θ)′ϒ̂
ĝ
(θ)� ĝ
(θ) = 1
n− n


∑

′ �=


∑
i∈I
′

g(Wi� γ̃

′� θ)�

where ϒ̂
 uses only observations not in I
, n
 is the number of observations in I
, and γ̃

′

uses observations not in I
 and not in I
′ . One could iterate on the initial estimator θ̃


in the debiased moments ψ̂(θ) and/or �̂ by calculating θ̂ and/or �̂ a second time with
θ̃
 being a debiased GMM estimator obtained from a prior iteration. Because of the or-
thogonality condition (2.5), the use of θ̃
 in constructing φ̂ will not affect the asymptotic
distribution of θ̂.

EXAMPLE 1—continued: Here ψ(w�γ�θ) = zγ(x)−θ+α(x)[y−γ(x)]. Forming ψ̂(θ)
as we have described and solving ψ̂(θ̂) = 0 for θ̂ gives the debiased GMM estimator

θ̂ = 1
n

L∑

=1

∑
i∈I


{
Ziγ̂
(Xi) + α̂
(Xi)

[
Yi − γ̂
(Xi)

]}
�
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The efficiency of debiased GMM is entirely determined by the choice of moment func-
tions, first step, and weighting matrix. The matrix �̂−1 is an optimal choice of weighting
matrix as usual for GMM. The presence of φ̂ in the orthogonal moment functions ψ̂(θ)
does not affect identification of θ. The FSIF has mean zero for all possible distributions
of W so that φ̂ will converge in probability to zero. The sole purpose of including φ̂ is to
remove the local effect of γ̂
 on average moment functions.

2.3. Automatic Estimation of α0

The debiased moments require a first step estimator α̂
 with plim α0. When the form
of α0 is known, one can plug in nonparametric estimators of unknown components of α0

to form α̂
. We can also use the orthogonality of ψ(w�γ�α0� θ) with respect to γ in equa-
tion (2.4) to construct estimators of α0 without knowing the form of α0. This approach
is “automatic” in only requiring the orthogonal moment function ψ(W�γ�α�θ) and data
for construction of α̂
.

Equation (2.4) can be thought of as a population moment condition for α0 for each δ.
We can form a corresponding sample moment function by replacing the expectation by a
sample average and γ0 and θ0 by cross-fit estimators to obtain

ψ̂γ(δ�α) = d

dt

1
n− n


∑

′ �=


∑
i∈I
′

ψ(Wi� γ̃

′ + tδ�α� θ̃

′)|t=0� δ ∈ �� (2.9)

where γ̃

′ and θ̃

′ do not depend on observations in I
 or I
′ and we assume that
ψ(Wi� γ̃

′ + tδ�α� θ̃

′) is differentiable in t. We can then replace α by a sieve (i.e., para-
metric approximation) and estimate the sieve parameters using these sample moments
for a variety of choices of δ. We can also regularize to allow for a high dimensional speci-
fication for α. The sample moments in equation (2.9) depend only on observations not in
I
 so that the resulting α̂
 will also, as required for the cross-fitting in debiased GMM.

EXAMPLE 1—continued: Here α0 is a function of X that has finite second moment and

ψ̂γ(δ�α) = d

dt

1
n− n


∑

′ �=


∑
i∈I
′

{
Zi

[
γ̂

′ (Xi) + tδ(Xi)

]

+ α(Xi)
[
Yi − γ̂

′ (Xi) − tδ(Xi)

] − θ̃

′
}∣∣

t=0

= 1
n− n


∑
i/∈I


[
Zi − α(Xi)

]
δ(Xi)�

This is a sample moment corresponding to the population moment condition E[{Z −
α0(X)}δ(X)] = 0, which holds by α0(X) = E[Z|X]. If α(X) was replaced by a linear
combination ρ′b(x) of a dictionary b(x) = (b1(x)� � � � � bp(x))′ of functions and δ(X) cho-
sen to be one element bj(X) of the dictionary, then the sample moment function is

ψ̂γ

(
bj�ρ

′b
) = 1

n− n


∑
i/∈I


[
Zi − ρ′b(Xi)

]
bj(Xi)�

The collection of sample moment conditions ψ̂γ(bj�ρ
′b) = 0 (j = 1� � � � �p) are first-order

conditions for minimizing the least squares objective function for the regression of Zi on
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b(Xi). Adding an L1 penalty to this objective function and minimizing leads to the Lasso
least squares estimator

α̂
(x) = ρ̂′b(x)� ρ̂= arg min
ρ

∑
i/∈I


[
Zi − ρ′b(Xi)

]2
/n+ 2r

p∑
j=1

|ρj|�

The construction of α̂
 in Example 1 can be generalized to a wide class of regression
settings that will be useful for many additional examples. This generalization builds on
Example 1 to estimate more complicated objects, such as a functional of quantile regres-
sion in Example 2 below. We generalize γ from being a possible conditional expectation
to being an element of a linear set �. In Example 1, where the conditional expectation
is an unknown function of X , the � is all functions of X with finite second moment.
Instead, � could, for example, be restricted to be linear combinations of a sequence
(b1(X)� b2(X)� � � �), corresponding to a high dimensional regression. A corresponding
generalization of γ(F) being a condiitional expectation is to γ(F) satisfying an orthogo-
nality condition. For a scalar residual λ(w�γ(x)), we consider γ(F) ∈ � satisfying

EF

[
δ(X)λ

(
W�γ(F)(X)

)] = 0 for all δ ∈ �� (2.10)

The γ(F)(X) = EF [Y|X] of Example 1 satisfies this equation for λ(w�γ(x)) = y − γ(x)
and � equal to all functions of X with finite second moment. A high dimensional quantile
regression in Example 2 will satisfy this equation for λ(w�γ(x)) = ζ − 1(y < γ(x)) for
0 < ζ < 1 and � equal to linear combinations of (b1(X)� b2(X)� � � �). The FSIF for γ(F)
in equation (2.10) is

φ(w�γ�α�θ) = α(x�θ)λ
(
w�γ(x)

)
�

as in Ai and Chen (2007, p. 40) for conditional moments when � is unrestricted, and
Ichimura and Newey (2021) in general, where the formula for α(x�θ) is given.

Example 1 can be further generalized to consider a general vector of identifying mo-
ment functions other than zγ(x) − θ. Here there will be one α(x�θ) for each component
of g(w�γ�θ). Let (b1(X)� b2(X)� � � �) “span” �, meaning any δ ∈ � can be well approx-
imated in mean-square by a finite linear combination of bj(X). We will describe an es-
timator for the kth component αk(x�θ) of α(x�θ) corresponding to the kth component
gk(w�γ�θ) of g(w�γ�θ). Let λ̂iγ = −dλ(Wi� γ̂

′ (Xi)+t)/dt|t=0 for i ∈ I
′ and let ej denote
the jth column of a p-dimensional identity matrix. Then for b(X) = (b1(X)� � � � � bp(X))′,

ψ̂kγ

(
bj�ρ

′b
) = M̂jk
 − e′

jQ̂
ρ�

M̂jk
 = 1
n− n


∑

′ �=


∑
i∈I
′

d

dt
gk(Wi� γ̂

′ + tbj� θ̃

′)�

Q̂
 = 1
n− n


∑

′ �=


∑
i∈I
′

λ̂γib(Xi)b(Xi)′�

corresponding to the kth orthogonal moment function ψk(w�γ�α) = gk(w�γ�θ) +
αk(x�θ)λ(w�γ(x)) and the jth component bj of b(X). Let M̂k
 = (M̂1k
� � � � � M̂pk
)′ so
that

ψ̂kγ

(
bj�ρ

′b
) = ∂

∂ρj

{
M̂ ′

k
ρ− ρ′Q̂
ρ/2
}
�
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The collection of sample moment conditions −2ψ̂kγ(bj�ρ
′b) = 0 (j = 1� � � � �p) are first-

order conditions for minimizing −2M̂ ′
k
ρ + ρ′Q̂
ρ. Here we assume that we can normal-

ize so that vρ(X) := −dE[λ(W�γ0(X) + t)|X]/dt|t=0 > 0 and hence Q̂
 is positive semi-
definite asymptotically. Adding an L1 penalty to this objective function and minimizing
leads to the Lasso minimum distance estimator

α̂k
(x) = ρ̂′
k
b(x)� ρ̂k
 = arg min

ρ

{
−2M̂ ′

k
ρ+ ρ′Q̂
ρ+ 2r
p∑

j=1

|ρj|
}
� (2.11)

As usual for Lasso, we assume that each element bj(x) of the dictionary has been
standardized to have standard deviation 1. One choice of r would be r̂ =
arg minr

∑L


=1{−2M̂ ′
k
ρ̂

r
k
 + ρ̂′r

k
Q̂
ρ̂
r
k
} that minimizes a cross-validation criterion where

ρ̂r
k
 is from equation (2.11) for a given r and the minimization is over a grid of r values.
This estimator α̂k
(x) of αk0(x�θ0) generalizes that of Chernozhukov, Newey, and

Singh (2018) to allow for a residual λ(w�γ(x)) other than y − γ(x) and a general mo-
ment function. The nested sample splitting used for γ̂

′ (Xi) requires that the first step
learner be computed for L2 subsamples. Use of γ̂
(x) as a starting value for computation
of each γ̂

′ (Xi) may aid in this computation. The nested cross-fitting allows for a very
general first step that need only have a mean-square convergence rate.

Orthogonality was used to estimate unknown components of doubly robust moment
functions for the average treatment effect by Vermeulen and Vansteelandt (2015), Tan
(2020), and Avagyan and Vansteelandt (2021) in order to obtain standard errors that are
robust to misspecification. We use orthogonality here to estimate the unknown α0 in the
FSIF for a general identifying moment function and first step. The resulting standard
errors are robust to misspecification because the FSIF takes full account of the plim of γ̂
under general misspecification.

It would be interesting to use the moment functions (2.9) to construct α̂ for first steps
other than the generalized linear regression γ(F) in equation (2.10). That is beyond the
scope of this paper and is reserved to future work, including identification of α0 and
asymptotic theory for α̂.

This approach to estimating the FSIF uses its form φ(w�γ�α�θ) to construct an estima-
tor of α0. This approach is parsimonious in estimating only unknown parts of φ(w�γ�α�θ)
rather than the whole function. It is also possible to estimate the entire FSIF using just the
first step and the identifying moments. Such estimators are available for first step series
and kernel estimation. For first step series estimation, an estimator of φ(w�γ�α�θ) can
be constructed by treating the first step estimator as if it were parametric and applying a
standard formula for parametric two-step estimators, for example, as in Newey (1994a),
Ackerberg, Chen, and Hahn (2012), and Chen and Liao (2015). For parametric maxi-
mum likelihood, the resulting orthogonal moment functions are the basis of Neyman’s
(1959) C-alpha test. For first step kernel estimation, one can use the numerical influence
function estimator of Newey (1994b) to estimate φ(w�γ�α�θ), as suggested in a previous
version of this paper and shown to work in a low dimensional nonparametric setting in
Bravo, Escanciano, and van Keilegom (2020). The idea is to differentiate with respect to
the effect of the ith observation on sample moments. Kernel estimators do not seem well
suited to high dimensional settings so we do not consider them here.

It is also possible to estimate the FSIF using a numerical derivative version of equa-
tion (2.2). This approach has been given in Carone, Luedtke, and van der Laan (2019)
and Bravo, Escanciano, and van Keilegom (2020) for construction of orthogonal moment
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functions. We focus here on the more parsimonious approach of estimating α0 when there
is a known form φ(w�γ�α�θ) for the FSIF.

3. FURTHER EXAMPLES OF DEBIASED GMM

In this section, we give two fully worked out examples of debiased GMM estimators,
functionals of quantile regressions, and structural parameters of a dynamic discrete choice
model.

3.1. Example 2: Functional of a Quantile Regression

The object of interest in this example is an expected linear function of a quantile re-
gression

θ0 = E
[
m(W�γ0)

]
� γ(F) = arg min

γ∈�
EF

[
v
(
Y − γ(X)

)]
�

v(u) = [
ζ − 1(u < 0)

]
u� 0 < ζ < 1�

(3.1)

where m(w�γ) is a linear functional of γ, Y is a dependent variable of interest, � is
a linear set of functions of x (such as all functions of X with finite second moment),
and we assume the minimum γ(F) exists. An example of m(w�γ) is a weighted aver-
age derivative of γ where m(w�γ) = ∫

ω(x)[∂γ(x)/∂x1]dx for a weight ω(x). Here the
identifying moment function is g(w�γ�θ) = m(w�γ) − θ. The first-order condition for
this γ(F) is equation (2.10) with λ(w�γ(x)) = ζ − 1(y < γ(x)), so the FSIF has the form
φ(w�γ�α) = α(x)λ(y�γ(x)), as in Section 2.3.

In this example, the automatic estimator α̂
 of equation (2.11) does not exist because
λ(w�γ(x) + t) is not continuous in γ and hence not differentiable. We address this com-
plication by using kernel weighting in the construction of a Q̂
 to use in equation (2.11).
Let γ̂
(x) be a learner of γ0, computed from observations not in I
, and γ̂

′ (x) be com-
puted from observations not in I
 or I
′ . Also let K(u) be a bounded, univariate kernel,
with

∫
K(u) du = 1 and

∫
K(u)udu = 0, h a bandwidth, and b(x) be a p × 1 vector of

functions of x. We specify that

Q̂
 = 1
n− n


∑

′ �=


∑
i∈I
′

1
h
K

(
Yi − γ̂

′ (Xi)

h

)
b(Xi)b(Xi)′�

The role of the kernel term in this Q̂
 is to smooth over the discontinuity in λ(w�γ(x)) =
ζ−1(y < γ(x)) at γ(x) = y . This Q̂
 estimates E[f (0|X)b(X)b(X)′] where f (0|X) is the
conditional pdf of Y − γ0(X) evaluated 0.

A debiased GMM estimator of θ0 can be formed from any learner γ̂
 of γ0 as

θ̂ = 1
n

L∑

=1

∑
i∈I


[
m(Wi� γ̂
) + α̂
(Xi)λ

(
Wi� γ̂
(Xi)

)]
� V̂ = 1

n

L∑

=1

∑
i∈I


ψ̂2
i
�

α̂
(x) = b(x)′ρ̂
� ρ̂
 = arg min
ρ

{
−2M̂ ′


ρ+ ρ′Q̂
ρ+ 2r
p∑

j=1

|ρj|
}
� (3.2)

M̂
j = 1
n− n


∑
i/∈I


m(Wi�bj)� M̂
 = (M̂
1� � � � � M̂
p)′�
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where ψ̂i
 = m(Wi� γ̂
) + α̂
(Xi)λ(Wi� γ̂
(Xi)) − θ̂. The asymptotic theory for this estima-
tor is given in Section 6. That theory requires that the regularization constant r for α̂
 goes
to zero slower than the conventional Lasso rate of

√
ln(p)/n, in order to accommodate

the presence of kernel weighting and γ̂

′ (Xi) in Q̂
.
Previously, Chaudhuri, Doksum, and Samarov (1997) gave a plug-in kernel estimator of

the average derivative of a conditional quantile and the FSIF for that functional. Acker-
berg, Chen, Hahn, and Liao (2014) also gave an expression for the FSIF for functionals
of conditional quantiles other than the weighted average derivative. Example 2 innovates
in giving a debiased GMM estimator for a general linear functional of a quantile regres-
sion. Also, the α̂
(x) here is a linear combination of a dictionary of functions rather than
a ratio of a function of X and an estimator of the conditional pdf of Y − γ0(X) as was
used previously for estimating asymptotic variances.

3.2. Example 3: Dynamic Discrete Choice

For dynamic discrete choice with high dimensional state variables, we estimate struc-
tural parameters via learners of conditional choice probabilities. This approach replaces
computation of expected value functions with nonparametric estimation as suggested in
Hotz and Miller (1993). For simplicity, we focus this example on binary choice, provid-
ing methods and results that will be available for the more complicated models employed
more widely in practice. In particular, we provide a Lasso estimator of conditional value
function differences where the dependent variable is a function of estimated future choice
probabilities. In Section 6, we provide convergence rate results for this estimator. We also
give the FSIF for this kind of first step. This analysis provides a prototype for estimation
of dynamic structural models with high dimensional state variables.

In dynamic binary choice, individuals choose between two alternatives j = 1 and j =
2 in T time periods to maximize the expected present discounted value of per period
utility Ujt = Dj(Xt)′θ0 + εjt (j = 1�2; t = 1� � � � � T ), where εjt is i.i.d. with known CDF,
independent of the entire history {Xt}∞

t=1 of a state variable vector Xt , and Xt is Markov
of order 1 and stationary. The parameter of interest is θ0. We develop an estimator that
allows for high dimensional Xt .

We assume that choice 1 is a renewal choice where the conditional distribution of Xt+1

given Xt and choice 1 does not depend on Xt . We also assume that D1(Xt) = (−1�0′)′

and the first element of D2(Xt) equals 0 so that the first element in θ is a binary
choice constant. Let Yjt equal a dummy variable equal to 1 when choice j is made and
γ10(Xt) = Pr(Y2t = 1|Xt) be the conditional choice probability of alternative 2. Also
let V (Xt) denote the expected value function. As in Hotz and Miller (1993), there is
a known function H(p) such that for γ20(Xt) = E[H(γ10(Xt+1))|Xt�Y2t = 1] and γ30 =
E[H(γ10(Xt+1))|Y1t = 1],

E
[
V (Xt+1)|Xt�Y2t = 1

] −E
[
V (Xt+1)|Y1t = 1

] = γ20(Xt) − γ30� (3.3)

For example, when ε1t and ε2t are independent Type I extreme value, this equation is
satisfied for H(p) = 0�5227 − ln(1 − p). Then for the CDF �(a) of εt1 − εt2, D(Xt) =
D2(Xt) − D1(Xt), and δ the discount factor, the conditional choice probability for j = 2
is

Pr(Y2t = 1|Xt) = �
(
a(Xt�θ0�γ20�γ30)

)
�

a(x�θ�γ2�γ3) = D(x)′θ+ δ
{
γ2(x) − γ3

}
�

(3.4)
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We consider data of i.i.d. observations on individuals each followed for T time peri-
ods, that also includes the T + 1 observation XT+1 of the state variables, where W =
(X ′

1�Y21� � � � �X
′
T �Y2T �X

′
T+1)′. An estimator of θ0 can be obtained by constructing first

step estimators γ̂2(x) and γ̂3, substituting these estimators for γ2 and γ3 in a(x�θ�γ2�γ3)
in equation (3.4), and then maximizing a binary choice log-likelihood as if γ̂2(x) and γ̂30

were true. We specify as identifying moment functions the derivative of the pseudo log-
likelihood associated with the binary choice probability in equation (3.4) with respect to θ,

g(W�γ�θ) = 1
T

T∑
t=1

D(Xt)π
(
a(Xt�θ�γ2�γ3)

)[
Y2t −�

(
a(Xt�θ�γ2�γ3)

)]
�

π(a) = �a(a)
�(a)

[
1 −�(a)

] � �a(a) = d�(a)
da

�

(3.5)

Estimators of γ10(x), γ20(x), and γ30 are needed as a first step γ̂
 for the identifying
moment function. We will consider any γ̂1
(x) that converges sufficiently quickly in mean-
square. For example, γ̂1
 could be logit Lasso or a linear Lasso estimator with dependent
variable Y2t . We use Lasso to construct γ̂2
(x) in order to control for estimation error that
results from an estimated dependent variable. Let γ̂1

′ (x) be an estimator of the condi-
tional choice probability computed from observations not in I
 or I
′ . Let b(x) denote a
p× 1 dictionary of functions of the state variables x. We form γ̂2
(x) and γ̂3
 as

γ̂2
(x) = b(x)′β̂2
�

β̂2
 = arg min
β

{
−2M̂ ′

2
β+β′Q̂2
β+ 2r1

p∑
j=1

|βj|
}
�

M̂2
 = 1
(n− n
)T

∑

′ �=


∑
i∈I
′

T∑
t=1

Y2itb(Xit)H
(
γ̂1

′ (Xi�t+1)

)
�

Q̂2
 = 1
(n− n
)T

∑
i/∈I


T∑
t=1

Y2itb(Xit)b(Xit)′�

γ̂3
 = 1

P̂1(n− n
)T

∑

′ �=


∑
i∈I
′

T∑
t=1

Y1itH
(
γ̂1

′ (Xi�t+1)

)
�

P̂1 = 1
(n− n
)T

∑
i/∈I


T∑
t=1

Y1it �

(3.6)

Here γ̂2
(x) is Lasso with left-hand-side variable H(γ̂1

′ (Xi�t+1)) and right-hand-side vari-
ables b(Xit)Y2it , and γ̂3
 is a sample mean conditional on Y1it = 1. Here γ̂2
 and γ̂3
 use all
observations with i /∈ I
. The nested sample splitting in γ̂1

′ (x) is useful in only requiring
mean-square convergence rates for conditional choice probabilities, although it is some-
what complicated. When L is of moderate size (e.g., L = 5), there may be many γ̂1

′ (x)
to compute (e.g., 25), although an estimate for a particular 
 and 
′ could provide a good
starting value for other splits.
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This example is more complicated than Examples 1 and 2 in having multiple first steps.
When there are multiple first steps, the FSIF is the sum of the FSIF’s for each first step
that is obtained while holding the other first steps fixed at their true value, as in Newey
(1994a, p. 1357). Here there are three first steps, γ̂1
(x), γ̂2
(x), and γ̂3
. Consequently,
the FSIF is the sum of three terms, one term for each first step, given by

φ(W�γ�α�θ) =φ1(W�γ�α�θ) +φ2(W�γ�α�θ) +φ3(W�γ�α)�

φ1(W�γ�α�θ) = 1
T

T∑
t=1

α1(Xt�θ)
[
Y2t − γ1(Xt)

]
�

φ2(W�γ�α�θ) = 1
T

T∑
t=1

α2(Xt�Y2t � θ)
[
H

(
γ1(Xt+1)

) − γ2(Xt)
]
�

φ3(W�γ�α) = α3
1
T

T∑
t=1

Y2t

{
H

(
γ1(Xt+1)

) − γ3

}
�

Viewing each of γ̂1
(x), γ̂2
(x), and γ̂3
 as nonparametric regressions, the form of each
φj(w�γ�α�θ) follows from Proposition 4 of Newey (1994a). The true functions α10, α20,
and α30 are

α10(x�θ0) = {
E

[
α20(Xt�Y2t � θ0)|Xt+1 = x

] + α30E[Y1t|Xt+1 = x]
}
Hp

(
γ10(x)

)
�

α20(x� y2� θ0) = −δD(x)π
(
a(x)

)�a

(
a(x)

)
y2

�
(
a(x)

) � a(x) = a(x�θ0�γ20�γ30)�

α30 = −E
[
α20(Xt�Y2t � θ0)

]
/P10�P10 = E[Y1t]�

(3.7)

In this example, we construct α̂2
, α̂3
, and α̂1
 using the known form of the FSIF given
here. We obtain an initial estimator θ̃
 from binary choice pseudo maximum likelihood
over i /∈ I
, t ≤ T with γ2 and γ3 replaced by γ̂2
 and γ̂3
 respectively in the choice prob-
ability formula. Also, let âit = a(Xit� θ̂
� γ̂2
� γ̂3
) and construct α̂2
(Xit�Y2it � θ̃
) by substi-
tuting âit for a(x), Xit for x, Y2it for y2, and θ̃
 for θ0 in the formula for α20(x� y2� θ0) in
equation (3.7). Next, obtain α̂3
 by replacing α20(Xt�Y2t � θ0) by α̂2(Xit�Y2it � θ̃
) and popu-
lation expectations by sample averages over i /∈ I
� t ≤ T in the third line of equation (3.7).
Also, obtain α̂1
(x�θ) by replacing α30 and γ10(x) by α̂3
 and γ̂1
(x) respectively in the first
line of equation (3.7) and by replacing the two conditional expectations by the predicted
values from Lasso regressions over i /∈ I
� t ≤ T with regressors b(Xi�t+1), dependent vari-
ables equal to each element of α̂2
(Xit�Y2it � θ̃
) and Y1it respectively, and regularization
factors r2 and r3 respectively, analogously to γ̂2
(x). Finally, substitute α̂1
, α̂2
, and α̂3
 for
α10, α20, and α30 and γ̂1
, γ̂2
, and γ̂3
 for γ1, γ2, and γ3 in the formulas for φ1, φ2, and φ3

and construct a debiased GMM estimator as in Section 2.1.
To explore the finite sample properties of this estimator, we carried out a Monte Carlo

study for a model similar to that of Rust (1987). The state variables consisted of a positive
variable x1 (mileage) and other variables x2� � � � � x6 with transition

X1�t+1 = 1 + 1(Y2t = 1)X1t + S2
t+1�
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St+1|Xt ∼N

(
0�2 +

5∑
k=1

ckXt�k+1�1

)
�

c = (0�1�0�025�0�0111�0�0063�0�004)�

where (X2t � � � � �X6t) is i.i.d. over t, X2t , X4t , and X6t are chi-squared with one degree of
freedom, and X3t and X5t are binary with Pr(Xkt = 1) = 1/2, k = 3�5. We specified that
D(x) is two-dimensional with D1(x) = (−1�0)′ and D2(x) = (0�

√
x1)′ and that ε1t , ε2t are

independent Type I extreme value, so that �(a) = ea/(1 + ea) corresponds to binary logit.
To generate the data, we solved the Bellman equation on a finite grid using the fact that

the state space has a two-dimensional structure in terms of x1 and
∑5

k=1 ckxk+1, with linear
interpolation between grid points. We did not enforce this index structure in estimation,
so that the estimation treated the state space as dimension six. We carry out 500 Monte
Carlo replications for T = 10 and n = 100, 300, 1000, and 10�000. We specified five-fold
cross-fitting where L = 5. We consider three specifications of the vector b(x) used by
Lasso, consisting of (a) the elements of x, (b) those from (a) and squares of elements
of x; (c) those from (b) and all products of two elements of x. The conditional choice
probability estimators γ̂1
�
′ (x) and γ̂1
(x) were logit Lasso trimmed to be between 0�0001
and 0�9999. We used the MATLAB Lasso and logit Lasso procedures for computation.
The regularization values r1, r2, and r3 for each Lasso were chosen by two-fold cross-
validation. Although we do not know whether the resulting r’s satisfy the conditions in
the asymptotic theory of Section 6, we do this so that the estimator in the Monte Carlo is
based on an “off the shelf” machine learner of unknown functions.

The results are reported in Tables I, II, and III. The PI labels the plug-in GMM esti-
mator based only on identifying moment functions, DB the debiased GMM, Bias is the
absolute value of bias, Med SE denotes the median of the estimated standard errors cor-
responding to equation (2.8), SD denotes standard deviation, and Cvg denotes coverage
probability of a nominal 95 percent confidence interval.

In all cases, debiased GMM has much smaller bias than the plug-in estimator. For the
richest dictionary b(X) of Table III, coverage probabilities are quite close to the nominal
value though conservative. For the less rich dictionaries of Tables I and II, enough bias
remains relative to variance that coverage probabilities are far from their nominal values
for the largest sample size. In contrast, plug-in GMM has large bias and confidence inter-
val coverage probabilities that are far from their nominal values in all cases. Remarkably,
for larger sample sizes or smaller dimensional b(x), debiased GMM is no more variable

TABLE I

b(X) LINEAR

PI Bias DB Bias Med SE PI SD DB SD PI Cvg DB Cvg

n= 100 θ2 0.35 0.00 0.13 0.11 0.10 0.17 0.99
θ1 0.61 0.04 0.21 0.21 0.18 0.17 0.96

n= 300 θ2 0.33 0.01 0.08 0.07 0.06 0.00 0.98
θ1 0.58 0.05 0.12 0.13 0.11 0.00 0.94

n= 1000 θ2 0.33 0.01 0.04 0.04 0.03 0.00 0.98
θ1 0.58 0.06 0.07 0.07 0.06 0.00 0.87

n= 10000 θ2 0.32 0.01 0.01 0.01 0.01 0.00 0.93
θ1 0.57 0.05 0.02 0.02 0.02 0.00 0.21
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TABLE II

b(X) LINEAR, SQUARES

PI Bias DB Bias Med SE PI SD DB SD PI Cvg DB Cvg

n = 100 θ2 0.24 0.03 0.13 0.11 0.33 0.61 0.98
θ1 0.41 0.03 0.21 0.20 0.38 0.57 0.97

n = 300 θ2 0.24 0.03 0.08 0.07 0.07 0.08 0.98
θ1 0.41 0.02 0.12 0.13 0.13 0.11 0.97

n = 1000 θ2 0.24 0.02 0.04 0.04 0.03 0.00 0.98
θ1 0.42 0.01 0.07 0.07 0.06 0.00 0.97

n = 10�000 θ2 0.24 0.02 0.01 0.01 0.01 0.00 0.81
θ1 0.42 0.01 0.02 0.02 0.02 0.00 0.95

TABLE III

b(X) LINEAR, SQUARES, AND INTERACTIONS

PI Bias DB Bias Med SE PI SD DB SD PI Cvg DB Cvg

n = 100 θ2 0.16 0.01 0.13 0.11 0.38 0.85 0.98
θ1 0.26 0.03 0.21 0.19 0.29 0.82 0.96

n = 300 θ2 0.15 0.02 0.07 0.07 0.07 0.51 0.98
θ1 0.24 0.01 0.12 0.12 0.12 0.52 0.97

n = 1000 θ2 0.14 0.01 0.03 0.03 0.03 0.04 0.99
θ1 0.23 0.01 0.07 0.07 0.06 0.07 0.97

n = 10�000 θ2 0.13 0.01 0.01 0.01 0.01 0.00 0.98
θ1 0.23 0.01 0.02 0.02 0.02 0.00 0.94

than plug-in GMM, and in several cases is less variable. Overall, the performance of the
debiased GMM estimator in this example with an “off the shelf” machine learner sug-
gests that debiased GMM for dynamic discrete choice and other structural models could
be useful in practice.

An alternative debiased GMM estimator could be obtained by taking the plim’s of γ̂1

and γ̂2 to be least squares projections that solve equation (2.10) for corresponding resid-
uals and using automatic debiasing like that described in Section 2.3. Monte Carlo exam-
ples in other settings, such as Singh and Sun (2019), find that approach delivers estima-
tors and standard errors with good finite sample properties. We intend to consider this
approach to debiased GMM for dynamic discrete choice in future work.

4. ORTHOGONALITY

To show the orthogonality conditions of equations (2.4) and (2.5), we begin with a sim-
pler, more basic result. We assume that equation (2.2) is satisfied for all F0 in some set F
and for θ ∈ �. For F ∈ F , let α(F) denote α0 such that equation (2.2) is satisfied when
F0 = F , that is, when F is the CDF of W . Note that α0 = α(F0). Also let

ψ̄(γ�α�θ) :=E
[
ψ(W�γ�α�θ)

]
�

Because φ(w�γ�α�θ) is the FSIF, it will satisfy the mean zero condition in equation (2.2)
identically in F , so that 0 ≡ EF [φ(W�γ(F)�α(F)� θ)]. Substituting Fτ = (1 − τ)F0 + τH
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for F and differentiating this identity with respect to τ at τ = 0 gives

0 =
∫

φ(w�γ0�α0� θ)H(dw) + ∂

∂τ
E

[
φ

(
W�γ(Fτ)�α(Fτ)� θ

)]
= ∂

∂τ
E

[
g
(
W�γ(Fτ)� θ

)] + ∂

∂τ
E

[
φ

(
W�γ(Fτ)�α(Fτ)� θ

)]
(4.1)

= ∂

∂τ
ψ̄

(
γ(Fτ)�α(Fτ)� θ

)
�

where the first and third equalities follow by the chain rule and the second equality fol-
lows from the influence function formula in equation (2.2). This equation shows that the
functions γ and α have no first-order effect on ψ̄(γ�α�θ) along the path (γ(Fτ)�α(Fτ)).
The second equality shows how the presence of E[φ(W�γ�α�θ)] “partials out” the effect
of varying τ on E[g(W�γ(Fτ)� θ)]. The zero mean property of the FSIF implies that the
local effect of γ on E[g(W�γ�θ0)] along the path γ(Fτ) is cancelled, or “partialled out,”
by the effect of varying γ and α on E[φ(W�γ�α�θ)] along the path (γ(Fτ)�α(Fτ)). The
following result gives precise conditions for equation (4.1):

THEOREM 1: If, for any θ ∈ �, (i) equation (2.2) is satisfied, (ii)
∫
φ(w�γ(Fτ)�α(Fτ)�

θ)Fτ(dw) = 0 for all τ ∈ [0� τ̄) with τ̄ > 0, and (iii)
∫
φ(w�γ(Fτ)�α(Fτ)� θ)F0(dw) and∫

φ(w�γ(Fτ)�α(Fτ)� θ)H(dw) are continuous at τ = 0, then equation (4.1) is satisfied.

The proofs of this result, Theorems 2–7, and Lemma 8 are given in Appendix A.

EXAMPLE 1—continued: Here g(w�γ�θ) = zγ(x)−θ and φ(w�γ�α) = α(x)[y−γ(x)]
so that, by equation (2.1),

ψ̄(γ�α�θ) = E
[
Zγ(X)

] − θ+E
[
α(X)

{
Y − γ(X)

}]
= θ0 − θ−E

[{
α(X) − α0(X)

}{
γ(X) − γ0(X)

}]
�

When α(X) = α0(X), the presence of γ in the identifying moment E[g(W�γ�θ)]
is exactly cancelled, or partialled out, by the presence of γ in E[φ(W�γ�α0)] =
E[α0(X){γ0(X) − γ(X)}], so that variation in γ has no effect.

Equation (4.1) is a zero total derivative condition for joint variation in (γ�α) along the
path (γ(Fτ)�α(Fτ)). In many cases, γ(F) and α(F) are distinct objects so that it is possible
to choose Fτ so that α(Fτ) varies with τ and γ(Fτ) = γ0 remains equal to its true value.
For example, γ(F) and α(F) may be determined by the distributions of different random
variables and so be distinct objects. In such cases, equation (2.2) implies the orthogonality
property of equation (2.5).

THEOREM 2: For any α ∈A and θ ∈�, if (i) there is Fα such that α(Fα) = α and γ(Fα
τ ) =

γ0 for Fα
τ = (1−τ)Fα+τF0 and all τ small enough, and (ii) d

∫
g(w�γ(Fα

τ )� θ)Fα(dw)/dτ =∫
φ(w�γ0�α�θ)F0(dw), then

E
[
φ(W�γ0�α�θ)

] = 0� (4.2)

Note that hypothesis (ii) is just the characterization of the FSIF in equation (2.2) when
the true distribution is Fα and H is set equal to F0. Thus, Theorem 2 shows that equation
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(2.5) is satisfied at every θ ∈ � and every α such that there is some distribution Fα such
that α= α(Fα) and γ(Fα

τ ) = γ0 for all τ close enough to zero. In all the examples of which
we are aware, equation (4.2) is easy to confirm by inspection of φ(W�γ0�α�θ).

EXAMPLE 1—continued: Here E[φ(W�γ0�α�θ)] = E[α(X){Y − γ0(X)}] = 0 for any
α(X) by γ0(X) = E[Y|X] and iterated expectations.

Theorem 2 shows that equation (2.5) is a general property of the FSIF and is not con-
fined to a particular set of examples.

The orthogonality property of equation (2.4) will follow from Theorem 1 when Fτ can
be specified so that α(Fτ) = α0 and some regularity conditions are satisfied. In that case,
equation (4.1) implies ∂ψ̄(γ(Fτ)�α0� θ)/∂τ = 0. As in the discussion preceding Theo-
rem 2, choosing Fτ in this way will generally be possible when γ(F) and α(F) are distinct
objects depending on distinct features of F . Equation (2.4) then will follow if the set of
pathwise derivatives dγ(Fτ)/dτ is well defined and rich enough and the chain rule can be
applied, as it can under Hadamard differentiability of ψ̄(γ�α0� θ) in γ and γ(Fτ) in τ.

THEOREM 3: If there is a norm ‖γ‖, a linear set �, and a set H such that, for all H ∈
H: (i) α(Fτ) = α0 for all τ small enough and equation (4.1) is satisfied; (ii) ψ̄(γ�α0� θ) is
Hadamard differentiable at γ0 tangentially to �; (iii) γ(Fτ) is Hadamard differentiable at
τ = 0; (iv) the closure of {∂γ(Fτ)/∂τ :H ∈H} is �, then

∂

∂t
ψ̄(γ0 + tδ�α0� θ)|t=0 = 0 for all δ ∈ �� (4.3)

Furthermore, if ψ̄(γ�α0� θ0) is twice continuously Frechet differentiable in a neighborhood of
γ0, then there is C > 0 such that for ‖γ − γ0‖ small enough,∥∥ψ̄(γ�α0� θ0)

∥∥ ≤ C‖γ − γ0‖2� (4.4)

Hadamard and Frechet differentiability are defined and discussed, for example, in van
der Vaart (1998, 20.2). The first conclusion of this result is the orthogonality condi-
tion of equation (2.4). Thus, Theorems 2 and 3 combined show that adding the FSIF
φ(w�γ�α�θ) to identifying moment functions g(w�γ�θ) is a construction such that
ψ(w�γ�α�θ) = g(w�γ�θ)+ φ(w�γ�α�θ) satisfies the orthogonality conditions of equa-
tions (2.4) and (2.5).

The second conclusion of Theorem 3, given as equation (4.4), bounds the departure
from zero of the expected moment functions as just γ varies. This bound is useful for for-
mulating regularity conditions for root-n consistency of debiased GMM when ψ̄(γ�α0� θ0)
is nonlinear in γ, as explained in Section 6. When formulating regularity conditions for
particular moment functions and first step estimators, it may be simpler to directly con-
firm equation (4.4). In many cases, equation (4.4) will be satisfied under specific regular-
ity conditions when ‖a‖ is a mean-square norm ‖a‖ = √

E[a(W )2]. Equation (4.4) with a
mean-square norm ‖γ − γ0‖ has wide applicability to machine learning first steps where
mean-square convergence rates are available.

If γ were taken to be the limit of a nonparametric estimator γ̂ for fixed bandwidth,
number of series terms, or regularization, then we can think of ‖γ − γ0‖ as bias in γ from
nonparametric estimation. Frechet differentiability of ψ̄(γ�α0� θ0) in γ and equation (4.4)
then imply that ψ̄(γ�α0� θ0) = o(‖γ − γ0‖), so that the orthogonal moments ψ̄(γ�α0� θ0)
shrink to zero faster than the nonparametric bias. Thus, the orthogonal moment functions
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constructed here have the small bias property considered in Newey, Hsieh, and Robins
(1998, 2004). As usual for GMM, the estimator θ̂ will inherit this property of the orthog-
onal moment functions.

The construction of orthogonal moment functions we consider has antecedents in
the literature on functional estimation, where the identifying moment conditions are
g(w�γ�θ) = m(γ) − θ for some explicit functional of m(γ) of γ. Here φ(w�γ�α) is the
influence function of m(γ(F)) and ψ(w�γ�α�θ) = m(γ) − θ + φ(w�γ�α). Such orthog-
onal moment functions when γ is a pdf were given by Hasminskii and Ibragimov (1978),
Pfanzagl and Wefelmeyer (1982), and Bickel and Ritov (1988). Newey, Hsieh, and Robins
(1998, 2004) generalized this construction to allow m(w�γ) to depend on w, to γ that is a
product of a pdf and conditional mean, and to γ = F . Robins, Li, Tchetgen Tchetgen, and
van der Vaart (2008) gave similar constructions. The construction given here for any γ was
also described in Chernozhukov et al. (2018) and Bravo, Escanciano, and van Keilegom
(2020) and originated in the joint research for this paper.

Equation (4.1) is similar to Theorem 2.2 of Robins, Li, Tchetgen Tchetgen, and van
der Vaart (2008) but different in applying directly to the standard influence function
characterization in equation (2.2) without specifying a score function (derivative of the
log-likelihood of a model). Proceeding in this way allows us to show orthogonality of
ψ(w�γ�α�θ) using equation (4.1). To the best of our knowledge, equation (4.1) has not
appeared in this form previously. Also, Theorem 2 and Theorem 3, for any first step γ,
were not shown in any previous work of which we are aware. These results are distin-
guished from Newey, Hsieh, and Robins (1998, 2004) and Robins, Li, Tchetgen Tchetgen,
and van der Vaart (2008, 2013) in the conclusion of Theorem 2 and in providing, for any
first step γ, key regularity conditions used in the asymptotic theory of Section 6.

The orthogonalization given here is estimator based rather than model based, relying
only on g(w�γ�θ) and the plim γ(F) of γ̂ under general misspecification and not on
the specification of a model. The behavior of the sample moments under misspecifica-
tion is fully accounted for by using the plim γ(F) of γ̂ under general misspecification in
the construction of the orthogonal moment functions. Consequently, standard errors will
be robust to misspecification when the number of moment functions and parameters of
interest is the same.

There are also model based approaches to construction of orthogonal moment func-
tions. Efficient scores and influence functions for semiparametric models are known to
be orthogonal for first steps corresponding to those in the model, as in Bickel, Klaassen,
Ritov, and Wellner (1993) and van der Vaart (1998). More generally, the residual from the
projection of identifying moment functions on the tangent set is orthogonal for first steps
corresponding to those in the model, as in Newey (1990). The orthogonality of such mo-
ment functions is sensitive to model misspecification unless the model is nonparametric.
Also, orthogonality is sensitive to using first step estimators of precisely the objects speci-
fied in the model, as pointed out by van der Laan (2014) and Vermeulen and Vansteelandt
(2015).

The construction we give bypasses the semiparametric efficiency framework and is
based on the simpler influence function characterization in equation (2.2) and the limit
γ(F) for any semiparametric estimator as in Newey (1994a). This construction highlights
the distinct roles of g(w�γ�θ) as identifying moments and φ(w�γ�α�θ) as a bias cor-
rection that does not affect identification and is entirely determined by g(w�γ�θ) and
γ(F). The distinct role of φ(w�γ�α�θ) leads directly to Theorem 2 and motivates the
automatic estimation of α0 in Section 2. For these reasons, we describe the orthogonal
moment construction as adding the FSIF to identifying moments rather than finding an
efficient influence function.
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The orthogonal moment functions we give are nonparametric, efficient influence func-
tions for a special object, the plim of the identifying moment functions evaluated at
γ(F), that is, EF [g(W�γ(F)� θ)]. This object is nonparametric and so it has a unique
influence function, as in van der Vaart (1991) and Newey (1994a). By differentiating
EFτ [g(W�γ(Fτ)� θ0)] with respect to τ, applying the chain rule, and using (2.2), it fol-
lows that the influence function of this object at F0 is ψ(W�γ0�α0� θ0) under the mo-
ment condition E[g(W�γ0� θ0)] = 0. The sample average of the debiased moment func-
tion ψ̂(θ0) is a nonparametric estimator of EF [g(W�γ(F)� θ0)]. If ψ̂(θ0) is asymptotically
equivalent to a sample average and locally regular, meaning that for H and data that
are i.i.d. with CDF Fτn = (1 − τn)F0 + τnH and τn = O(1/

√
n) the limiting distribution

of
√
n{ψ̂(θ0) − EFτn

[g(W�γ(Fτn)� θ0)]} does not depend on τn, then uniqueness of the
influence function for a nonparametric object implies

1
n

L∑

=1

∑
i∈I


[
g(Wi� γ̂
� θ0) +φ(Wi� γ̂
� α̂
� θ̃
)

]

= ψ̂(θ0) = 1
n

n∑
i=1

ψ(Wi�γ0�α0� θ0) + op

(
n−1/2

)
� (4.5)

That is, the only sample average of a function of the data that ψ̂(θ0) can be asymptoti-
cally equivalent to, and also be locally regular, is

∑n

i=1 ψ(Wi�γ0�α0� θ0)/n. Equation (4.5)
is precisely an asymptotic version of orthogonality where the sample average ψ̂(θ0) is
asymptotically equivalent to the sample average of the same function with estimators γ̂
,
α̂
, and θ̃
 replaced by their limits. In this standard way, orthogonality of ψ(Wi�γ0�α0� θ0)
can be understood as resulting from ψ(Wi�γ0�α0� θ0) being the efficient influence func-
tion of the nonparametric object EF [g(W�γ(F)� θ)] evaluated at the plim γ(F) of the first
step.

In some cases, the identifying moment functions g(w�γ�θ) may already be orthogonal,
so that φ(w�γ�α�θ) = 0. An important class of orthogonal moment functions are those
where g(w�γ�θ) is the derivative with respect to θ of an objective function where non-
parametric parts have been concentrated out. This class of moment functions includes
those of Robinson (1988), Ichimura (1993), Klein and Spady (1993), and various partially
linear regression models where γ represents a conditional expectation. It also includes the
efficient score for a semiparametric model when the nonparametric component estimates
the maximizer of the expected log-likelihood; see Newey (1994a, pp. 1358–1359) and van
der Vaart (1998, pp. 391–396). In general, suppose that there is a function q(w�θ�ζ) such
that g(w�γ�θ) = ∂q(w�θ�ζ(θ))/∂θ and ζ(θ) = arg maxζ E[q(W�θ�ζ)], where γ includes
ζ(θ) and possibly additional functions. Proposition 2 of Newey (1994a) and Lemma 2.5
of Chernozhukov et al. (2018) then imply that g(w�γ�θ) is orthogonal.

5. DOUBLE ROBUSTNESS

The zero derivative condition in equation (2.4) is an appealing robustness prop-
erty. This condition can be interpreted as local insensitivity of the average moments
ψ̄(γ�α0� θ) = E[ψ(W�γ�α0� θ)] to γ, with ψ̄(γ�α0� θ) varying little as γ varies away from
γ0. Because it is difficult to get unknown functions exactly right, especially in high dimen-
sional settings, this property is an appealing one.
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Such robustness considerations, well explained in Robins and Rotnitzky (2001), have
motivated the development of doubly robust moment functions that have expectation
that does not depend on one first step if the other first step is set equal to its plim. Dou-
bly robust moment conditions allow two chances for identifying moment conditions to
hold, an appealing robustness feature. Also, doubly robust moment conditions have sim-
pler conditions for asymptotic normality than general debiased GMM, as discussed in
Section 6.

In this section, we characterize double robustness and derive several novel classes
of doubly robust moment functions. We construct doubly robust moment functions by
adding to identifying moment functions the FSIF. In this way, the derivation of new dou-
bly robust moment functions is aided by the construction of orthogonal moment functions
in Section 2.

5.1. Characterizing Double Robustness

Double robustness is that, for all γ ∈ �, α ∈A, and θ ∈�,

ψ̄(γ�α0� θ) = ψ̄(γ0�α0� θ) = ψ̄(γ0�α�θ)� (5.1)

where � is the set of possible plim’s γ(F) that we continue to assume is linear. The second
equality of equation (5.1) already follows from the conclusion of Theorem 2 that implies

ψ̄(γ0�α�θ) =E
[
g(W�γ0� θ)

] +E
[
φ(W�γ0�α�θ)

] =E
[
g(W�γ0� θ)

] = ψ̄(γ0�α0� θ)�

The first conclusion of Theorem 3 gives a local version of the first equality in equation
(5.1). If ψ̄(γ�α0� θ) is affine in γ, then this local property becomes global so that double
robustness holds. Clearly, doubly robust moment conditions have ψ̄(γ�α0� θ) that is con-
stant in γ, and therefore are affine, so that ψ̄(γ�α0� θ) being affine in γ and satisfying the
first conclusion of Theorem 3 is a complete characterization of double robustness.

THEOREM 4: ψ(w�γ�α�θ) is doubly robust if and only if ψ̄(γ�α0� θ) is affine in γ and

dψ̄(γ0 + tδ�α0� θ)
dt

∣∣∣∣
t=0

= 0 for all δ ∈ ��

This characterization can be used to construct doubly robust moment functions. A good
place to start is an identifying moment function g(w�γ�θ) that is affine in γ. If the as-
sociated FSIF φ(w�γ�α�θ) is also affine in γ, then the orthogonal moment function
ψ(w�γ�α�θ) = g(w�γ�θ) + φ(w�γ�α�θ) will be affine in γ and so be doubly robust,
since the second condition of Theorem 4 is satisfied by Theorem 3. In the remainder of
this section, we use Theorem 4 to construct a variety of doubly robust moment functions.

Robins and Rotnitzky (2001) gave conditions for the existence of doubly robust mo-
ment functions in semiparametric models. Theorem 4 is complementary to those results
in giving a characterization of doubly robust moment functions.

5.2. Double Robustness for Regression First Steps

An important set of examples are those with θ0 =E[m(W�γ0)] where m(W�γ) is linear
in γ,

γ(F) = arg min
γ∈�

EF

[{
Y − γ(X)

}2]
�
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and � is a linear set of functions that is closed in mean-square (meaning γ ∈ � if, for
every ε > 0, there exists γε ∈ � with E[{γ(X) − γε(X)}2] < ε). Here the identifying
moment function is g(w�γ�θ) = m(w�γ) − θ, which is affine in γ. Also, by Proposi-
tion 4 of Newey (1994a), if there is α0(X) ∈ � with finite second moment such that
E[m(W�γ)] =E[α0(X)γ(X)] for all γ ∈ �, the FSIF is

φ(w�γ�α) = α(x)
[
y − γ(x)

]
�

for α ∈ �. Here the set A of possible α is �. By m(w�γ) and φ(w�γ�α) both affine in γ,
Theorem 4 gives the following:

THEOREM 5: If m(w�γ) is linear in γ ∈ � and there is α0 ∈ � such that E[m(W�γ)] =
E[α0(X)γ(X)] for all γ ∈ �, then ψ(w�γ�α�θ) = m(w�γ) − θ+ α(x)[y − γ(x)] is doubly
robust.

Existence of α0(x) in Theorem 5 is guaranteed by the Riesz representation theorem if
E[m(W�γ)] is mean-square continuous in γ, so we refer to α0(x) as the Riesz represen-
ter. In Example 1, note that ψ(w�γ�α�θ) =Zγ(X) +Yα(X) − α(X)γ(X) − θ is doubly
robust by Theorem 5. Many important doubly robust moment functions are special cases
of Theorem 5, including average treatment effects, policy effects, and average derivatives,
as discussed in Newey and Robins (2017), Chernozhukov, Newey, and Robins (2018), Hir-
shberg and Wager (2019), and Chernozhukov, Newey, and Singh (2018). In these papers,
a variety of other doubly robust moment functions are also formulated based on Theo-
rem 5.

5.3. Double Robustness for Nonparametric IV

A larger set of important examples are those where the first step minimizes a population
two-stage least squares objective function based on an affine residual. Let λ(W�γ) denote
a scalar residual function that is affine in γ, B ={b(X)} denote a linear set of possible
instrumental variables b(X) that is closed in mean-square, and projF (a(W )|S) denote
the least squares projection of a(W ) on a set S that is linear and closed in mean-square
when F is the true CDF. We consider debiased GMM where the plim of γ̂ is

γ(F) = arg min
γ∈�

EF

[
projF

(
λ(W�γ)|B

)2]
� (5.2)

This γ(F) is the plim of the nonparametric 2SLS estimator of Newey and Powell (2003),
Newey (1991), and Ai and Chen (2003). It follows from Ai and Chen (2007, p. 40) and
Ichimura and Newey (2021) that when E[λ(W�γ0)b(X)] = 0 for all b ∈ B, which we as-
sume, and certain other conditions are satisfied, then the FSIF has the form

φ(w�γ�α�θ) = α(x�θ)λ(w�γ)� α(x�θ) ∈ B�

It will follow from Theorem 4 that if the identifying moment function g(w�γ�θ) and the
residual λ(w�γ) are affine in γ on a linear set � that is closed in mean-square, then the
orthogonal moment function

ψ(w�γ�α�θ) = g(w�γ�θ) + α(x�θ)λ(w�γ)

will be affine also, and so will be doubly robust.
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A special case, that generalizes the linear regression functionals of Theorem 5 to allow
for endogeneity, has λ(W�γ) = Y − γ(Z). Let A denote the mean-square closure of
{projF0

(γ(Z)|B) : γ ∈ �}.

THEOREM 6: If (i) m(w�γ) is linear in γ and there is vm(Z) ∈ � such that E[m(W�γ)] =
E[vm(Z)γ(Z)] for all γ ∈ �; (ii) there exists bm ∈ B such that projF0

(bm(X)|�) = vm(Z);
(iii) E[b(X){Y − γ0(Z)}] = 0 for all b ∈ B, then ψ(w�γ�α�θ) = m(w�γ) − θ + α(x)[y −
γ(z)] is doubly robust for α0(X) = projF0

(bm(X)|A).

Condition (i) is like the hypothesis that E[m(W�γ)] = E[α0(X)γ(X)] in Theorem 5,
condition (ii) is similar to the Severini and Tripathi (2012) condition for root-n consistent
estimability of θ0, and (iii) is a correct specification condition.

EXAMPLE 4: Many novel doubly robust moment functions can be constructed based on
Theorem 6, including policy effects and average derivatives. A weighted average deriva-
tive example has m(w�γ) = v̄(z)∂γ(z)/∂z1 for some known weight v̄(z) where � is all
functions of Z with finite second moment. Integration by parts gives

E
[
m(W�γ)

] =E
[
vm(Z)γ(Z)

]
� vm(Z) = −∂

{
f0(Z)v̄(Z)

}
/∂z1

f0(Z)
�

where f0(z) is the marginal pdf of Z. Then, by Theorem 6, a doubly robust moment
function is

ψ(w�γ�α�θ) = v̄(z)
∂γ(z)
∂z1

− θ+ α(x)
[
y − γ(z)

]
�

when there exists bm(X) with vm(Z) =E[bm(X)|Z]. This is a doubly robust moment func-
tion that could be used to construct a doubly robust version of the plug-in estimator of Ai
and Chen (2007).

Using Theorem 4 to construct doubly robust moment functions can depend on speci-
fying γ to make g(w�γ�θ) and φ(w�γ�α�θ) affine in γ. We illustrate with a well-known
example.

EXAMPLE 5: Suppose that the object of interest is θ0 = E[Y ∗], where Y = 1(D = 1)Y ∗

is observed for an observed completed data indicator D ∈ {0�1} and the data are miss-
ing at random with E[Y ∗|X�D = 1] = E[Y ∗|X] for observed covariates X . Inverse prob-
ability weighting gives θ0 = E[DY/P0(X)] = E[P0(X)−1E[DY|X]], which is nonlinear
in the unknown propensity score P0(X) = Pr(D = 1|X). A corresponding affine in γ
identifying moment function is g(w�γ�θ) = g(w�γ�θ) = γ(x) dy − θ with true first step
γ0(X) = P0(X)−1. This γ0 minimizes the objective function in equation (5.2) at F = F0 for
λ(w�γ) = 1 − γ(x)d that is affine in γ and B equal to the set of all functions of X with
finite second moment. Also, for α0(X) =E[Y|X�D= 1] =E[DY|X]γ0(X), we have

E
[
g(W�γ�θ0)

] =E
[
E[DY|X]

{
γ(X) − γ0(X)

}]
=E

[
α0(X)γ0(X)−1

{
γ(X) − γ0(X)

}]
=E

[
α0(X)

{
γ(X)P0(X) − 1

}]
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= E
[
α0(X)

{
γ(X)D− 1

}]
= −E

[
α0(X)λ(W�γ)

]
�

The doubly robust moment function from equation (5.3) is then ψ(w�γ�α�θ) = dγ(x)y−
θ + α(x)(1 − γ(x)d), which is the doubly robust moment function of Robins, Rotnitzky,
and Zhao (1994). This example shows how a classic doubly robust moment function is a
special case of Theorem 4, with moment condition that is affine in a first step γ for γ0

equal to the inverse propensity score.

5.4. Double Robustness for Probability Density First Step

Another interesting class of doubly robust moment conditions are those where the first
step γ is a pdf of a function X of the data observation W . By Proposition 5 of Newey
(1994a), the first step influence function has the form

φ(w�γ�α�θ) = α(x�θ) −
∫

α(u�θ)γ(u) du�

which is affine in γ. When the identifying moment function is affine, adding this FSIF
gives a doubly robust moment function. For g(w�γ�θ) = m(w�γ)−θ, a double robustness
result is the following:

THEOREM 7: If m(W�γ) is linear in γ and there exist α0(x) with
∫
α0(u)2 du < ∞

and E[m(W�γ)] = ∫
α0(u)γ(u) du for all γ with

∫
γ(u)2 du < ∞, then ψ(W�γ�α�θ) =

m(W�γ) − θ+ α(X) − ∫
α(u)γ(u) du is doubly robust.

Here α0(x) is the Riesz representer of Proposition 5 of Newey (1994a) for the Lebesgue
inner product.

EXAMPLE 6: An example is the density weighted average derivative of Powell, Stock,
and Stoker (1989), where g(w�γ�θ) = −2y · ∂γ(x)/∂x − θ and α0(x) = ∂{E[Y|X =
x]γ0(x)}/∂x. Because g(w�γ�θ) is affine in γ, Theorem 7 implies

ψ(W�γ�α�θ) = −2Y
∂γ(X)
∂x

− θ+ α(X) −
∫

α(u)γ(u) du

is doubly robust. Double robustness of this moment function seems to be a novel result.

Robustness results for multiple first steps can be obtained from simple extensions of
Theorems 2–4. When γ is a S × 1 vector of first steps and each first step satisfies a dis-
tinct orthogonality condition or is a pdf, as in this Section, then there will be one FSIF
φs(w�γs�αs� θ) for each distinct component γs of γ (s = 1� � � � � S), obtained by letting γs

vary holding all other components of γ fixed at the corresponding component of γ0. The
orthogonal moment function is then

ψ(w�γ�α�θ) = g(w�γ�θ) +
S∑

s=1

φs(w�γs�αs� θ)�

Each FSIF will satisfy E[φs(W�γs0�αs� θ)] = 0 identically in αs and θ by Theorem 2.
Consider varying γs while γs̃ = γs̃0 for each s̃ �= s. Then g(w�γ�θ) + φs(w�γs�αs0� θ)
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will satisfy Theorem 3 as γs varies, and by Theorem 4, E[g(W�γ�θ) + φs(W�γs�αs0� θ)]
does not vary with γs if and only if E[g(W�γ�θ) + φs(W�γs�αs0� θ)] is affine in γs. Thus
ψ(w�γ�α�θ) will be multiply robust in the sense that E[ψ(W�γ0�α�θ0)] = 0 for any α and
E[ψ(W�γ�α0� θ0)] = 0 as γs varies holding all other components of γ fixed at their plims
under the affine condition of the preceding sentence. These multiple robustness features
generalize those of Tchetgen Tcehtgen (2009) to the orthogonal moment functions we
consider.

Doubly robust moment functions also can be used for identification of the parameter
of interest θ0, for example, as in Escanciano and Li (2021).

6. ASYMPTOTIC THEORY

In this section, we give simple and general asymptotic theory for debiased GMM. We
begin with conditions for the key property

√
nψ̂(θ0) = 1√

n

n∑
i=1

ψ(Wi�θ0�γ0�α0) + op(1)� (6.1)

ASSUMPTION 1: E[‖ψ(W�θ0�γ0�α0)‖2] <∞ and

(i)
∫ ∥∥g(w� γ̂
� θ0) − g(w�γ0� θ0)

∥∥2
F0(dw)

p−→ 0�

(ii)
∫ ∥∥φ(w� γ̂
�α0� θ0) −φ(w�γ0�α0� θ0)

∥∥2
F0(dw)

p−→ 0�

(iii)
∫ ∥∥φ(w�γ0� α̂
� θ̃
) −φ(w�γ0�α0� θ0)

∥∥2
F0(dw)

p−→ 0�

These are mild mean-square consistency conditions for γ̂
 and (α̂
� θ̃
) separately. Let

�̂
(w) :=φ(w� γ̂
� α̂
� θ̃
) −φ(w�γ0� α̂
� θ̃
) −φ(w� γ̂
�α0� θ0) +φ(w�γ0�α0� θ0)�

ASSUMPTION 2: For each 
= 1� � � � �L , either (i)

√
n

∫
�̂
(w)F0(dw)

p−→ 0�
∫ ∥∥�̂
(w)

∥∥2
F0(dw)

p−→ 0�

or (ii)
∑

i∈I
 ‖�̂
(Wi)‖/√n
p−→ 0, or (iii)

∑
i∈I
 �̂
(Wi)/

√
n

p−→ 0.

This condition imposes a rate condition on the interaction remainder �̂
(w), that its
average must go to zero faster than 1/

√
n. Condition (iii) is a minimal regularity condition

that is used in Newey and Robins (2017).

ASSUMPTION 3: For each 
 = 1� � � � �L , (i)
∫
φ(w�γ0� α̂
� θ̃
)F0(dw) = 0 with prob-

ability approaching 1; and either (ii) ψ̄(γ�α0� θ0) is affine in γ; or (iii) ‖γ̂
 − γ0‖ =
op(n−1/4) and ‖ψ̄(γ�α0� θ0)‖ ≤ C‖γ − γ0‖2 for all γ with ‖γ − γ0‖ small enough; or (iv)√
nψ̄(γ̂
�α0� θ0)

p−→ 0.
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Assumption 3 incorporates Theorem 2 in (i) and doubly robust moment functions
through (ii), in which case Assumption 3 imposes no conditions additional to Assump-
tions 1 and 2. Conditions (iii) and (iv) are alternative small bias conditions that are only
required to hold for γ̂
, and not for α̂
. Condition (iii) requires a faster than n−1/4 rate for
γ̂ as is familiar from the semiparametric estimation literature. In many cases, (iii) will be
satisfied for the mean-square norm ‖a‖ = √

E[a(W )2] so that Assumptions 1–3 will only
require mean-square convergence rates.

LEMMA 8: If Assumptions 1–3 are satisfied, then equation (6.1) is satisfied.

This key asymptotic result differs from previous results of, for example, Andrews
(1994), Newey (1994a), and Chen, Linton, and van Keilegom (2003) in requiring no
Donsker conditions. This feature is made possible by the use of cross-fitting in the mo-
ment conditions. Avoiding Donsker conditions is important for machine learning first
steps that generally do not, or are not known to, satisfy Donsker conditions, as previously
discussed in Chernozhukov et al. (2018).

The absence of Donsker conditions helps the conditions of Lemma 8 be much simpler
than previous results. The use of orthogonal moment conditions also makes the condi-
tions simpler because they avoid the need to show that

1√
n

L∑

=1

n∑
i=1

φ(Wi� γ̂
�α0� θ0)
p−→ 0� (6.2)

which is required for plug-in estimators, as discussed in Appendix C of the Supplemental
Material (Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2022)). Showing
that this condition is satisfied typically involves substantial calculation that is specific to
the estimator γ̂
.

At the same time, Lemma 8 is more general than previous results in applying to any first
step estimator, rather than a specific one like the early results of, for example, Robinson
(1988), Powell, Stock, and Stoker (1989), and others. Furthermore, all that is required of
the first step estimator is mean-square consistency as in Assumption 1 and mean-square
rates as in Assumptions 2 and 3. A wide variety of first step estimators will satisfy these
conditions, notably machine learners where mean-square consistency and rates have been
obtained.

The debiased GMM estimator θ̂ and Lemma 8 are more complicated in involving con-
struction of and properties for α̂
. Some such α̂
 is needed in any case for asymptotic
variance estimation for a plug-in estimator, which will have the same form as V̂ , so that
this feature does not make debiased GMM more complicated than a plug-in estimator
for large sample inference.

Lemma 8 shares this generality and simplicity with the asymptotic theory of Cher-
nozhukov et al. (2018). Lemma 8 improves on Chernozhukov et al. (2018) in allowing
α̂
 to converge slower than n−1/4 in general, in Assumption 1 applying separately to γ̂
 and
α̂
, and having weaker conditions for terms that involve both γ̂
 and α̂
 in Assumption 2.
These improvements result from Theorem 2 and the structure of orthogonal moments we
consider, as the sum of identifying moment functions and the FSIF.

The next condition is useful for consistency of �̂ that appears in the debiased GMM
asymptotic variance estimator of equation (2.8).



LOCALLY ROBUST SEMIPARAMETRIC ESTIMATION 1527

ASSUMPTION 4:
∫ ‖g(w� γ̂
� θ̃
) − g(w� γ̂
� θ0)‖2F0(dw)

p−→ 0 and
∫ ‖�̂
(w)‖2 ×

F0(dw)
p−→ 0 for each 
 = 1� � � � �L.

It is also important to have conditions for convergence of the Jacobian of the identifying
sample moments ∂ĝ(θ̄)/∂θ

p−→ G = E[∂g(W�γ0� θ0)/∂θ] for any θ̄
p−→ θ0. To that end,

we impose the following condition:

ASSUMPTION 5: G exists and there is a neighborhood N of θ0 and ‖ · ‖ such that (i) for
each 
, ‖γ̂
 − γ0‖ p−→ 0; (ii) for all ‖γ − γ0‖ small enough, g(W�γ�θ) is differentiable in θ
on N with probability approaching 1 and there are C > 0 and d(W�γ) such that, for θ ∈ N
and ‖γ − γ0‖ small enough,∥∥∥∥∂g(W�γ�θ)

∂θ
− ∂g(W�γ�θ0)

∂θ

∥∥∥∥ ≤ d(W�γ)‖θ− θ0‖1/C; E
[
d(W�γ)

]
<C�

(iii) For each 
= 1� � � � �L, j, and k,
∫ |∂gj(w� γ̂
� θ0)/∂θk−∂gj(w�γ0� θ0)/∂θk|F0(dw)

p−→
0.

With these conditions in place, the asymptotic normality of semiparametric GMM fol-
lows in a standard way.

THEOREM 9: If Assumptions 1–3 and 5 are satisfied, θ̂
p−→ θ0, ϒ̂

p−→ ϒ, and G′ϒG is
nonsingular, then

√
n(θ̂− θ0)

d−→ N(0� V )� V = (
G′ϒG

)−1
G′ϒ�ϒG

(
G′ϒG

)−1
�

If also Assumption 4 is satisfied, then V̂ = (Ĝ′ϒ̂Ĝ)−1Ĝ′ϒ̂�̂ϒ̂Ĝ(Ĝ′ϒ̂Ĝ)−1 p−→ V .

This result and Theorems 10–12 to follow are proven in the Supplemental Material.
This result assumes consistency of θ̂. In Appendix F, we give primitive conditions for con-
sistency that are like those of this section in using mean-square consistency of first steps.
When θ and g(w�γ�θ) have the same dimension, these conditions allow for misspecifica-
tion where θ0 is interpreted as the unique solution to E[g(W�γ0� θ)] = 0.

6.1. Functionals of NPIV

Functionals of a first step satisfying an orthogonality condition E[b(X)λ(W�γ0)] = 0
for all b ∈ B, similar to Section 5.3, are of general interest. We give conditions for an
identifying moment function m(w�γ) − θ that includes Example 2. As in Ichimura and
Newey (2021), the FSIF has the form α(x)λ(w�γ). Debiased GMM is

θ̂ = 1
n

L∑

=1

∑
i∈I


[
m(Wi� γ̂
) + α̂
(Xi)λ(Wi� γ̂
)

]
� V̂ = 1

n

L∑

=1

∑
i∈I


ψ̂2
i
�

where ψ̂i
 = m(Wi� γ̂
) + α̂
(Xi)λ(Wi� γ̂
) − θ̂. Let λ̄(X�γ) = E[λ(W�γ)|X], V =
Var(m(W�γ0) + α0(X)λ(W�γ0)), and ‖a‖ =

√∫
a(w)2F0(w) denote the mean-square

norm.
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THEOREM 10: If (i) E[λ(W�γ0)b(X)] = 0 for all b ∈ B and α̂
 ∈ B with probability ap-
proaching 1; (ii) α0(X) and E[λ(W�γ0)2|X] are bounded and E[m(W�γ0)2] < ∞; (for 
=
1� � � � �L), (iii)

∫
[m(w� γ̂
)−m(w�γ0)]2F0(dw)

p−→ 0,
∫

[λ(w� γ̂
)−λ(w�γ0)]2F0(dw)
p−→

0, ‖α̂
 − α0‖ p−→ 0; (iv) either (a)
∫

[α̂
(x) − α0(x)]2[λ(w� γ̂
) − λ(w�γ0)]2F0(dw)
p−→ 0

and
√
n‖α̂
 − α0‖‖λ̄(γ̂
) − λ̄(γ0)‖ p−→ 0, or (b)

√
n‖α̂
 − α0‖‖λ(γ̂
) − λ(γ0)‖ p−→ 0 and

α̂
(x) in ψ̂i
 is replaced by ᾱ
(x) = α̂
(x)1(|α̂
(x)| ≤ M) + sgn(α̂
(x))M1(|α̂
(x)| > M)
and M‖λ(γ̂
) − λ(γ0)‖ p−→ 0; (v)

√
nψ̄(γ̂
�α0� θ0)

p−→ 0, then

√
n(θ̂− θ0)

d−→ N(0� V )� V̂
p−→ V �

6.2. Example 2: Functionals of Quantile Regression

We will specify conditions that allow us to apply Theorem 10 to this problem. The next
condition will be sufficient for condition (iv) of Theorem 10 for λ(w�γ(x)) in Section 3.1.

ASSUMPTION 6: (i) There exists vm(X) in � such that E[m(W�γ)] = E[vm(X)γ(X)] for
all γ(X) in �; (ii) U = Y − γ0(X) is continuously distributed and there is C > 0 such that
the conditional pdf f (u|X) of U conditional on X satisfies C−1 ≤ f (0|X) ≤ C and is twice
continuously differentiable in u with probability 1 with |∂jf (u|X)/∂uj| ≤ C (j = 1�2); (iii) �
is closed in mean-square.

This condition specifies that E[m(W�γ)] is a mean-square continuous linear functional
of γ with Riesz representer vm(X) and imposes some restrictions on the conditional pdf
of U given X . Here α0(X) = arg minα∈� E[f (0|X){f (0|X)−1vm(X) −α(X)}2] is the linear
projection of f (0|X)−1vm(X) on � weighted by the conditional pdf f (0|X). The α̂
(X)
given in Section 3 will estimate α0(X) because weighting by f (0|X) is incorporated in the
kernel weighting included in Q̂
. This weighting allows us to avoid inverting an estimator
of f (0|X). We obtain a mean-square convergence rate for this α̂
(x) by extending the re-
sults of Chernozhukov, Newey, and Singh (2018) to allow kernel weighting in Q̂
. Because
this paper is focused on the properties of θ̂, we reserve the full conditions to Appendix
D of the Supplemental Material, only stating here the conditions required of the kernel
K(u), the bandwidth h, and the regularization factor r in the Lasso minimum distance es-
timator in equation (3.2). This condition will require that r shrinks slower than the usual
Lasso rate.

ASSUMPTION 7: (i) K(u) is a symmetric bounded kernel of order κ with bounded support;
(ii) h

√
n −→ ∞; (iii) for each 
, 
′, ‖γ̂

′ −γ0‖ = Op(n−dγ); (iv)

√
ln(p)/(hn) +h2 +n−dγ =

o(r); (v) r −→ 0; (vi) there is C > 0 such that |m(W�bj)| ≤C for all j.

The following result gives conditions for asymptotic inference for the estimator of a
linear functional of a regression quantile estimator.

THEOREM 11: If (i) Assumptions 6 and 7 are satisfied; (ii) E[m(W�γ0)2] < ∞ and∫
[m(w� γ̂
) − m(w�γ0)]2F0(dw)

p−→ 0; (iii) ‖γ̂
 − γ0‖ = Op(n−dγ) for 1/4 < dγ < 1/2; ei-
ther (iv) Assumption D1 is satisfied and

√
n
√
rn−dγ −→ 0 or (v) Assumptions D1, D3, and

D4 are satisfied and
√
nr2ξ/(1+2ξ)n−dγ −→ 0; and (vi) vm(X) and α0(X) are bounded, then

√
n(θ̂− θ0)

d−→ N(0� V )� V̂
p−→ V �
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This result depends on the regression quantile estimator converging at a mean-square
rate that is faster than n−1/4. Such a rate for an L1 regularized regression quantile estima-
tor was derived by Belloni and Chernozhukov (2011).

6.3. Example 3: Dynamic Discrete Choice

A result that is important for the properties of θ̂ for dynamic discrete choice and more
generally for economic structural models is a convergence rate for the estimator γ̂2(x) of
the value function term in the choice probability. We maintain independence of observa-
tions across i but allow arbitrary dependence across t.

ASSUMPTION 8: (i) There is ε > 0 such that γ10(X) ∈ [ε�1 − ε], for all 
, 
′, γ̂1

′ (Xt) ∈
[ε�1−ε], andH(p) is twice continuously differentiable on [ε�1−ε]; (ii) for all 
, 
′, ‖γ̂1

′ −
γ0‖ = Op(n−d1), 0 < d1 < 1/2; (iii) Assumptions D1 - D4 are satisfied with α0(x) = γ20(x),
εn = n−d1 , and sparse approximation rate ξ1 > 1/2; (iv) n−d1 = o(r1) and r1 = O(n−d1 ln(n)).

This Assumption is sufficient for a uniform convergence rate of the estimator γ̂2(x) as
in Lemma E6 of Appendix E. In practice, condition (i) requires fixed trimming where
γ̂1

′ (Xt) is censored below by ε and above by 1 − ε, with ε being known. Here and in
Theorem 12 below, we impose tighter restrictions on the penalty sizes r1, r2, and r3 than
needed in order to allow smaller sparse approximation rates, for example, ξ1 in Assump-
tion 8.

THEOREM 12: If (i) Assumption 8 is satisfied, (ii) �(a) > 0 for all a ∈ 
, ln�a(a) is
concave, �(a) is twice differentiable with uniformly bounded derivatives, D(x) is bounded,
E[D(X)D(X)′] is nonsingular; (iii) Assumptions D1, D3, and D4 are satisfied for α0(x)
equal to each element of E[D(Xt)π(a0(Xt))�a(a(Xt)Y2t/�(a(Xt))|Xt+1 = x] with sparse
approximation rate ξ2 and for E[Y1t|Xt+1 = x] with sparse approximation rate ξ3; and
(iv) d1 > 1/4; (v) 1 + [(2ξ1 − 1)/(2ξ1 + 1)]2ξ2/[2ξ2 + 1] > 1/2d1, n−d1(2ξ1−1)/(2ξ1+1) =
o(r2), and r2 = O(n−d1(2ξ1−1)/(2ξ1+1) ln(n)); (vi) ξ3/[2ξ3 + 1] + d1 > 1/2,

√
ln(p)/n =

o(r3), and r3 = O(
√

ln(p)/n ln(n)); (vii) (4ξ1 − 1)/(2ξ1 + 1) > 1/2d1, then, for V =
G−1E[ψ0(W )ψ0(W )′]G−1,

√
n(θ̂− θ0)

d−→ N(0� V )� V̂
p−→ V �

APPENDIX A: PROOFS OF KEY RESULTS

PROOF OF THEOREM 1: Let φ(w�Fτ) :=φ(w�γ(Fτ)�α(Fτ)� θ). By (ii),

0 = (1 − τ)
∫

φ(w�Fτ)F0(dw) + τ

∫
φ(w�Fτ)H(dw)�

Dividing by τ and solving gives

1
τ

∫
φ(w�Fτ)F0(dw) = −

∫
φ(w�Fτ)H(dw) +

∫
φ(w�Fτ)F0(w)�
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Taking limits as τ −→ 0, τ > 0 it follows by (iii) that

1
τ

∫
φ(w�Fτ)F0(dw) −→ −

∫
φ(w�F0)H(dw) + 0

= −
∫

φ(w�F0)H(dw)� (A.1)

By (ii), we have
∫
φ(w�F0)F0(dw) = 0, so that

∫
φ(w�Fτ)F0(dw) is differentiable in τ

from the right at τ = 0 and

d

dτ

∫
φ(w�Fτ)F0(dw) = −

∫
φ(w�F0)H(dw) = − d

dτ

∫
g
(
w�γ(Fτ)� θ

)
F0(dw)�

where the last equality follows by (i). Adding d
∫
g(w�γ(Fτ)� θ)F0(dw)/dτ to both sides

of this equation gives equation (4.1). Q.E.D.

PROOF OF THEOREM 2: Since γ(Fα
τ ) = γ0 is a constant, hypothesis (ii) implies that

E
[
φ(W�γ0�α�θ)

] =
∫

φ(w�γ0�α�θ)F0(dw)

= d

∫
g
(
w�γ

(
Fα
τ

)
� θ

)
Fα(dw)/dτ

= d

∫
g(w�γ0� θ)Fα(dw)/dτ = 0� Q.E.D.

PROOF OF THEOREM 3: By (ii), the chain rule for Hadamard derivatives (see 20.9 of
van der Vaart (1998)), and by equation (4.1), it follows that for δH = dγ(Fτ)/dτ,

ψ̄γ(δH�α0� θ0) = ∂ψ̄
(
γ(Fτ)�α0� θ

)
∂τ

= 0�

Equation (4.3) follows by ψ̄γ(δ�α0� θ0) being a continuous linear function and (iii). Equa-
tion (4.4) follows by Proposition 7.3.3 of Luenberger (1969). Q.E.D.

PROOF OF THEOREM 4: Suppose that ψ(w�γ�α�θ) is doubly robust. Then, for any δ ∈
� and any t, it follows that γ0 + tδ ∈ � so that

ψ̄(γ0 + tδ�α0� θ) = ψ̄(γ0�α0� θ)�

identically in t. Differentiating with respect to t gives dψ̄(γ0 + tδ�α0� θ)/dt = 0. Also,
ψ̄(γ�α0� θ) is constant as a function of γ and so is affine. Now suppose that ψ̄(γ�α0� θ) is
affine in γ. Then for any t,

ψ̄
(
γ0 + t(γ − γ0)�α0� θ

) = ψ̄
(
(1 − t)γ0 + tγ�α0� θ

)
= (1 − t)ψ̄(γ0�α0� θ) + tψ̄(γ�α0� θ)

= ψ̄(γ0�α0� θ) + t
[
ψ̄(γ�α0� θ) − ψ̄(γ0�α0� θ)

]
�
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It then follows from dψ̄(γ0 + tδ�α0� θ)/dt = 0 for δ= δ− δ0 ∈ � that

0 = d

dt
ψ̄

(
γ0 + t(γ − γ0)�α0� θ

) = ψ̄(γ�α0� θ) − ψ̄(γ0�α0� θ)�

that is, that ψ̄(γ�α0� θ) = ψ̄(γ0�α0� θ). Q.E.D.

PROOF OF THEOREM 5: By orthogonality of least squares residuals, E[α0(X){Y −
γ0(X)}] = 0, so that

ψ̄(γ�α0� θ) = E
[
m(W�γ)

] − θ+E
[
α0(X)

{
Y − γ(X)

}]
= E

[
α0(X)γ(X)

] − θ+E
[
α0(X)γ0(X)

] −E
[
α0(X)γ(X)

]
= θ0 − θ� Q.E.D.

PROOF OF THEOREM 6: By (i), (ii), (iii), iterated expectations, and projF0
(γ(Z)|B) ∈A,

for all γ ∈ �,

E
[
m(W�γ)

] =E
[
vm(Z)γ(Z)

]
=E

[
projF0

(
bm(X)|�

)
γ(Z)

]
=E

[
bm(X) projF0

(
γ(Z)|B

)]
=E

[
α0(X) projF0

(
γ(Z)|B

)]
=E

[
α0(X)γ(Z)

]
�

Therefore, for γ̃ = γ − γ0, it follows by E[α0(X){Y − γ(Z)}] = −E[α0(X)γ̃(Z)] that

ψ̄(γ�α0� θ) = E
[
m(W�γ)

] − θ+E
[
α0(X)

{
Y − γ(Z)

}]
= E

[
m(W� γ̃)

] − θ+ θ0 −E
[
α0(X)γ̃(Z)

] = −θ+ θ0� Q.E.D.

PROOF OF THEOREM 7: For γ̃ = γ − γ0,

ψ̄(γ�α0� θ) =E
[
m(W�γ)

] − θ+E
[
α0(X)

] −
∫

α0(u)γ(u) du

= θ0 − θ+
∫

α0(u)
{
γ(u) − γ0(u)

}
du+

∫
α0(u)

{
γ0(u) − γ(u)

}
du

= θ0 − θ� Q.E.D.

PROOF OF LEMMA 8: Define

R̂1
i := g(Wi� γ̂
� θ0) − g(Wi�γ0� θ0)�

R̂2
i :=φ(Wi� γ̂
�α0� θ0) −φ(Wi�γ0�α0� θ0)� (A.2)

R̂3
i :=φ(Wi�γ0� α̂
� θ̂
) −φ(Wi�γ0�α0� θ0)� i ∈ I
�
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Then, for �̂
(Wi) as in Assumption 2, we have

g(Wi� γ̂
� θ0) +φ(Wi� γ̂
� α̂
� θ̃
) −ψ(Wi�γ0�α0� θ0)

= R̂1
i + R̂2
i + R̂3
i + �̂
(Wi)� (A.3)

Let W c

 denote the observations not in I
, so that γ̂
, α̂
, and θ̂
 depend only on W c


 . There-
fore, by 0 = E[g(W�γ0� θ0)] = E[φ(W�γ0�α0� θ0)] and Assumption 3(i) (which comes
from Theorem 2),

E
[
R̂1
i + R̂2
i|W c




] =
∫ [

g(w� γ̂
� θ0) +φ(w� γ̂
�α0� θ0)
]
F0(dw)

= ψ̄(γ̂
�α0� θ0)� (A.4)

E
[
R̂3
i|W c




] =
∫

φ(w�γ0� α̂
� θ̃
)F0(dw) = 0�

Then by Assumption 3,∥∥∥∥ 1√
n

∑
i∈I


E
[
R̂1
i + R̂2
i +R3
i|W c




]∥∥∥∥ = n
√
n

∥∥ψ̄(γ̂
�α0� θ0)
∥∥

≤ √
n
∥∥ψ̄(γ̂
�α0� θ0)

∥∥ p−→ 0� (A.5)

Also, by observations in I
 mutually independent conditional on W c

 and Assumption 1,

E

[{
1√
n

∑
i∈I


(
R̂j
i −E

[
R̂j
i|W c




])}2∣∣∣W c



]
= n


n
Var

(
R̂j
i|W c




)

≤ E
[
R̂2

j
i|W c



] p−→ 0 (j = 1�2�3)�

Then by the triangle and conditional Markov inequalities,

1√
n

∑
i∈I


(
R̂1
i + R̂2
i + R̂3
i −E

[
R̂1
i + R̂2
i + R̂3
i|W c




]) p−→ 0� (A.6)

By equations (A.5) and (A.6) and the triangle inequality,
∑

i∈I
 (R̂1
i + R̂2
i + R̂3
i)/
√
n

p−→
0. It also follows from Assumption 2(i) similarly to equation (A.6), or Assumption 2(ii)
by the triangle inequality, or just by Assumption 2(iii), that

∑
i∈I
 �̂
i(Wi)/

√
n

p−→ 0. The
conclusion then follows by the triangle inequality and equation (A.3). Q.E.D.
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