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RATES OF BOOTSTRAP APPROXIMATION FOR
EIGENVALUES IN HIGH-DIMENSIONAL PCA
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Abstract: In the context of principal components analysis (PCA), the bootstrap
is commonly applied to solve a variety of inference problems, such as construct-
ing confidence intervals for the eigenvalues of the population covariance matrix 3.
However, when the data are high-dimensional, there are relatively few theoretical
guarantees that quantify the performance of the bootstrap. Our aim in this paper is
to analyze how well the bootstrap can approximate the joint distribution of the lead-
ing eigenvalues of the sample covariance matrix f], and we establish non-asymptotic
rates of approximation with respect to the multivariate Kolmogorov metric. Un-
der certain assumptions, we show that the bootstrap can achieve a dimension-free
rate of r(X)/y/n up to logarithmic factors, where r(X) is the effective rank of 3,
and n is the sample size. From a methodological standpoint, we show that apply-
ing a transformation to the eigenvalues of $ before bootstrapping is an important
consideration in high-dimensional settings.

Key words and phrases: Bootstrap, covariance matrices, high-dimensional statistics,
principal components analysis.

1. Introduction

The applications of the bootstrap in principal components analysis (PCA)
go back almost as far as the advent of the bootstrap itself (Diaconis and Efron
(1983)), and over the years such applications have become part of standard prac-
tice in multivariate analysis (Davison and Hinkley| (1997)); Jolliffe| (2002); Olive
(2017)). With regard to theory, there is also a well-established set of asymptotic
results showing that the bootstrap generally works in the context of PCA with
low-dimensional data (Beran and Srivastaval (1985); [Eaton and Tyler| (1991))).
Furthermore, in aberrant situations where the bootstrap is known to encounter
difficulty in low dimensions, such as in the case of tied population eigenvalues,
various remedies have been proposed and analyzed (Beran and Srivastava, (1985);
Dumbgen (1993)); Hall et al.| (2009)).
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However, in the context of PCA with high-dimensional data, the relationship
between theory and practice is quite different. On one hand, bootstrap methods
are popular among practitioners for solving inference problems related to high-
dimensional PCA (e.g., |Wagner (2015); [Fisher et al.| (2016|); Webb-Vargas et al.
(2017); [Terry et al.| (2018)); Li and Ralph| (2019); Nguyen and Holmes| (2019));
Stewart et al.[(2019))). On the other hand, the theory for describing these methods
is relatively incomplete.

To develop a more precise understanding of the bootstrap in this context, we
focus on the fundamental problem of approximating the joint distribution of the
leading eigenvalues A\;(), ..., \e(X) of a sample covariance matrix & € RP*?,
where k < p. (Precise defnitions will be given later.) Because the fluctuations
of these eigenvalues are relevant to many inference tasks, this problem plays a
central role in multivariate analysis, and is also of broad interest in other areas,
such as signal processing (Couillet and Debbah (2011))) and finance (Ruppert
and Matteson| (2015])). Below, we summarize some examples of inference tasks
involving sample eigenvalues. These tasks are illustrated using real-data examples
based on stock market returns in Section S9 of the Supplementary Material.

e Selecting principal components. A key step in any implementation of PCA is
to choose the number of principal components, and many established tech-
niques for making this choice are informed by the distributions of eigenvalue-
based statistics. Examples of these statistics include eigengaps )\j(i) —
/\j+1(§3), the proportions of explained variance (A(E)+ - - -+ Ax(2))/ tr(E),
as well as the componentwise proportions )\j(i)/tr(i) for j =1,... k.
Other selection rules are based on confidence intervals for the eigenvalues
A1(2), ..., A\(X2) of the population covariance matrix ¥ € RP*P. The con-
struction of such intervals is linked directly to the distribution of the eigen-
values of 8. For a general overview of selection rules, we refer to |Jolliffe
(2002]).

o Quantifying uncertainty. The eigenvalues of a population covariance ma-
trix arise as unknown parameters of interest in many situations beyond the
selection of principal components. For instance, these parameters govern
the performance of statistical methods for covariance estimation, regression,
and classification (Ledoit and Wolf| (2012); |Hsu, Kakade and Zhang| (2014]);
Dobriban and Wager| (2018)). These parameters also have domain-specific
meanings in applications ranging from portfolio selection to ecology (Fabozzi
et al. (2007); (Chen et al.| (2019)). Consequently, it becomes necessary to
quantify the uncertainty associated with the population eigenvalues, such
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as in constructing confidence intervals for them—and again, this leads to
the use of distributional approximation results for the sample eigenvalues.

Although there is an extensive literature on distributional approximations
for sample eigenvalues, this body of work primarily focuses on asymptotic results
involving analytical formulas. Roughly speaking, the bulk of the literature can
be divided into two parts, dealing either with classical asymptotics, where p is
held fixed as n — oo (Anderson| (2003)), or with high-dimensional asymptotics,
where p/n converges to a positive constant as p and n diverge simultaneously (Bai
and Silverstein (2010))). In either case, an essential limitation is that asymptotic
results do not usually quantify how close the limiting distribution is to the finite-
sample distribution. In more practical terms, this means it is often difficult to
know if tests statistics and confidence intervals are well calibrated (i.e., if their
actual levels and coverage probabilities are close to the nominal values). A second
limitation is that approximations based on analytical formulas are often tied to
specific model assumptions, which can make it difficult to adapt such formulas
outside of a given model.

With regard to the second limitation, bootstrap methods have an advantage
insofar as they do not rely on formulas, and hence can be applied in a more
flexible manner. Nevertheless, the existing work on bootstrap methods for PCA
still tends to suffer from the first limitation above, since the results are generally
asymptotic (Beran and Srivastaval (1985); Eaton and Tyler| (1991); [El Karoui
and Purdom| (2019)). Thus, a key motivation for our work is to provide results
that explicitly quantify the accuracy of bootstrap approximation in terms of the
sample size n and the effective rank of . (For example, our results can be used
to quantify how close the coverage probabilities of bootstrap confidence intervals
are to the nominal values.) Another motivation for our study is that, until quite
recently, most of the literature on bootstrap methods for PCA has been limited
to low-dimensional settings. Consequently, it is of general interest to establish a
more complete theoretical description of bootstrap methods for high-dimensional
PCA—a point that was highlighted in a recent survey on this topic (Johnstone
and Paul| (2018, Sec. X.C)).

1.1. Contributions

Let Xq,...,X,, € RP be centered i.i.d. observations with population covari-
ance matrix ¥ = E[X;X[]. Also, let ¥ = (1/n)Y.", X;X," denote the as-
sociated sample covariance matrix, and let ¥* = (1/n) > " X7 (X)" be its

bootstrap version, formed from random vectors X7,..., X} that are sampled
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with replacement from the observations. In addition, let the eigenvalues of
a symmetric matrix A € RP*P be denoted as A\(A) > --- > A,(A), and let
Ae(A) = (M (A),..., A\ (A)) for a fixed integer k < p.

In this notation, our goal is to establish non-asymptotic bounds on the mul-
tivariate Kolmogorov distance

A, = sup
teRF

P(VA(A(E) = M(®) 2 1) = P(VR(A(E) = M) = ¢| X) ’

where the relation v < w between two vectors v, w € RF means v; <wjforall j =
1,...,k, and P(- | X) refers to probability that is conditional on X1, ..., X,,. Under
certain conditions, our central result (Theorem 1) shows that the dimension-free
bound

A, < &r®) (1.1)

Vvn

holds with high probability, where C}, > 0 is a polylogarithmic function of n, and
the quantity r(X) is the effective rank of X, defined by r(X) = tr(X)/ A (X).

Several aspects of the bound and the parameter r(3) are worth noting.
First, the effective rank satisfies 1 < r(X) < p whenever ¥ is nonzero, and can
be interpreted as a proxy for the number of “dominant” principal components of
Y. Hence, even in very high-dimensional settings, where n < p, the bound
shows that the bootstrap can perform well if the number of dominant components
is not too large, which is precisely the situation where high-dimensional PCA is of
greatest interest. Meanwhile, even in situations where r(X) is moderately large,
e.g., r(X) — oo with r(X) = o(y/n), the bound is still able to quantify the
accuracy of the bootstrap. Indeed, both of these points are borne out by our
numerical experiments in Section 3, which confirm that the performance of the
bootstrap is governed more by r(X) than it is by p, and that the bootstrap can
still be accurate when r(X) is moderately large. More generally, it should also be
mentioned that effective rank has attracted attention in many other aspects of
high-dimensional PCA (e.g.,|Lounici (2014); Bunea and Xiaol| (2015); Koltchinskii
and Lounici (2017); |Jung, Lee and Ahn! (2018); Naumov, Spokoiny and Ulyanov
(2019)); Koltchinskii, Lofler and Nickl| (2020)).

As an alternative to approximating the distribution of \/n ()\k(f}) - (%))
by bootstrapping in a direct manner, it can be advantageous to use a transfor-
mation prior to bootstrapping, which is a fundamental topic in the bootstrap
literature (e.g., DiCiccio| (1984); Tibshirani| (1988)); |Konishi (1991)); |DiCiccio and
Efron| (1996); Davison and Hinkley| (1997); |Chernick| (2011)). To be more specific,
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let h be a univariate scalar function, referred to as a transformation, and for any
symmetric matrix A € RP*P let h(A(A)) = (h(A1(A)), ..., h(Ax(A))). Then,
the conditional distribution of v/n(h(Ax(E*)) — h(A(S))) given the observations
can be used to approximate the distribution of \/ﬁ(h()\k(fl)) —h(A:(2))). (Addi-
tional discussion is provided in Sections 2 and 3.) For instance, a classical choice
of transformation is h(z) = log(z), because it is known to be variance-stabilizing
under certain conditions when n — oo, with p held fixed (Beran and Srivastava
(1985))). With this in mind, a second contribution our analysis is an extended
version of the bound that can accommodate certain transformations (see
Theorem 2).

From a more methodological standpoint, our numerical experiments also
shed new light on the role of transformations in bootstrap methods for high-
dimensional PCA. Although we confirm that the classical logarithm transforma-
tion can be beneficial in low dimensions, we show that it is less effective when r(X)
is moderately large. Consequently, we explore some alternative transformations,
and provide numerical results demonstrating that there are opportunities to im-
prove upon h(z) = log(z) in high dimensions. To put such empirical findings into
perspective, we are not aware any prior work investigating how transformations
can be used to enhance bootstrap methods in this context.

1.2. Related work

Quite recently, there has been an acceleration in the pace of research on boot-
strap methods for high-dimensional sample covariance matrices, as evidenced in
the papers (Han, Xu and Zhou| (2018)); Johnstone and Paul (2018); El Karoui
and Purdom (2019); Lopes, Blandino and Aue| (2019)); Lopes, Erichson and Ma-
honey| (2023); [Naumov, Spokoiny and Ulyanov (2019))). Among these, the most
relevant to our work is (El Karoui and Purdom (2019)), which examines both the
successes and failures of the bootstrap in doing inference with the leading eigen-
values of 3. In the negative direction, that paper focuses on a specialized model
with A;(X) > 1 and Ay(X) = -+ = A\p(X) = 1. This model also corresponds to
a very large effective rank r(X¥) =< p that makes dimension reduction via PCA
inherently difficult. In the positive direction, that paper deals with a different
situation where ¥ is assumed to have a near low-rank structure of the form

A B
= (BT c<n>>’ 2
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where A is of size k x k with k£ =< 1, and the diagonal blocks satisfy \j(4) =< 1,
and A1 (C(n)) < n~" for a fixed parameter n > 1/2. Working under an elliptical
model, (El Karoui and Purdom| (2019)) show that the bootstrap consistently ap-
proximates the distribution of \/n (Ak(i) — Ax(¥)) in an asymptotic framework
where p/n < 1. In relation to our work, the most crucial distinction is that
our results quantify the accuracy of the bootstrap with non-asymptotic rates of
approzimation. To illustrate the significance of this, note that our bound
provides an explicit link between the size of r(X) and the accuracy of the boot-
strap, whereas in an asymptotic setup, the effect of r(X) is hidden—because it
“washes out in the limit.” Our numerical experiments will also confirm that dif-
ferent sizes of r(X) can have an appreciable effect on the finite-sample accuracy of
the bootstrap. In this way, our work indicates that the quantity r(X)/+/n serves
as a type of conceptual diagnostic for assessing the reliability of the bootstrap in
high-dimensional PCA.

Beyond these points of contrast with (El Karoui and Purdom| (2019)), there
are several distinctions with regard to model assumptions. First, we work in a
dimension-free setting where there are no restrictions on the size of p with respect
to n. Second, the model based on implicitly requires that A\;(X) < n™"
for all 7 > k + 1, whereas this constraint on ¥ is not used here. Third, it is
straightforward to check that in the model based on (|1.2) with p/n < 1, the
condition 1 > 1/2 implies r(X) = o(n'/?~¢) for some fixed € > 0. Hence, under
these conditions, our bound also implies bootstrap consistency. In addition,
the bound can ensure bootstrap consistency in models that are outside the
scope of . For example, this occurs if p =< ¢ for some sequence of integers
satisfying m(n) = o(y/n/Cy), and if \;(Z) < j71.

Other works on bootstrap methods related to high-dimensional sample co-
variance matrices deal with models or statistics that are qualitatively different
from those considered here. The papers (Han, Xu and Zhou| (2018); Lopes, Erich-
son and Mahoney| (2023))) look at bootstrapping the operator norm error v/n Hi -
Yllop, as well as variants of this statistic, such as sup,,¢;, ValuT (S = Sl /uT S,
where U is a set of sparse vectors in the unit sphere of RP. In a different di-
rection, (Lopes, Blandino and Aue (2019)) focus on “linear spectral statistics”
of the form (1/p)3>7%_, F(A(E)), where f : [0,00) — R is a smooth function.
They show that a type of parametric bootstrap procedure consistently approxi-
mates the distributions of such statistics when p/n converges to a positive limit.
Lastly, (Naumov, Spokoiny and Ulyanov| (2019))) study statistics related to the
eigenvectors of S
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Notation. For a random variable X and an integer ¢ € {1,2}, define the 9,-
Orlicz norm as || X||y, = inf{t > 0 | E[exp(|X|?/t?)] < 2}. The random variable X
is said to be sub-exponential if | X ||, is finite, and sub-Gaussian if || X ||, is finite.
In addition, for any ¢ > 1, the L,-norm of X is defined as | X, = (E[|X]4])"/9.
For any vectors u,v € RP, their inner product is (u,v) = Z§:1 u;jv;. For any
real numbers a and b, the expression a < b is used in an informal sense to mean
that b is much larger than a. Also, we use the notation a V b = max{a,b} and
a Ab=min{a,b}. If {a,} and {b,} are two sequences on non-negative numbers,
then the relation a,, < b, means that there is a positive constant ¢ not depending
on n such that a, < cb, holds for all large n. When both of the conditions

an < by, and by, < a, hold, we write a,, =< by,.

2. Main Results

We consider a sequence of models indexed by n, in which all parameters may
depend on n, except when stated otherwise. In particular, the dimension p = p(n)
is allowed to have an arbitrary dependence on n. Likewise, if a parameter does
not depend on n, then it is understood not to depend on p either. One of the few
parameters that will be treated as fixed with respect to n is the positive integer
k <p.

Assumption 1 (Data-generating model).

(a). There is a non-zero positive-semidefinite matriz ¥ € RP*P_ such that the

ith observation is generated as X; = »i/2z, for all i = 1,...,n, where
Zi,...,Zn € RP are i.i.d. random vectors with E[Z1] = 0, and E[Z,Z]'] =
I,.

(b). The eigenvalues of ¥ satisfy mini<j< (A;(X) — Aj31(2)) 2 M(2).

(c). Let u; € RP denote the jth eigenvector of ¥, and let I" € RE*k have entries
given by Ty = E[((uj, Z1)? — 1)((uj, Z1)? — 1)] for all 1 < j,5' < k. Then,
the matriz T' satisfies \i(T") 2 1.

In connection with the model described by Assumption 1, our results will make
reference to a moment parameter defined as 8, = maxi<;<, ||{(u;j, Z1)?||, for any
q>1.

Remark 1. Regarding Assumption 1(b), it ensures that there is some degree
of separation between the leading eigenvalues of ¥. In less compact notation,
the assumption states that there is a fixed constant ¢ > 0 such that the in-
equality A;(X) — Aj41(2) > cA1(X) holds for all j = 1,...,k and all large n.
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(There is no restriction on the size of ¢.) In general, a separation condition on
the leading eigenvalues is unavoidable, because it is known both theoretically
and empirically that the bootstrap can fail to approximate the distribution of
Vn (Ak(i) — A (X)) if the leading population eigenvalues are not distinct (Beran
and Srivastava (1987)); [Hall et al. (2009))). In more technical terms, the source of
this issue can be explained briefly as follows: If SP*P denotes the space of real
symmetric p x p matrices, and if \;(-) is viewed as a functional from SP*P to
R, then \;(-) can be non-differentiable at ¥ when \;(X) is a repeated eigenvalue
(i.e., with multiplicity greater than one). In turn, this lack of smoothness makes it
difficult for the bootstrap to approximate the distribution of \/ﬁ()\J(f]) —Ai(%)).
To interpret Assumption 1(c), the matrix I' serves a technical role as a sur-
rogate for the correlation matrix of y/n (Ak(i) —Ai(X)). Hence, the lower bound
Ak(T') 2 1 can be viewed as a type of non-degeneracy condition for the distribu-
tion of interest. The proposition below gives examples of well-established models
in which Assumption 1(c) holds. Namely, parts (i) and (i) below correspond to
Maréenko-Pastur models and elliptical models, respectively. The latter case also
illustrates that the entries of the vector Z; are not required to be independent.

Proposition 1.

(i) (Maréenko-Pastur case). Suppose that Assumption 1(a) holds. In addition,
suppose that the entries of Z1 are independent, and there is a constant Kk > 1
not depending on n such that minlgjng[ij] > k. Then, Assumption 1(c)
holds.

(i) (Elliptical case). Let V be a random vector that is uniformly distributed on
the unit sphere of RP, and let £ be a non-negative scalar random variable
independent of V that satisfies E[¢?] = p and E[¢*] < oo. Under these
conditions, if Z1 has the same distribution as £V, then Assumption 1(c)
holds.

The proof of Proposition 1 is given in Section S1 of the Supplementary Material.

Bootstrap approximation. The following theorem is the central result of the
paper, and quantifies the accuracy of the bootstrap when it is used to approximate
the distribution of \/n(Ax(X) — Ax(X2)).

Theorem 1. Suppose that Assumption 1 holds and let ¢ = 5log(kn). Then,

there is a constant ¢ > 0 not depending on n such that the event
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sup
tERF

¢ log(n) ﬁgq r(X)
=T

holds with probability at least 1 — c/n.

]P’(\/E(Ak(fj) — (D) = t> - P(ﬁ(xk(fz*) —A(E) =t ‘ X) ‘

(2.1)

Remark 2. The proof of Theorem 1 is given in Section S4 of the Supplemen-
tary Material. It is possible to provide a more concrete understanding of the
bound by looking at how the factors r(X) and f3; behave in some well-
known situations. For instance, consider the class of matrices ¥ whose eigen-
values have a polynomial decay profile of the form A;(X) < j=7, for some fixed
constant v > 0. This class offers a convenient point of reference, because it inter-
polates between models that have low-dimensional structure and those that do
not. Specifically, the effective rank can be related to v as

1 ify>1
r(¥) = 9§ logp) ify=1
pl=7 if v <1.

With regard to the parameter 34, its dependence on ¢ is simple to describe in
some commonly considered cases. If the entries of Z; are i.i.d. and sub-Gaussian,
then 3, grows at most linearly in ¢, with 83, S QHle|’12/,2- Alternatively, if the
entries of Z; are i.i.d. and sub-exponential, then (3, grows at most quadratically
in ¢, with 34 < QQHZHH?pl- (See Chapter 2 of [Vershynin (2018) for further
details.) Hence, a direct consequence of Theorem 1 in such cases is that bootstrap
consistency holds when v > 1/2, p < n and || Z11|ly, S 1. Likewise, when v > 1,
the bound in Theorem 1 nearly achieves the parametric rate n='/2 and is not
influenced by the size of p at all. This conclusion also conforms with the numerical
results presented in Section 3.

From a more practical standpoint, it is possible to gauge the size of r(3) in an
empirical way, by either estimating r(X) directly, or estimating upper bounds on
it. Some examples of upper bounds on r(X) for which straightforward estimation
methods are known to be effective in high dimensions include tr(X)/ maxi<j<, 3;;
and tr(X)?/||X|%. (Although guarantees can be established for direct estimates
of r(¥) in high-dimensions, such results can involve a more complex set of con-
siderations than the upper bounds just mentioned.)
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Transformations. To briefly review the idea of transformations, they are often
used to solve inference problems involving a parameter 6 and an estimator 9 for
which the distribution of (5 —0) is difficult to approximate. In certain situations,
this difficulty can be alleviated if there is a monotone function h for which the
distribution of (h(#)—h(6)) is easier to approximate. In turn, this allows for more
accurate inference on the “transformed parameter” h(6), and then the results can
be inverted to do inference on 6. In light of this, our next result shows that the
rates of bootstrap approximation established in Theorem 1 remain essentially
unchanged when using the class of fractional power transformations from [0, co)
to [0,00). This class will be denoted by H, so that if h € H, then h(x) = z¢, for
some a € (0,1].

Beyond the class of transformations just mentioned, the bootstrap can be
combined with another type of transformation, known as partial standardiza-
tion (Lopes, Lin and Miiller| (2020)). Letting h € H be a given function, and
letting gjz = var (h()\](i))) for each j = 1,...,p, this technique is well suited to
bootstrapping “max statistics” of the form

M= e M) = BOG(E)

2.2
1<j<k <7 ’ (22)

where 7 € [0, 1] is a parameter that can be viewed as a degree of standardization.
The ability to approximate the distribution of M is relevant to the construction
of simultaneous confidence intervals for A;(X),..., \x(X). It also turns out that
the choice of 7 encodes a trade-off between the coverage accuracy and the width
of such intervals, and that choosing an intermediate value 7 € (0,1) can offer
benefits in relation to 7 = 0 and 7 = 1. This is discussed in greater detail later
in Section 3.

In order to state our extension of Theorem 1 in a way that handles both
partial standardization and transformations h € H in a unified way, we need to
introduce a bit more notation. First, when considering the bootstrap counterpart
of a partially standardized statistic such as , the vector ¢ = (¢7,...,<f)
is replaced with the estimate ¢ = (<J,...,<f), whose entries are defined by
?jz = var (h(/\j(fl*))‘X) forall j =1,...,p. Second, the expression v/u involving
vectors v and u denotes the vector obtained by entrywise division, (v/u); = vj/u;.
(To handle the possibility zero denominators, events of the form {V/¢ <t} are
understood as {V Xt ® [}, where V € R* is random, t € R is fixed, and @ is
entrywise multiplication. Lemma S5.5 in the Supplementary Material also shows
that such cases occur with negligible probability.) Lastly, recall that we write
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h(v) = (h(v1),...,h(vg)) for a k-dimensional vector v and transformation h.

Theorem 2. Suppose that Assumption 1 holds. Fiz a transformation h € ‘H and
a constant T € [0,1] with respect to n, and let ¢ = 5log(kn). Then, there is a

constant ¢ > 0 not depending on n, such that the event

b (hw(i)) —h(®) t) _ P(hw@*» — h(A())

<t|X
i g = ’ )‘

sup
tERF

¢ log(n) ﬁgq r(X)
=T A

holds with probability at least 1 — c/n.

(2.3)

Remark 3. The proof of Theorem 2 is given in Section S5 of the Supplementary
Material. To comment on the technical relationship between Theorems 1 and
2, it is important to call attention to the differences between asymptotic and
non-asymptotic analysis. When using asymptotics, the process of showing that
bootstrap consistency for \/ﬁ()\k(f]) — Ak(2)) implies the same for (R(As()) —
h(Ar(X)))/sf can typically be handled with a brief argument, based on the delta
method and the consistency of the estimate ¢. However, when taking a non-
asymptotic approach, this process is much more involved.

3. Numerical Experiments

In this section, we focus on the application of constructing simultaneous
confidence intervals for A1 (X),..., A\x(X). We do so in a variety of settings, cor-
responding to different values of n and p, as well as different values of effective
rank, and different choices of transformations. In a nutshell, there are two over-
arching conclusions to take away from the experiments: (1) In situations where
n < p and r(X) < 1, the bootstrap generally produces intervals with accurate
coverage, which provides a confirmation of our theoretical results. (2) The clas-
sical log transformation mostly works well in low dimensions, but it can lead to
coverage that is substantially below the nominal level when r(X) is moderately
large. Nevertheless, we show that it is possible to find transformations that offer
more reliable coverage in this challenging case. More generally, this indicates that
alternative transformations are worth exploring in high-dimensional settings.

3.1. Simulation settings

The eigenvalues of the population covariance matrix 3 were chosen to have
two different decay profiles:
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(a) A polynomial decay profile \;j(¥) = j=7 for all j = 1,...,p, with v €
{0.7,1.0,1.3}.

(b) An exponential decay profile A\;j(¥) = 4/ for all j = 1,...,p, with § €
{0.7,0.8,0.9}.

As a clarification, it is important to note that the effective rank of X increases
for larger values of §, but decreases for larger values of +. For the purposes of
simulations, the choices (a) and (b) have the valuable property that the eigenval-
ues are parameterized in the same way for every choice of p, which facilitates the
comparison of results across different dimensions. The matrix of eigenvectors for
> was drawn uniformly from the set of p X p orthogonal matrices. The dimension
p was taken from {10, 50, 100,200}, and the sample size n ranged from 50 to 500.
For each triple (n,p,7) or (n,p,d), the data Xi,...,X,, were generated in an
i.i.d. manner with the following choices for the distribution of Xj:

(i) The vector X; = Y1/2¢V was generated with V being uniformly distributed
on the unit sphere of RP, and &2 being an exponential random variable
independent of V with E[¢2] = p.

(ii) The vector X; was generated from the Gaussian distribution N (0, X).

For each parameter setting, we generated 1,000 realizations of the dataset X1, ...,
X,,, and for each such realization, we generated B := 1,000 sets of bootstrap sam-
ples of size n. When constructing simultaneous confidence intervals for A;(X), ...,
Ai(X), the value of k was set to 5.

3.2. Bootstrap confidence intervals

For any a € (0, 1), we aim to construct approximate versions of ideal random
intervals 71, ...,Z; that satisfy

k
P(ﬂ{Aj(Z)te}> > 1-a. (3.1)
j=1

To this end, consider the following max and min statistics, based on any choice
of partial standardization parameter 7 € [0, 1] and transformation h,

M = max ,
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Letting gar(a) and gz () denote the respective a-quantiles of M and L for any
a € (0,1), it follows that the desired condition (3.1]) holds if each interval Z; is
defined as

z =1 (v @) - Gau(1-5) @) -G (5 )]). 62

with A~!([a,b]) being understood as the preimage of [a, b] under h.

To construct bootstrap intervals fl, . ,fk based on , we need only re-
place g (1 — «/2), qr(a/2), and <,...,s with estimates. In detail, we first
estimate ¢; using the sample standard deviation of B bootstrap replicates of the
form h()\j(fl*)), denoted ¢;. Next, we use the empirical 1 — a/2 quantile of B
bootstrap replicates of the form M* = maxlgjgk[h()\j(i*)) - h()\J(i‘))]/GJT as an
estimate of gps(1 — «/2), and similarly for ¢z (a/2).

Regarding the use of transformations, the following three options were in-
cluded in the experiments:

o log transformation: h(x) = log(x), with 7 = 0.
e standardization: h(x) = x, with 7 = 1.

e square-root transformation: h(x) = z'/?, with 7 € [0,1] chosen data-
adaptively.

In the case of the log transformation, the choice of 7 = 0 corresponds to the
way that this transformation has been used in the classical literature (Beran
and Srivastaval (1985)), while in the case of standardization, the choice of 7 =1
is definitional. For the square-root transformation, the use of a data-adaptive
selection rule for 7 € [0,1] is more nuanced, and can be informally explained
in terms of the following ideas developed previously in (Lopes, Lin and Miiller
(2020)) and (Lin, Lopes and Muller| (2021)).

In essence, this choice can be understood in terms of a trade-off between two
competing effects that occur in the extreme cases of 7 = 1 and 7 = 0. When using
7 = 1, the random variables [)\j(i)l/2 — X (2)V?] /s; with gjz = V&I‘()\j(i)l/2) and
j = 1,...,k are on approximately “equal footing”, which makes the behavior
of the statistic M sensitive to their joint distribution (and likewise for L). By
contrast, when 7 = 0 is used, the variables [)\j(i)l/Q —j(2)1/?] will tend to be on
different scales, and the variable on the largest scale, say 7/, will be the maximizer
for M relatively often. In this situation, the statistic M is governed more strongly
by the marginal distribution of [)\j/(f?)l/2 — X/ (2)2]. So, from this heuristic
point of view, the choice of 7 = 0 can simplify the behavior of M relative to the
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Figure 1. (Simultaneous coverage probability versus n in simulation model (i) with a

polynomial decay profile). In each panel, the y-axis measures P(N5_,{)\;(¥) € fj})
based on a nominal value of 95%, and the z-axis measures n. The curves correspond to
different values of p.

case of 7 = 1, making the distribution of M easier to approximate. However, the
choice of 7 = 0 also has the drawback that it can lead to simultaneous confidence
intervals that are excessively wide, because the widths are no longer adapted to
the different values ¢, ..., g, (since ¢f =+ =) =1).

To strike a balance between these competing effects, we used the following
simple rule to select 7 in the case of the square-root transformation. For a can-
didate value of T, let 7, (7),... ,fk(r) denote the associated bootstrap intervals
defined beneath equation (so that the dependence on 7 is explicit), and let
IZ1(7)], ..., |Zr(7)| denote their widths. Also define 7i(7) = (1/k) Z?:l \Z(T)\
and 5(7)? = (1/k) Zle(|fj(7')| — 7i(7))?%. In this notation, we selected the value
of 7 that minimized fi(7) 4+ 7 (7) over the set of candidates {0.0,0.1,...,0.9,1.0}.
Different variants of this type of criterion minimization rule have also been ob-
served to be effective in other contexts (Lopes, Lin and Miiller| (2020); Lin, Lopes
and Miiller| (2021))).
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Figure 2. (Simultaneous coverage probability versus n in simulation model (i) with an
exponential decay profile). The plotting scheme is the same as that described in the
caption of Figure 1, except that the three columns correspond to values of the eigenvalue
decay parameter 9.

3.3. Discussion of coverage

Figure 1 contains nine panels displaying the results for the simultaneous
coverage probability P(ﬂ?zl{)\j(E) € fj}), based on a nominal value of 95%
(i.e., @ = 0.05), for simulation model (i) with a polynomial decay profile for the
population eigenvalues. The figure summarizes a large amount of information,
because it shows how the coverage depends on n, p, the eigenvalue decay pa-
rameter v, and the three transformations described above. For each panel, the
x-axis measures n, and the y-axis measures P(ﬁ?zl{)\j(E) € fj}) The results
corresponding to the dimensions p = 10, 50, 100, 200 are plotted with curves that
are labeled in the legend. The three rows of panels from top to bottom corre-
spond to the log transformation, ordinary standardization, and the square-root
transformation. The three columns of panels from left to right correspond to
the eigenvalue decay parameters v = 0.7,1.0,1.3. In addition, Figure 2 displays
analogous results for exponentially decaying population eigenvalues in model (i).
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Figure 3. (Average width versus n in simulation model (i) with a polynomial decay
profile). In each of the nine panels, the y-axis measures the average width E[|f1| +-+
|f5|]/5, and the z-axis measures n. The curves correspond to p = 10, 50, 100, 200. The
three rows and three columns correspond to the choices of transformations and the values
of the eigenvalue decay parameter v, respectively.

Lastly, results for model (ii), as well as for a nominal value of 90% (instead of
95%), are provided in Section S8 of the Supplementary Material.

There are several notable patterns in Figures 1 to discuss. The first is that
faster rates of decay tend to lead to better coverage accuracy—as anticipated by
our theoretical results. In particular, when the eigenvalue decay parameter is
set to v = 1.3, the coverage is rather accurate, even when n < p. Furthermore,
the accuracy is essentially unaffected by the dimension p in this situation, as
indicated by the overlap of the four curves. On the other hand, as the decay
parameter becomes smaller, the three transformations perform in different ways.
For instance, when v = 0.7, p = 200, and n < 200, the log transformation
yields coverage that clearly falls short of the nominal level. By contrast, the
standardization and square-root transformations tend to err more safely in the
conservative direction when v = 0.7. To give some indication of the difficulty
of v = 0.7, note that if v were decreased slightly to 0.5 with p = n, this would
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Figure 4. (Average width versus n in simulation model (i) with an exponential decay
profile). The plotting scheme is the same as that described in the caption of Figure 3,
except that the three columns correspond to values of the eigenvalue decay parameter §.

imply r(X)/v/n =< y/p/n 2 1, in which case bootstrap consistency would not
be guaranteed. When considering all three cases v = 0.7,1.0,1.3 collectively,

the square-root transformation seems to yield the best overall coverage results if

conservative errors are viewed as preferable to anti-conservative ones.

Turning to the coverage results for exponential spectrum decay, the log and

square-root transformations continue to follow the pattern that faster decay im-

proves coverage accuracy. (Recall that smaller § corresponds to faster decay.)

Also, the log transformation maintains its tendency to err in the anti-conservative

direction, while the square-root transformation still tends to err in the conserva-

tive direction. Lastly, ordinary standardization yields larger errors in the anti-

conservative direction than it did in the previous context.

3.4. Discussion of width

Beyond coverage probability, interval width is another important factor to
consider when appraising confidence intervals. In Figures 3-4, the average width E[|Z; |+
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-+ + |Zi|]/k is plotted on the y-axis as a function of the sample size n on the
x-axis, with the underlying parameter settings being organized in the same man-
ner as in Figures 1-2. (Corresponding results for settings based on model (ii)
and a nominal value of 90% are presented in Section S8 of the Supplementary
Material.) With regard to the three transformations, they produce intervals that
have roughly similar widths across most parameter settings. However, at a more
fine-grained level, the results in the case of polynomial spectrum decay show that
the log transformation tends to yield slightly shorter widths than the square-root
transformation, which in turn, tends to yield slightly shorter widths than ordi-
nary standardization. In the case of exponential spectrum decay with 6 = 0.9,
the same pattern is also apparent, while for smaller values of §, there is not much
difference among the transformations.

Aside from the transformations, there are two other general trends to notice.
Within each of the 18 panels of Figures 3-4, there is a monotone relationship
between width and the dimension p, with the width increasing as the dimension
increases. Similarly, the width generally also increases as the effective rank r(X)
increases.

Supplementary Material

The Supplementary Material contains the proofs of all theoretical results,
additional simulation results, and real-data examples based on stock market re-
turns.
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