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Abstract  
Recent advances in construction automation increased the 
need for cooperation between workers and robots, where 
workers have to face both success and failure in human-
robot collaborative work, ultimately affecting their trust 
in robots. This study simulated a worker-robot bricklaying 
collaborative task to examine the impacts of blame targets 
(responsibility attributions) on trust and trust transfer in 
multi-robots-human interaction. The findings showed that 
workers’ responsibility attributions to themselves or 
robots significantly affect their trust in the robot. Further, 
in a multi-robots-human interaction, observing one 
robot’s failure to complete the task will affect the trust in 
the other devices, aka., trust transfer. This study calls for 
the necessity of educating current and future workers 
regarding safe and productive collaboration with robots.  

Introduction 
Although robots are expected to have tremendous 
potential to enhance construction efficiency, they might 
also impose some latent uncertainties and complexities on 
construction sites known to be dynamic, hazardous, and 
uncontrollable. Therefore, it is vital to cultivate trust 
between workers and robots to boost harmonious 
interaction and team dynamics.  
Human trust is a multifaceted concept that varies over 
time and can be affected by different factors (Demir et al. 
2021). Previous literature has classified the influential 
factors into three categories: human, robot, and 
environmental (Hancock et al. 2011). The first category 
refers to the factors related to human users, such as 
gender, age, personality, and self-confidence (e.g., Hu et 
al. 2019; Sanchez et al. 2014). For example, in the study 
that investigated the effect of gender on trust, Ghazali and 
her colleagues reported that males manifested higher trust 
in a robotic advisor than females (Ghazali et al. 2018). 
Partner factors represent the attribute-based (e.g., 
anthropomorphism) and performance-based (e.g., 
reliability and transparency) characteristics of the agent 
with whom the human interacts. For instance, Liu and his 
co-workers mentioned providing the current actions of an 
autonomous vehicle (i.e., transparency) encouraged 
pedestrians to trust the vehicle (Liu et al. 2021). Finally, 
environmental factors are associated with the contexts and 

environments of the interactions between humans and 
partners, such as task nature and time pressure (e.g., 
Robinette et al. 2017; Sanders et al. 2019). This taxonomy 
perfectly reflects the three integral entities (i.e., human, 
robot, and environment) that can impact workers’ trust. 
This complex development of trust creates uncertainty for 
future construction sites when incorporating novel robots. 
Specifically, failure in the human-robot interaction (e.g., 
robot’s malfunction), as a performance-based factor, has 
been identified to influence human trust level (e.g., Abd 
et al. 2017; Kraus et al. 2020; Salem et al. 2015). For 
example, Kraus and his colleagues found drivers 
decreased their trust in an autonomous vehicle when it 
took over tasks without permission (i.e., malfunction) 
(Kraus et al. 2020). Although the adverse effect of the 
failure on trust could be readily anticipated, a follow-up 
question regarding who should be responsible for the 
failure also arises. In other words, humans might take 
responsibility for the failure or consider the failure a 
robot’s fault. These two perspectives could trigger 
different fluctuations in human trust levels. This issue is 
essential for the context that workers need to be in the loop 
to cooperate with robots instead of merely supervising 
robots. However, the effect of taking responsibility for 
robot failure and its relations with trust are still 
understudied.  
Further, human’s perception of robots could be not only 
based on taking responsibility but also transferred from 
other scenarios (i.e., trust transfer). Multi-task trust 
transfer, which denotes the trust is increased/decreased by 
the robot’s success/failure in another similar task, has 
been proposed by prior studies (e.g., Shu et al. 2018; Soh 
et al. 2018). For example, in the study that examined the 
trust transfer in a multi-functional robot, Stewart found 
humans would initially build trust in the robot being able 
to pick up a can based on viewing it to grab a plastic bottle 
(Stewart 2003). Moreover, the multi-task trust transfer 
could be expanded to multi-agent trust transfer (i.e., trust 
in an agent can be transferred from the trust in another 
agent). This type of transfer should play an important role 
in future construction sites because workers will need to 
interact with various robots simultaneously or be exposed 
to different robots across construction projects. 
Nonetheless, previous literature has not yet paid much 
attention to the exploration of multi-agent trust transfer. 



 

 

This study aims to examine how trust is affected by 
workers’ responsibility attributions for the failure in 
human-robot interaction and how workers transfer trust 
across multiple agents on future construction sites. 
Specifically, a VR environment was developed to 
simulate the future bricklaying task in which workers are 
required to perform bricklaying, collaborating with a 
cobot and interacting with various AI agents (e.g., drones 
delivering materials or messages). These issues are 
critical to the construction in which workers are 
unfamiliar with the newly-introduced robots and must 
interact simultaneously with multiple agents. The 
expected contributions of this study lie in validating the 
effect of human responsibility attributions on trust and 
supporting the multi-agent trust transfer in worker-robot 
interaction.  

Background 
Attributing responsibility for failure in human-robot 
interaction 
Failures in human-robot interaction refer to unexpected 
incidents in the interaction (Honig and Oron-Gilad 2018), 
where the behaviors performed by the robots are 
inconsistent with the ideal, standard, and correct 
functionality (Brooks 2007). This failure can decrease 
human trust levels in robots (e.g., Abd et al. 2017; Kraus 
et al. 2020; Salem et al. 2015). For example, in the study 
investigating the effect of a robot’s competence on trust, 
Abd and his colleagues reported that participants lowered 
their trust in a bottle-delivery robot when the robot 
dropped the bottle (Abd et al. 2017). Likewise, Salem and 
his colleagues suggested that participants who interacted 
with a faultless robot (i.e., arriving at the destination 
efficiently) manifested a higher trust level compared to 
the ones who experienced a faulty robot (i.e., taking a 
detour to the destination) (Salem et al. 2015).  
Previous studies have also proposed taxonomies for 
classifying different types of failures. For example, 
Carlson and Murphy categorized the failures into physical 
failures (i.e., the errors caused by the system’s effector, 
sensors, etc.) and human failures (i.e., the errors caused 
by human mistakes or slips) (Carlson and Murphy 2005). 
Honig and Oron-Gilad’s taxonomy included technical 
failures (i.e., errors related to the robot’s software and 
hardware) and interaction failures (i.e., errors pertaining 
to social norm violation, human errors and environment 
or other agents) (Honig and Oron-Gilad 2018). These 
classifications implied that humans are vital parts of the 
interaction and could not be excluded in case of failure. 
Although previous literature indicated the adverse impact 
of failure in the human-robot interaction on human trust 
in them, the linkage between taking responsibility for 
failures and workers' trust in AI-agents in future 
construction jobsite is unclear. 
When failures occur in the interaction, humans might 
perceive themselves to take responsibility for it or 
attribute the responsibility to the robot. Previous studies 

have employed the self-serving bias (SSB) to support the 
latter statement. SSB refers to the phenomenon that 
people tend to take credit for the success of the interaction 
but blame their partners for the failure (Miller and Ross 
1975). SSB was initially observed in human-human 
interaction, and researchers found it could be applied to 
the interaction between humans and robots (e.g., Moon 
2003; You et al. 2011). For example, You and his 
colleagues conducted an experiment in which participants 
were asked to follow the motions taught by a robot, and 
the researchers provided the evaluation of the 
performance (You et al. 2011). The result indicated that 
participants tended to question the robot for lower-than-
expected performance feedback. In the context of SSB, 
humans are anticipated to attribute the robot to take 
responsibility for failure and decrease their trust in the 
robot.  
However, recent studies have also reported that people 
tend to blame themselves for failures more than robots. In 
the study that investigated the interaction between two 
humans and one robot, Lei and Rau found participants 
attributed more credit and less blame to the robot, 
triggering the reverse self-serving bias (reverse SSB) (Lei 
and Rau 2021). An alternative concept supporting reverse 
SSB is human wishful thinking (Ullrich et al. 2021). 
Individuals with wishful thinking would believe the robot 
is perfect when using it and exhibit overreliance on it. The 
reverse SSB would lead humans to take responsibility for 
failures and maintain their trust in the robot. Due to the 
inconsistency of findings in the literature, considering 
human’s taking responsibility as a factor in investigating 
the effect of failure on trust is essential.  

Trust transfer 
Apart from taking responsibility for failure, human trust 
in the current situation can also be affected by trust in 
another similar situation, called trust transfer. Trust 
transfer refers to the transition from a known source of 
trust to an unknown target in which humans need to 
develop trust (Stewart 2003). Literature has explored the 
trust transfer in multi-functional robots and emphasized 
that the transfer is based on the similarity of task category 
and difficulty (e.g., Shu et al. 2018; Soh et al. 2018; Soh 
et al. 2020; Xie et al. 2019). In the study conducted by Shu 
and his colleagues (Shu et al. 2018), after seeing the robot 
successfully pick and place a cup, participants (1) trusted 
that it could pick and place a bottle task while distrusting 
it could perform another simple navigation task (i.e., 
guiding subjects to a door) and (2) trusted that it could 
pick and place a bottle task while distrusting it can pick 
and place an apple. The two findings supported the 
transfer was triggered by the similarity of task category 
and difficulty, respectively.  
Although multi-agent trust transfer is still understudied, 
humans will exhibit trust transfer across agents if the 
similarity between multiple agents is identified. A recent 
study provided insights into trust transfer across different 
sources. By conducting a survey, Renner and his 



 

 

colleagues found that respondents’ trust in an autonomous 
car can be transferred from their trust in advanced vehicle 
technologies and AI because they are integral components 
of an autonomous car (Renner et al. 2022). In the near 
future, a worker needs to interact with various AI agents 
and other workers simultaneously. Therefore, multi-
worker-multi-robot-teaming is anticipated to be the 
dominant working mode on future construction sites. This 
calls for taking into account the impact of failure on 
distrust transfer. 

Point of departure 
It is envisioned that future construction workplace will be 
comprised of workers, robots, and job sites. Human-robot 
interaction entails appropriate trust-building between 
workers and robots, which can be impacted by robot 
failure or malfunctions. With the growth of human-robot 
teaming, it is crucial to understand how workers allocate 
responsibilities (blame for failure) in mixed worker-robot 
teams, and how these responsibility attributions affect 
their trust evaluations in robots (H1 and H2):   
H1: There is a significant change in worker-robot trust 
assessment after the robot failure.  
H2: Attributing responsibility (blaming self or robot 
for failure) significantly impacts worker-robot trust 
assessment. 

Furthermore, with the proliferation of robots in 
construction jobsites, workers soon need to work 
alongside and interact concurrently with numerous robots 
to accomplish complicated construction tasks. Therefore, 
a robot's performance failure may impact humans' overall 
reliability and trust in AI agents. Thus, it is critical to 
explore whether workers’ trust transfers across other 
agents in the construction context in case of failure of an 
agent (H3 and H4): 
H3: When there are multiple agents/robots in the 
construction environment, the observation of other 
robots' failure (drone failure) in completing a task will 
affect the trust in the other agents (i.e., trust transfer). 
H4: Given humans taking responsibility for the robot’s 
failure, the decreasing trust in other agents 
significantly impacts worker-robot trust assessment 
(i.e., trust transfer). 

Table 1 illustrates the groupings of participants for three 
hypotheses. 
 

Methodology  
Participants 
A total of 35 healthy subjects (22 male and 13 female) 
were recruited to participate in this study. All the subjects 
are from Civil Engineering and Construction Engineering 
and Management majors at Purdue University, 
representing the next generation of the workforce. 
Participants’ age ranged from 19 to 31 years (M= 23.86, 
SD = 3.32). About 46% of the subjects had over one year 
of work experience in the construction industry. All 

participants had normal or corrected-to-normal vision, 
and the final analyses were based on all 35 participants. 
All participants received compensation for their 
participation.  
 

Table 1: Groupings for testing hypotheses 

 Group A Group B 
H1 Subjects’ trust level 

after the Baseline 
module (i.e., Tb). (A1) 

Subjects’ trust level after 
the Error module (i.e., 

Te). (B1) 
H2 The changes in trust 

level (Te- Tb) of subjects 
who blamed the cobot 
for the failure. (A2) 

The changes in trust level 
(Te- Tb) of subjects who 
took responsibility for the 
cobot’s failure. (B2) 

H3 The changes in trust 
level (Te- Tb) of 

subjects who lowered 
their trust in drones and 
AI-assistant (A3) 

The changes in trust level 
(Te- Tb) of subjects who 
retained their trust in 
drones and/or AI-
assistant. (B3) 

H4 The changes in trust 
level (Te- Tb) of who 
took responsibility for 
the cobot’s failure and 
who lowered their trust 
in drones and AI-
assistant (A4) 

The changes in trust level 
(Te- Tb) of who took 
responsibility for the 
cobot’s failure and who 
retained their trust in 
drones and/or AI-
assistant. (B4) 

 

Experimental design 
To investigate the effect of blame attribution on trust 
assessments in human-robot collaboration in the future 
construction environment, a within-subject experiment 
was designed to simulate a bricklaying task in an 
immersive mixed-virtual-reality environment. 
Participants were asked to complete a bricklaying task 
while interacting with various AI agents, namely a 
bricklaying cobot (i.e., called MULE), various drones, 
and an AI assistant. Figure 1 shows the research 
framework of the VR experiment. 
Specifically, MULE is a semi-autonomous cobot that 
assists workers with lifting/dropping heavy concrete 
blocks while workers still have to apply mortar and 
manually move MULE to the correct positions to pick up 
and place the blocks. MULE would not drop blocks 
correctly if participants misplaced MULE or forgot to 
apply mortar.  
This study also included three types of drones: (1) 
surveillance, (2) delivery, and (3) inspection drones. The 
surveillance drone was employed to either monitor the 
status of the construction site by patrolling the job site or 
facilitate communication between workers by conveying 
the message of change orders. The delivery drone aimed 
to deliver materials (i.e., deliver a new mortar bucket for 
participants and collect the empty one) for workers 
standing on an elevated platform. The inspection drone 
was utilized to examine the work progress, monitor the 
safety behaviors and productivity of workers, and report 
to the manager. The drone would hover overhead from 



 

 

randomly ordered directions while keeping various 
distances from the subjects. Lastly, AI assistant (i.e., an 
intelligent screen) is an information delivery platform 
informing workers about the dynamic objects (e.g., the 
type and direction of drones) approaching them on the 
construction site.  
To test the hypotheses, this research conducted a within-
subject study by asking all subjects to complete two 
modules (i.e., Baseline and Error modules). The baseline 
module referred to the scenario that all the agents (i.e., 
MULE, drones, and AI-assistant) exhibited normal 
behaviors with ideal performance. However, the error 
module embodied four incidents happening to the agents: 
(1) MULE cobot malfunction: it did not drop blocks as 
expected, (2) Drone malfunction #1: the participant was 
struck by a drone, (3) Drone malfunction #2: a drone 
struck another worker at the job site, and (4) AI-assistant 
malfunction: it provided incorrect information about the 
type and direction the approaching drone. Noteworthy, 
this study mainly considered MULE’s malfunction as a 
failure in human-robot interaction to examine human 
responsibility attributions because both humans (i.e., 
misplacing MULE) and MULE (i.e., malfunctioning) 
could be the responsible agent for this incident. For the 
rest of the incidents (Incidents 2-4), drones and AI-
assistant should undoubtedly take responsibility for the 
failures. 

Experimental procedure 
Initially, all the subjects were asked to sign a consent form 
and complete a demographic pre-survey. Then, they were 
provided with an introduction to the experiment. The 
introduction presented an overview of the bricklaying task 
and all types of agents (i.e., MULE, drones, and AI-
assistant). In addition, the training offered an opportunity 
for subjects to familiarize themselves with the VR 

environment and practice the bricklaying task. 
Participants were equipped with a VR headset, two 
controllers, three motion trackers, and neuro-
psychophysiological wearable sensors.  
After ensuring participants fully understood the 
experiment process, they were asked to complete baseline 
and error modules; each taking approximately 7 mins. In 
both modules, participants needed to perform the 
bricklaying task in collaboration with MULE and interact 
with three types of drones while the AI-assistant provided 
assistive information. The Error module included the 
incidents mentioned above. A widely-used 5-point Likert-
scale trust questionnaire (Muir 1994) was administered to 
collect their trust levels in three agents separately after 
each module (i.e., Tb = post-trial trust assessment after the 
baseline module; Te= post-trial trust assessment after the 
error module). After completing the error module, 
additional questions were asked to examine whether they 
have noticed the incidents and their responsibility 
attributions. Finally, the experimenter conducted a brief 
interview to obtain feedback on the experimental design 
from the participants. All the procedures were approved 
by the Purdue Institutional Review Board (IRB). 

Apparatus 
The selected VR device was the HTC Vive Pro Eye 
(manufactured by HTC Corporation, Taoyuan, Taiwan), 
which contains the built-in Tobii eye tracker with a refresh 
rate of 90 Hz and a field of view of 110o. The calibration 
system embedded in the headset was developed to 
calibrate eye-tracking data for each participant. The 
experiment was run on an Alienware PC with an AMD 
Ryzen 9 5950X 16-Core processor and an NVIDIA 
GeForce RTX 3090 graphics card. Due to the page limit, 
the data from wearable sensors were not considered in the 
final analyses of this paper.  

Figure 1: Research framework. 



 

 

Results 
Normality checks and Levene’s test were carried out, and 
the assumptions were met. A paired t-test was used to 
examine H1. H2, H3, and H4 were tested by conducting a 
one-tailed two-sample t-test. Table 4 provides a summary 
of the results, and Figure 2 shows a graphical overview of 
findings based on independent variables (i.e., groupings) 
and dependent variables (i.e., trust).  
 

Table 4: Results of hypotheses tests (H1- H4) 

Hypot
hesis 

Gro
up 

N Mean STD t-
value 

p-
value 

H1 A1 35 4.614 0.439 1.546 0.131 
 B1 35 4.471 0.514 
H2 A2 16 -0.313 0.616 -1.734 0.046* 
 B2 19 0.000 0.414 
H3 A3 19 -0.329 0.507 -2.334 0.013* 
 B3 16 0.078 0.490 
H4 A4 8 -0.250 0.433 -2.531 0.026* 
 B4 11 0.182 0.284 

* p <0.05 

Figure 2: Graphical box plots representing trust changes in 
H1- H4 

 

H1: Effect of cobot failures on worker-robot trust 
According to the subjective report, all participants noticed 
the MULE malfunction in the error module. To analyze 
the effect of the failure on trust, a within-subject paired t-
test was utilized to compare the difference in trust levels 
measured after baseline, Group A1 (MeanA1=4.614; 
STDA1=0.439) and after error, Group B1 (MeanB1=4.471; 
STDB1=0.514). The result indicated no significant 
difference between the two trust levels (tA1 vs B1=1.546; 
p=0.131>0.05). Thus, overall, the cobot failure did not 
significantly impact workers’ trust in robots.  

H2: The effect of workers’ responsibility attributions 
for failures on trust 
Among 35 participants, who all noticed the MULE 
malfunction, 16 subjects reported attributing the 
responsibility for the failure to the robot (blame target was 
robot, MeanA2=-0.313; STDA2=0.616), while 19 subjects 
perceived themselves to take responsibility (blame target 
was human: MeanB2=0.000; STDB2=0.414). The results of 
the t-test revealed a significant effect of responsibility 
attribution (blame target) on trust level changes (Dtrust= 
Te- Tb; tA2 vs B2=-1.734; p=0.046<0.05). This indicates that 
blame attribution by a human influence trust, and subjects 
who took responsibility for the failure retain their trust in 
the robot compared to those who regarded the failure as 
the robot’s fault.  

H3/H4: Trust transfer in human-robot interaction 
The trust transfer in this study represented that lowering 
trust in other agents would be transferred to reduce the 
trust in MULE. Among all participants, 19 subjects 
lowered their trust in drones and AI-assistant (MeanA3=-
0.329; STDA3=0.507) while 16 subjects retained trust in 
drones and/or AI-assistantafter incidents (MeanB3=0.078; 
STDB3=0.490). The result showed a significant effect of 
lowering trust in other agents on trust change in MULE 
(Dtrust= Te- Tb; tA3 vs B3=-2.334; p=0.013<0.05). Although 
the trust transfer could explain the trust change in MULE, 
an alternative is human blaming MULE for the failure.  
To further investigate whether workers perform multi-
agent trust transfer, Group B2 was categorized into Group 
A4 (i.e., subjects who reduced trust in drones and AI-
assistant when taking responsibility for the MULE’s 
failure: MeanA4=-0.250; STDA4=0.433) and Group B4 
(i.e., subjects who retained trust in drones and/or AI-
assistant when taking responsibility for MULE’s failure: 
MeanB4=0.182; STDB4=0.284). Moreover, a permutation 
test was conducted to compensate for the small sample 
size of the sub-categories (<15). The results showed that 
distrust in other agents had a significant negative impact 
on workers’ trust in MULE (tA4 vs. B4=-2.531 
p=0.026<0.05). Hence, the multi-agent trust transfer was 
corroborated in this study. 

Discussion 
Due to the proliferation of robots at construction jobsites 
and as the cooperation between workers and robots 
increases, individuals have to face both success and 
failure in human-robot collaborative work, ultimately 
affecting their trust in robots. To explore the relationship 
between workers’ responsibility attributions (blame for 
failure) and their subsequent trust in the robot, the present 
study developed a future bricklaying experiment that 
participants had to team up with MULE cobot to execute 
bricklaying while interacting with various drones and an 
AI-assistant.  
The findings indicated that not all participants manifested 
a significant reduction in trust in MULE cobot after 
discerning the failure (i.e., MULE’s malfunction). This 



 

 

result was inconsistent with the findings suggested by 
previous literature in other disciplines (e.g., Abd et al. 
2017; Kraus et al. 2020; Salem et al. 2015; van den Brule 
et al. 2014), reporting that all subjects’ trust levels were 
highly influenced by the robot’s performance on the task. 
In the most relevant literature, the failures in human-robot 
interaction could be readily attributed to the robot’s faults 
by human users. This phenomenon was also related to the 
experimental tasks that researchers designed. That is, 
although participants needed to interact with a robot to 
perform the designated task, they usually played the role 
of a supervisor or a person being provided service (e.g., 
McNeese et al. 2021), not collaborating with the robot as 
was done in this paper. The previous studies also 
considered technical failures embedded in the robot and 
disregarded the failures related to human users included 
in the proposed taxonomies (e.g., Carlson and Murphy 
2005; Honig and Oron-Gilad 2018). However, the failure 
in this research could be attributed to either robot’s 
malfunction or the human’s faults. Unlike previous 
studies, MULE is a semi-autonomous system incapable of 
solely completing the task, and human intervention was 
necessary. Therefore, one reason for these inconsistent 
results is related to moderating effects of responsibility 
attribution in case of robot failure or malfunction.  
The findings of this study demonstrated that most of the 
participants attributed more responsibility to themselves 
(blame themselves) than to the MULE cobot for failure. 
These attributions then considerably affect their trust in 
robots. The participants who took responsibility for 
failure would increase their trust in the cobot, while those 
who attributed the blame to MULE cobot would decrease 
their trust. This outcome was consistent with the literature 
that mentioned that failure adversely affected trust (e.g., 
Abd et al. 2017; Salem et al. 2015). 
The findings indicated that workers who have decided to 
take responsibility, given that the robot caused the failure, 
would still retain trust in a faulty robot. This over-trust is 
due to the fact that the implementation of AI agents in the 
construction industry is still in its infancy compared to 
other industries and to workers who are unfamiliar with 
the newly-introduced robots on the jobsites. And often, a 
less competent agent is more likely to be blamed for the 
failure in human-robot interaction (Lei and Rau 2021).  In 
addition, transparency (i.e., the comprehension of a 
robot’s intention, ability, and limitations) has been 
highlighted by literature as a critical factor facilitating 
human’s appropriate trust level (e.g., Clare et al. 2015; Du 
et al. 2020; Kaniarasu et al. 2013; Kraus et al. 2020). For 
example, in the study examining the effect of 
transparency on trust, Kraus and his colleagues suggested 
informing users of the limitations of an autonomous 
vehicle in advance can expedite their trust building (Kraus 
et al. 2020). In other words, when incorporating novel 
technologies into construction sites, workers might 
overestimate the robots’ capabilities and build 
inappropriate trust levels. This suggests that more 
transparency in educating workers regarding potential 

unexpected behavior, new risks, or robot failures allows 
them to attribute the responsibility more logically. 
In the foreseeable future, workers will still be in the loop 
to collaboratively interact with robots to perform dynamic 
and complex construction tasks (e.g., human-centered 
robot interaction) (Emaminejad and Akhavian 2022). In 
this context, both humans and robots might be responsible 
for the failure, and the findings of this study showed that 
worker perception and responsibility attributions of 
failure affect their trust in robots. 
Further, the results also demonstrated that humans would 
transfer the decreasing trust in drones and AI-assistant to 
lower their trust in MULE cobots, even if they have 
decided to take responsibility for MULE’s failure. This 
multi-agent transfer could be inferred from the multi-task 
transfer. Previous literature also shed light on the 
relationship between multi-task trust transfer and the 
similarity within different tasks (e.g., Shu et al. 2018; Soh 
et al. 2020; Xie et al. 2019). Humans may adjust their trust 
in a robot to perform a task based on their trust in another 
similar task. Extending to multi-agent trust transfer, 
humans would transfer from the trust in one agent to the 
trust in another similar agent. In this study, participants 
have bridged the connection between MULE cobots, 
drones, and AI-assistant because, from a technical 
perspective, all of the agents included an element of 
automation. For example, MULE can automatically lift 
concrete blocks for workers, while AI assistants can 
automatically detect the drone’s type and coming 
direction. Hence, the similarity of agents’ functionality 
facilitated the multi-agent trust transfer.  
In the future construction industry, workers must 
collaborate with various robots to execute complicated 
construction work. This multi-robots-human interaction 
necessitates workers’ trust-building in multiple agents 
simultaneously. In this context, the performance of one 
agent might affect workers’ trust in another agent. the 
findings illustrated the interaction between workers and 
multiple robots and endorsed the multi-agent trust transfer 
in human-robot interaction.  
There are some limitations in this study worth noting. 
First, while the recruited participants in this experiment 
represent the next generation of the construction 
workforce, it is worthwhile to also examine the current 
experienced workforce who might experience more 
complacency and reluctance to embrace technologies. 
Second, the measurement of participants’ technology 
adoption was not included in this research. The extent to 
which workers accept and utilize the technologies might 
exert a significant effect on trust. Third, this study only 
considered the responsibility attribution of MULE cobot 
failure and the short-term impact of this failure on trust. 
Future researchers are recommended to explore the long-
term impact of failures or the effect of frequent failures on 
trust. Last, while multiple objective data were collected in 
the experiment, due to the page limit, it was not used in 
this paper. The objective trust data could provide more 
insights into the trust dynamics of workers.  



 

 

Conclusions 
Construction environments are changing rapidly, and with 
an increasing demand for human-robot collaboration in 
the construction industry, it is crucial to understand how 
workers allocate responsibilities (blame for failure) in 
mixed worker-robot teams. In addition, this might affect 
workers' trust in their robot partners, which is crucial for 
successful worker-robot teaming and effective 
collaboration. The present study investigated the impacts 
of blame targets (responsibility attributions) on trust in a 
collaborative bricklaying task simulating the multi-
robots-human interaction in future construction jobsites. 
Results showed that participants who attributed more 
responsibility to themselves (reverse SSB) than to the 
robot for the failure retained their trust. However, those 
who perceived robots to be accountable for their failure 
(SSB) reduced their trust in the robot significantly. In the 
future multi-robot multi-human construction work 
environment, the negative effect on trust gets exacerbated 
by being transferred to other agents, making them less 
reliable for workers. 
These findings indicate the need for (1) further studying 
effective communication strategies for robots (non-
human agents) in case of failures without compromising 
the trust relationships with their human partners; and (2) 
educating current and future workers regarding safe and 
productive collaboration with robots. This study also 
provides possible design insights for future construction 
robots; and calls for continued work in this area to 
enhance the likelihood of robots being accepted as true 
teammates, not only as a tool, by current and future 
construction stakeholders, and attribute with appropriate 
responsibility for given unexpected situations or failure.  
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