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Abstract—We have recently seen a surge in interest in lever-
aging reconfigurable intelligent surfaces in smart radio environ-
ments. One critical question is how to efficiently optimize the
phase configuration that results in the desired reflective wave-
front. In this paper, we proposed a physics-based optimization
approach inspired by the statistical mechanics of correlated spins
and adiabatic quantum computing. The new concept is based
on the isomorphism of electromagnetic scattered power and the
Ising Hamiltonian. As a result, the problem of optimizing phase
configuration is transformed into the problem of finding the
ground state of the target Ising Hamiltonian. We successfully
demonstrate the feasibility of combinatorial optimization for
weighted beamforming and diffusive scattering applications using
this framework.

Index Terms—Electromagnetic metamaterials, diffusive scat-
tering, Ising model, optimization, reconfigurable intelligent sur-
face, weighted beamforming, wireless communication, 6G.

I. INTRODUCTION

ECONFIGURABLE intelligent surfaces (RISs) are

software-controlled large engineered surfaces with many
low-cost passive reflecting elements, where the desired reflec-
tive wavefront may be achieved by tuning the local reflec-
tion phase and/or amplitude of individual elements [1]-[8].
Recently, we have seen a growing interest in using RISs to
dynamically manipulate the propagation environment [9]-[18].
Going beyond 5G and entering 6G, it is envisioned that large-
scale, distributed RIS devices will be deployed at the surface
of interacting objects, e.g. walls, windows, furniture, in the
propagation channel [19]-[21]. The overall goal is to transform
the radio environment into a smart and reconfigurable space
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that provides enhanced coverage with high energy efficiency
and supports ultra-fast and seamless connectivity.

To fully realize the potential of RIS-enabled smart electro-
magnetic (EM) environment, one needs to rapidly find the op-
timal states of RIS with prescribed objective functions. While
there are mathematical tools like generalized Snell’s law for
anomalous reflection [4], there are no semi-analytical solutions
for specific EM functionalities, e.g., multi-beamforming, en-
ergy focusing, diffusive scattering, and wireless functionalities,
such as spatial diversity, data throughput, and physical-layer
security. Therefore, various RIS optimization methods have
been proposed in the literature, including genetic algorithms
[22]-[24], impedance-based synthesis [25], electromagnetic
inversion [26], machine learning [27]-[32], as well as dy-
namical optimization [33]-[36]. Despite these advances, it
is still considered a challenging computational optimization
task due to the enormous number of RIS configurations, the
complexity of EM scattering environments, and the processing
time constraints for wireless systems and networks.

Recently, significant advancements in quantum computing
(QC) algorithms and hardware provide a novel paradigm
for solving difficult computational problems. Regarding EM
applications, the quantum Fourier Transform was used for an-
tenna array synthesis [37]. A quantum method of moment ap-
proach based on the Harrow/Hassidim/Lloyd (HHL) algorithm
is developed for the characterization of interconnects [38],
[39]. Variational quantum algorithms with the finite difference
method are presented for the calculation of waveguide modes
[40]. In terms of wireless networks, quantum computing and
optimization are used for multi-user MIMO detection and
processing [41], [42] and optimal resource allocation for 6G
wireless network [43].

The proposed work stands on the fusion of statistical
mechanics models with QC algorithms to overcome the high
computational optimization complexity in the RIS-aided smart
radio environment. The philosophy is to recast the RIS-aided
wireless and/or EM problem into a physical formulation that
can be tackled efficiently with emerging QC hardware [44].
As an example, the Ising model is widely used in statistical
mechanics to describe the spin state of quantum particle arrays.
In [45], we expand on this analogy and develop an Ising model
for the RISs with beamforming/nullforming applications. By
designing the Ising Hamiltonian to mimic EM scattered power,
the optimal RIS configuration is encoded in the ground state
solution of the Ising spin system, which can be effectively
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found by heuristic quantum optimization algorithms.

In this paper, we advance this area of research in three
directions. First, we evaluate and benchmark the performance
of quantum optimization algorithms against classical heuristic
algorithms. Second, we go beyond the basic beamforming
applications and demonstrate the feasibility of the proposed
methodology for weighted beamshaping and diffusive scatter-
ing applications. The emphasis is placed on the development
of Ising Hamiltonian models in practical scenarios of wireless
communication and radar engineering. Third, we discuss the
use of hybrid classical-quantum algorithms for large-scale
Ising optimization problems. The research outcomes are ex-
pected to be important in the emerging fields of large-scale
smart EM environments and new wireless infrastructures, in-
cluding high-capacity networks with reduced emission levels,
smart skins for EM wave signal processing, and directed
energy countermeasures to high-power EM coupling.

II. BACKGROUND
A Introduction ro Ising Model

The Ising spin lattice model is originally introduced as
a mathematical model for understanding ferromagnetism in
statistical mechanics [46]. The magnetic moments of atomic
spins are represented by discrete variables, +1 for the spin
up and —1 for the spin down. In the Ising model, the energy
objective function (also called Hamiltonian) is expressed as a
quadratic function of spin vector {sy, s2,--- , sy}t

M M M
H= Z Z SmEndmn + Z hmsm (1
m=1

m=1 n=m+1

where the spin variables s, € {+1,—1} express the two
orientations for each moment. The entries Jy.y,, also called
couplers, characterize the interaction energy of moments m
and n, and the entries h,,, also called bias, refer to local
magnetic fields that act individually on the sq;. In principle,
a variety of combinatorial optimization problems can be ex-
pressed as the emergy minimization of an appropriate Ising
spin model by properly choosing the J, and hy, [47].

B. Ising Model for RIS Beamforming

We consider the basic problem statement of a RIS-assisted
wireless network as illustrated in Fig. 1, including a user's
equipment (UE), a base station (BS), and a passive RIS array.
The BS controls the operation of the RIS through an out-
of-band control channel [48] to the RIS controller. The RIS
unit cells are individually connected to the RIS controller that
implements tunability of local reflection phases to incoming
waves. Namely, one can tune the reflection phase of each RIS
element from a finite set of phase states, e.g., 1-bit (binary)
RIS can be tuned with a reflection phase of 0° or 180°, and a 2-
bit RIS element exhibits four reflection phase states. As such,
we can view the RIS optimization as an integer programming
model, which searches for an optimal solution over all the
combinatorial states of RIS elements.

To briefly demonstrate the method, we consider an M-
element linear RIS array with the application of desired signal
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Fig. 1: A RIS-assisted wireless network for creating a virtual
line-of-sight between the BS and the UE.

maximization towards the elevation angle of #° and azimuthal
an%e of ¢*. The scattered EM field can be written as: E =
¥ me1Gm(f,¢)sm, where the RIS basis state s, represents
the element phase modulation, e.g. +1 comesponding to the
0/7 phase response, and the G,(f, ¢) is the element-wise
scattering vector that can be calculated by the physical optics
(PO) approximation or the full-wave numerical method. We
can then express the EM scattered power as a quadratic model:

M oM

P(6,6)=E' -E=Y" 3" GhL(6,6)Ga(6,8)smsn ()
m=1n=1

From this, we can construct an energy maximization Hamil-

tonian with an order 2 polynomial. By using symmetry in the

scattering vector, the effective Hamiltonian can be constructed
as an Ising spin-glass model:

MM
H(0°,¢")=—P(#°,¢")=>_ > smsnJmn(8°,¢°) 3)
m=1n=m+1
in which the desired scattering direction is denoted by #° and
#*. The computation of spin-spin interaction strength, Jion, is
detailed in [45] and skipped here for brevity.
The solution to the RIS beamforming problem can be found
by solving an argmin optimization problem:

8p,--- , &y = argmin H(#* 4%) 1)
81, 80
which is equivalent to finding the ground state of the Ising
Hamiltonian.

C. Heuristic Quantum Optimization Algorithm

Generally speaking, finding the ground state of an Ising
maodel is an NP-hard (non-deterministic polynomial-time hard)
problem due to the exponentially large solution space, ie.
O(2™M) for 1-bit RIS and O(4™) for 2-bit RIS. Classical op-
timization algorithms [49]-[51] do not scale well with a large
number of RIS elements. To find the ground-state solution
effectively, one appealing way forward is to leverage recent
advances in the adiabatic Q)C hardware, so-called quantum
annealer ((QA) [52], which received considerable interest lately
due to the number of available qubits and programmability
[41], [531]56].

The QA is a type of analog quantum computing processor
(QPU) that specializes in solving NP-hard combinatorial op-
timization problems. The principles of operation are derived
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from the adiabatic theorem [57], which states that a quantum
system in its ground state will remain in the ground state,
provided the Hamiltonian governing the dynamics changes
sufficiently slowly. Applying this to the Ising model, one
may initialize the quantum system in the ground state of a
Hamiltonian that is known and easy to prepare, and slowly
change it to a complex Ising Hamiltonian that encodes the
optimization problem. The final state of the system, which
is the ground state of the Ising Hamiltonian, represents the
optimal solution to the problem.

The particular physical QA hardware considered in this
work is the D-Wave Advantage system [58], which has 5,000
functional quantum bits (qubits) represented by circulating cur-
rents in superconducting loops. The Ising model is compiled
into the D-Wave QA device through a process of embedding
and de-embedding. The corresponding quantum Hamiltonian
with Ising spins in a transverse field is given by:

M M M

H(t) =—A(t><2 &;) +B(t><Z > ffin&szn) )
m=1 m=1n=m-+1

where &7 are the Pauli spin matrices. The &7, represent the
spin projections along either the +z or —z direction. The A(t)
stands for the transverse Hamiltonian due to an applied trans-
verse field in the z-direction. The quantum annealing process
starts at time ¢ = 0 with .A4(0) > B(0). The system is then
evolved adiabatically by decreasing A(t) and increasing B(t)
until the annealing time ¢y is reached. If the increase in B is
slow enough, the adiabatic theorem ensures that the final state
of the system is the ground state of the target Hamiltonian.
Namely, the qubits have dephased to classical systems, and
the 67, can be replaced by classical spin variables, 5,,, which
indicates the optimal configuration of RIS.

It is noted that due to the undesired noise on the quantum
processors in an open environment, it is difficult to fulfill the
precise adiabaticity condition in practice. Because of the non-
adiabatic effects, there is no theoretical guarantee that QA
will find the ground state (i.e. an optimal solution) for each
annealing cycle. But the global optimality may be reached
with high probability [45]. As a result, the QA is considered
a heuristic quantum optimization algorithm.

III. WEIGHTED MULTIPLE BEAMFORMING
A. Motivation for Weighted Beamforming

Recently, non-orthogonal multiple access (NOMA) is in-
troduced for the design of radio access techniques in fifth-
generation (5G) and beyond wireless networks [59], [60]. The
central idea behind NOMA is that multiple users can share
the same frequency and time resources, resulting in increased
spectral efficiency. NOMA schemes are broadly classified into
two types: code-domain multiplexing and power-domain mul-
tiplexing. The code-domain multiplexing allows for multiple
transmissions by assigning different codewords to different
users. It’s thus crucial to distribute the power necessary to
balance the channel conditions in order to guarantee user
fairness. In the power-domain NOMA, multiuser signal data
streams are superimposed at the transmitter side, and succes-
sive interference cancellation is used to decode the signals at

the receiver side. Multiple access is achieved by allocating
different power levels to different users’ signal data, taking
advantage of channel gain differences among users.

In this study, we aim to exploit the RIS’s configurability
to generate weighted multiple beamforming, such that either
heterogeneous channel conditions desired by power-domain
NOMA or homogeneous channel conditions required by code-
domain NOMA can be achieved at will. An example of RIS-
aided code-domain NOMA is shown in Fig. 2. There are multi-
ple mobile receivers that simultaneously require a considerable
amount of signal energy from the transmitting base station.
To ensure user fairness, we want the RIS to redirect signals
from a single base station to distribute appropriate signal
power to receivers. In particular, the RIS may be configured
to perform beamforming towards nearer receivers with lower
signal power and beamforming towards farther receivers with
higher signal power. Consequently, all mobile receivers can
meet the required minimum signal-to-noise ratio.
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Fig. 2: RIS-aided code-domain NOMA wireless network.

B. Construction of Ising Hamiltonian

Given the problem statement in Fig. 2, an extension of
(3) can be formulated as an Ising Hamiltonian for weighted
beamforming of a 2-D rectangular M by N RIS panel.
The scattered EM field can be written as E(6,¢) =
Z%Zl Zﬁ[:l Gn (0, @) Smn, Where s, and Gy, (0, @) are
the RIS spin variable and element-wise scattering response,
respectively, for RIS element at the m!” row and n*" column
of the RIS panel. In addition, assuming the desired scattering
directions towards two receivers are (65, ¢5), and (65, ¢3), we
can define the weighted scattering field differential as:

E(01,¢1,05, 65, W) = E(0], ¢7) — WE(03,65)  (6)

in which a weighting factor W is introduced to account for the
desired difference between the scattered field intensities from
the RIS towards two angular directions. The scattered power
differential is defined as:

Pd:ET( fv(bi, §a¢§aW)E( 1s iqa §a¢§vw> @)
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Next, we can construct the Ising Hamiltonian for weighted
beamforming by the following equation:

H = —P(03,¢7) — P(63,05) + APa(07, 97,03, 95,

_A)Z

W) (®)

jmmw (eiqa d)iq)Squmn

M=
=3 M=
M=

u=1v=1 1n=1
M M N B
+(1 - WZA) Z Z Imnuw 025 ¢2)5uv5mn
u=1lv=1m=1n=1
M N M N
F2WARD DD Z Tt (035 83,603, 65) $uvSmn] (9)
u=1lv=1m=1n=

where the spin-spin interaction strengths are obtained by:

7mnuv (af, ¢i) Gj“,(af, ¢i)Gmn(0fa dﬁ) (10)
jmnuv(9§v¢§) = uv(9§v¢§)Gmn(9§v¢§) (11)
mnu'u (317 ¢17 92’ ¢2) GLU (0;, (b;)Gm’ﬂ(a; (b;) (12)

In (8), the beam power maximization in both desired directions
is carried out by the first two terms. The scattering power
difference between two beams is enforced by the third term.
The penalty factor A strikes a balance between the beam power
maximization and the beam weighting in terms of the energy
objective functions.

C. Extension of the Ising Model to 2-bit RIS

The above procedure can be extended to RISs with higher-
order phase modulation. Taking the quadriphase RIS as an
example, the element reflection coefficient has four quantized
phase states with a /2 phase increment, therefore it is
often referred to as 2-bit reflecting element. The element-
wise response can be represented by two Ising spin variables,
sRe € 41 and sI™ 41 [45]. The scattered EM field can be
written as:

M
E=

m=

N
Y Gonl0°,6°) (si +dsi) - (13)
1n=1

It is noted that the scattering field is defined as E in order
to minimize confusion with symbols used in the previous
subsection. The dot symbol is used to indicate terms for 2-bit
RIS applications. Compared to (2), the EM scattered power
for the 2-bit RIS is expressed as:

P(0,¢) =E'(0,9) - E(0,¢)
N M
5 35 D)l CIRIRT IR
u=1v=1m=1n=1
+JGI(0,6)Grun (0, ¢)sBosm - (14)
_jGuv(97¢) mn(g ¢) Lr;f)l 516;1

+ Gy (0,0)Gnn (0, 0)siin s,

The weighted scattered power differential is defined as:

103,07, 05, 05, W) - E(67, 65,05, 05, W) (15

where E is the weighted scattering field differential:
E(6], 61,63, 63, W) = B(6]. 0}) — WE(63,03)

EBi=E

(16)

We can then construct the Ising Hamiltonian for the
weighted beamforming application. Due to the involvement
of multiple spin-spin interaction definitions in the formulation,
we simplify the expression of the Hamiltonian as summations
of two types of sub-hamiltonians, H, and H, in which H, is
related to the energy hamiltonian that maximizes the power in
the desired direction and H is the sub-hamiltonian responsible
for enforcing the weighing constraints between the two beams.

(1-A)

He (85, 0%)+(1—W?A)H. (65, ¢5)+2WAR[Hy] (17)

where H,(0%,¢°) = —P(0%, $*) and

JRR d

R R
mnuv oigv ¢17 02’ ¢2) o S

M N M
|: SuvSmn

)3

u=1lv=1m=1n=1

+J1§£5v(01a¢1a927¢2) 55 ern (18)

+ JTIYIIELSU (0193 ¢17 927 ¢2) ELI &en

Jrlnln(iv (ei’ ¢17 627 ¢2) Lr’[l} irl?n
J’rﬁfufv( ¢17 927 ¢2) - .]G (ei Qﬁ)G’rnn( 57 ¢§) (20)
Trioan (03, 91,03, 03) = )(95 ¢1)Gmn (03, 93)  (21)
ngn(jw (9{, 957 ¢2) (957 Qﬁ)Gmn (6‘57 (b;) (22)

IV. DIFFUSE SCATTERING

A. Electromagnetic Signature Reduction

Besides beamforming and focusing in communication net-
works, the RIS can be of great value to other commercial
and defense applications. One such example is the use of
RIS as an EM stealth solution for military scenarios. The
demand for light-weight and low-profile materials for stealth
technology in military applications is ubiquitous. Absorbing
materials have traditionally been used to reduce the EM
signature of platforms. However, the performance of these
materials typically scales with thickness. When the material
thickness is a hard constraint, diffusive RIS is an appropriate
alternative. By redirecting energy in all directions, the reflected
EM energy is dispersed and thus reducing the monostatic EM
signature, as illustrated in Fig. 3.

In the literature, the scaling laws and bounds on diffusive
metasurfaces are discussed in [61]. A sub-optimal generalized
Golay-Rudin-Shapiro (GRS) code is utilized to generate the 1-
bit coding pattern for the case of normal plane wave incidence.
As shown in Fig. 3, oblique incident fields may also impinge
on the diffusive RIS mounted on the platform. Thus, it is
important to assess the diffusive performance in such cases.
In this section, we present a RIS-Ising model for diffuse scat-
tering, which incorporates the attributes of element-specific
scattering factor and angular-dependent excitation, and also
can be efficiently solved by the quantum annealing algorithm.

Authorized licensed use limited to: University of lllinois. Downloaded on October 15,2023 at 17:30:02 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3298134

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023

J Diffused\‘\
field

Normal
Impinging field

Oblique Impinging field

Fig. 3: Illustration of the diffusive RIS that reduces the EM
signature of the platform.

B. Construction of Ising Hamiltonian

In the ideal case, a perfect diffusive scatterer would direct
energy equally in all directions, resulting in a uniformly low
diffused isotropic EM field. In other words, the scattered power
would spread throughout the angular domain. Based on this
observation, we aim to construct an Ising Hamiltonian that
mimics the variance in the scattering densities.

The conventional way to compute the variance of a scattered
power P(6,¢) in the angular domain follows the expected
value of the squared deviation from the mean power: o2 =
E [(P(6, ¢) — P)?]. However, this method may be impractical
as the mean power P is inaccessible. Alternatively, we first
generate a finite sample of /N angular observations, then con-
struct a Hamiltonian associated with the population variance
of the scattered power from the RIS:

s s
Hvar = %ZZ[P(GM(ZSZ) _P(ej,qu)]Q (23)
i j>i
whereby S represents the number of scattering angles used
to compute the population variance of the scattered power.
The obtained variance Hamiltonian is an energy function that
describes the variance of the scattered power in the angular
domain. The ground state solution (minimum value) of the
Hamiltonian produces the desired scattering pattern with the
lowest variance.

C. Reduction of Higher-order Interaction

From (23), we observe that the variance Hamiltonian re-
quires the product of scattered powers P(6,¢), i.e. (2) for
1-bit RIS and (14) for 2-bit RIS. The result leads to the
fourth order polynomial in the Ising model, also known as the
four-body interaction among four Ising variables $,,5,5;Sy-
The D-Wave QA hardware is not capable of solving these
terms directly, as current annealers only allow polynomials
with a maximum order of 2. Thus, we need to convert the
fourth-order terms to second-order ones through a process of
quadratization. Specifically, we have made use of a polynomial
penalty approach, similar to methods introduced in [62], to

reduce higher-order terms to a sum of pairwise-interaction,
two-body terms.

To briefly show the algorithm, we consider a four-body
interaction term of s $28354, where s; is the i*h Ising variable.
The first step is to convert the four-body interaction term to
a three-body interaction term by introducing 2 auxiliary spin
variables and a weighted quadratic penalty function as follows:

81828384 = 15287 + V P(s3, 54; 87, 85) 24
where s{ and s§ are auxiliary variables. This step converts the
four-body interaction term s1525354 to a three-body interaction
term s;sps{ with a penalty weighting factor V' and penalty
function with pairwise interaction terms, s;s;. The penalty
function is expressed as P(ss, s4;5y,5%) = 4 + s3 + s4 —
59 —255 + 5354 — 5357 — 5457 — 25355 — 25455 +25% 55, which
is used to enforce the constraint s = s354.

The next step in the process is to reduce the three-body
interaction term s;s25¢ to a sum of pairwise interaction terms.
It involves introducing two new auxilliary variables s5, s§ and
another penalty function P(sz, s§; s, s7). The final expression
of the fully quadratized four-body interaction term can be
expressed as follows:

s1525354=5155+VP(sq,s7; 55, 59)+VP(ss3, s4;5%,55) (25)

Figure 4 graphically illustrates this recursive quadratization
process. In the graph, the blue nodes represent the original
Ising variables related to the phase of each RIS element and
the red nodes represent the auxiliary variables. The connected
edges describe the pairwise interactions between these vari-
ables and the dashed box represents higher order interaction
(four-body or three-body interactions) among the variables
contained in the box. As shown in Fig. 4, four new auxiliary
variables are added for each 4-body interaction term in the
Hamiltonian. The result allows us to simulate the higher order
Ising optimization problem using current quantum annealers.

51528384 ;5,87

(a) 4-body interaction (b) 3-body interaction with 2 auxiliary terms

(¢) Pairwise interactions with 4 auxiliary terms

Fig. 4: Graph illustration of recursive quadratization process.
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V. HYBRID CLASSICAL-QUANTUM ALGORITHMS

The D-Wave Advantage 4.1 QPU hardware consists of 5000
functional qubits that are coupled through a sparsely connected
Pegasus topology [63]. Because our Ising model generates
a fully connected graph (also known as a clique), a minor
embedding process is required to convert the clique to the
Pegasus lattice structure [64]. During the minor embedding,
multiple physical qubits must be constrained to have the same
value in order to represent a single Ising variable. As a result,
the maximum RIS problem size we can simulate on the D-
Wave QPU is at most 177 1-bit RIS elements or 88 2-bit RIS
elements for beamforming operations. Assuming that we are
interested in RIS panels with an equal number of RIS elements
in both dimensions, this constraint translates to a maximum
panel size of 13 by 13 1-bit RIS panel and 6 by 6 2-bit RIS
panel. From this, we can see that current quantum computers
lack the scale required for large RIS problems.

In the quantum computing community, several papers have
proposed hybrid classical-quantum algorithms that make use
of both classical and quantum computing hardware to optimize
large-scale problems of interest [65]. For example, D-Wave has
provided a reference hybrid classical-quantum solver named as
Kerberos [66]. After decomposing the large-scale problem into
subproblems, the solver concurrently performs Tabu search
and simulated annealing algorithms on the classical computer
and D-wave QA sampling on the quantum computer. The
solver monitors all three optimization tracks and outputs the
results from the fastest track.

In this paper, we explore a hybrid classical-quantum al-
gorithm based on the large neighborhood search heuristic
algorithm [67]-[69]. It is an iterative algorithm that searches
for local solutions in a given neighborhood, which is defined as
a subset cluster of variables in the original large problem. This
process is repeated until the convergence criteria are met while
exploring different neighborhoods of the problem. For the RIS
beamforming application, we pick the sub-regions by sliding a
fixed square frame across the RIS (Fig. 5). We then optimize
RIS elements inside the frame to obtain a local solution for
each sub-region. These local solutions will be merged to form
the global solution.
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Fig. 5: Partition of the RIS panel into overlapping sub-regions
for beamforming applications.

Special attention needs to be made to the diffusive scattering
applications. Due to a large number of 4-body interaction
terms, the straightforward sliding frame approach will cause
significant information loss in the variance Hamiltonian. Thus,
we propose two ingredients to improve the effectiveness of
the hybrid classical-quantum algorithm for diffusive scattering
cases. In the preparation stage, rather than forming regular sub-
regions through regular spatial decomposition, we construct
sub-regions by randomly selecting a subset of the entire prob-
lem. Figure 6 depicts the construction of two overlapping sub-
regions. The first sub-region contains the first, second, fourth,
and fifth RIS cells, whereas the second sub-region contains the
first, third, fifth, and sixth RIS elements. Using this method,
we can create randomized sub-region combinations while
minimizing information loss in the variance Hamiltonian.

Sub-region 1

Sub-region 2

Fig. 6: Random partitioning of a 6-element 1D RIS array for
diffusive scattering application.

Second, instead of a straightforward merge, we use a
greedy-path merge at the end of every iteration. This is illus-
trated in Fig. 7. We apply quantum annealing to a particular
RIS sub-region during each iteration. This allows us to obtain
the initial RIS state prior to annealing as well as the updated
RIS state after annealing. Next, we generate intermediate RIS
states by following a greedy path between the RIS state before
and after annealing. Among all of these RIS states, we select
the RIS state with the lowest energy to update the initial RIS
state for the next iteration. This procedure is repeated until all
sub-regions have been optimized.

VI. NUMERICAL EXPERIMENTS
A. Performance Evaluation and Benchmarking

In this section, we will compare the performance of quan-
tum annealing (QA) to that of classical algorithms, followed
by a discussion of the use of hybrid quantum algorithms for
large-scale Ising optimization problems.

1) Benchmarking with classical algorithms: The perfor-
mance of QA is benchmarked against two classical algorithms,
i.e. the simulated annealing (SA) [49] and the branch-and-
bound algorithm [70]. To elaborate, the SA can be thought as a
classical analog of quantum annealing. It involves implement-
ing Metropolis-Hastings method with a temperature schedule.
The particular SA solver used for this study is provided by
DWAVE neal package [71]. The branch-and-bound solver used
in this paper is from IBM’s CPLEX Optimizer [72], which
is a cutting-edge solver for Mixed Integer Program (MIP)
problems. Both classical solver experiments were carried out
on an Intel Core i7-1165G7 CPU. The QA is executed on the
D-Wave Advantage 4.1 machine.

For this benchmarking experiment, we consider a TE po-
larized plane wave normally incident upon a one-dimensional
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Fig. 7: Illustration of the greedy-path merge procedure.

RIS array with binary (1-bit) elements. The size of the RIS
element is 1\ and the RIS elements are placed along the
y-axis. It is noted that the element size has been chosen
to be comparable to the wavelength. In practice, the RIS
panel design may start at the subwavelength unit cell level
with the assumption of a local periodic arrangement. At
deployment, each RIS element may consist of a number of
subwavelength unit cells with the same switching states. A
stable phase control can be approximated at the element level
across discrete states. We aim to optimize the RIS phase
profile, such that the scattered power is maximized at a desired
direction (#° = 15°,¢° = 90°). The obtained radar cross
section (RCS) values for a variety of problem sizes are shown
in Fig. 8, where the optimized solutions have very similar
qualities.

The next task is to compare the time-to-solution (TTS)
of the three methods. Given the probabilistic nature of QA
and SA heuristics, the TTS is evaluated in two steps. For
each of the problem instances, we first calculate the average
success probability Ps(N) of finding the ground-state solution
by performing 1000 runs (also called anneals). The minimum
required number of runs to achieve a desired probability of
success Py can then be calculated by:

_ In(1 —Py)
~In(1 =P (N))

where N denotes the RIS array size and the desired probability
P4 is set to be 99.99% in our study. Finally, the TTS is
calculated by multiplying R(N) with the time required for
one run. Regarding the CPLEX Optimizer, the default settings
are used in the study.

The TTS taken for the three methods are depicted in Fig.
9. We first observe that the CPLEX optimizer scales poorly

R(N) (26)

with RIS size. This insinuates that such a classical algorithm
might not be suitable for RIS optimization problems. Next,
we can see that SA is the fastest for small problems. As
we increase the size of the RIS, the time required for SA
increases noticeably. At around the array size of 128, QA takes
over as the most efficient solver. The study suggests that QA
has better scalable performance than the other solvers. This
result encourages the investigation of quantum optimization

algorithms for RIS-Ising models.
32 64 128 177
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Fig. 8: Optimized RCS results from quantum annealing
(RIS-Ising-QA), simulated annealing (RIS-Ising-SA) and IBM
CPLEX optimizer (RIS-CPLEX).
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Fig. 9: Time-to-solution required by quantum annealing (RIS-
QA), simulated annealing (RIS-SA), and IBM CPLEX opti-
mizer (RIS-CPLEX).

2) Extension to large-scale Ising models: As discussed ear-
lier, the problem size that can be solved by the QA is relatively
small due to the mismatch between the fully connected graph
generated by RIS Ising models and the sparse Pegasus graph
used in D-Wave QPU hardware. A hybrid classical-quantum
algorithm, denoted by the hybrid quantum annealing (HQA)
method, is proposed in Section V to overcome the limitation.

We use the same benchmark problem as in the previous
subsection to evaluate the performance of HQA and SA. The
size of the RIS array ranges from 400 to 6400 elements. Figure
10 shows the obtained optimal RCS values. We see that the
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HQA and SA achieve the same RCS values at the desired
scattering angle. The TTS data for the two optimizers are given
in Fig. 11. It is noted that the TTS for HQA includes both the
QPU access time (for the QA optimization of sub-regions) and
the CPU execution time (for merging the local solutions). We
can see that the HQA generally takes less time than the SA. A
37.9 times runtime speedup is achieved for the problem size
of 6400 RIS elements.

10°
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108
-
3
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O
o
108 II
105 I I
400 800 1600 3200 6400

Number of RIS elements along side

Fig. 10: Optimized RCS results from hybrid quantum anneal-
ing (RIS-Ising-HQA) and simulated annealing (RIS-Ising-SA).
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Fig. 11: Time-to-solution required by hybrid quantum anneal-
ing (RIS-Ising-HQA) and simulated annealing (RIS-Ising-SA).

B. Numerical Study for Weighted Beamforming

In this subsection, a 5 by 5 RIS array with element size
d=1) and normally incident plane wave is used to demonstrate
the RIS-Ising annealing optimization for weighted multiple
beamforming. We start with the equal-weight beamforming
study. The two angular directions of interest are defined as

I =10°¢7 = 135° and 65 = 10°, ¢5 = 45°. The weighting
factor W in (9) is set to 1 for equal weightings for both
beams. By minimizing the Ising Hamiltonian, we can achieve
good beamforming in the specified angular directions with
approximately equal beam powers, as depicted in Fig. 12. The
ratio of scattering density towards ¢; = 135 is approximately

1.13 times the scattering density towards ¢5 = 45°. Thus, this
shows a minimal energy bias between the two scattered beams.
We have also included the results using the brute-force search
for comparison. The excellent agreements verify that we have
achieved the ground state of our proposed RIS Hamiltonian.

2500
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= RIS-Ising-Brute-Force
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S
9]
S 1000
500
0
0 15 30 45 60 75 90 105 120 135 150 165 180

/s
16}

Fig. 12: The RCS plots from a 5 by 5 1-bit RIS array with
two beamforming (weighting factor W = 1).

We proceed to study the weighted beamforming case by
setting the weighting factor W to 1.44. By minimizing the
resulting Ising Hamiltonian, we aim to create two beams with
a weighted power factor of 2 against the second beam. From
Fig. 13, we observe that the scattering density at ¢5 = 135°
decreases while the scattering density at ¢; = 45° increases
comparing to the result obtained with W = 1 in Fig. 12.
Moreover, the ratio of scattering density towards ¢§ = 45°
is approximately 1.46 times the scattering density towards
¢35 = 135°. The optimized scattering pattern again agrees with
the brute-force search result. It is noted that even though we
expect the beam power ratio to be 2, the limited performance
is due to the physical constraint of the small RIS array.
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Fig. 13: The RCS plots from a 5 by 5 1-bit RIS array with
two beamforming (weighting factor W = 1.44)

Next, we shift our focus to a 5 by 5 RIS panel with 2-
bit reflecting elements. The same plane wave excitation and
desired scattering angles are used as in the previous problem.
Again, we set W to be 1 and 1.44 for the test cases of equal
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and weighted multi-beamforming respectively. The optimal 2-
bit RIS configuration is derived by the Hamiltonian function
in (17). From Fig. 14, we can see that for the case with equal
weightings, the ratio of scattering density towards ¢; = 45°
is approximately 1.05 times the scattering density towards
¢5 = 135°. For the weighted beamforming case, the ratio
of scattering density towards ¢ = 45 is approximately 2.04
times the scattering density towards ¢35 = 135°. The result
demonstrates the effectiveness of the Ising Hamiltonian model
for the 2-bit RIS panel.
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4000 —RIS-Ising-QA, Weighted
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1000
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Fig. 14: The RCS plots from a 5 by 5 2-bit RIS array with
two beamforming (weighting factor W=1 and W=1.44)
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We conclude our numerical study of multi-beamforming
with a large-scale RIS panel made up of 50 by 50 1-bit RIS
elements. Under a normally incident plane wave, we aim to
create two scattered beams with equal power. The optimization
is performed by the HQA and SA algorithms. From Fig. 15,
we can see both algorithms produced sharp beams towards
the desired angles at ¢§ = 45° and ¢5 = 135° with equal
weighting. The SA algorithm takes 7.68 seconds to complete,
while the total runtime for the HQA algorithm is 1.24 seconds.
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Fig. 15: The RCS plots from a 50 by 50 1-bit RIS array.

C. Numerical Study for Diffusive Scattering

incident plane wave. In the numerical experiment, we employ
a two-step optimization strategy similar to the one used in
related literature [23], [61]. Specifically, instead of optimizing
the entire 2D RIS, we have performed two 1D optimizations
along each side of the RIS. Following this, the 1D solutions
from these sub-problems are used to generate the 2D RIS
configuration via an outer product operation. As compared
to the related literature, the proposed work accounts for the
polarization of the incident field and the element factor of the
RIS unit cells through the construction of a diffuse RIS-Ising
model. Hence, this would encourage better quality solutions.

To benchmark the performance of the proposed approach,
we define a figure of merit (FOM) and a physical limit of
diffusive RIS for this numerical study. First, the RCS ratio
will be used as the figure of merit [23]. To elaborate, the
RCS ratio is the ratio between the highest RCS value from the
diffusive RIS to the highest RCS value of a perfect electrical
conductor (PEC) plate of the same size. Hence, this FOM
describes the performance of the diffusive RIS to suppress
high RCS values in all directions. Second, the Isotropic Array
Factor (IAF) limit [61] is used as the benchmark performance
of diffusive RIS. This limit was derived with the assumption
of a constant directivity in the array factor. Thus, it may be
considered the physical bound of diffusive RIS performance.
By using these two definitions, we can evaluate the quality of
the optimized solutions.

The example considered here is a M by M rectangular
RIS array with binary phase response in the element reflection
coefficient. The size of the RIS element is d= 1), and the TE
polarized plane wave is normally incident upon the array. As
is seen from Fig. 16, the RCS ratio obtained from the diffuse
RIS-Ising model follows closely to the IAF limit. The results
calculated with the RIS configuration using the GRS-P and
GRS-Q coding sequences are also included for comparison.
The experiment demonstrates that our proposed approach is
effective in optimizing diffusive RIS configurations for the
normally incident plane wave.
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Fig. 16: RCS ratio of diffusive RIS when illuminated at a
normal incident angle.

It will also be interesting to apply the optimization ap-

In this subsection, we first demonstrate the performance of proach to the case of an oblique incident angle. We assume

the RIS-Ising model for diffuse scattering under a normally

that the incident TE polarized plane wave illuminating from
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0" = 75°,¢° = 270°. The RCS ratios of the optimized RIS
configuration using the diffuse RIS-Ising model are illustrated
in Fig. 17. The results using the GRS-P and GRS-Q coding
sequences are also included for comparison. The study verifies
the flexibility of our Ising Hamiltonian approach in deriving
diffusive scattering patterns at oblique incident angles. For
both the studies in Figs. 16 and 17, we include the results
of the RIS-Ising model with the SA approach. We note that
HQA produces slightly better results than SA, particularly for
larger-scale problems.
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Fig. 17: RCS ratio of the optimized diffusive RIS illuminated
at the oblique incident angle (8 = 75°) and (¢* = 270°).

Finally, it is noted that the previous study first performs two
1D optimizations of linear RIS arrays, then generates the 2D
RIS pattern via the outer product of the optimized 1D patterns.
We could also directly optimize the 2D RIS configuration,
taking advantage of all available degrees of freedom. The
results of direct 2D optimization using RIS-Ising-HQA and
RIS-Ising-SA are presented in Fig. 18.

First, we observe that the result of RIS-Ising-HQA with 2D
optimization is closer to the IAF limit than the result using
the 1D optimization - outer product approach. Secondly, we
notice that the RIS-Ising-SA method performs poorly as the
RIS panel size grows. It is due to the large number of 4-body
interactions involved in the construction of Ising Hamiltonian.
For a RIS panel of 6 by 6 elements, a total number of 58,905
4-body terms are obtained in (23). For a RIS panel of 12
by 12 elements, a total number of 17,178,876 4-body terms
are presented in the Hamiltonian. Due to the computational
complexity, we did not perform the 16 by 16 elements case
using HQA. In practice, it is recommended to use the two-level
optimization (i.e., block spin) approach proposed in [45].

VII. CONCLUSION

The RIS is emerging as a key technology for the next
generation of radio environments and mobile networks. The
goal is to transform the wireless environment into a smart, re-
configurable space that actively contributes to communication
performance. In order to harness the full potential of the RIS-
enabled smart radio environment, we need to rapidly optimize
the states of RIS devices with predefined objective functions.
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Fig. 18: RCS ratio of the optimized diffusive RIS using
1D optimization - outer product approach and direct 2D
optimization approach. The RIS panel is illuminated at the
oblique incident angle (6° = 75°) and (¢° = 270°).

To overcome the high computational optimization com-
plexity, the proposed work relies on the fusion of statistical
mechanics models with quantum computing algorithms. The
philosophy is to recast the RIS-aided wireless problem as a
physical formulation that can be efficiently addressed with
emerging QC hardware. This study sheds light on the relevance
of the Ising Hamiltonian for controlling complex EM scat-
tering in real-world communication and defense engineering
scenarios. Future research will be devoted to studying the
scalability of the optimization approach in solving practical
problems involving the deployment of large RIS structures.
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