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Abstract—Recently, there has been a growing interest in
employing reconfigurable intelligent surfaces (RISs) to improve
the spectrum and energy efficiency of wireless networks. In RIS-
assisted wireless networks, channel estimation and optimization
is a difficult task, particularly for nearly passive RIS devices with
low-complexity hardware design. We have proposed a hybrid
classical-quantum computing framework that allows for ultra-
fast optimization adapting to multipath wireless environments.
The onsite optimization of RIS configuration can be performed
almost instantaneously using only feedback (received power) at
wireless endpoints. The performance of the proposed work is
demonstrated in representative wireless propagation scenarios.

Index Terms—Electromagnetic metamaterials, Ising model,
reconfigurable intelligent surface, quantum annealing, wireless
communication, 6G.

I. MOTIVATION

The reconfigurable intelligent surfaces (RISs) are software-
controlled large engineered surfaces with many low-cost
passive reflecting elements, where the desired reflective wave-
front may be achieved by tuning the local reflection phase
and/or amplitude of individual elements. Going beyond 5G
and entering 6G, it is envisioned that large-scale, distributed
RIS devices will be deployed at the surface of interacting
objects, e.g. walls, windows, and furniture, in the propagation
channel [1]. The overall goal is to transform the radio envi-
ronment into a smart and reconfigurable space that provides
enhanced coverage with high energy efficiency and supports
ultra-fast and seamless connectivity [2].

Despite its great potential, there are also pressing chal-
lenges needed to be addressed in RIS-empowered smart radio
environments [3], [4]. Due to the constraint of channel co-
herence time, one needs to rapidly optimize the states of RIS
with prescribed objective functions, e.g., multi-beamforming,
localization/focusing, and channel spatial diversity. This con-
stitutes a heavy computational burden in the physical layer of
the wireless network. Furthermore, to meet the requirement
of green communications, the RISs are designed to be nearly
passive with low-cost hardware and low power requirements.
Since the RIS does not possess sensing capability, the channel
estimation has to be implemented at wireless endpoints of the
communication link. This makes the channel optimization of
RIS-assisted networks very challenging [5], [6].

The scientific contribution in this paper is a physics-
based, mathematically tractable computational framework for
optimizing RIS configuration in complex radio environments.

Such optimization is performed without the need to estimate
the cascaded channels [7] that link the transmitter to the RIS
and the RIS to the receiver. The idea starts with expressing
the power of end-to-end channel transfer function as an Ising
Hamiltonian model [8]. A hybrid classical-quantum comput-
ing model is proposed next to navigate the RIS configuration
space and to rapidly optimize the RIS state in a multipath
radio environment. Compared to the state-of-the-art solutions,
we show that the Ising Hamiltonian model serves as a unified
mathematical framework describing wave physics in the RIS-
assisted wireless network. By leveraging the computing power
of quantum adiabatic evolution and mathematics of tensor
contraction, the channel estimation and optimization can be
completed in the order of milliseconds. The outcomes enable
the possibility of ultrafast optimization adapting to dynamic
wireless environments.

II. ISING MODEL FOR RIS-AIDED WIRELESS CHANNEL

We consider the basic problem statement of a RIS-assisted
wireless network as illustrated in Fig. 1, including a user’s
equipment (UE), a base station (BS), and a passive RIS array.
One can tune the reflection phase of each RIS unit cell from
a finite set of phase states, e.g., 1-bit (binary) RIS can be
tuned with a reflection phase of 0° or 180°, and a 2-bit RIS
unit cell exhibits four reflection phase states. As such, we
can view the RIS optimization as an integer programming
model, which searches for an optimal solution over all the
combinatorial states of RIS elements.
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Fig. 1: A RIS-assisted wireless network for creating a virtual
line-of-sight between BS and UE.

In [9], we developed an Ising model for the RISs
with beamforming/nullforming applications. By designing the
Ising Hamiltonian to mimic EM scattered power, the optimal
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RIS configuration is encoded in the ground state solution
of the Ising spin system, which can be effectively found by
heuristic quantum optimization algorithms.

To briefly demonstrate the method, we consider an M by
N element RIS array with the desired signal maximization
towards the elevation angle of #° and azimuthal angle of ¢°.
The scattered EM field can be written in the Dirac notation
as: [E(0,0)) = SN SN Gun(8, ) |Smn), where the
RIS basis state s,,,, represents the element phase modulation,
e.g. =1 corresponding to the 0/7 phase response, and the
Gn (6, @) is the element-wise scattering vector. We can then
express the EM scattered power as a quadratic model:

P(o, </5) =< (<9 ¢)\E(9 ?))

Z Z Z Z 8m1n1|Gm1n1 m2n2|5m2n2> M

mi=1lni=1mo=1no=1

From this, we can construct an energy maximization Hamil-
tonian with an order 2 polynomial. By using symmetry in the
scattering vector, the effective Hamiltonian can be constructed
as an Ising spin-glass model:

H(0°,6°) = = P(6°, 6°) =

Zwmsm
+Z Z SmSnJmn (07, %)

m=1n=m+1

@

in which the desired scattering direction is denoted by 6° and
¢°. The computation of spin bias w,, and spin-spin interaction
strength, J,,,, is detailed in [9] and skipped here for brevity.
The solution to the beamforming problem can then be found
by finding the ground state of the Ising Hamiltonian:

S1y0 - ,gl\l = argmin H(gquss)

S1, S M

3

III. ONSITE LEARNING AND OPTIMIZATION

In the previous study [9], the locations of the transmitter
and receiver are assumed to be known to the RISs. Thereby
the Ising model can be computed by the semi-analytical for-
mula. Due to low hardware complexity and power constraints,
the RIS considered in this work is a nearly passive device that
does not possess sensing capabilities. Since the RIS cannot
estimate the direction of arrival/departure (DOA/DOD) nor
the locations of Tx and Rx, it completely relies on the BS
to (i) estimate the channel of the propagation environment,
(@) learn the perturbative space that RIS could offer, and (i)
find the optimal RIS configuration to achieve the maximum
channel gain. It is clearly a very challenging computational
task, which motivates this study.

We propose a hybrid classical-quantum computing model
for ultrafast channel estimation and optimization at wireless
endpoints. The classical part of the hybrid model includes
a tensor contraction and linear regression algorithm, which
approximates the dense spin-spin interaction matrix with a
tensorial representation. The ground state solution of the

approximate Ising model is computed with a quantum an-
nealing algorithm on physical quantum computing hardware.
An overview of the proposed work is given in Fig. 2.
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Fig. 2: A hybrid classical-quantum computing model.

1) Tensor contraction and regression (TCR): It is im-
portant to recognize that the Ising model in (2) exhibits
strong structural and low-rankness properties. For instance,
the spin-spin interaction strength between two Ising variables
is determined by the displacement vector in the Cartesian
product. In this regard, we can first construct a tensor
Tk ¢ RMNXMNx(2MN=M) Each mode 3 MN x MN
slice of 7% corresponds to a displacement vector, and
therefore a unique value in the spin-spin interaction. For a
training set of ny samples with known Ising spin values
and Hamiltonian y*, the Ising spin states of the RIS are
put into a matrix ¢ € RMN*"s The tensor contraction
is calculated as: ZUSiTijkosj = 5%, Next, the spin bias

and coupling termé in (2) can be approximated with linear
regression [w, J] = ((z5F)T k)= (2%)Tys.

2) Quantum Annealing (QA): Generally speaking, finding
the ground state of an Ising model is a NP-hard (non-
deterministic polynomial-time hard) problem due to the expo-
nentially large solution space, i.e. O(2M%) for 1-bit RIS and
O(4MN) for 2-bit RIS. Classical optimization algorithms do
not scale well with a large number of RIS elements. In this
work, we leverage recent advances in the adiabatic quantum
computing (QC) hardware, so-called quantum annealer (QA)
[10], to find the ground-state solution of the Ising Hamilto-
nian. The particular physical QA hardware considered in this
work is the D-Wave Advantage 4.1 QPU [11], which received
considerable interest lately due to the number of available
qubits and programmability.

3) System Model Overview: We consider a RIS-assisted
wireless network involving a BS and a UE. The BS controls
the RIS configurations through an out-of-band control channel
to the RIS controller. The communication protocol consists
of a training phase and an access phase. During the training
phase, the UE repeats a known pilot signal. The BS starts
by selecting a finite set of RIS configurations as an initial
training set. Each RIS configuration is denoted by a binary
Ising spin vector s = [s11, S12, . - ., Sp ] The corresponding
received signal power y® at the BS is recorded as figures of
merit (FOM). These initial training data samples are inputs to
the TCR such that an approximate Ising model is constructed.
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Next, the trained Ising model is compiled into the D-
Wave QA hardware through a process of embedding and de-
embedding. The Ising spin vectors of low-energy stages are
collected from the outcome of QA sampling. These candidate
solutions are appended to the training set, and their respective
FOMs are measured at the BS. Based on the initial and
newly collected data samples, the TCR-trained Ising model is
updated. This concludes one iteration of the learning phase.
The iterative process of sampling by the QA and retraining
by the TCR is repeated until some desired stopping condition
or a maximum number of iterations is achieved. After the
training phase, the optimized RIS configuration is found for
the BS-UE link and can be used in the access phase.

IV. NUMERICAL EXPERIMENTS
A. Test Problem Setup

Consider a RIS-aided narrowband communication system
depicted in Fig. 3. The UE and BS antennas are in non-line-
of-sight (NLOS) between each other while they both are in
LOS with the RIS. The carrier frequency of the passband
signal is 2.4 GHz. Both antennas are half-wavelength electric
dipoles. The distance between UE and RIS is 2.5 m, and
the distance between RIS and BS is 3.75 m. A planar 10 by
10 RIS array resides in the xy plane. The size of the array
element is d = 1A. The incident angle from the UE to the
RIS is #" = 15° and ¢' = 270°.

In addition, we include a reflective scatterer that is close
to the transmitter. Therefore a second ray trajectory with
6 = 30° and @' = 270° is created between the scatterer
and RIS. Finally, there is a direct reflection ray path between
the UE and the BS, which is not affected by the RIS
configuration. The goal is to optimize the channel gain at
the BS in the direction of #° = 20° and ¢®* = 90°. We
remark that it is a rather difficult scenario as the channel
transfer function will include a perturbative component as
well as a non-perturbative, static component. Besides the
beamforming at the BS, the optimal RIS configuration has
to ensure that perturbative and static components are added
up constructively.
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Fig. 3: The case of two ray-trajectory between UE-RIS-BS
and a direct reflected path between UE and BS.

The BS controls the operation of the RIS through an out-of-
band (wireless) control channel to the RIS controller. The RIS
unit cells are individually connected to the RIS controller that
implements tunability of local reflection phases to incoming
waves. We will consider both 1-bit binary array and 2-bit
quadriphase array in this study. For the 2-bit array, two Ising
spin variables per element are used to represent four phase
states, following the procedure introduced in [9].

B. Profiling of the Hybrid Computing Model

In this study, we will evaluate the performance of the hybrid
classical (TCR) - quantum (QA) computing model to learn the
Ising model and optimize the channel gain at the receiver.
The TCR is utilized to predict the Ising model in which
the spin-spin interactions are approximated by a tensorial
representation. The QA is utilized to find the ground-state
solution of the TCR-based Ising model.

As illustrated in Sec. III, the hybrid computing model
consists of an iterative process of QA sampling and TCR
training. The inputs to the TCR training include the di-
mension of the Ising variables M x N, Ising spin vectors
s [$11, S125--.,SmN], and the received power at the
BS as FOMs. We start by selecting five orthogonal RIS
configurations (i.e. Ising spin vectors) as an initial training set.
An approximate Ising model is constructed by the TCR. Next,
the QA algorithm is used to select Ising spin vectors of the
lowest energy candidate based on the currently trained Ising
model. The candidate best solution is then used to update
the TCR parameters. Throughout this iterative process, the
Ising model is updated until the FOM reaches saturation or a
maximum number of iterations is achieved.

To profile the performance of the proposed work, we con-
sidered two other metaheuristic algorithms for comparison.
One is the well-known particle swarm optimization (PSO)
algorithm [12]. The other one is the factorization machine
with quantum annealing (FMQA) [13]. The factorization
machine is a supervised learning model [14], which uses
factorized parameters to model the spin bias and spin-spin
interactions.

Given the probabilistic nature of metaheuristic optimiza-
tion, we repeat 100 runs for each of the three algorithms. The
convergence histories in terms of channel gain using TCR-
QA, PSO, and FMQA are presented in Fig. 4. The optimal
solution is obtained by the brute force search and is used as
the reference. By comparing the channel gains obtained from
three algorithms, it is shown that the other two algorithms
may be trapped in local optimal values easily. For both 1-
bit and 2-bit RIS array studies, the TCR-QA offers ultrafast
convergence. The results demonstrate the effectiveness of
the proposed work in channel estimation (onsite learning of
the Ising model) and optimization (finding a global-optimal
solution) of RIS-assisted wireless networks.

Table I gives the median wall-clock time (CPU portion plus
QPU portion) over 100 runs for the three methods. For TCR-
QA, it is the time taken to find the optimal solution within
100 iterations. Since FMQA and PSO didn’t find the best
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solution, the time is calculated for a maximum number (i.e.
100) iterations. As is evident, the proposed work achieves
a significant speed-up with respect to other algorithms. The
median wall-clock time including learning and optimization
for the 10 by 10 2-bit RIS array only takes 0.158 s.

TABLE I: The wall clock time for three algorithms

RIS panel ‘ TCR-QA ‘ PSO ‘ FMQA ‘

1 bit array 0.074 s 13.29s | 21.82s
2 bit array 0.158 s 2540 s | 9795 s
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Fig. 4: Numerical experiment for a 10 by 10 RIS array with
two ray-trajectories between UE-RIS-BS and a direct reflected
path between UE-BS.

V. CONCLUSION

Efficient channel estimation and optimization of smart
radio environments is a challenging task, especially for nearly
passive RIS devices with no sensing capabilities. We have
demonstrated the great potential of a hybrid classical-quantum
computing framework for RIS-assisted wireless networks.
Such a framework allows for simultaneous channel estimation
and RIS configuration optimization. The onsite optimization
of RIS configuration can be done almost instantaneously using
only feedback (received power) at wireless endpoints.

We remark that the work can be naturally extended to
higher-order spin-spin interactions resulting from complex

objective functions, e.g. multiple access points multiuser max-
imum signal deposition. Additionally, it is assumed the base
station has access to a quantum backbone computing network.
Nonetheless, quantum-inspired metaheuristic algorithms or
specialized Ising machine hardware may be used at the base
station instead of a quantum annealing sampler.
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