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Abstract

The identification of catalytic RNAs is typically achieved through primarily experimental means.
However, only a small fraction of sequence space can be analyzed even with high-throughput
techniques. Methods to extrapolate from a limited data set to predict additional ribozyme
sequences, particularly in a human-interpretable fashion, could be useful both for designing new
functional RNAs and for generating greater understanding about a ribozyme fitness landscape.
Using information theory, we express the effects of epistasis (i.e., deviations from additivity) on
a ribozyme. This representation was incorporated into a simple model of the epistatic fitness
landscape, which identified potentially exploitable combinations of mutations. We used this
model to theoretically predict mutants of high activity for a self-aminoacylating ribozyme,
identifying potentially active triple and quadruple mutants beyond the experimental data set of
single and double mutants. The predictions were validated experimentally, with nine out of nine
sequences being accurately predicted to have high activity. This set of sequences included
mutants that form a previously unknown evolutionary ‘bridge’ between two ribozyme families
that share a common motif. Individual steps in the method could be examined, understood, and
guided by a human, combining interpretability and performance in a simple model to predict

ribozyme sequences by extrapolation.



Introduction

The mapping of genotype to phenotype for functional biopolymers implicitly captures
information about structural contacts and mechanism. Fitness landscapes are mathematical maps
that relate primary sequence to functional properties, such as catalytic rate enhancement for
enzymes or ribozymes. Understanding these landscapes, particularly for RNA, may yield insights
into mechanisms as well as the molecular evolution of early life (1,2). The development of
quantitative tools and high-throughput experiments for elucidating and analyzing fitness
landscapes is therefore a major front in research efforts to understand these systems (3). High-
throughput collection of data has been used to characterize the fitness landscapes of RNAs (4-6).
For example, kinetic measurement using high-throughput sequencing (e.g., k-Seq) is able to

measure the activities of tens of thousands of ribozyme sequences (7,8).

Nevertheless, even with high-throughput experimental techniques, only a small fraction of
possible sequence space can be sampled, due to both synthetic and analytical limitations. For
example, a fully randomized 30-nt region in a ribozyme sequence would yield 10'® different
sequences, far exceeding current high-throughput sequencing capacity. Therefore, computational
methods are required to predict activities for sequences that were not captured by the empirically
available data. Such data presents computational challenges for interpretation, and improved
analytical techniques are required to quantitatively characterize fitness landscapes and develop

models that advance understanding of the genotype-phenotype relationship.

In this work, we focus on an activity that would have been foundational to the genetic code
of protein translation, perhaps the greatest evolutionary invention of an early RNA-based

prototypical life (9). A key activity of this process is the covalent attachment of amino acids to



tRNAs (10), which is catalyzed in contemporary biology by aminoacyl-tRNA protein synthetases.
In the pre-protein world, however, this activity may have been achieved by self-aminoacylating
ribozymes. This hypothesis is supported by the existence of ribozymes that react with aminoacyl
adenylates or other activated substrates (11-14). Prior work (9) determined the catalytic activities
of thousands of self-aminoacylating ribozymes that react with 5(4H)-oxazolones, considered to be
prebiotically relevant substrates (15). Here, we develop and validate a computational method for

extracting additional predictive power from the limited experimental data of the fitness landscape.

Existing methods, such as minimum epistasis interpolations (16) and Gaussian processes
(17), show promise for interpolating missing data on fitness landscapes and ‘filling in the map’ for
regions of sequence space where data is not complete. However, these methods struggle with
sparse sampling or require prerequisite knowledge, such as structural data from the Protein Data
Bank (18), which are not always accessible for the novel sequences. While modern methods can
interpolate fitness landscapes given sufficient sampling, methods for extrapolative predictions
looking beyond the boundaries of sampled space are relatively lacking. For example, using
information about double mutants of a central sequence to predict activities for triple or quadruple

mutants remains an open problem.

A simple extrapolative technique could be based on additivity in the genotype-phenotype
map, in which the effects of single mutations on the genotype would be summed to predict the
phenotype of the combination. Chemically speaking, additivity corresponds to a separability of
chemical moieties that do not interact with one another in the reaction mechanism. For example, a
residue that stabilizes the active fold might not interact with a residue that exclusively forms a
contact in the transition state. However, additivity is generally not a correct assumption in detail

since different residues influence one another through direct contacts or indirect effects (epistasis).



Epistatic landscapes feature mutations whose effects are influenced by their genetic context.
Attempts to model epistasis include using simple nonlinear functions to capture latent, non-
epistatic traits (19-22) and machine learning models (23,24). The former technique performs well
for relatively simple systems in which there is a largely additive landscape subject to random
variation, but not for more complex landscapes. Machine learning has strong general capability
but requires considerable finesse in parameterization and can pose difficulties with interpretation.
In one recent study, in silico evolution was performed on ribozyme variants using empirically
determined fitness values, with a deep learning perceptron model applied in the final round. While
the approach effectively identified neutral mutants of the ribozyme, the perceptron itself
constituted a ‘black box’ (25). Therefore, methods that combine performance and interpretability

are needed.

One possible approach is to use mathematical language to construct an articulation of
epistatic complexity that remains accessible to human insight. The method described here applies
information theory to identify regions of sequence space where non-interfering mutations can be
exploited to extrapolate beyond the boundaries of the measured space. Instead of fitting a function
to the fitness landscape, this method identifies mutations that are likely to yield high activity when
combined. Epistasis has previously been analyzed in a probabilistic framework (26). Here we
relate the epistatic quantity to information theory and demonstrate its ability to provide a pairwise
decomposition of the information contained in the data set. This pairwise representation can be

exploited to create a predictive model without fitting parameters.

Noting that mutual information has seen success improving prediction outcomes when
integrated into models of the sequence-activity relationship (27-29), we use surprisal (see equation

1, below) and mutual information to calculate a quantity termed °‘epistatic divergence’. We



demonstrate that epistatic divergence can be used to derive insights from empirical data that
extrapolate beyond the explored regions of their fitness landscapes. Using two families of
ribozymes for which the activity of all possible double mutants of a central ‘seed’ sequence had
been measured, we predicted and validated points in the sequence space of triple and quadruple
mutants with high likelihood of activity. Epistatic divergence identified an evolutionary
connection between two ‘islands’ of activity within the fitness landscape, which we validated
experimentally. Such extrapolation could be combined with interpolation algorithms to enable

greater understanding of fitness landscapes.

This study proposes a representation of interactions in the sequence-activity landscape, in
which qualitative properties of a system are articulated mathematically. Representations are an
essential part of model development (30,31) that affect the fundamental ability to observe patterns
in the data. This epistatic divergence representation explicitly captures the degree to which the
sequence-ribozyme activity relationship is epistatic, which subsequently enables precise

exploitation of non-interfering mutations for extrapolative predictions.

Methods

Construction of epistatic divergence

We construct epistatic divergence in a similar manner to Ostman et al. (26) to compare the
degree to which a pair of nucleotide identities affects the activity state versus the degree to which
an individual constituent site affects the activity state. The motivation is that a more epistatic
nucleotide pair requires the knowledge of both nucleotides jointly to describe the activity state

likelihood more accurately, while a less epistatic pair would allow for that description from the



individual descriptions of each nucleotide identity. We describe the epistatic divergence using
information content (/), or surprisal (32). Formally, /(p(x)) is the information content of event x

with probability p(x), where

(D 1(p(x)) = ~log (p(x))

Epistatic divergence is assessed as:

Aly o = I(p(AIM)) + I(p(AIn)) — I(p(Alm,n))

Here, we denote a random variable representing the activity of the ribozyme with 4. Lower
case m and n specify a genotype at sites M and N. We term a pair of sites relevant to this calculation
as a ‘site pair’. Thus, p(A4|m) denotes the probability of observing 4 conditioned on genotype m,

and we have:

(2) I(p(Alm) + I(p(Aln)) — I(p(Alm,n)) = log(p(Alm,n)) — log(p(Alm)p(AIn))

p(Alm,n) )
p(Alm)p(A|n)

Alymn = log(

This expresses epistatic interaction using information content. Because we are concerned with
pairs of sites (i.e., ‘site pair’, such as 29 and 38), we average over a probability distribution that
describes how the various genotypes predict the phenotypes. Thus we use as our distribution

p(Alm,n):

p(Alm,m)
EW'“ ) 1og (i)



To incorporate information about every possible genotype at a site pair, we sum over all
genotypes that are represented in the sample (over the support set of the population). Thus we sum
over every combination of activity and genotype states (A4, m, n) that has at least one representative

in the sample population, as follows:

Alm,
es(m,n) = Z Z p(Alm,n)log <p(f1|(m|)r;l(2)|n)>
A

mn

p(A,m,n) ( p(A,m,n)p(m)p(n) )
oot p(m,m) " \p(A,m)p(A,m)p(m, n)
pied states
(A mn)

Thus,

_ p(4,m,n) p(A, m)p(4,n)p(m,n)
@ amm= ‘( p ) >l°gb< p(m)p()p (A, m,) )

occupied states

(4) €a(m,n) = Dk, (p(A In,m)|| p(Alm)p(A|n))

where Dk is the Kullback-Leibler divergence and €4 is the epistatic divergence. The quantity
€4 1s equal to zero when the interaction between m and » carries no additional information (i.e., no
epistasis, such that the activity of the combined genotype can be completely predicted from the
activities of the individual genotypes), or when the sites do not affect activity. We set base b =2,

so that information is given in units of bits.

It should be noted that the use of the Dxz is compact notation and does not relate to the use of
Dkr to compare two probability distributions, because p(A|m)p(A4|n) is not a well-defined

probability distribution. Thus, the usage here only results from examining the difference of



information contents between informational bodies and weighting it to favor relevance to the

empirical distribution, p(4|m,n).

Together, the logarithmic terms quantify the degree to which genotypes are statistically
dependent within the context of a given genotype, and the weight factor then adjusts the signal
such that its intensity depends on the degree to which the genotype explicitly impacts the
phenotype. Detailed discussion of the epistatic divergence quantity is provided in the

Supplementary Information, Appendices A-C.

Mutual information to describe the effects of single sites

To assess the single site effect on polymer activity, we use the mutual information, in bits,

N(A;m), as follows:

® Nm) = )Y pthm g rs P

Mutual information is used to interrogate the divergence of the joint state distribution between
activity and single-site identity, and the distribution associated with statistical independence, thus
quantifying the effect of a given residue on the distribution of the activity classes. In contrast to
epistatic divergence, the mutual information assesses single-site contributions rather than

interactions between sites with respect to their impact on the activity class.

The activity, 4, is a continuous value, which we classify into discrete classes of activity by a
schema A with a set of associated parameters {0;}, where i indexes the parameters that discretize
the activity space. We used two types of classification. The first, used for extrapolative prediction

of active sequences, divides sequences into those with activity less than or greater than the activity



of a central reference ‘seed’ sequence. The second, used for visualizing the pairwise epistasis
contributing fundamental activity, was found by fitting a gaussian curve to normalized activity
values. This results in a threshold of four times the baseline activity, that statistically defines
whether a sequence can be considered catalytically active or not (33). Median values from
experimental replicates were used for the activity metric.

We specify the classification scheme A, as follows:

0if a < 0 (inactive class)
1if a > 0 (active class)

) 4@ = {
Where a is the continuous value of activity and A4 is the discrete class. This representation
depends only on a single parameter, 6; however, alternative classification schemes could be

defined depending on the needs of a given investigation.

Extrapolative prediction of active sequences

To predict regions with high-activity ribozymes, we compute g, epistatic divergence, using the
classification threshold 0 = asccq, the activity of the seed sequence at the center of the 2-Hamming
distance radius defining the training space. For other characterization, we set 0 = d@active, a Value
determined by fitting normal distributions to the measured background activities of non-catalytic
sequences. Ribozyme activities higher than the threshold value were significantly greater than the

background activity (i.e., >4 times the background rate) (33).

The epistatic divergence values were plotted to determine which sites were most associated
with improvements upon the base activity of the seed sequence. This process identified pairs of
nucleotides that are associated with the most epistatic improvements to the activity. Knowledge of

these pairs was then combined with insight from mutual information calculations regarding highly
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informative sites. This two-step process resulted in prediction of non-interfering epistatic pairs,
whose genotypes could be combined to extrapolate activity in unexplored regions of sequence

space.

Comparison to established measures of epistasis

We compared the information produced by epistatic divergence with two conventional
measures, derived from the additive formulation of epistasis (34). We use two quantities, termed

w and o, which are related to the activity of sequences as follows:
(7@) emn = Bmpn — Do — DBon

1
(7b) u= Nz €mn
mn

(7c) 0= Std({em,n})

In u, the difference between the change in-molecular activity, associated with a double mutant
(A,) and the change described by summing the individual single mutations (4A,,, and A,,,) are
averaged over N genotypic backgrounds. ois the standard deviation (Std) associated with that set,
and describes the variance of effects across different genetic backgrounds. Note that x and o (not

€) are used for denotation of the measures described in equations 7a-7c.

Experimental data set of ribozyme activities

The data consists of high-throughput (k-Seq) activity measurements on two families of
ribozymes originally discovered by in vitro selection starting from a 21-site variable region.
Ribozymes self-aminoacylate by reaction with a tyrosine analog substrate, biotinyl-Tyr(Me)-

oxazolone (BYO). Two families, 1B.1 and 1A.1, were chosen for this analysis due to a shared
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motif. Activity measurements were performed for all sequences within Hamming distance of 2
from the core seed sequences, providing detailed mapping of the localized fitness landscapes.
Although no evolutionary pathway had been discovered between these families, the shared motif
suggested the possibility of a connection between the two active families. Data from single- and
double-mutant sets of these two families were used to produce predictions of high activity within
the triple- and quadruple- mutant range of interest, allowing us to explore predictive power beyond
the Hamming range of the training set. Data were normalized by background activity, consistent

with other work on this data set (33).

Experimental measurement of ribozyme activity by RT-qPCR

The activities of selected ribozymes were determined by reverse transcription-qPCR assay
(RT-gPCR) as previously described (35). DNA sequences were chemically synthesized and
polyacrylamide gel electrophoresis (PAGE)-purified by Integrated DNA Technologies. The
synthesized DNA sequences were 5'-

GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-N21-

TTCACTGCAGACTTGACGAAGCTG-3', where the nucleotides upstream of the transcription
start site for T7 RNA polymerase are underlined and N21 denotes 21 consecutive nucleotides,
which are varied for different ribozyme sequences. The sequences of the N21 region of tested
ribozymes are: CCACACTTCAAGCAATCGGTC (S-1B.1-a),
CCCCGCTTCAAACAATCGGTC (S1B-29C31G38A), CCCTGCTTCAAACAATCGGTC
(S1B-29C30T31G38A), CTGCTTCAAACAATCGGTCTG (S1A-29G),
and CTACTTCAAACAATCGGTCTG (S-1A.1-a). RNAs were transcribed using HiScribe T7

polymerase (New England Biolabs) and purified by denaturing PAGE (National Diagnostics). 0.1
12



uM of RNA samples in the aminoacylation buffer (100 mM HEPES [pH = 7], 100 mM NaCl, 100
mM KCI, 5 mM MgCl, and 5 mM CaCl,) were incubated for 90 min with various BYO substrate
concentrations (10, 50, 100, 250, 500, and 1000 uM) in the total volume of 100 pL for each sample.
The reactions were stopped by removing unreacted substrate using Bio-Spin P-30 Tris desalting
columns (Bio-Rad). The RNA concentration of each sample was quantified by Qubit® 3.0
Fluorometer (Thermo Fisher Scientific). To isolate the reacted RNA, streptavidin MagneSphere®
paramagnetic beads (Promega) were added to all reacted RNA samples (20 ng RNA for each
sample from the dissolved reacted RNA stock solutions) with a volume ratio of 1:1. Samples were
incubated for 10 min at room temperature with end-over-end tumbling, followed by three washing
steps. The aminoacylated RNAs were eluted with UltraPure™ DEPC-Treated Water (Invitrogen)
incubation at 70°C for 1 min. The amounts of aminoacylated RNAs were quantified using iTaq
SYBR green mix (#1725150, Bio-Rad) using Bio-Rad® CFX96 Touch® system. The samples were
prepared following the manufacturer's protocol. 2 pL sample were mixed in the total 10 uLL RT-
gPCR reaction volume with 500 nM of both forward and reverse primers. The forward and reverse
primers sequence were 5’-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGA-
3’ and 5’-CAGCTTCGTCAAGTCTGCAGTGAA-3’, respectively. A calibration standard curve
was measured for each RT-qPCR measurement batch to reduce measurement error. The standard
RNA sequence was 5'-
GGGAAUGGAUCCACAUCUACGAAUUCAAAAACAAAAACAAAAACAAANUUCACU

GCAGACUUGACGAAGCUG-3" which has the same length (i.e., 71 bps) and primer-
complementary regions as the ribozymes used in this study. The standard curve was determined
by adding 2 pL standard RNA samples with the concentrations of 1000, 100, 10, 1, and 0.1 pg/uL.

Triplicates were performed for each sample. Results were fit to the pseudo-first-order rate equation

13



F = A(1 — e*IBYOIt) '\yhere F is the reacted fraction, 4 is the maximum reacted fraction, # is the

incubation time of 90 min, and £ is the effective rate constant of the aminoacylation reaction. The
two fitting parameters 4 and k are poorly estimated individually for low-activity sequences (c.a.,
k< 0.5 min"! - M), but due to the inverse correlation between estimated 4 and k during curve
fitting, the product of the estimated & and estimated A is more accurate (7). Therefore, the product
of the two estimated parameters, k4, from the pseudo-first-order curve fitting, was used to

represent the catalytic activity of ribozymes in the present study.

Data and code availability

The Python code used in the calculations is available at https://github.com/ncharest/epistatic-

divergence. The ribozyme data set is publicly available at the Dryad Digital Repository under DOI

10.25349/D92C9C (https://doi.org/10.25349/D92C9C).

Results

Epistatic divergence as a measure of epistasis

We analyzed a data set of ribozyme variants of a self-aminoacylating RNA sequence (9), S-
1B.1-a, also referred to as a ‘seed’ sequence here. We compared epistatic divergence against a
traditional conception of epistasis, namely the difference from additivity of single mutations. For
the conventional measure of epistasis, the average difference () of a double mutant’s effect on
the activity from the sum of the constituent single mutants was calculated for all pairs (m,n) (site
pairs) (Figure 1A). To determine the effect of a single site mutation, all double mutations applying

to that site were included in the averaging, reflecting multiple genetic backgrounds present in the
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double and single mutant data. The standard deviations (o) of these values was also calculated,
indicating the spread of the differences from additivity (Figure 1B). These measures reflect the

difference from additivity when considering all possible nucleotide combinations across two sites.
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Figure 1. Comparison of epistatic divergence and deviation from additivity for ribozyme S-1B.1-
a. (A) The ensemble average of double mutants’ difference from the additive sum of single
mutants, a conventional measure of statistical epistasis that shows deviation from additivity. (B)
The standard deviations of the calculations from part A. (C) The epistatic divergence computed
using the threshold as.s. The seed sequence defines the sample population; all mutants in the
experimental data are a Hamming distance of 1-2 from the seed. The median activity of the seed
was taken as aseeq, and any sequence whose median activity was found above as..c was marked
superior while any whose median was found lower was marked inferior. Note that sequences with
activity close to the seed sequence may be incorrectly classified due to experimental noise (7). (D)
The epistatic divergence calculated using the threshold aucive based on the background catalytic
rate determined in prior work (33). (E) The mutual information depicting which sites along the
sequence were found to have the greatest relevance to the classification around asecs. (F) The
mutual information calculated around the classification scheme with aucive. The goal of these
measures is to detect the site significance to the catalytic activity of the ribozyme.
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For epistatic divergence, low values indicate a site pair (m,n) where the effects of the nucleotide
combination were found to be either lacking impact on the activity, or were explainable by
considering each site independently, or both. A high value of epistatic divergence indicates a site
pair where the combination of nucleotides was found to be important and impactful upon the
activity. We calculated the epistatic divergence using two possible values of the classification
thresholds 0, namely classified based on activity less than or greater than (or equal to) the seed
sequence (0 = aseed; Figure 1C), or activity above or below the non-catalytic background rate (6 =
Aactive; Figure 1D). The former threshold (aseed) 1s quite stringent (3 out of 63 possible single
mutants and 24 out of 1890 possible double mutants (7)) because the seed sequence is a ribozyme
that reached high abundance during prior in vitro selection (9), indicating high relative activity.
This threshold choice was used to focus on sites that may cause activity enhancements close to or
greater than the seed sequence. The second threshold (aacive), set at a catalytic rate equal to four
times the background (non-catalytic) reaction rate, captures sites that influence whether a sequence

is catalytically active at all.

Comparison of the epistatic divergence and the conventional measure of epistasis shows that a
site of particular interest is position 38, which exhibits high o despite low g, indicative of highly
variable epistasis depending on genetic background. Consistent with this, epistatic divergence is
high for site 38, suggesting an important relationship between activity and the nucleotide identity
at this site. Importantly, epistatic divergence also highlights other regions of the sequence that do
not appear unusual based on the traditional measure of epistasis, particularly when considering
highly active sequences (Figure 1C vs 1A, B). Predictions based on the region highlighted by

epistatic divergence, but not the traditional measure of epistasis, were tested experimentally
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(described below). These features demonstrate the ability of epistatic divergence to positively

identify regions of interest in the ribozyme.

Conversely, the ability to correctly identify regions that are not of interest for extrapolative
combination is also important. An advantage of epistatic divergence in this regard can be seen in
the blocks of signal associated with the regions around sites 32-37 along site M and 39-47 on site
N (seen as a low signal region in Figure 1D). The x values suggest a consistently large deviation
from additivity, while the spreads (o) are quite narrow (Figure 1A, B). These effects are driven by
the fact that these locations are, independently, essential to catalytic function. Mutations in these
regions essentially eliminate activity, and so any double mutation of them will lead to high x values
due to a saturation effect. However, such patterns cannot be taken to reflect true interactions (i.e.,
mechanistic or structural) in the ribozyme. In contrast, when epistatic divergence is used, these
sites are appropriately identified as lacking interactions. Thus, the epistatic divergence measure
has high specificity in identifying loci with complex epistatic behavior that might be exploitable,

particularly for predicting active sequences beyond the boundary of sequence space in the data set.

Identifying hotspots of exploitable complexity

To focus on the potential prediction of high-activity sequences, we used the epistatic
divergence measure with 0 = aswed to develop a predictive model. The epistatic divergence
highlighted sites where the data showed a particular dependence on pairwise states when
considering the distribution of activity (Figure 1C). Such pairwise interactions are expected to be
important for high activity of the ribozyme. At the same time, mutual information (between a
single site and the activity distribution) identifies single sites that are informative for activity.
Combining mutual information and epistatic divergence should therefore identify mutations that

17



are likely to interact synergistically in high activity sequences. We leverage this fact to produce a

simple model that maximizes the utility of non-interfering mutations within the landscape.

Specifically, the individual sites 29, 31 and 38 gave the most information about activity, in
ascending order (Figure 1E). Epistatic divergence analysis indicated that the combinations of these
loci are synergistic. These observations suggested extrapolative predictions for highly active

sequences beyond the experimental data.

Extrapolative prediction of active ribozyme sequences

The epistatic divergence € is the sum of terms describing each represented state, so the
contributions from states can be decomposed into contributions from each specific mutant pair
and sorted by activity class. We examined the specific epistatic contributions from states
containing a combination of the top four individually informative sites (29, 30, 31, and 38)
(Figure 2), showing regions where pairwise epistatic effects contained more information than
constituent sites considered alone, for the high activity class (using 6 = asced). Four sites were

included in the analysis in order to obtain predictions for quadruple mutants.

In theory, synergistic double mutants might be combined to generate triple and quadruple
mutants expected to have high activity. For example, synergistic effects arise from the
combinations (38A,31G), (38A,29C), and (31G,29C) (Figure 2A-F). This observation suggested
that the new triple mutant (G38A, A31G, A29C) may yield a high activity variant. The following
process was used to predict new high activity ribozymes. The epistatic divergence attributed to
each site pair (Figure 2A-F) was examined to select potentially informative combinations among

the four most highly informative sites (29, 30, 31, and 38). A strong signal was defined as > 4
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bits, corresponding to the amount of information needed to completely specify an RNA site pair.
This list of strong signals was then searched for compatible combinations that would result in
triple or quadruple mutants (Table S1). Two pairs having a common mutation were considered
compatible with each other if all of the mutation pairs of the resulting triple mutant were strong
signals. For example, (29T,39A) is compatible with (38A,31G) because (29T,31G) is also a
strong signal, predicting that the triple mutant (29T,39A,31G) should have high activity.
Similarly, two pairs of triple mutants, sharing two of three mutations, were deemed compatible
with each other if all pairs of the resulting quadruple mutant were strong signals. For example,
(29C,30A,31G), a compatible triple mutant, is compatible with (29C,31G,38A), also a
compatible triple mutant, because (30A,38A) is also a strong signal. This procedure can be
visualized as a network of single mutations, where nodes (single mutations) are connected if the
pair constitutes a strong signal. Compatible triple or quadruple mutants are thus found as
completely connected triangles or quadrilaterals (i.e., in which every node is connected to every
other node in the subgraph; Figure 2G). This procedure yielded 12 triple mutants and three
quadruple mutants that were predicted to have superior activity, assuming that the double
mutation information could be combined to produce triple and quadruple mutant predictions. Of
these, all of the quadruple mutants were prioritized for experimental testing, since they represent
a greater extrapolation compared to triple mutants. Of the triple mutants, half (six) were chosen
for experimental testing due to feasibility constraints. The three triple mutants involving the three
most informative sites (29, 31, and 38) were all chosen for testing. Of the remainder, triple
mutants containing 29C and 38A were prioritized over mutants containing 31G because sites 38
and 29 showed the highest mutual information for 0 = @seed OF 0 = dactive, respectively (Figure

1E,F). The sequences selected for testing are given in Table 1.
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Figure 2. Decomposition of epistatic divergence by sites for ribozyme S-1B.1-a. (A-F) The
matrix components of the epistatic divergence calculations for the indicated site pairs. The

decomposition was used to identify potentially compatible mutations, which are genotypes
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associated with improved function over the seed ribozyme that can relate to other pairs of loci.
The combinations result in triple or quadruple mutants that are predicted to be likely to exhibit
appreciable activity. These predictions extrapolate beyond the mapped fitness landscape. (G) The
network of single mutations, in which strong signals are represented by edges. Compatible triple
or quadruple mutations are illustrated as completely connected subgraphs. Quantities given are in

bits with accompanying heat maps to aid the eye.

Table 1. Predicted sequences from data on variants of ribozyme S-1B.1-a.

Predicted Triple Mutants Predicted Quadruple Mutants
s-1B-29C30A38A s-1B-29C30T31G38A
s-1B-29C31G38A s-1B-29C30A31G38A
s-1B-29T31G38A s-1B-29C30G31G38A

s-1B-29C30T38A

s-1B-29G31G38A

s-1B-29C30G38A

Experimental testing of the predicted triple mutant ribozymes

The six triple mutant sequences designed by following the inference process above (Table 1)
were used to search the previously obtained high-throughput ribozyme assay data set (33).
Although that data set had not been designed to comprehensively cover triple mutants of the seed

sequence, some triple mutants had been synthesized by chance along with the variant pool. The
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distribution of measured activities is shown for analyzable triple mutants from those data (Figure
3A), with an emphasis on triple mutants found to have high activity (>asced) (Figure 3B). The six
predicted triple mutants indeed had outperformed seed S-1B.1-a, and ranked in the top 30 out of
more than 35,000 triple mutants analyzed. Precisions for these measurements are given in Figures
S1-S2. Since more active sequences are more likely to have higher relative abundance in the
reacted pool (Figure S3), this observation is consistent with the expectation of higher activity level

in these triple mutants.
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Figure 3. Experimental activity measurements (k-Seq (33)) for triple mutants of S-1B.1-a.
Measurements are shown as median values with 95% confidence intervals. (A) shows all
analyzable triple mutants in the pool, ranked in terms of median k4 values for activity. (B) shows
the top 84 sequences, including seed sequence S-1B.1-a and separate seed sequence, S-1A.1-a
(red). The predicted triple mutants (orange) were associated with improvements over S-1B.1-
a’s activity and were generally amongst the top-ranking activities. See Figures S1-S3 for
measurement precisions.

22



While the epistatic divergence method shows excellent specificity in identifying high-scoring
triple mutants, it should be noted that other triple mutants with top scoring median activities were
not detected by the method. This may be due to the fact that the method identifies pairwise
contributions to higher activity that are likely compatible, resulting in a set of high order mutants
as candidates for testing. The model relies on an expectation that compatible double mutations
would not interfere with each other to cause decreased fitness. In other words, in the case of triple
mutants, if mutants AB, BC, and AC all have high activity, then mutant ABC is predicted to have
high activity. (For quadruple mutants, if AB, BC, AC, AD, BD, and CD all have high activity,
then ABCD is predicted to have high activity.) This expectation is reasonable if epistatic effects

diminish at higher orders beyond pairwise interactions (36).

The success of the six predictions suggests this assumption is sometimes appropriate, but
violations of this assumption could explain the high-activity triple mutants that were missed in this

process.

Prediction of an evolutionary pathway through a quadruple mutant ribozyme

We also analyzed the epistatic divergence and mutual information for a related ribozyme, S-
1A.1-a. Sequence S-1A.1-a and S-1B.1-a are related by a shared motif (Figure 4) offset by 2
sites, but they contain distinct flanking regions and are separated by a total edit distance of 6
(Hamming distance = 16). Interestingly, some mutations suggested by the epistatic divergence
analysis of variants of S-1B.1-a were noted to decrease the edit distance to sequence S-1A.1-a.

Specifically, A29C, C30T, and G38A would reduce the edit distance between these two
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ribozyme families. Furthermore, the epistatic divergence analysis for variants of S-1A.1-a
(Figure 5) indicated that site 29 is highly informative, and the major signal from epistatic
divergence occurs at the (29G, 27A/T/G) pair. Inspection of the sequence alignment indicates
that a (29G, 27A) double mutant of S-1A.1-a would reduce the edit distance to sequence S-1B.1-
a by two (Figure 4). These considerations indicate a possible connection between the S-1A.1-a
and S-1B.1-a families, suggesting there may be an evolutionary path of active ribozyme variants

between them.

27 31 35 39 43

S-1B.1-a CCACACTTCAAGCAATCGGTC
S1B-29C31G382 CCCCGCTTCAAACAATCGGTC
siB-29c30T31638a CCCTGCTTCAAACAATCGGTC

S1A-29G CTGCTTCAAACAATCGGTCTG
S-1A.1-a CTACTTCAAACAATCGGTCTG

Figure 4. Sequence comparison of seed sequences and mutants indicated by epistatic
divergence analysis. In red is the shared motif linking S-1A.1-a and S-1B.1-a families. In
green are mutations characteristic of S-1A.1-a and indicated by epistatic divergence
analysis as improving S-1B.1-a. In blue are shared residues indicated by epistatic
divergence analysis for both S-1A.1-a and S-1B.1-a families. These predictions suggest a
possible evolutionary pathway connecting S-1A.1-a and S-1B.1-a.
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Figure 5. Epistatic divergence analysis for variants of ribozyme S-1A.1-a. Epistatic
divergence, mutual information and decomposition from data on single and double mutants
of S-1A.1-a. These suggest mutations that bring its sequence closer into alignment with a
quadruple mutant of A-1B.1-a that was predicted to be active (S1B-29C30T31G38A).

Thus, epistatic divergence analysis predicted that high activity would occur with mutation of
S-1A.1-a to resemble S1B-29C30T31G38A, and conversely that high activity would occur with
mutation of S-1B.1-a to resemble S-1A.1-a. This suggested the presence of a specific, a high-
activity evolutionary pathway consisting of active mutants to connect these two ribozyme families.
We tested the activity of the intermediate mutants (SIA-29G, S1B-29C30T31G38A, and S1B-
29C31G38A) individually experimentally. Reaction with the substrate yields a biotinylated
product that can be separated using streptavidin beads and quantified by RT-qPCR. Measurement
of reaction product over a concentration series allows determination of the catalyzed rate (7). The
predicted intermediate mutants indeed exhibited high activity, with some activities being higher
than either seed sequence S-1A.1-a or S-1B.1-a, validating the existence of the predicted

evolutionary connection (Figure 6).

25



200

KA (M 'min-)

Figure 6. Ribozyme activities along a predicted evolutionary pathway (median and 95%
confidence interval), measured by qPCR assay. The endpoints on the x-axis are the seed
sequences (purple), with intermediate mutants as shown (red). Mutant sequences were predicted
by extrapolation from the data by analyzing epistatic divergence.

Discussion

The epistatic divergence description of pairwise interactions within the primary sequence of
self-aminoacylating ribozymes enabled the extrapolation of previously unknown active sequences,
at mutational distances beyond the training space. This was accomplished by considering a data
set of activities measured via k-Seq experiment, for sequences within two point mutations of a
central seed sequence, applying information theory to describe the information content of the
distribution of activities in terms of pairs of residue identities, and determining where these pairs
possess non-interfering or synergistic behavior that can be exploited to predict highly active

sequences beyond the training space. Through this process, the most informative (i.e., highest
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surprisal) observations of pairwise mutants were used. The most informative observations were
combined whenever an internally consistent extrapolation was possible. In other words, epistatic
divergence identified where a measurement of activity in double mutants most deviated from the
expectation of mutual independence between sites. To generate an extrapolative prediction of triple
or quadruple mutants (which were not in the training data set), mutations were combined whenever

all of their pairwise interactions were positive (Figure 2G).

Because of the simplicity of this parameter-free approach, the results can be readily interpreted
with the language of information theory while simultaneously offering a pragmatic means to
identify regions of activity within a fitness landscape, and potential evolutionary pathways, with

high specificity.

The epistatic divergence can be mathematically cast as the sum of information contents
describing the degree to which a data point contributes to the knowledge of whether a pair of
residues predicts an active sample or an inactive sample. Unlike machine learning methods that
predict a distribution of activity over the sequences, this method mathematically identifies the parts
of the sequence that yield the most information for predicting the activity. This approach
systematizes empirical methods that rely on manual curation of significant residues (37).
Subsequent analysis then allows the construction of predictions outside the training set, by
combining the sequence identities that were associated with the most informative data points
within the training set. Mutual information has been previously used for detecting coupled
variables in biological contexts. Examples include analyzing combinations of SNPs in genetic
studies (29,38) and predicting contacts between residues in protein (39,40) or RNA (41,42)
molecules. In this work, we further identify beneficial genotypes using surprisal and combine

compatible genotype pairs to detect active higher-order mutants.
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Recent work on genotype-phenotype mapping by minimizing epistatic interactions develops a
model that allows for maximally locally additive behavior indicated by training observations (16).
This assumes an underlying preference for non-epistatic behavior, that is then qualified by the
epistasis present in the observations of the training pool. Conversely, the epistatic divergence is
not a model in the traditional sense of producing a mathematical construction that can generate
predictions. Rather, epistatic divergence is a quantitative representation of how informative a given
observation is. In this context, an ‘observation’ is a phenotype class (‘active’ or ‘inactive’) paired
with a genotype class (e.g., “A’ in position 38 and ‘G’ in position 29) that is present in the training
data set. This defines the support set of the independent variables being used to describe the system.
Epistatic divergence quantifies information content relative to the rest of the pool, such that the
most informative observations can be used for subsequent prediction building. In our model we
combine observations that were identified as both highly informative as well as pertaining to the
active class. Because we explicitly compute over pairs, we explicitly capture the interactions,
epistatic or otherwise, described by those pairs. This results in predictions that are combinations

of the most informative pieces of information in the dataset.

Understanding genotype-phenotype maps, and predicting highly active sequences, are
important twin goals in biomolecular engineering. Due to the astronomical size of sequence space,
for which the mass of a pool containing every possible protein-coding sequence would readily
outstrip the mass of the Earth, computational extrapolation will always be necessary to understand
genotype-phenotype maps beyond a few dozen residues. Furthermore, given that the vast majority
of sequences are inactive, and that the majority of mutations are deleterious to function,
computational methods to make accurate, specific predictions are invaluable for identifying novel

functional sequences. In this work, the analysis resulted in prediction of 12 highly active triple
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mutants (of which 6 were tested experimentally) and 3 highly active quadruple mutants (of which
all were tested experimentally). It is notable that 9 out of 9 predicted sequences chosen for testing
yielded highly active sequences. In a previous study measuring activities by kinetic sequencing,
approximately 5% of all single mutants and 1% of all double mutants were found to have high
activity. The previous study using a doped library was not designed to measure all possible triple
or quadruple mutants, but many were still measured though at low precision due to a small number
of sequencing reads. Of these triple and quadruple mutants, 0.2% or less were found to have high
activity (Table S2) (7). Therefore, the epistatic divergence method described here compares
favorably in identifying active mutants (9/9) compared with the very low frequency of active
mutants from an unbiased sample. While the double mutant data, on which this method is based,
was comprehensive (i.e., including all possible double mutants), no data on triple or quadruple
mutants was used for the predictions. However, the predictive power of this method is likely to
decrease for higher-order mutations, since the method assumes that higher-order epistatic
interaction is relatively small when predicting mutants. Progress in increasing the throughput of
synthetic and analytical techniques would be useful for building larger experimental data sets to

validate predictions.

Furthermore, the pattern of these mutants revealed a previously unknown neutral evolutionary
pathway of highly active sequences through the fitness landscape, which joined the two ribozyme
families centered on S-1A.1-a and S-1B.1-a. In particular, while the experimental data set used for
the analysis here described only the local fitness peaks (within a mutational distance of 2) around
sequences S-1A.1-a and S-1B.1-a, the epistatic divergence specifically illuminated multiple high

points outside this region, as well as an evolutionary connection that was previously unknown. An
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experimental approach to the same goal of discovering new fitness peaks and an evolutionary

pathway, while not impossible, would have been significantly more laborious.

Machine learning approaches have been applied to the problem of predicting active
sequences by extrapolation from mutational data. For example, a random forest model was applied
to predict active mutants of a self-cleaving ribozyme (43,44). While often successful in generating
predictions, random forest models average over many decision trees and thereby create a difficulty
in interpreting the process itself. Deep learning models, such as multilayer perceptrons or Long-
Short Term Memory networks (25,44,45), improve the representation of the data and extract
features found to be significant to the endpoint being modeled. However, deep models are
complex, requiring many parameters, and interpretability remains an unsolved problem (46). In
this context, an advantage of the analysis presented here is that the statistical quantities are not
based on fitted parameters, but are rather calculated directly from the data, and the prediction
process follows well-defined steps from the calculation of epistatic divergence components to the

assessment of mutant combinations.

Thus, in the epistatic divergence analysis presented here, the steps of the method are directly
interpretable in real terms, and the analysis itself is an interactive process with the data, allowing
insight into the genotype-phenotype map. The analysis here shows how epistatic divergence can
highlight regions significant to the genotype-phenotype model, and provides means to reliably
predict their combinatorial nature from simple, meaningful quantities. This expands the capability
to discuss these mappings in rigorous terms and complements the application of more sophisticated
modelling methods by offering a method to expose the underlying statistical behaviors. Such
mixed-approach analyses are crucial for converting large-scale data sets into specific biochemical

knowledge.
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Conclusions

In this work we demonstrated a simple quantity that can be calculated from a large but limited
bulk of sequence-activity data to produce a probabilistic representation of the ribozyme fitness
landscape. This representation explicitly captures the degree to which a given sequence site
possesses epistatic interactions with other sites, enabling precise exploitation of these differing

forms of interaction.

Contemporary machine learning efforts frequently rely on the application of “shallow
learners™ (31), algorithms applied directly to biochemical data with the hope that the sophistication
of the algorithm is sufficient to overcome the convolutions obscuring the sequence-activity
relationship. However, the choice of representation for the input data significantly impacts not just
the interpretability of the model but also the performance of the model (30). With this in mind, the
epistatic divergence introduced here is a simple transformation of the data, driven by established
information theory. The results are used to develop a simple model that maximizes our
extrapolation capabilities, such that we could predict and experimentally validate new points in
sequence space having high activity. We demonstrated that epistatic divergence is a sufficient
representation to create experimentally relevant extrapolative models using a simple analysis
workflow. Future integration of epistatic divergence with sophisticated machine learning

algorithms (e.g., (18)) may further improve predictive models of fitness landscapes.
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