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Abstract
We investigate compact ultrametric measure spaces which form a subset Uw of the
collection of allmetricmeasure spacesMw. In analogywith the notion of the ultramet-
ric Gromov–Hausdorff distance on the collection of ultrametric spaces U , we define
ultrametric versions of two metrics on Uw, namely of Sturm’s Gromov–Wasserstein
distance of order p and of the Gromov–Wasserstein distance of order p. We study the
basic topological and geometric properties of these distances as well as their relation
and derive for p = ∞ a polynomial time algorithm for their calculation. Further, sev-
eral lower bounds for both distances are derived and some of our results are generalized
to the case of finite ultra-dissimilarity spaces. Finally, we study the relation between
the Gromov–Wasserstein distance and its ultrametric version (as well as the relation
between the corresponding lower bounds) in simulations and apply our findings for
phylogenetic tree shape comparisons.
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1 Introduction

Over the last decade the acquisition of ever more complex data, structures and shapes
has increased dramatically. Consequently, the need to developmeaningful methods for
comparing general objects has become more and more apparent. In numerous appli-
cations, e.g. in molecular biology [16, 40, 49], computer vision [42, 56] and electrical
engineering [50, 70], it is important to distinguish between different objects in a pose
invariant manner: two instances of a given object in different spatial orientations are
deemed to be equal. Furthermore, also the comparisons of graphs, trees, ultramet-
ric spaces and networks, where mainly the underlying connectivity structure matters,
have grown in importance [20, 26]. One possibility to compare two general objects in
a pose invariant manner is to model them as metric spaces (X , dX ) and (Y , dY ) and
regard them as elements of the collection of isometry classes of compact metric spaces
denoted by M (i.e. two compact metric spaces (X , dX ) and (Y , dY ) are in the same
class if and only if they are isometric to each other which we denote by X ∼= Y ). It
is possible to compare (X , dX ) and (Y , dY ) via the Gromov–Hausdorff distance [29,
38], which is a metric on M. It is defined as

dGH(X , Y ) := inf
Z ,φ,ψ

d (Z ,dZ )
H (φ(X), ψ(Y )), (1)

where φ : X → Z and ψ : Y → Z are isometric embeddings into a common metric
space (Z , dZ ) and d (Z ,dZ )

H denotes theHausdorff distance in Z . TheHausdorff distance
is a metric on the collection S(Z) of all compact subsets of a metric space (Z , dZ )

and, for A, B ∈ S(Z), is defined as follows:

d (Z ,dZ )
H (A, B) := max

(
sup
a∈A

inf
b∈B

dZ (a, b), sup
b∈B

inf
a∈A

dZ (a, b)
)
.

While the Gromov–Hausdorff distance has been applied successfully to various shape
and data analysis tasks (see e.g. [11–15, 18, 19, 62]), it turns out that it is generally
convenient to equip the modelled objects with additional structure rendering them
as metric measure spaces [59, 60]. A metric measure space X = (X , dX , μX ) is a
triple, where (X , dX ) denotes a metric space and μX is a Borel probability measure
on X with full support. This additional probability measure can be thought of as
signalling the importance of different regions in the modelled object. Moreover, two
metric measure spaces X = (X , dX , μX ) and Y = (Y , dY , μY ) are considered as
isomorphic (denoted by X ∼=w Y) iff there exists an isometry ϕ : (X , dX ) → (Y , dY )

such that ϕ# μX = μY . Here, ϕ# denotes the pushforward map induced by ϕ. From
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now on, Mw denotes the collection of all (isomorphism classes of) compact metric
measure spaces.

The metric measure space structure allows us to regard objects as probability
measures instead of compact sets. Hence, it is possible to substitute the Hausdorff
component in (1) by a relaxed notion of proximity, namely the Wasserstein distance.
This distance is fundamental to a variety of mathematical developments and is also
known as Kantorovich distance [44], Kantorovich–Rubinstein distance [45], Mallows
distance [57] or as the Earth Mover’s distance [78]. Given a compact metric space
(Z , dZ ), letP(Z) denote the space of probability measures on Z and let α, β ∈ P(Z).
Then, theWasserstein distance of order p, for 1 ≤ p < ∞, between α and β is defined
as

d (Z ,dZ )
W,p (α, β) :=

(
inf

μ∈C(α,β)

∫

Z×Z
(dZ (x, y))pμ(dx ×dy)

)1/p

, (2)

and for p = ∞ as

d (Z ,dZ )
W,∞ (α, β) := inf

μ∈C(α,β)
sup

(x,y)∈supp(μ)

dZ (x, y), (3)

where supp(μ) stands for the support ofμ and C(α, β) denotes the set of all couplings
of α and β, i.e., the set of all probability measures μ on the product space Z × Z such
that

μ(A× Z) = α(A) and μ(Z × B) = β(B)

for all Borel measurable sets A and B of Z . It is worth noting that the Wasserstein
distance between probability measures on the real line admits a closed form solution
(see [90] and also Remark 2.10). We note that (2) and (3) can be unified into a more
compact expression via L p-norms:

d (Z ,dZ )
W,p (α, β) := inf

μ∈C(α,β)
‖dZ‖L p(μ), 1 ≤ p ≤ ∞.

To simplify the presentation of our results in this paper, we will adopt this notation
throughout what follows. To facilitate readers to understand our notation, we provide
expanded version of important formulas in Section A of the Supplementary Material.

Sturm [83] has shown that replacing the Hausdorff distance in (1) with the Wasser-
stein distance yields a meaningful metric on Mw. Let X = (X , dX , μX ) and
Y = (Y , dY , μY ) be two metric measure spaces. Then, Sturm’s Gromov–Wasserstein
distance of order p, 1 ≤ p ≤ ∞, is defined as

d sturm
GW,p(X ,Y) := inf

Z ,φ,ψ
d(Z ,dZ )
W,p (φ# μX , ψ# μY ), (4)

for isometric embeddings φ : X → Z , ψ : Y → Z into a metric space (Z , dZ ).
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Based on similar ideas but starting from a different representation of the Gromov–
Hausdorff distance, Mémoli [59, 60] derived a computationally more tractable and
topologically equivalent metric on Mw, namely the Gromov–Wasserstein distance:
For 1 ≤ p ≤ ∞, the p-distortion1 of a coupling μ ∈ C(μX , μY ) is defined as

dis p(μ) := ‖dX − dY ‖L p(μ⊗μ).

The Gromov–Wasserstein distance of order p, 1 ≤ p ≤ ∞, is defined as

dGW,p(X ,Y) := 1

2
inf

μ∈C(μX ,μY )
dis p(μ). (5)

It is known that in general dGW,p ≤ d sturm
GW,p and that the inequality can be strict [60].

Although both d sturm
GW,p and dGW,p, 1 ≤ p ≤ ∞, are in general NP-hard to compute

[60], it is possible to efficiently approximate dGW,p via conditional gradient descent
[60, 72]. This has led to numerous applications and extensions of this distance [4, 17,
22, 79, 86].

In many cases, since the direct computation of either of these distances can be oner-
ous, the determination of the degree of similarity between two datasets is performed
via firstly computing invariant features out of each dataset (e.g. global distance distri-
butions [68]) and secondly by suitably comparing these features. This point of view has
motivated the exploration of inverse problems arising from the study of such features
[10, 60, 61, 84].

Clearly,Mw contains various, extremely general spaces.However, inmany applica-
tions one has prior knowledge about themetricmeasure spaces under consideration and
it is often reasonable to restrict oneself to work on specific sub-collectionsOw ⊆ Mw.
For instance, it could be known that the metrics of the spaces considered are induced
by the shortest path metric on some underlying trees and hence it is unnecessary to
consider the calculation of d sturm

GW,p and dGW,p, 1 ≤ p ≤ ∞, for all ofMw. The potential
advantages of focusing on a specific sub-collectionOw are twofold. On the one hand,
it might be possible to use the features of Ow to gain computational benefits. On the
other hand, it might be possible to refine the definition d sturm

GW,p and dGW,p, 1 ≤ p ≤ ∞,
to obtain more informative comparisons on Ow. Naturally, it is of interest to identify
and study these subclasses and the corresponding refinements. This approach has been
pursued to study (variants of) the Gromov–Hausdorff distance on compact ultrametric
spaces by Zarichnyi [93] and Qiu [73], and on compact p-metric spaces by Mémoli
andWan [64]. Here, themetric space (X , dX ) is called a p-metric space (1 ≤ p < ∞),
if for all x, x ′, x ′′ ∈ X it holds dX (x, x ′′) ≤ (dX (x, x ′)p +dX (x ′, x ′′)p)1/p. Further, the
metric space (X , u X ) is called an ultrametric space, if u X fulfills the strong triangle
inequality, i.e., it holds for all x, x ′, x ′′ ∈ X that

u X (x ′, x ′′) ≤ max(u X (x, x ′), u X (x ′, x ′′)). (6)

1 The term “p-distortion” is not used in [59, 60]. However, the quantity disp(μ) is introduced as Jp(μ) in
both references.
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In particular,Mémoli et al. [63] derived a polynomial time algorithm for computing the
ultrametric Gromov–Hausdorff distance uGH between two finite ultrametric spaces
(X , u X ) and (Y , uY ) (see Sect. 2.2) defined as

uGH(X , Y ) := inf
Z ,φ,ψ

d (Z ,uZ )
H (φ(X), ψ(Y )), (7)

where φ : X → Z and ψ : Y → Z are isometric embeddings into a common ultra-
metric space (Z , uZ ) and d (Z ,uZ )

H denotes the Hausdorff distance on Z .
A further motivation to study (surrogates of) the distances d sturm

GW,p and dGW,p

restricted on a subsetOw comes from the idea of slicing which originated as a method
to efficiently estimate the Wasserstein distance d R

d

W,p(α, β) between probability mea-

sures α and β supported in a high dimensional Euclidean space R
d [78]. The original

idea is that given any line � in R
d one first obtains α� and β�, the respective pushfor-

wards of α and β under the orthogonal projection map π� : R
d → �, and then one

invokes the explicit formula for the Wasserstein distance for probability measures on
R (see Remark 2.10) to obtain a lower bound to d R

d

W,p(α, β)without incurring the pos-
sibly high computational cost associated to solving an optimal transportation problem.
This lower bound is improved via repeated (often random) selections of the line � [8,
48, 78].

Recently, Le et al. [54] pointed out that, thanks to the fact that the 1-Wasserstein
distance also admits an explicit formula when the underlyingmetric space is a tree [25,
31, 58], one can also devise tree slicing estimates of the distance between two given
probability measures by suitably projecting them onto tree-like structures.Most likely,
the same strategy is successful for suitable projections on random ultrametric spaces,
as on these there is also an explicit formula for theWasserstein distance [46]. The same
line of work has also recently explored in the Gromov–Wasserstein scenario [53, 89]
and could be extended based on efficiently computable restrictions (or surrogates) of
d sturm
GW,p and dGW,p. Inspired by the results of Mémoli and Wan [64] and Mémoli [63]
on the ultrametric Gromov–Hausdorff distance as well as the results of Kloeckner
[46], who derived an explicit representation of theWasserstein distance on ultrametric
spaces, we study the collection of compact ultrametric measure spaces Uw ⊆ Mw,
where X = (X , u X , μX ) ∈ Uw, whenever the underlying metric space (X , u X ) is a
compact ultrametric space.

In terms of applications, ultrametric spaces (and thus also ultrametric measure
spaces) arise naturally in statistics as metric encodings of dendrograms [18, 43] which
is a graph theoretical representation of ultrametric spaces, in the context of phyloge-
netic trees [82], in theoretical computer science in the probabilistic approximation of
finite metric spaces [5, 32], and in physics in the context of a mean-field theory of spin
glasses [65, 74].

Especially for phylogenetic trees (and dendrograms),where one tries to characterize
the structure of an underlying evolutionary process or the difference between two
such processes, it is important to have a meaningful method of comparison, i.e., a
meaningful metric on Uw. However, it is evident from the definition of d sturm

GW,p and
its relationship with dGW,p (see [60]), that the ultrametric structure of X ,Y ∈ Uw

is not taken into account in the computation of either d sturm
GW,p(X ,Y) or dGW,p(X ,Y),
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Fig. 1 Comparison between ultrametric measure spaces. Our objective is to devise methods for comparing
ultrametric measure spaces that take into account their unique structure, as represented by dendrograms
with weights on each of their leaves

1 ≤ p ≤ ∞. Hence, we suggest, just as for the ultrametric Gromov–Hausdorff
distance, to adapt the definition of d sturm

GW,p (see (4)) as well as the one of dGW,p (see
(5)) and verify that this makes the comparisons of ultrametric measure spaces more
sensitive and for p = ∞ leads to a polynomial time algorithm for the derivation of
the proposed metrics.

1.1 The Proposed Approach

Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be ultrametric measure spaces. We aim
to define meaningful distances for comparing them (see Fig. 1).

Reconsidering the definition of Sturm’s Gromov–Wasserstein distance in (4), we
propose to only infimize over ultrametric spaces (Z , uZ ). Thus, we define for p ∈
[1,∞] Sturm’s ultrametric Gromov–Wasserstein distance of order p as

u sturm
GW,p(X ,Y) := inf

Z ,φ,ψ
d(Z ,uZ )
W,p (φ# μX , ψ# μY ), (8)

where φ : X → Z , ψ : Y → Z are isometric embeddings into an ultrametric space
(Z , uZ ).

In subsequent sections of this paper,wewill establish several theoretically appealing
properties of u sturm

GW,p. Unfortunately, we will verify that, although an explicit for-
mula for the Wasserstein distance of order p on ultrametric spaces exists [46], for
p ∈ [1,∞) the calculation of u sturm

GW,p yields a highly non-trivial combinatorial opti-
mization problem (see Sect. 3.1.1). Therefore, we demonstrate that an adaptation of
the Gromov–Wasserstein distance defined in (5) yields a topologically equivalent and
easily approximable distance on Uw. In order to define this adaption, we need to intro-
duce some notation. For a, b ≥ 0 and 1 ≤ q < ∞ let 	q(a, b) := |aq − bq |1/q .
Further define 	∞(a, b) := max(a, b) whenever a �= b and 	∞(a, b) = 0 if a = b.

Now, we can rewrite dGW,p, 1 ≤ p ≤ ∞, as follows:

dGW,p(X ,Y) = 1

2
inf

μ∈C(μX ,μY )
‖	1(dX , dY )‖L p(μ⊗μ). (9)

Considering the derivation of dGW,p in [60] and the results on the closely related ultra-
metric Gromov–Hausdorff distance studied in [64] and [63], this suggests replacing
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	1 in (9) with 	∞ in order to incorporate the ultrametric structures of (X , u X , μX )

and (Y , uY , μY ) into the comparison. Hence, we define the p-ultra-distortion of a
coupling μ ∈ C(μX , μY ) for 1 ≤ p ≤ ∞ as

disultp (μ) := ‖	∞(u X , uY )‖L p(μ⊗μ). (10)

The ultrametric Gromov–Wasserstein distance of order p ∈ [1,∞], is given as

uGW,p(X ,Y) := inf
μ∈C(μX ,μY )

disultp (μ). (11)

Due to the structural similarity between dGW,p and uGW,p, we expect that many
properties of dGW,p extend to uGW,p. In particular, we will establish that uGW,p can
be approximated2 via conditional gradient descent and also admits several polynomial
time computable lower bounds which are useful in applications.

It isworthmentioning that Sturm [84] studied the family of so-called L p,q -distortion
distances similar to our construction of uGW,p. In our language, for any p, q ∈ [1,∞),
the L p,q -distortion distance is constructed by infimizing over the (p, q)-distortion
defined by replacing 	∞ with (	q)q in (10). This distance shares many properties
with dGW,p.

1.2 Overview of Our Results

Section 2. We generalize the results of [18] on the relation between ultrametric spaces
and dendrograms and establish a bijection between compact ultrametric spaces and
proper dendrograms (see Definition 2.1). After recalling some results on the ultra-
metric Gromov–Hausdorff distance (see (7)), we use the connection between compact
ultrametric spaces and dendrograms to reformulate the expression of the p-Wasserstein
distance (1 ≤ p < ∞) on ultrametric spaces derived by [46] in terms of proper den-
drograms. This allows us to derive a formulation of the ∞-Wasserstein distance on
ultrametric spaces and to study the Wasserstein distance on compact subspaces of the
ultrametric space (R≥0,	∞), which will be relevant when studying lower bounds of
uGW,p, 1 ≤ p ≤ ∞.
Section 3. We demonstrate that uGW,p and u sturm

GW,p, 1 ≤ p ≤ ∞, are p-metrics

on the collection of ultrametric measure spaces Uw. We derive several alternative
representations foru sturm

GW,p and study the relationbetween themetricsu sturm
GW,p anduGW,p.

In particular, we show that, while for 1 ≤ p < ∞ it holds in general that uGW,p ≤
21/pu sturm

GW,p, bothmetrics coincide for p = ∞, i.e., uGW,∞ = u sturm
GW,∞. Furthermore,we

show that an alternative representation of uGW,∞ leads to a polynomial time algorithm
for the calculation of uGW,∞ (as well as u sturm

GW,∞). Moreover, we study the topological
properties of (Uw, u sturm

GW,p) and (Uw, uGW,p), 1 ≤ p ≤ ∞. Most importantly, we show

that u sturm
GW,p and uGW,p induce the same topology on Uw which is also different from

2 Here “approximation” is meant in the sense that one can write code which will locally minimize the
functional. There are in general no theoretical guarantees that these algorithms will converge to a global
minimum.
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the one induced by d sturm
GW,p/dGW,p, 1 ≤ p ≤ ∞. More precisely, the topology induced

by uGW,p (resp. u sturm
GW,p) onUw ismuch finer than that induced by dGW,p (resp. d sturm

GW,p).
As we will show in Sect. 5, the distance uGW,p is more sensitive to certain differences
of the ultrametric measure spaces considered than dGW,p. While we further prove that
the metric spaces (Uw, u sturm

GW,p) and (Uw, uGW,p), 1 ≤ p < ∞, are neither complete

nor separable metric space, we demonstrate that the ultrametric space (Uw, u sturm
GW,∞),

which coincideswith (Uw, uGW,∞), is complete. Finally, we establish that (Uw, u sturm
GW,1)

is a geodesic space.
Section 4. It seems impossible to derive a polynomial time algorithm for the calculation
of u sturm

GW,p and uGW,p, 1 ≤ p < ∞. Consequently, based on easily computable invariant
features, we derive several polynomial time computable lower bounds for uGW,p,
1 ≤ p ≤ ∞. Due to the structural similarity between dGW,p and uGW,p, these are in
a certain sense analogous to those derived in [59, 60] for dGW,p. Among other things,
we show that

uGW,p(X ,Y) ≥ SLBult
p (X ,Y) := inf

γ∈C(μX ⊗μX ,μY ⊗μY )
‖	∞(u X , uY )‖L p(γ ).

We verify that the lower bound SLBult
p can be reformulated in terms of the Wasser-

stein distance on the ultrametric space (R≥0,	∞) (we derive an explicit formula

for d
(R≥0,	∞)

W,p in Sect. 2.3). This allows us to efficiently compute SLBult
p (X ,Y) in

O(max(|X |, |Y |)2) steps.
Section 5.We illustrate the behavior and relation betweenuGW,1 (which can be approx-
imated via conditional gradient descent) and SLBult

1 in a set of examples. We also
carefully illustrate the differences between uGW,1 and SLBult

1 , and dGW,1 and SLB1
(see Sect. 4 for a definition), respectively.

1.3 RelatedWork

In order to better contextualize our contribution, we now describe related work, both in
applied and computational geometry, and in phylogenetics (where notions of distance
between trees have arisen naturally).

Metrics between trees: the phylogenetics perspective. In phylogenetics, where one
chief objective is to infer the evolutionary relationship between species via methods
that evaluate observable traits (such as DNA sequences), the need to be able tomeasure
dissimilarity between different trees arises from the fact that the process of reconstruc-
tion of a phylogenetic tree may depend on the set of genes being considered. At the
same time, even for the same set of genes, different reconstruction methods could be
applied which would result in different trees. As such, this has led to the development
of many different metrics for measuring distance between phylogenetic trees. Exam-
ples include the Robinson–Foulds metric [77], the subtree-prune and regraft distance
[39], and the nearest-neighbor interchange distance [76].

As pointed out in Owen and Provan [69], many of these distances tend to quantify
differences between tree topologies and often do not take into account edge lengths. A
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certain phylogenetic tree metric space which encodes for edge lengths was proposed
in Billera et al. [6] and studied algorithmically in [69]. This tree space assumes that
all trees have the same set of taxa. An extension to the case of trees over different
underlying sets is given in Grindstaff and Owen [37]. Lafond et al. [51] considered
one type of metrics on possibly multilabeled phylogenetic trees with a fixed number
of leafs. As the authors pointed out, a multilabeled phylogenetic tree in which no leafs
are repeated is just a standard phylogenetic tree, whereas a multilabeled phylogenetic
tree in which all labels are equal defines a tree shape. The authors then proceeded
to study the computational complexity associated to generalizations of some of the
usual metrics for phylogenetic trees (such as the Robinson–Foulds distance) to the
multilabeled case. Colijn and Plazzotta [23] studied a metric between (binary) phy-
logenetic tree shapes based on a bottom to top enumeration of specific connectivity
structures. The authors applied their metric to compare evolutionary trees based on
the HA protein sequences from human influenza collected in different regions.

Metrics between trees: the applied geometry perspective. From a different perspec-
tive, ideas from applied geometry and applied and computational topology have been
applied to the comparison of tree shapes in applications in probability, clustering and
applied and computational topology.

Metric trees are also considered in probability theory in the study of models for ran-
dom trees together with the need to quantify their distance; Evans [30] described some
variants of the Gromov–Hausdorff distance between metric trees. See also Greven et
al. [36] for the case of metric measure space representations of trees and a certain
Gromov–Prokhorov type of metric on the collection thereof.

Trees, in the form of dendrograms, are abundant in the realm of hierarchical cluster-
ingmethods. In their study of the stability of hierarchical clusteringmethods, Carlsson
and Mémoli [18] utilized the Gromov–Hausdorff distance between the ultrametric
representation of dendrograms. Schmiedl [80] proved that computing the Gromov–
Hausdorff distance between tree metric spaces is NP-hard. Liebscher [55] suggested
some variants of the Gromov–Hausdorff distance that are applicable in the context of
phylogenetic trees. As mentioned before, Zarichnyi [93] introduced the ultrametric
Gromov–Hausdorff distance uGH between compact ultrametric spaces (a special type
of tree metric spaces). Certain theoretical properties such as precompactness of uGH
have been studied in Qiu [73]. In contrast with the NP-hardness of computing dGH,
Mémoli et al. [63] devised a polynomial time algorithm for computing uGH.

In computational topology merge trees arise through the study of the sublevel sets
of a given function [1, 75] with the goal of shape simplification. Morozov et al. [66]
developed the notion of interleaving distance between merge trees which is related
to the Gromov–Hausdorff distance between trees through bi-Lipschitz bounds. In
Agarwal et al. [2], exploiting the connection between the interleaving distance and the
Gromov–Hausdorff between metric trees, the authors approached the computation of
the Gromov–Hausdorff distance between metric trees in general and provide certain
approximation algorithms. Touli and Wang [87] devised fixed-parameter tractable
(FPT) algorithms for computing the interleaving distance between metric trees. One
can imply from their methods an FPT algorithm to compute a 2-approximation of the
Gromov–Hausdorff distance between ultrametric spaces. Mémoli et al. [63] devised

123



Discrete & Computational Geometry

an FPT algorithm for computing the exact value of the Gromov–Hausdorff distances
between ultrametric spaces.

2 Preliminaries

In this sectionwebriefly summarize the basic notions and concepts required throughout
the paper.

2.1 Ultrametric Spaces and Dendrograms

It is well known that ultrametric spaces possess tree-like structures. In particular, it
was established in [18] that finite ultrametric spaces are equivalent to the so-called
dendrograms. In this way, we generalize this equivalence to the case of compact
ultrametric spaces.

We first introduce some definitions and some notation. Given a set X , a partition of
X is a set PX = {Xi }i∈I where I is any index set, Ø �= Xi ⊆ X , Xi ∩ X j = Ø for all
i �= j ∈ I and

⋃
i∈I Xi = X . We call each element Xi a block of the given partition

PX and denote by Part(X) the collection of all partitions of X . For two partitions PX

and P ′
X we say that PX is finer than P ′

X , if for every block Xi ∈ PX there exists a
block X ′

j ∈ P ′
X such that Xi ⊆ X ′

j .

Definition 2.1 (Proper dendrogram) Given a set X (not necessarily finite), a proper
dendrogram θX : [0,∞) → Part(X) is a map satisfying the following conditions:

(i) θX (s) is finer than θX (t) for any 0 ≤ s < t < ∞.
(ii) θX (0) is the finest partition consisting only singleton sets.
(iii) There exists T > 0 such that for any t ≥ T , θX (t) = {X} is the trivial partition.
(iv) For each t > 0, there exists ε > 0 such that θX (t) = θX (t ′) for all t ′ ∈ [t, t + ε].
(v) For any distinct points x, x ′ ∈ X , there exists Txx ′ > 0 such that x and x ′ belong

to different blocks in θX (Txx ′).
(vi) For each t > 0, θX (t) consists of only finitely many blocks.
(vii) Let {tn}n∈N be a decreasing sequence such that lim n→∞ tn = 0 and let Xn ∈

θX (tn). If for any 1 ≤ n < m, Xm ⊆ Xn , then
⋂

n∈N Xn �= Ø.

When X is finite, a function θX : [0,∞) → Part(X) satisfying conditions (i) to (iv)
will satisfy conditions (v), (vi) and (vii) automatically, and thus a proper dendrogram
reduces to the usual dendrogram (see [18, Sect. 3.1] for a formal definition). Let θX

be a proper dendrogram over a set X . For any x ∈ X and t ≥ 0, we denote by [x]X
t the

block in θ(t) that contains x ∈ X and abbreviate [x]X
t to [x]t when the underlying set

X is clear from the context. Similarly to Carlsson and Mémoli [18], who considered
the relation between finite ultrametric spaces and dendrograms, we will prove that
there is a bijection between compact ultrametric spaces and proper dendrograms. In
particular, one can show that the subsequent theorem generalizes [18, Thm. 9]. Since
its proof depends on several concepts not yet introduced, we postpone it to the proof of
Theorem 2.2.We remark that compact ultrametric spaces have been also characterized
via other terminology such as synchronized rooted tree in [46] and comb metric space
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in [52]. We chose to work with dendrogram as it provides a succinct and illustrative
description of ultrametric spaces.

Theorem 2.2 Given a set X, denote byU(X) the collection of all compact ultrametrics
on X and D(X) the collection of all proper dendrograms over X. For any θ ∈ D(X),
consider uθ defined as follows:

∀ x, x ′ ∈ X , uθ (x, x ′) := inf
{
t ≥ 0 | x, x ′ belong to the same block of θ(t)

}
.

Then, uθ ∈ U(X) and the map ϒX : D(X) → U(X) sending θ to uθ is bijective.

Remark 2.3 From now on, we denote by θX the proper dendrogram corresponding to a
given compact ultrametric u X on X under the bijection given above. Note that a block
[x]t in θX (t) is actually the closed ball Bt (x) in X centered at x with radius t . So for
each t ≥ 0, θX (t) partitions X into a union of several closed balls in X with respect
to u X .

2.2 The Ultrametric Gromov–Hausdorff Distance

Both d sturm
GW,p and dGW,p, 1 ≤ p ≤ ∞, are by construction closely related to the

Gromov–Hausdorff distance. In a recent paper, Mémoli et al. [63] studied an ultra-
metric version of this distance, namely the ultrametric Gromov–Hausdorff distance
(denoted as uGH). Since we will demonstrate several connections between u sturm

GW,p,
uGW,p, 1 ≤ p ≤ ∞, and this distance, we briefly summarize some of the results in
[63, 64]. We start by recalling the formal definition of uGH.

Definition 2.4 Let (X , u X ) and (Y , uY ) be two compact ultrametric spaces. Then, the
ultrametric Gromov–Hausdorff between X and Y is defined as

uGH(X , Y ) = inf
Z ,φ,ψ

d (Z ,uZ )
H (φ(X), ψ(Y )),

where φ : X → Z and ψ : Y → Z are isometric embeddings (distance preserving
transformations) into the ultrametric space (Z , uZ ).

Zarichnyi [93] has shown that uGH is an ultrametric on the isometry classes of com-
pact ultrametric spaces, which is denoted by U , and Mémoli and Wan [64] identified
a structural theorem (cf. Thm. 2.5) that gives rise to a polynomial time algorithm for
uGH. More precisely, it was proven in [64] that uGH can be calculated via so-called
quotient ultrametric spaces, which we define next. Let (X , u X ) be any ultrametric
space and let t ≥ 0. We define an equivalence relation ∼t on X as follows: x ∼t x ′ iff
u X (x, x ′) ≤ t . We denote by [x]X

t (resp. [x]t ) the equivalence class of x under ∼t and
by Xt the set of all such equivalence classes. In fact, [x]X

t = {x ′ ∈ X | u(x, x ′) ≤ t}
is exactly the closed ball centered at x with radius t and corresponds to a block in the
corresponding proper dendrogram θX (t) (see Remark 2.3). Thus, one can think of Xt

as a “set representation” of θX (t). We define u Xt : Xt × Xt → R≥0 as follows:

u Xt ([x]t , [x ′]t ) :=
{

u X (x, x ′), [x]t �= [x ′]t ,

0, [x]t = [x ′]t .
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Fig. 2 Metric quotient: An ultrametric space (black) and its quotient at level t (red)

Then, (Xt , u Xt ) is an ultrametric space which we call the quotient of (X , u X ) at level
t (see Fig. 2 for an illustration). It turns out that the quotient spaces characterize uGH
as follows.

Theorem 2.5 (Structural theorem for uGH, [64, Thm. 5.7]) Let (X , u X ) and (Y , uY )

be two compact ultrametric spaces. Then,

uGH(X , Y ) = inf {t ≥ 0 | Xt ∼= Yt }.

Remark 2.6 Let (X , u X ) and (Y , uY ) denote two finite ultrametric spaces and let t ≥ 0.
The quotient spaces Xt and Yt can be considered as vertex weighted, rooted trees [63].
Hence, it is possible to check whether Xt ∼= Yt in polynomial time [3]. Consequently,
Theorem 2.5 induces a simple, polynomial time algorithm to calculate uGH between
two finite ultrametric spaces.

2.3 Wasserstein Distance on Ultrametric Spaces

Kloeckner [46] uses the representation of ultrametric spaces as so-called synchronized
rooted trees to derive an explicit formula for the Wasserstein distance on ultrametric
spaces. By the constructions of the proper dendrograms and of the synchronized rooted
trees (see Sect. A.2.1), it is immediately clear how to reformulate the results of [46] on
compact ultrametric spaces in terms of proper dendrograms. To this end, we need to
introduce some notation. For a compact ultrametric space X , let θX be the associated
proper dendrogram and let V (X) := ⋃

t>0 θX (t) = {[x]t | x ∈ X , t > 0}. V (X) is in
fact the collection of all closed balls in X except for singletons {x} such that x is a
cluster point3 (see Lemma A.8). For B ∈ V (X), we denote by B∗ the smallest (under
inclusion) element in V (X) such that B � B∗ (for the existence and uniqueness of
B∗ see Lemma A.1).

Theorem 2.7 (Wasserstein distance on ultrametric spaces, [46, Thm. 3.1]) Let X ∈ U .
For all α, β ∈ P(X) and 1 ≤ p < ∞, we have

(
d X
W,p(α, β)

)p = 2−1
∑

B∈V (X)\{X}

(
diam(B∗)p − diam(B)p) |α(B) − β(B)| ,

where diam(B) denotes the diameter of the set B.

3 A cluster point x in a topological space X is such that any neighborhood of x contains countably many
points in X .
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Fig. 3 Illustration of (R≥0, 	∞): This is the dendrogram for a subspace of (R≥0, 	∞) consisting of 5
arbitrary distinct points of R+

We extend Lemma 2.7 to the case p = ∞.

Lemma 2.8 Let X ∈ U . Then, for any α, β ∈ P(X), we have

d X
W,∞(α, β) = max

B∈V (X)\{X}
α(B) �=β(B)

diam(B∗). (12)

The proof of Lemma 2.8 is technical and we postpone it to Sect. A.1.2.

2.3.1 Wasserstein Distance on (R≥0,3∞)

The non-negative half real line R≥0 endowed with 	∞ turns out to be an ultramet-
ric space (cf. [64, Example 2.7]). Finite subspaces of (R≥0,	∞) are of particular
interest in this paper. These spaces possess a particular structure (see Fig. 3) and the
computation of the Wasserstein distance on them can be further simplified.

Theorem 2.9 (d
(R≥0,	∞)

W,p between finitely supported measures) Suppose α, β are two
probability measures supported on a finite subset {x0, . . . , xn} of (R≥0,	∞) such that
0 ≤ x0 < x1 < · · · < xn. Denote αi := α({xi }) and βi := β({xi }). Then, we have for
p ∈ [1,∞) that

d
(R≥0,	∞)

W,p (α, β) = 2−1/p
( n−1∑

i=0

∣∣∣∣

i∑

j=0

(α j − β j )

∣∣∣∣ · |x p
i+1 − x p

i | +
n∑

i=0

|αi − βi | · x p
i

)1/p

. (13)

Let Fα and Fβ denote the cumulative distribution functions of α and β, respectively.
Then, for the case p = ∞ we obtain

d
(R≥0,	∞)

W,∞ (α, β) = max
(

max
0≤i≤n−1

Fα(xi ) �=Fβ(xi )

xi+1, max
0≤i≤n
αi �=βi

xi

)
.

Proof Clearly, V (X) = {{x0, x1, . . . , xi } | i = 1, . . . , n}∪{{xi } | i = 1, . . . , n} (recall
that each set corresponds to a closed ball). Thus, we conclude the proof by applying
Lemmas 2.7 and 2.8. ��

123



Discrete & Computational Geometry

Remark 2.10 (Closed-form solution for d
(R≥0,	q )

W,p ) As a closed-form solution for

d
(R≥0,	∞)

W,p is given by Theorem 2.9, we also note a classic closed-form solution for
Wasserstein distance on R equipped with Euclidean distance 	1:

d (R,	1)
W,p (α, β) =

(∫ 1

0
|F−1

α (t) − F−1
β (t)|p dt

)1/p

, (14)

where Fα and Fβ are cumulative distribution functions of α and β, respectively. It

turns out that closed-form solutions exist for more general d
(R≥0,	q )

W,p , q ∈ (1,∞) and
q ≤ p, and we show more details in Sect. A.3.1.

Remark 2.11 (Case p = 1) Note that when p = 1, by combining (13) with (14), we
obtain that for any finitely supported probability measures α, β ∈ P(R≥0),

d
(R≥0,	∞)

W,1 (α, β) = 1

2

(
d (R,	1)
W,1 (α, β) +

n∑

i=0

xi |αi − βi |
)

= 1

2

(
d (R,	1)
W,1 (α, β) +

∫

R

x |α − β| (dx)

)
,

where αi , βi and xi are defined similarly as in Theorem 2.9 and we write the sum∑n
i=0 xi |αi − βi | into an integral for a succinct expression which requires no speci-

fication of the supports of the measures. The formula indicates that the 1-Wasserstein
distance on (R≥0,	∞) is the average of the usual 1-Wasserstein distance on (R≥0,	1)

and a “weighted total variation distance”. The weighted total variation like distance
term is sensitive to difference of supports. For example, let α = δx1 and β = δx2 , then∫
R

x |α − β| (dx) = x1 + x2 if x1 �= x2.

Remark 2.12 (Extension to compactly supported measures) In fact, X ⊆ (R≥0,	∞)

is compact if and only if it is either a finite set or a countable set containing zero
and with zero being the unique cluster point (w.r.t. the usual Euclidean distance 	1)
(see Lemma A.2). Hence, it is straightforward to extend Theorem 2.9 to compactly
supported measures and we refer to Sect. A.3 for the missing details.

3 Ultrametric Gromov–Wasserstein Distances

In this section we investigate the properties of usturm
GW,p as well as uGW,p, 1 ≤ p ≤ ∞,

and study the relation between them.

3.1 Sturm’s Ultrametric Gromov–Wasserstein Distance

We begin by establishing several basic properties of u sturm
GW,p, 1 ≤ p ≤ ∞, including a

proof that u sturm
GW,p is indeed a metric (or more precisely a p-metric) on the collection

of compact ultrametric measure spaces Uw.
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The definition of u sturm
GW,p given in (8) is clunky, technical and in general not easy to

work with. Hence, the first observation to make is the fact that u sturm
GW,p, 1 ≤ p ≤ ∞,

shares a further property with d sturm
GW,p: u sturm

GW,p can be calculated by minimizing over

pseudo-ultrametrics4 instead of isometric embeddings.

Lemma 3.1 Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be two ultrametric measure
spaces. Let Dult(u X , uY ) denote the collection of all pseudo-ultrametrics u on the
disjoint union X � Y such that u|X×X = u X and u|Y×Y = uY . Let p ∈ [1,∞]. Then,
it holds that

u sturm
GW,p(X ,Y) = inf

u∈Dult(u X ,uY )
d (X�Y ,u)
W,p (μX , μY ), (15)

where d (X�Y ,u)
W,p denotes theWasserstein pseudometric of order p defined in (28) (resp.

in (29) for p = ∞) in Sect. B.5.1.

Proof The claim follows by the same arguments as Lemma 3.3 (iii) in [83]. ��
Remark 3.2 (Wasserstein pseudometric) The Wasserstein pseudometric is a natural
extension of the Wasserstein distance to pseudometric spaces and has for example
been studied in [85]. In Sect. B.5.1 we carefully show that it is closely related to
the Wasserstein distance on a canonically induced metric space. We further establish
that the Wasserstein distance and the Wasserstein pseudometric share many relevant
properties. Hence, we do not notationally distinguish between these two concepts.

The representation of u sturm
GW,p, 1 ≤ p ≤ ∞, given by the above lemma is much more

accessible and we first use it to establish the subsequent basic properties of u sturm
GW,p

(see Sect. B.1.1 for a full proof).

Proposition 3.3 Let X ,Y ∈ Uw. Then, the following hold:

(i) For any p ∈ [1,∞], we always have that u sturm
GW,p(X ,Y) ≥ d sturm

GW,p(X ,Y).

(ii) For any 1 ≤ p ≤ q ≤ ∞, we have that u sturm
GW,p(X ,Y) ≤ u sturm

GW,q(X ,Y).

(iii) It holds that lim p→∞ u sturm
GW,p(X ,Y) = u sturm

GW,∞(X ,Y).

We use Lemma 3.1 to prove that (Uw, u sturm
GW,p) is indeed a metric space.

Theorem 3.4 usturm
GW,p is a p-metric on the collection Uw of compact ultrametric mea-

sure spaces. In particular, when p = ∞, usturm
GW,∞ is an ultrametric.

In order to increase the readability of this sectionwe postpone the proof of Theorem3.4
to Sect. B.1.2. In the course of the proof, we will, among other things, verify the
existence of optimal metrics and optimal couplings in (15) (see Proposition B.1).
Furthermore, it is important to note that the topology induced on Uw by u sturm

GW,p, 1 ≤
p ≤ ∞, is different from the one induced by d sturm

GW,p. This is well illustrated in the
following example.

4 A pseudo-ultrametric is a pseudometric which satisfies the strong triangle inequality (cf. (6)); see
Sect. B.5.1 for the definition and further discussion on pseudometrics.
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Fig. 4 Common ultrametric spaces: Representation of the two kinds of ultrametric spaces Z (middle and
right) into which we can isometrically embed the spaces X and Y (left)

Example 3.5 (u sturm
GW,p and d sturm

GW,p induce different topologies) This example is an adap-
tation from [64, Exam. 4.17]. For each a > 0, denote by �2(a) the two-point metric
space with interpoint distance a. Endow with �2(a) the uniform probability mea-
sure μa and denote the corresponding ultrametric measure space �̂2(a). Now, let
X := �̂2(1) and let Xn := �̂2(1 + 1/n) for n ∈ N. It is easy to check that for any
1 ≤ p ≤ ∞, d sturm

GW,p(X ,Xn) = 1/(2n) and u sturm
GW,p(X ,Xn) = 2−1/p(1 + 1/n) where

we adopt the convention that 1/∞ = 0. Hence, as n goes to infinity Xn will converge
to X in the sense of d sturm

GW,p, but not in the sense of u sturm
GW,p, for any 1 ≤ p ≤ ∞.

3.1.1 Alternative Representations of u sturm
GW,p

In this subsection, we derive an alternative representation for usturm
GW,p defined in (8).

We mainly focus on the case p < ∞, however it turns out that the results also hold
for p = ∞ (see Sect. 3.3).

Let X ,Y ∈ Uw and recall the definition of u sturm
GW,p, p ∈ [1,∞], given in (8), i.e.,

u sturm
GW,p(X ,Y) = inf

Z ,φ,ψ
d (Z ,uZ )
W,p (ϕ# μY , ψ# μY ),

where φ : X → Z and ψ : Y → Z are isometric embeddings into an ultrametric
space (Z , uZ ). It turns out that we only need to consider relatively few possibilities of
mapping two ultrametric spaces into a common ultrametric space. Exemplarily, this
is shown in Fig. 4, where we see two finite ultrametric spaces and two possibilities for
a common ultrametric space Z .

Indeed, it is straightforward to write down all reasonable embeddings and target
spaces. We define the set

A :=
{
(A, ϕ)

∣
∣∣
Ø �= A ⊆ X is closed and
ϕ : A ↪→ Y is an isometric embedding

}
. (16)

Clearly, A �= Ø, as it holds for each x ∈ X that {({x}, ϕy)}y∈Y ⊆ A, where ϕy is the
map sending x to y ∈ Y . Another possibility to construct elements in A is illustrated
in the subsequent example.

Example 3.6 LetX ,Y ∈ Uw be finite spaces and let u ∈ Dult(u X , uY ). If u−1(0) �= Ø,
we define A := πX (u−1(0)) ⊆ X , whereπX : X ×Y → X is the canonical projection.
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Then, the map ϕ : A → Y defined by sending x ∈ A to y ∈ Y such that u(x, y) = 0
is an isometric embedding and (A, ϕ) ∈ A.

Now, fix two compact spaces X ,Y ∈ Uw. Let (A, ϕ) ∈ A and let Z A = X �
(Y\ϕ(A)) ⊆ X � Y . Furthermore, define uZ A : Z A× Z A → R≥0 as follows:

(i) uZ A |X×X := u X and uZ A |Y\ϕ(A)×Y\ϕ(A) := uY |Y\ϕ(A)×Y\ϕ(A).
(ii) For any x ∈ A and y ∈ Y\ϕ(A) define uZ A(x, y) := uY (y, ϕ(x)).
(iii) For x ∈ X\A and y ∈ Y\ϕ(A) let

uZ A (x, y) := inf {max(u X (x, a), uY (ϕ(a), y)) | a ∈ A}.

(iv) For any x ∈ X and y ∈ Y\ϕ(A), uZ A(y, x) := uZ A (x, y).

Then, (Z A, uZ A ) is an ultrametric space such that X andY can bemapped isometrically

into Z A (see [93, Lem. 1.1]). Let φX
(A,ϕ) andψY

(A,ϕ) denote the corresponding isometric
embeddings of X and Y , respectively. This allows us to derive the following statement,
whose proof is postponed to Sect. B.1.3.

Theorem 3.7 Let X ,Y ∈ Uw. Then, we have for each p ∈ [1,∞) that

u sturm
GW,p(X ,Y) = inf

(A,ϕ)∈A
d Z A
W,p

((
φX

(A,ϕ)

)
#
μX ,

(
ψY

(A,ϕ)

)
#
μY

)
. (17)

Remark 3.8 Let X ,Y ∈ Uw be finite spaces. The representation of u sturm
GW,p(X ,Y),

1 ≤ p ≤ ∞, given by Theorem 3.7 is very explicit and recasts the computation of
u sturm
GW,p(X ,Y), 1 ≤ p ≤ ∞, as a combinatorial problem. In fact, the set A in (17) can

be further reduced. More precisely, we demonstrate in Sect. B.1.3 (see Corollary B.7)
that it is sufficient to infimize over the set of all maximal pairs, denoted byA∗. Here, a
pair (A, ϕ1) ∈ A is denoted as maximal, if for all pairs (B, ϕ2) ∈ A with A ⊆ B and
ϕ2|A = ϕ1 it holds A = B. Using the ultrametric Gromov–Hausdorff distance (see
(7)) it is possible to determine if two ultrametric spaces are isometric in polynomial
time [63, Lem. 68]. However, this is clearly not sufficient to identify all (A, ϕ) ∈ A∗
in polynomial time. Especially, for a given, viable A ⊆ X , there are usually multiple
ways to define the corresponding map ϕ (see Example 3.9 right below this remark).
Furthermore, for 1 ≤ p < ∞, we have neither been able to further restrict the set A∗
nor to identify the optimal (A∗, ϕ∗). This just leaves a brute force approach which is
computationally not feasible. On the other hand, for p = ∞ we are able to explicitly
construct the optimal pair (A∗, ϕ∗) (see Theorem 3.23).

Example 3.9 Let {di }n
i=1 be pairwise different real numbers with 0 ≤ di < 1. Let

X := {xi
j }i=1,2

j=1,...,n be a set with 2n points. Then, we define u X as follows:

u X (xi
j , xa

b ) =

⎧
⎪⎨

⎪⎩

0 if i = a and j = b;
di if i �= a and j = b;
1 if j �= b
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u X is obviously an ultrametric on X . Let {d∗
i }n

i=1 be pairwise different real numbers
with 0 ≤ d∗

i < 1. Assume d∗
i �= d j for all i, j = 1, . . . , n. We similarly define

an ultrametric space (Y , uY ) w.r.t. {d∗
i }n

i=1. Equip both spaces with some probability
measures μX and μY . Consider the minimization problem

inf
{ϕ | (A,ϕ)∈A∗}

d Z A
W,p

((
φX

(A,ϕ)

)
#
μX ,

(
ψY

(A,ϕ)

)
#
μY

)
,

where we use the notation from Theorem 3.7 and Remark 3.8. If we let A :=
{x1j } j=1,...,n , then it is easy to see that |{ϕ | (A, ϕ)∈A∗}| = 2nn!, which suggests
that it is not possible to solve the above minimization problem in polynomial time
using a brute force approach.

3.2 The Ultrametric Gromov–Wasserstein Distance

In this section, we consider basic properties of uGW,p and prove the analogue of
Theorem 3.4, i.e., we verify that also uGW,p is a p-metric, 1 ≤ p ≤ ∞, on the
collection of ultrametric measure spaces.

The subsequent proposition collects basic properties of uGW,p which are also shared
by u sturm

GW,p (cf. Proposition 3.3). We refer to Sect. B.2.1 for its proof.

Proposition 3.10 Let X ,Y ∈ Uw. Then, the following claims hold:

(i) For any p ∈ [1,∞], we always have that uGW,p(X ,Y) ≥ dGW,p(X ,Y).
(ii) For any 1 ≤ p ≤ q ≤ ∞, it holds uGW,p(X ,Y) ≤ uGW,q(X ,Y).
(iii) We have that lim p→∞ uGW,p(X ,Y) = uGW,∞(X ,Y).

Next, we verify that uGW,p is indeed a metric on the collection of ultrametric
measure spaces.

Theorem 3.11 The ultrametric Gromov–Wasserstein distance uGW,p is a p-metric on
the collection Uw of compact ultrametric measure spaces. In particular, when p = ∞,
uGW,∞ is an ultrametric.

The full proof ofTheorem3.11,which is based on the existence of optimal couplings
in (11) (see Proposition B.10), is postponed to Sect. B.2.2.

Remark 3.12 (uGW,p and dGW,p induce different topologies) Reconsidering Exam-
ple 3.5, it is easy to verify that in this setting uGW,p(X ,Xn) = 2−1/p(1+ 1/n) while
dGW,p(X ,Xn) = 1/(21/pn), 1 ≤ p ≤ ∞. Hence, just like u sturm

GW,p and d sturm
GW,p, uGW,p

and dGW,p induce different topologies on Uw. This result can also be obtained from
Sect. 3.4 where we derive that uGW,p and u sturm

GW,p give rise to the same topology.
Together with the fact that uGW,p ≥ dGW,p, we know that uGW,p induces a finer
topology than the one induced by dGW,p. In this way, uGW,p is more sensitive to
perturbations in ultrametric data sets. In particular, unlike the metric dGW,p, uGW,p

is able to differentiate between different types of perturbation. This point is further
examined in Sect. 5.3 where we empirically show that dGW,p is indifferent to different
types of noise whereas uGW,p is sensitive to ‘large scale’ perturbation.
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Fig. 5 Weighted Quotient: An ultrametric measure space (black) and its weighted quotient at level t (red)

Remark 3.13 As for the case of dGW,p, 1 ≤ p < ∞, [60, Sect. 7], it follows that
for two finite ultrametric measure spaces X and Y the computation of uGW,p(X ,Y),
1 ≤ p < ∞, boils down to solving a (non-convex) quadratic program. This is in
general NP-hard [71]. In contrast, for p = ∞, we will derive a polynomial time
algorithm to determine uGW,∞(X ,Y) (cf. Sect. 3.2.1).

3.2.1 Alternative Representations of uGW,∞

In this section, we will derive an alternative representation of uGW,∞ that resembles
the one of uGH derived in [64, Thm. 5.1]. It also leads to a polynomial time algorithm
for the computation of uGW,∞. For this purpose, we define the weighted quotient of
an ultrametric measure space. Let X = (X , u X , μX ) ∈ Uw and let t ≥ 0. Then, the
weighted quotient of X at level t , is given as Xt = (Xt , u Xt , μXt ), where (Xt , u Xt ) is
the quotient of the ultrametric space (X , u X ) at level t (see Sect. 2.2) andμXt ∈ P(Xt )

is the pushforward ofμX under the canonical quotient map Qt : (X , u X ) → (Xt , u Xt )

sending x to [x]t for x ∈ X . Figure 5 illustrates the weighted quotient in a simple
example.

Based on this definition, we show the following theorem, whose proof is postponed
to Sect. B.2.3.

Theorem 3.14 Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be two compact ultramet-
ric measure spaces. Then, it holds that

uGW,∞(X ,Y) = min{t ≥ 0 |Xt ∼=w Yt }. (18)

Remark 3.15 The weighted quotientsXt and Yt can be considered as vertex weighted,
rooted trees and thus it is possible to verify whetherXt ∼=w Yt in polynomial time [3].
In consequence, we obtain a polynomial time algorithm for the calculation of uGW,∞.
See p. 27 for the details.

The representations of uGH in Theorem 2.5 and uGW,∞ in Theorem 3.14 strongly
resemble themselves. As a direct consequence of both Theorems 2.5 and 3.14, we
obtain the following comparison between the two metrics.

Corollary 3.16 Let X ,Y ∈ Uw. Then, it holds that

uGW,∞(X ,Y) ≥ uGH(X , Y ). (19)
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The inequality (19) is sharp. Indeed, by [64, Cor. 5.3] we know that if the considered
ultrametric spaces (X , u X ) and (Y , uY ) have different diameters (w.l.o.g. diam(X) <

diam(Y )), then uGH(X , Y ) = diam(Y ). The same statement also holds for uGW,∞
Corollary 3.17 Let X ,Y ∈ Uw be such that diam(X) < diam(Y ). Then,

uGW,∞(X ,Y) = diam(Y ) = uGH(X , Y ).

Proof The first equality follows directly from [64, Cor. 5.3]. For the second equality,
let t := diam(Y ). It is obvious that Xt ∼=w ∗ ∼=w Yt , where ∗ denotes the one point
ultrametric measure space. Let s ∈ (diam(X), diam(Y )), then Xt ∼=w ∗ whereas
Y �w ∗. By Theorem 3.14, uGW,∞(X ,Y) = t = diam(Y ). ��

3.3 The Relation Between uGW,p and u sturm
GW,p

In this section, we study the relation of u sturm
GW,p and uGW,p, 1 ≤ p ≤ ∞, and establish

the topological equivalence between the two metrics.

3.3.1 Lipschitz Relation

We first study the Lipschitz relation between u sturm
GW,p and uGW,p. For this purpose, we

have to distinguish the cases p < ∞ and p = ∞.

The case p < ∞.We start the consideration of this case by proving that it is essentially
enough to consider the case p = 1 (see Theorem 3.18). To this end, we need to
introduce some notation. For each α > 0, we define a function Sα : R≥0 → R≥0
by x �→ xα . Given an ultrametric space (X , u X ) and α > 0, we abuse the notation
and denote by Sα(X) the new space (X , Sα◦u X ). It is obvious that Sα(X) is still an
ultrametric space. This transformation of metric spaces is also known as the snowflake
transform [24]. Let X = (X , u X , μX ) and Y = (Y , uY , μY ) denote two ultrametric
measure spaces. Let 1 ≤ p < ∞. We denote by Sp(X ) the ultrametric measure space
(X , Sp◦u X , μX ). The snowflake transform can be used to relate uGW,p(X ,Y) as well
as u sturm

GW,p(X ,Y)with uGW,1(Sp(X ), Sp(Y)) and u sturm
GW,1(Sp(X ), Sp(Y)), respectively.

Theorem 3.18 Let X ,Y ∈ Uw and let p ∈ [1,∞). Then, we obtain

(
uGW,p(X ,Y)

)p = uGW,1(Sp(X ), Sp(Y)),
(
usturm
GW,p(X ,Y)

)p = usturm
GW,1(Sp(X ), Sp(Y)).

We give full proof of Theorem 3.18 in Sect. B.2.4. Based on this result, we can
directly relate the metrics uGW,p and u sturm

GW,p by only considering the case p = 1 and
prove the following Theorem 3.19 (see Sect. B.3.1 for its proof).

Theorem 3.19 Let X ,Y ∈ Uw. Then, we have for p ∈ [1,∞) that

uGW,p(X ,Y) ≤ 21/p usturm
GW,p(X ,Y).
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The subsequent example verifies that the coefficient in Theorem 3.19 is tight.

Example 3.20 For each n ∈ N, let Xn be the three-point space �3(1) (i.e. the 3-point
space labeled by {x1, x2, x3}where all distances are 1) with a probability measureμX

n

such that μX
n(x1) = μX

n(x2) = 1/(2n) and μX
n(x3) = 1− 1/n. Let Y = ∗ and μY

be the only probability measure on Y . Then, it is routine (using Proposition B.23 from
Sect. B.5.3) to check that uGW,1(Xn,Y) = 2(1−3/(4n))/n and usturm

GW,1(Xn,Y) = 1/n.
Therefore, we have

lim
n→∞

uGW,1(Xn,Y)

usturm
GW,1(Xn,Y)

= 2.

Example 3.21 (u sturm
GW,p and uGW,p are not bi-Lipschitz equivalent) Following [60, Rem.

5.17], we verify in Sect. B.3.2 that for any positive integer n

u sturm
GW,p

(
�̂n(1), �̂2n(1)

) ≥ 1

4
and uGW,p

(
�̂n(1), �̂2n(1)

) ≤
(

3

2n

)1/p

.

Here, �̂n(1) denotes the n-point metric measure space with interpoint distance 1 and
the uniform probability measure. Thus, there exists no constant C > 0 such that
u sturm
GW,p(X ,Y) ≤ C ·uGW,p(X ,Y) holds for every input spaces X and Y . Hence,

u sturm
GW,p and uGW,p are not bi-Lipschitz equivalent.

The case p = ∞. Next, we consider the relation between u sturm
GW,∞ and uGW,∞. By

taking the limit p → ∞ in Theorem 3.19, one might expect that u sturm
GW,∞ ≥ uGW,∞.

In fact, we prove that the equality holds (see Sect. B.3.3).

Theorem 3.22 Let X ,Y ∈ Uw. Then, it holds that

u sturm
GW,∞(X ,Y) = uGW,∞(X ,Y).

One application of Theorem3.22 is to explicitly derive theminimizing pair (A, φ) ∈
A∗ in (25) for p = ∞ (see Sect. B.3.4 for an explicit construction).

Theorem 3.23 Let X ,Y ∈ Uw. Let s := usturm
GW,∞(X ,Y) and assume that s > 0. Then,

there exists (A, φ) ∈ A defined in (16) such that

u sturm
GW,∞(X ,Y) = d Z A

W,∞(μX , μY ),

where Z A denotes the ultrametric space defined in Sect. 3.1.1.

3.3.2 Topological Equivalence Between uGW,p and u sturm
GW,p

Mémoli [60] proved the topological equivalence between dGW,p and d sturm
GW,p.We estab-

lish an analogous result for uGW,p and u sturm
GW,p. To this end, we recall the modulus of

mass distribution.
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Definition 3.24 ([36, Defn. 2.9]) Given δ > 0 we define the modulus of mass distri-
bution of X ∈ Uw as

vδ(X ) := inf
{
ε > 0 | μX ({x :μX (B◦

ε (x)) ≤ δ}) ≤ ε
}
,

where B◦
ε (x) denotes the open ball centered at x with radius ε.

We note that vδ(X ) is non-decreasing, right-continuous and bounded above by 1.
Furthermore, it holds that lim δ↘0 vδ(X ) = 0 [36, Lem. 6.5]. With Definition 3.24 at
hand, we derive the following theorem.

Theorem 3.25 Let X ,Y ∈ Uw, p ∈ [1,∞) and δ ∈ (0, 1/2). Then, whenever
uGW,p(X ,Y) < δ5 we have

u sturm
GW,p(X ,Y) ≤ (

4 ·min(vδ(X ), vδ(Y)) + δ
)1/p · M,

where M := 2 ·max(diam(X), diam(Y )) + 54.

Remark 3.26 Since it holds that lim δ↘0 vδ(X ) = 0 and that 2−1/pu sturm
GW,p ≥ uGW,p

(see Theorem 3.19), the above theorem gives the topological equivalence between
uGW,p and u sturm

GW,p, 1 ≤ p < ∞ (the topological equivalence between u sturm
GW,∞ and

uGW,∞ holds trivially thanks to Theorem 3.22).

The proof of the Theorem 3.25 follows the same strategy used for proving [60,
Prop. 5.3] and we refer to Sect. B.3.5 for the details.

3.4 Topological and Geodesic Properties

In this section, we consider the topology induced by uGW,p and u sturm
GW,p on Uw and

discuss the geodesic properties of both uGW,p and u sturm
GW,p for 1 ≤ p ≤ ∞.

Completeness and separability. We derive the subsequent theorem whose proof is
postponed to Sect. B.4.1.

Theorem 3.27

(i) For p ∈ [1,∞), (Uw, uGW,p) and (Uw, u sturm
GW,p) are neither complete nor separa-

ble.
(ii) (Uw, uGW,∞) = (Uw, u sturm

GW,∞) is complete but not separable.

Geodesic property. A geodesic in a metric space (X , dX ) is a continuous func-
tion γ : [0, 1] → X such that for each s, t ∈ [0, 1], dX (γ (s), γ (t)) = |s −
t | ·dX (γ (0), γ (1)). We say a metric space is geodesic if for any two distinct points
x, x ′ ∈ X , there exists a geodesic γ : [0, 1] → X such that γ (0) = x and γ (1) = x ′.
For any p ∈ [1,∞), the notion of p-geodesic is introduced in [64]: A p-geodesic in
a metric space (X , dX ) is a continuous function γ : [0, 1] → X such that for each
s, t ∈ [0, 1], dX (γ (s), γ (t)) = |s − t |1/p ·dX (γ (0), γ (1)). Similarly, we say a metric
space is p-geodesic if for any two distinct points x, x ′ ∈ X , there exists a p-geodesic
γ : [0, 1] → X such that γ (0) = x and γ (1) = x ′. Note that a 1-geodesic is a usual
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geodesic and a 1-geodesic space is a usual geodesic space. The subsequent theorem
establishes (p-)geodesic properties of (Uw, u sturm

GW,p) for p ∈ [1,∞). A full proof is
given in Sect. B.4.2.

Theorem 3.28 For any p ∈ [1,∞), the space (Uw, u sturm
GW,p) is p-geodesic.

Remark 3.29 Due to the fact that a p-geodesic space cannot be geodesic when p > 1
(cf. Lemma B.15), (Uw, u sturm

GW,p) is not geodesic for all p > 1.

Remark 3.30 Though the geodesic properties of (Uw, u sturm
GW,p), 1 ≤ p < ∞ are clear,

we remark that geodesic properties of (Uw, uGW,p), 1 ≤ p < ∞, still remain unknown
to us.

Remark 3.31 (Case p = ∞) Being an ultrametric space itself (cf. Theorem 3.11),
(Uw, uGW,∞) (= (Uw, u sturm

GW,∞)) is totally disconnected, i.e., any subspace with at least
two elements is disconnected [81]. This in turn implies that each continuous curve in
(Uw, uGW,∞) is constant. Therefore, (Uw, uGW,∞) is not a p-geodesic space for any
p ∈ [1,∞).

4 Lower Bounds for uGW,p

Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be two ultrametric measure spaces. The
metricsu sturm

GW,p anduGW,p respect the ultrametric structure of the spacesX andY . Thus,

one would hope that comparing ultrametric measure spaces with u sturm
GW,p or uGW,p is

moremeaningful than doing it with the usualGromov–Wasserstein distance or Sturm’s
distance. Unfortunately, for p < ∞, the computation of both u sturm

GW,p and uGW,p is
complicated and for p = ∞ both metrics are extremely sensitive to differences in the
diameters of the considered spaces (see Corollary 3.17). Thus, it is not feasible to use
these metrics in many applications. However, we can derive meaningful lower bounds
for uGW,p (and hence also for u sturm

GW,p) that resemble those of the Gromov–Wasserstein
distance. Naturally, the question arises whether these lower bounds are better/sharper
than the ones of the usual Gromov–Wasserstein distance in this setting. This question
is addressed throughout this section and will be readdressed in Sect. 5 as well as in
the Supplementary Material.

In [60], the author introduced three lower bounds for dGW,p that are computationally
less expensive than the calculation of dGW,p. We will briefly review these three lower
bounds and then define candidates for the corresponding lower bounds for uGW,p. In
the sequel, we always assume p ∈ [1,∞].

First lower bound. Let sX ,p : X → R≥0, x �→ ‖u X (x, ·)‖L p(μX ). Then, the first
lower bound FLBp(X ,Y) for dGW,p(X ,Y) is defined as follows:

FLBp(X ,Y) := 1

2
inf

μ∈C(μX ,μY )
‖	1(sX ,p, sY ,p)‖L p(μ).
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Following our intuition of replacing	1 with	∞, we define the ultrametric version
of FLB as

FLBult
p (X ,Y) := inf

μ∈C(μX ,μY )
‖	∞(sX ,p, sY ,p)‖L p(μ).

Second lower bound. The second lower bound SLBp(X ,Y) for dGW,p(X ,Y) is
given as

SLBp(X ,Y) := 1

2
inf

γ∈C(μX ⊗μX ,μY ⊗μY )
‖	1(u X , uY )‖L p(γ ).

Thus, we define the ultrametric second lower bound between two ultrametric mea-
sure spaces X and Y as follows:

SLBult
p (X ,Y) := inf

γ∈C(μX ⊗μX ,μY ⊗μY )
‖	∞(u X , uY )‖L p(γ ).

Third lower bound. Before we introduce the final lower bound, we have to
define several functions. First, let �1

X ,Y : X ×Y × X ×Y → R≥0, (x, y, x ′, y′) �→
	1(u X (x, x ′), uY (y, y′)) and let �1

p : X ×Y → R≥0, p ∈ [1,∞], be given by

�1
p(x, y) := inf

μ∈C(μX ,μY )
‖�1

X ,Y (x, y, · , ·)‖L p(μ).

Then, the third lower bound TLBp is given as

TLBp(X ,Y) := 1

2
inf

μ∈C(μX ,μY )
‖�1

p‖L p(μ).

Analogously to thedefinitionof previous ultrametric versions,wedefine�∞
X ,Y : X ×Y ×

X ×Y → R≥0, (x, y, x ′, y′) �→ 	∞(u X (x, x ′), uY (y, y′)). Further, for p ∈ [1,∞],
let �∞

p : X ×Y → R≥0 be given by

�∞
p (x, y) := inf

μ∈C(μX ,μY )
‖�∞

X ,Y (x, y, · , ·)‖L p(μ).

Then, the ultrametric third lower bound between two ultrametric measure spaces X
and Y is defined as

TLBult
p (X ,Y) := inf

μ∈C(μX ,μY )
‖�∞

p ‖L p(μ).

4.1 Properties and Computation of the Lower Bounds

Next, we examine the quantities FLBult, SLBult and TLBult more closely. Since
	∞(a, b) ≥ 	1(a, b) = |a − b| for any a, b ≥ 0, it is easy to conclude that
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Fig. 6 TLBult
p and uGW,p induce different topologies. For the two non-isomorphic ultrametric measure

spaces depicted above, TLBult
p equals 0 whereas uGW,p > 0. This example is the same as the one given in

[60, Fig. 8]

FLBult
p ≥ FLBp, SLBult

p ≥ SLBp and TLBult
p ≥ TLBp. Moreover, the three ultramet-

ric lower bounds satisfy the following theorem (for a complete proof see Sect. C.1.1).

Theorem 4.1 Let X ,Y ∈ Uw and let p ∈ [1,∞].
(i) uGW,∞(X ,Y) ≥ FLBult∞(X ,Y).
(ii) uGW,p(X ,Y) ≥ TLBult

p (X ,Y) ≥ SLBult
p (X ,Y).

Remark 4.2 Interestingly, it turns out that FLBult
p is not a lower bound of uGW,p in

general when p < ∞. For example, let X = {x1, x2, . . . , xn} and Y = {y1, . . . , yn}
and define u X such that u X (x1, x2) = 1 and u X (xi , x j ) = 2δi �= j for (i, j) �= (1, 2),
(i, j) �= (2, 1) and i, j = 1, . . . , n. Let uY (yi , y j ) = 2δi �= j , i, j = 1, . . . , n, and let
μX andμY be uniformmeasures on X andY , respectively. Then, uGW,1(X ,Y) ≤ 4/n2

whereas FLBult
1 (X ,Y) = (4n − 4)/n2 which is greater than uGW,1(X ,Y) as long

as n > 2. Moreover, we have in this case that FLBult
1 (X ,Y) = O(1/n) whereas

uGW,1(X ,Y) = O(1/n2). Hence, there exists no constant C > 0 such that FLBult
1 ≤

C ·uGW,1 in general.

Remark 4.3 There exist ultrametric measure spaces X and Y such that TLBult
p (X ,Y)

equals 0 whereas uGW,p(X ,Y) > 0 (an example is given in [60, Fig. 8] and see Fig. 6
for an illustration). Furthermore, there are spacesX andY such thatSLBult

p (X ,Y) = 0

whereas TLBult
p (X ,Y) > 0 (see Sect. C.1.3). The analogous statement is true for

TLBp and SLBp, which are nevertheless useful in applications (see e.g. [34]).

From the structure of SLBult
p andTLBult

p it is obvious that their computation leads to
different optimal transport problems (see e.g. [90]). However, in analogy to [21, Thm.
3.1] we can rewrite SLBult

p and TLBult
p in order to further simplify their computation.

The full proof of the subsequent proposition is given in Sect. C.1.2.

Proposition 4.4 Let X ,Y ∈ Uw and let p ∈ [1,∞]. Then, we find that

(i) SLBult
p (X ,Y) = d

(R≥0,	∞)

W,p (u X )# ((μX ⊗μX ), (uY )# (μY ⊗μY )).
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(ii) For each x, y ∈ X ×Y , �∞
p (x, y) = d

(R≥0,	∞)

W,p (u X (x, ·)# μX , uY (y, ·)# μY ).

Remark 4.5 Since Theorem 2.9 gives an explicit formula for the Wasserstein distance
on (R≥0,	∞) between finitely supported probability measures, these alternative rep-
resentations of the lower bound SLBult

p and the cost functional �∞
p drastically reduce

the computation time of SLBult
p and TLBult

p , respectively. In particular, we note that

this allows us to compute SLBult
p , 1 ≤ p ≤ ∞, between finite ultrametric measure

spaces X and Y in O(max(|X |, |Y |)2) steps.
Proposition 4.4 allows us to directly compare SLBult

1 and SLB1.

Corollary 4.6 For any finite ultrametric measure spaces X and Y , we have that

SLBult
1 (X ,Y) = SLB1(X ,Y)

+ 1

2

∫

R

t
∣∣(u X )# (μX ⊗μX ) − (uY )# (μY ⊗μY )

∣∣ (dt).
(20)

Proof The claim follows from Proposition 4.4 and Remark 2.11. ��
This corollary implies that SLBult

p is more rigid than SLBp, since the second sum-
mand on the right-hand side of (20) is sensitive to distance perturbations. This is also
illustrated very well in the subsequent example.

Example 4.7 Recall notations fromExample 3.5. For any d, d ′ > 0, we let X := �2(d)

and let Y := �2(d ′). Assume that X and Y have underlying sets {x1, x2} and {y1, y2},
respectively. Define μX ∈ P(X) and μY ∈ P(Y ) as follows. Let α1, α2 ≥ 0 be such
that α1 + α2 = 1. Let μX (x1) = μY (y1) := α1 and let μX (x2) = μY (y2) := α2.
Then, it is easy to verify that

(i) uGW,1(X ,Y) = SLBult
1 (X ,Y) = 2α1α2	∞(d, d ′).

(ii) dGW,1(X ,Y) = SLB1(X ,Y) = α1α2	1(d, d ′) = α1α2|d − d ′|.
(iii) 1

2

∫
R

t
∣
∣(u X )# (μX ⊗μX ) − (uY )# (μY ⊗μY )

∣
∣ (dt) = α1α2(d + d ′)δd �=d ′ .

From (i) and (ii) we observe that both second lower bounds are tight. Moreover, since
we obviously have that (d + d ′)δd �=d ′ + |d − d ′| = 2	∞(d, d ′), we have also verified
(20) through this example. Unlike SLB1(X ,Y) being proportional to |d −d ′|, as long
as d �= d ′, even if |d − d ′| is small, 	∞(d, d ′) = max(d, d ′) which results in a large
value of SLBult

1 (X ,Y) when d and d ′ are large numbers. This example illustrates that
SLBult

1 (and hence uGW,1) is rigid with respect to distance perturbation.

5 Computational Aspects

In this section, we investigate algorithms for approximating/calculating uGW,p, 1 ≤
p ≤ ∞. Furthermore, we evaluate for p < ∞ the performance of the computationally
efficient lower bound SLBult

p introduced in Sect. 4 and compare our findings to the
results of the classical Gromov–Wasserstein distance dGW,p (see (5)). Matlab imple-
mentations of the presented algorithms and comparisons are available at https://github.
com/ndag/uGW.
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5.1 Algorithms

Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be two finite ultrametric measure spaces
with cardinalities m and n, respectively.

The case p < ∞. Recall Remark 3.13 which highlights that the exact calculation of
uGW,p(X ,Y) for p < ∞ is infeasible. However, in many practical applications it is
sufficient to work with good approximations of this metric. Therefore, we propose
to approximate (local minima of) uGW,p(X ,Y) for p < ∞ via conditional gradient
descent. To this end, we note that the gradient G that arises from (10) can in the
present setting be expressed with the following partial derivative with respect to μ ∈
C(μX , μY )

Gi, j = 2
m∑

k=1

n∑

l=1

(
	∞(u X (xi , xk), uY (y j , yl))

)p
μkl , (21)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. As we deal with a non-convex minimization
problem, the performance of the gradient descent strongly depends on the starting
coupling μ(0). Therefore, we follow the suggestion of Chowdhury and Needham [22]
and employ a Markov Chain Monte Carlo Hit-And-Run sampler to obtain multiple
random start couplings. Running the gradient descent from each point in this ensemble
greatly improves the approximation in many cases. For a precise description of the
proposed procedure, we refer to Algorithm 1.

Algorithm 1 uGW,p(X , Y , p, N , L)

//Create a list of random couplings
couplings =CreateRandomCouplings(N)
stat_points = cell(N)
for i=1:N do

μ(0) =couplings{i}
for j=1:L do

G = Gradient from (21) w.r.t. μ( j−1)

μ̃( j) = Solve OT with ground loss G
γ ( j) = 2

j+2 //Alt. find γ ∈ [0, 1] that minimizes disultp
(
μ( j−1) + γ (μ̃( j) − μ( j−1))

)

μ( j) = (1 − γ ( j))μ( j−1) + γ ( j)μ̃( j)

end for
stat_points{i}= μ(L)

end for
Find μ∗ in stat_points that minimizes disultp (μ)

result = disultp (μ∗)

The case p = ∞. In what follows, we present the details of the polynomial time
algorithm for the computation of uGW,∞(= u sturm

GW,∞) hinted at in Remark 3.15. Let
spec(X) := {u X (x, x ′) | x, x ′ ∈ X} denote the spectrum of X . Then, it is evident
that in order to find the minimum in (18), we only have to check Xt ∼=w Yt for each
t ∈ spec(X)∪ spec(Y ), starting from the largest to the smallest and uGW,∞ is given as
the smallest t such thatXt ∼=w Yt . This can be done in polynomial time by considering
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Fig. 7 Ultrametric measure spaces: Four non-isomorphic ultrametric measure spaces denoted (from left to
right) as Xi = (Xi , dXi , μXi ), 1 ≤ i ≤ 4

Xt andYt asweighted rooted trees and by solving a tree isomorphism problem (e.g., by
using a slight modification of the algorithm in [3, Exam. 3.2]. Roughly, this algorithm
assigns codes to any two given trees, respectively, by summarizing neighborhood
information of vertices of the trees in a bottom-upmanner, and then ascertains whether
these two trees are isomorphic by comparing their codes.). This gives rise to a simple
algorithm (see Algorithm 2) to calculate uGW,∞.5

Algorithm 2 uGW,∞(X ,Y)

spec = sort(spec(X) ∪ spec(Y ), ‘descent’)
for i = 1: length(spec) do

t = spec(i)
if Xt �w Yt then

return spec(i − 1)
end if

end for
return 0

5.2 The Relation Between uGW,1, uGW,∞ and SLBult1

In order to understandhowuGW,p (or at least its approximation),uGW,∞ andSLBult
p are

influenced by small structural changes of the considered ultrametric measure spaces,
we exemplarily consider the ultrametricmeasure spacesXi = (Xi , dXi , μXi ), 1 ≤ i ≤
4, displayed in Fig. 7. These differ only by one characteristic (e.g. one side length or
the equipped measure). Exemplarily, we calculate uGW,1(Xi ,X j ) (approximated with
Algorithm 1, where L = 5000 and N = 40), SLBult

1 (Xi ,X j ) and uGW,∞(Xi ,X j ),
1 ≤ i, j ≤ 4. In particular, note that we use Algorithm 1 to determine uGW,1(Xi ,Xi ),
1 ≤ i ≤ 4. First of all, we observe that uGW,1 and SLBult

1 are influenced by the change
in the diameter of the spaces the most and attain (up to differences of order 10−7) the
same value for the comparison of the spaces Xi , 1 ≤ i ≤ 3 (see Tables 1 and 2 in
Sect. D.1 for the complete results). The picture changes for the comparisons of Xi ,

5 The algorithm can be sped up via a binary search process which we do not include for simplicity of
presentation.
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1 ≤ i ≤ 3 with X4. Here, SLBult
1 attains significantly lower values than uGW,1. While

wecannot be completely sure thatweapproximate theglobalminimaofuGW,1 for these
comparisons, the other results (and especially the approximation of uGW,1(X4,X4))
imply that we should be reasonably close. All in all, this suggests that changes in
metric influence SLBult

1 in a similar fashion as uGW,1, while changes in the measure
have less impact on SLBult

1 . We can also conclude that the proposed algorithm for the
approximation of uGW,1 works reasonably well in this simple setting.

Further, we observe that uGW,∞ attains for almost all comparisons the maximal
possible value.Only the comparison ofX1 withX3,where the only small scale structure
of the space was changed, yields a value that is smaller than the maximum of the
diameters of the considered spaces.

5.3 Comparison of uGW,1, SLBult1 , dGW,1 and SLB1

In the remainder of this section, we will demonstrate the differences between uGW,1,
SLBult

1 , dGW,1 and SLB1. To this end, we first compare the metric measure spaces in
Fig. 7 based on dGW,1 and SLB1. We observe that dGW,1 (approximated in the same
manner as uGW,1) and SLB1 are hardly influenced by the differences between the
ultrametric measure spaces Xi , 1 ≤ i ≤ 4. In particular, it is remarkable that dGW,1
is affected the most by the changes made to the measure and not the metric structure
(see Table 3 in Sect. D.2 for the complete results).

Next, we consider the differences between the aforementioned quantities more
generally. For this purpose, we generate four ultrametric spaces Zk , 1 ≤ k ≤ 4, with
totally different dendrogram structures, whose diameters are between 0.5 and 0.6 (for
the precise construction of these spaces see Sect. D.2). For each t = 0, 0.2, 0.4, 0.6,
we perturb each Zk independently to generate 15 ultrametric spaces Zi

k,t , 1 ≤ i ≤ 15,

such that (Zi
k,t )t ≡ (Zk)t for all i . The spaces Zi

k,t are called perturbations of Zk at

level t (see Fig. 8 for an illustration and see Sect. D.2 for more details). The spaces
Zi

k,t are endowed with the uniform probability measure and we obtain a collection of

ultrametric measure spacesZ i
k,t . Naturally, we refer to k as the class of the ultrametric

measure spaces Z i
k,t . We compute for each t the quantities uGW,1 (approximated

with Algorithm 1, L = 100, N = 5), SLBult
1 , dGW,1 (approximated with conditional

gradient descent, 100 gradient steps) and SLB1 among the resulting 60 ultrametric
measure spaces. Note that it is shown in Sect. B of the Supplementary Material that
Algorithm 1 approximates uGW,1 reasonably well in this setting. The results, where
the spaces have been ordered lexicographically by (k, i), are visualized in Fig. 9. As
previously, we observe that uGW,1 and SLBult

1 as well as dGW,1 and SLB1 behave
in a similar manner. More precisely, we see that both dGW,1 and SLB1 discriminate
well between the different classes and that their behavior does not change too much
for an increasing level of perturbation. On the other hand, uGW,1 and SLBult

1 are very
sensitive to the level of perturbation. For small t they discriminate better than dGW,1
and SLB1 between the different classes and pick up clearly that the perturbed spaces
differ. However, if the level of perturbation becomes too large both quantities start to
discriminate between spaces from the same class (see Fig. 9).
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Fig. 8 Randomly sampled ultrametric measure spaces: Illustration of Zk for k = 2, 3, 4, 5 (top row) and
instances for perturbations of Z4 with respect to perturbation level t ∈ {0, 0.2, 0.4, 0.6} (bottom row)
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Fig. 9 uGW,1/SLBult
1 and dGW,1/SLB1 among randomly generated ultrametric measure

spaces: Heatmap representations of SLBult
1 (Z i

k,t ,Z i ′
k′,t ) (top row), uGW,1(Z i

k,t ,Z i ′
k′,t ) (second row),

SLB1(Z i
k,t ,Z i ′

k′,t ) (third row) and dGW,1(Z i
k,t ,Z i ′

k′,t ) (bottom row), k, k′ ∈ {1, . . . , 4} and i, i ′ ∈
{1, . . . , 15}
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In conclusion, uGW,1 and SLBult
1 are sensitive to differences in the large scales of

the considered ultrametric measure spaces. While this leads (from small t) to good
discrimination in the above example, it also highlights that they are (different from
dGW,1 and SLB1) susceptible to large scale noise.

5.4 Phylogenetic Tree Shape Comparison

In Sect. C of the Supplementary Material, we apply our lower bound SLBult
1 , as well

as SLB1 and the tree shape metric dCP,2 introduced in [23, Eq. (4)], to the task of
phylogenetic tree shape comparison: we use these distances to compare two sets of
phylogenetic tree shapes based on the HA protein sequences from human influenza
collected in different world regions. It turns out that (i) both SLBult

1 and SLB1 are able
to detect some more refined clustering structure than dCP,2 and (ii) SLBult

1 is more
discriminating than SLB1 between tree shapes from different clusters.

6 Concluding Remarks

Since we suspect that computing uGW,p and u sturm
GW,p for finite p leads to NP-hard

problems, it seems interesting to identify suitable collections of ultrametric measure
spaces where these distances can be computed in polynomial time as done for the
Gromov–Hausdorff distance in [63].
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org/10.1007/s00454-023-00583-0.
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A Technical Details from Sect. 2

A.1 Proofs from Sect. 2

In this section we give the proofs of various results form Sect. 2.
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A.1.1 Proof of Theorem 2.2

Recall that for a given θ ∈ D(X), we define uθ : X × X → R≥0 as follows:

uθ (x, x ′) := inf
{
t ≥ 0 | x and x ′ belong to the same block of θ(t)

}
.

It is easy to verify that uθ is an ultrametric. For any Cauchy sequence {xn}n∈N in
(X , uθ ), let Di := supm,n≥i uθ (xm, xn) for each i ∈ N. Then, each Di < ∞ and
lim i→∞ Di = 0. By definition of uθ , for each i ∈ N the set {xn}∞n=i is contained in
the block [xi ]Di ∈ θ(Di ). Let Xi := [xi ]Di for each i ∈ N. Then, obviously we have
that X j ⊆ Xi for any 1 ≤ i < j . By condition (vii) in Definition 2.1, we have that⋂

i∈N Xi �= Ø. Choose x∗ ∈ ⋂
i∈N Xi , then it is easy to verify that x∗ = lim n→∞ xn

and thus (X , uθ ) is a complete space. To prove that (X , uθ ) is a compact space, we
need to verify that for each t > 0, Xt is a finite space (cf. Lemma A.7). Since θ(t) is
finite by condition (vi) in Definition 2.1, we have that Xt = {[x]t | x ∈ X} = θ(t) is
finite and thus X is compact. Therefore, we have proved that uθ ∈ U(X). Based on
this, the map ϒX : D(X) → U(X) defined by θ �→ uθ is well defined.

Now given u ∈ U(X), we define a map θu : [0,∞) → Part(X) as follows: for
each t ≥ 0, consider the equivalence relation ∼t with respect to u, i.e., x ∼t x ′ iff
u(x, x ′) ≤ t . This is actually the same equivalence relation defined in Sect. 2.2 for
introducing quotient ultrametric spaces. We then let θu(t) to be the partition induced
by ∼t , i.e., θu(t) = Xt . It is not hard to show that θu satisfies conditions (i)–(v) in
Definition 2.1. Since X is compact, then θu(t) = Xt is finite for each t > 0 and thus θu

satisfies condition (vi) inDefinition 2.1.Now, let {tn}n∈N be a decreasing sequence such
that lim n→∞ tn = 0 and let Xn ∈ θX (tn) be such that for any 1 ≤ n < m, Xm ⊆ Xn .
Since each Xn = [xn]tn for some xn ∈ X , Xn is a compact subset of X . Since X is
also complete, we have that

⋂
n∈N Xn �= Ø. Therefore, θu satisfies condition (vii) in

Definition 2.1 and thus θu ∈ D(X). Then, we define the map �X : U(X) → D(X) by
u �→ θu .

It is easy to check that �X is the inverse of ϒX and thus we have established that
ϒX : D(X) → U(X) is bijective.

A.1.2 Proof of Lemma 2.8

First of all, we prove that the following supremum is attained to verify that the right-
hand side of (12) is well defined

sup
B∈V (X)\{X}
α(B) �=β(B)

diam(B∗).

Fix any B0 ∈ V (X)\{X} such that α(B0) �= β(B0). Then, it is obvious that
diam(B∗

0 ) > 0. By Lemma A.7, Xdiam(B∗
0 ) is finite. So there are only finitely many

B ∈ V (X)\{X} such that diam(B) ≥ diam(B∗
0 ) and thus diam(B∗) ≥ diam(B∗

0 ).
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This implies that the supremum above is attained and thus

sup
B∈V (X)\{X}
α(B) �=β(B)

diam(B∗) = max
B∈V (X)\{X}
α(B) �=β(B)

diam(B∗). (22)

Let B1 denote the maximizer in (22) and let δ := diam(B∗
1 ). It is easy to see that for

any x ∈ X , α([x]δ) = β([x]δ).
By Strassen’s theorem (see for example [28, Thm. 11.6.2]),

dW,∞(α, β) = inf {r ≥ 0 | for any closed subset A ⊆ X , α(A) ≤ β(Ar )
}
, (23)

where Ar := {x ∈ X | u X (x, A) ≤ r}.
Since α(B1) �= β(B1), we assume without loss of generality that α(B1) > β(B1).

By definition of B∗
1 , it is obvious that (B1)

δ = B∗
1 (recall: δ := diam(B∗

1 )) and
(B1)

r = B1 for all 0 ≤ r < δ. Therefore, α(B1) ≤ β((B1)
r ) only when r ≥ δ. By

(23), this implies that dW,∞(α, β) ≥ δ. Conversely, for any closed set A, we have
that Aδ = ⋃

x∈A[x]δ . For two closed balls in ultrametric spaces, either one includes
the other or they have no intersection. Therefore, there exists a subset S ⊆ A such
that [x]δ ∩ [x ′]δ = Ø for all x, x ′ ∈ S and x �= x ′, and that Aδ = ⊔

x∈S[x]δ . Then,
α(A) ≤ α(Aδ) = ∑

x∈S α([x]δ) = ∑
x∈S β([x]δ) = β(Aδ). Hence, dW,∞(α, β) ≤ δ

and thus we conclude the proof.

A.2 Technical Details from Sect. 2

In this section, we address various technical issues from Sect. 2.

A.2.1 Synchronized Rooted Trees

A synchronized rooted tree, is a combinatorial tree T = (V , E) with a root o ∈ V
and a height function h : V → [0,∞) such that h−1(0) coincides with the leaf set
and h(v) < h(v∗) for each v ∈ V \{o}, where v∗ is the parent of v. Similarly as
in Theorem 2.2 that there exists a correspondence between ultrametric spaces and
dendrograms, an ultrametric space X uniquely determines a synchronized rooted tree
TX [46].

Given (X , u X ) ∈ U , recall from Sect. 2.3 that V (X) := ⋃
t>0 θX (t) and that for

each B ∈ V (X)\{X}, B∗ denotes the smallest element in V (X) containing B. The
existence of B∗ is guaranteed by the following lemma:

Lemma A.1 Let X ∈ U . For each B ∈ V (X) such that B �= X, there exists B∗ ∈ V (X)

such that B∗ �= B and B∗ ⊆ B ′ for all B ′ ∈ V (X) with B � B ′.
Proof Let δ := diam(B). Let x ∈ B, then B = [x]δ . By Lemma A.7, Xδ is a finite
set. Consider δ∗ := min{u Xδ ([x]δ, [x ′]δ) | [x ′]δ �= [x]δ}. Let B∗ := [x]δ∗ , then B∗ is
the smallest element in V (X) containing B under inclusion. Indeed, B∗ �= B and if
B ⊆ B ′ for some B ′ ∈ V (X), then B ′ = [x]r for some r > δ. It is easy to see that for
all δ < r < δ∗, [x]r = [x]δ . Therefore, if B ′ �= B, we must have that r ≥ δ∗ and thus
B∗ = [x]δ∗ ⊆ [x]r = B ′. ��
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Now, we construct the synchronized rooted tree TX corresponding to X via the
proper dendrogram θX associated with u X . We first define a combinatorial tree TX =
(VX , EX ) as follows: we let VX := V (X); for any distinct B, B ′ ∈ VX , we let
(B, B ′) ∈ EX iff either B = (B ′)∗ or B ′ = B∗. We choose X ∈ VX to be the root
of TX , then any B �= X in VX has a unique parent B∗. We define h X : VX → [0,∞)

such that h X (B) := diam(B)/2 for any B ∈ VX . Now, TX endowed with the root X
and the height function h X is a synchronized rooted tree. It is easy to see that X can
be isometrically identified with h−1

X (0) of the so-called metric completion of TX (see
[46, Sect. 2.3] for details). With this construction Lemma 2.7 follows directly from
[46, Lem. 3.1].

A.3 d (R≥0,3∞)

W,p Between Compactly SupportedMeasures

Next, we demonstrate that Theorem 2.9 extends naturally to the case of compactly
supported probability measures in (R≥0,	∞). For this purpose, it is important to note
that compact subsets of (R≥0,	∞) have a very particular structure as shown by the
next lemma.

Lemma A.2 Let X ⊆ (R≥0,	∞). X is a compact subset iff X is either a finite set or
a countable set containing 0 and with 0 being the unique cluster point (w.r.t. the usual
Euclidean distance 	1).

Proof If X is finite, then obviously X is compact. Assume that X is a countable
set with 0 being the unique cluster point (w.r.t. the usual Euclidean distance 	1). If
{xn}n∈N ⊆ X is a Cauchy sequence with respect to 	∞, then either xn is a constant
when n is large or limn→∞ xn = 0. In either case, the limit of {xn}n∈N belongs to X
and thus X is complete. Now for any ε > 0, by Lemma A.7, Xε is a finite set. Denote
Xε = {[x1]ε, . . . , [xn]ε}. Then, {x1, . . . , xn} is a finite ε-net of X . Therefore, X is
totally bounded and thus X is compact.

Now, assume that X is compact. Then, for any ε > 0, Xε is a finite set. Suppose
Xε = {[x1]ε, . . . , [xn]ε} where 0 ≤ x1 < x2 < · · · < xn . Further, we have that
	∞(xi , x j ) = x j whenever 1 ≤ i < j ≤ n. This implies that

(i) xi > ε for all 2 ≤ i ≤ n;
(ii) [xi ]ε = {xi } for all 2 ≤ i ≤ n.

Therefore, X ∩ (ε,∞) = {x2, . . . , xn} is a finite set. Since ε > 0 is arbitrary, X is at
most countable and has no cluster point (w.r.t. the Euclidean distance 	1) other than
0. If X is countable, then 0 must be a cluster point and by compactness of X , we have
that 0 ∈ X . ��

Based on the special structure of compact subsets of (R≥0,	∞), we derive the
following extension of Theorem 2.9.

Theorem A.3 (d
(R≥0,	∞)

W,p between compactly supported measures) Let X := {0} ∪
{xi | i ∈ N} ⊆ R≥0 such that 0 < . . . < xn < xn−1 < . . . < x1 and 0 is the only
cluster point w.r.t. the usual Euclidean distance. Let α, β ∈ P(X). Let αi := α({xi })
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for i ∈ N and α0 := α({0}). Similarly, let βi := β({xi }) and β0 := β({0}). Then for
p ∈ [1,∞),

d
(R≥0,	∞)

W,p (α, β) = 2−1/p
( ∞∑

i=2

∣
∣
∣
∣

∞∑

j=i

(α j − β j ) + α0 − β0

∣
∣
∣
∣ · |x p

i−1 − x p
i | +

∞∑

i=1

|αi − βi | · x p
i

)1/p

.

Let Fα and Fβ be the cumulative distribution functions of α and β, respectively. Then,

d
(R≥0,	∞)

W,∞ (α, β) = max
(

max
2≤i<∞

Fα(xi ) �=Fβ(xi )

xi−1, max
1≤i<∞
αi �=βi

xi

)
.

Proof Note that V (X) = {{0} ∪ {x j | j ≥ i} | i ∈ N} ∪ {{xi } | i ∈ N} (recall that each
set corresponds to a closed ball). Thus, we conclude by applying Lemmas 2.7 and 2.8.

��

A.3.1 Closed-Form Solution for d (R≥0,3q)

W,p

In this section, we will derive the subsequent theorem.

Theorem A.4 Given 1 ≤ p, q < ∞ and two compactly supported probability mea-
sures α and β on R≥0, we have that

d
(R≥0,	q )

W,p (α, β) ≤
(∫ 1

0
	q(F−1

α (t), F−1
β (t))p dt

)1/p

.

When q ≤ p, the equality holds whereas when q > p, the equality does not hold in
general.

One important ingredient for the proof is the following direct adaptation of [67,
Lem. 1].

Lemma A.5 Let X , Y be two Polish metric spaces and let f : X → R and g : Y → R

be measurable maps. Denote by f ×g : X ×Y → R
2 the map (x, y) �→ ( f (x), g(y)).

Then, for any μY ∈ P(X) and μY ∈ P(Y )

( f ×g)# C(μX , μY ) = C( f# μY , g# μY ).

Based on Lemma A.5, we show the following auxiliary result.

Lemma A.6 Let 1 ≤ q ≤ p < ∞. Assume that α and β are compactly supported
probability measures on R≥0. Then,

(
d

(R≥0,	q )

W,p (α, β)
)p = (

d
(R≥0,	1)

W,p/q ((Sq)# α, (Sq)# β)
)p/q

,

where Sq : R≥0 → R≥0 taking x to xq is the q-snowflake transform defined in Sect.
3.3.
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Proof Since p/q ≥ 1 and by Lemma A.5 we have that

(
d

(R≥0,	q )

W,p (α, β)
)p = inf

μ∈C(α,β)

∫

R≥0×R≥0

(	q(x, y))p μ(dx ×dy)

= inf
μ∈C(α,β)

∫

R≥0×R≥0

|Sq(x) − Sq(y)|p/q μ(dx ×dy)

= inf
μ∈C(α,β)

∫

R≥0×R≥0

|s − t |p/q (Sq × Sq)# μ(ds ×dt)

= (
d

(R≥0,	1)

W,p/q ((Sq)# α, (Sq)# β)
)p/q

.

��
With Lemma A.6 at our disposal, we can demonstrate Theorem A.4.

Proof of TheoremA.4 We first note that

d
(R≥0,	q )

W,p (α, β) = inf
(ξ,η)

(E(	q(ξ, η)p))1/p,

where ξ and η are two random variables with marginal distributions α and β, respec-
tively. Moreover, let ζ be the random variable uniformly distributed on [0, 1], then
F−1

α (ζ ) has distribution function Fα and F−1
β (ζ ) has distribution function Fβ (see for

example [88]). Let ξ = F−1
α (ζ ) and η = F−1

β (ζ ), then we have

d
(R≥0,	q )

W,p (α, β) ≤ (E(	q(ξ, η)p))1/p =
(∫ 1

0
	q(F−1

α (t), F−1
β (t))p dt

)1/p

.

Next, we assume that q ≤ p. By Lemma A.6, we have that

(
d

(R≥0,	q )

W,p (α, β)
)p = (

d
(R≥0,	1)

W,p/q ((Sq)# α, (Sq)# β)
)p/q

.

Then,

(
d

(R≥0,	1)

W,p/q ((Sq)# α, (Sq)# β)
)p/q =

∫ 1

0
|F−1

α,q(t) − F−1
β,q(t)|p/q dt,

where Fα,q and Fβ,q are distribution functions of (Sq)# α and (Sq)# β, respectively. It
is easy to verify that Fα,q(t) = (F−1

α (t))q and Fβ,q(t) = (F−1
β (t))q . Therefore,

d
(R≥0,	q )

W,p (α, β) =
(∫ 1

0
	q(F−1

α (t), F−1
β (t))p dt

)1/p

.

Finally, we demonstrate that for q > p the equality does not hold in general. We
first consider the extreme case p = 1 and q = ∞ (though we require q < ∞ in
the assumptions of the theorem, we relax this for now). Let α0 = δ1/2 + δ2/2 and
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β0 = δ2/2 + δ3/2 where δx means the Dirac measure at point x ∈ R≥0. Then, we
have that

d
(R≥0,	∞)

W,1 (α0, β0) = 3

2
<

5

2
=

∫ 1

0
	∞(F−1

α (t), F−1
β (t)) dt .

It is not hard to see that both d
(R≥0,	q )

W,p (α0, β0) and

(∫ 1

0
	q(F−1

α (t), F−1
β (t))p dt

)1/p

are continuous with respect to p ∈ [1,∞) and q ∈ [1,∞]. Then, for p close to 1 and
q < ∞ large enough, and in particular, p < q, we have that

d
(R≥0,	q )

W,p (α0, β0) <

(∫ 1

0
	q(F−1

α (t), F−1
β (t))p dt

)1/p

.

��

A.3.2 Miscellaneous

In the remainder of this section, we collect several technical results that find implicit
or explicit usage throughout Sect. 2.

Lemma A.7 A complete ultrametric space X is compact iff for any t > 0, Xt is finite.

Proof Wan [92, Lem. 2.3] proves that whenever X is compact, Xt is finite for any
t > 0.

Conversely, we assume that Xt is finite for any t > 0. We only need to prove that X
is totally bounded. For any ε > 0, Xε is a finite set and thus there exist x1, . . . , xn ∈ X
such that Xε = {[x1]ε, . . . , [xn]ε}. Now, for any x ∈ X , there exists xi for some
i = 1, . . . , n such that x ∈ [xi ]ε. This implies that u X (x, xi ) ≤ ε. Therefore, the set
{x1, . . . , xn} ⊆ X is an ε-net of X . Then, X is totally bounded and thus compact. ��

Lemma A.8 V (X) is the collection of all closed balls in X except for singletons {x}
such that x is a cluster point in X.

Proof Given any t > 0 and x ∈ X , [x]t = Bt (x) = {x ′ ∈ X | u X (x, x ′) ≤ t}.
Therefore, V (X) is a collection of closed balls in X . On the contrary, any closed ball
Bt (x) with positive radius t > 0 coincides with [x]t ∈ θX (t) and thus belongs to
V (X). Now, for any singleton {x} = B0(x), if x is not a cluster point, then there exists
t > 0 such that Bt (x) = {x} which implies that {x} ∈ V (X). If x is a cluster point,
then for any t > 0, {x} � Bt (x) = [x]t . This implies that {x} �= [x]t for all t > 0 and
thus {x} /∈ V (X). This concludes the proof. ��
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B Technical Details from Sect. 3

B.1 Proofs from Sect. 3.1

Next, we give the missing proofs of the results stated in Sect. 3.1.

B.1.1 Proof of Proposition 3.3

Part 1. This directly follows from the definitions of u sturm
GW,p and d sturm

GW,p (see (8) and
(4)).
Part 2. This simply follows from Jensen’s inequality.
Part 3. By Part 2, {u sturm

GW,n(X ,Y)}n∈N is an increasing sequence with a finite upper
bound u sturm

GW,∞(X ,Y). Therefore, L := lim n→∞ u sturm
GW,n(X ,Y) exists and L ≤

u sturm
GW,∞(X ,Y).
Next, we come to the opposite inequality. By Proposition B.1, there exist un ∈

Dult(u X , uY ) and μn ∈ C(μX , μY ) such that

(∫

X×Y
(un(x, y))nμn(dx ×dy)

)1/n

= u sturm
GW,n(X ,Y).

By Lemmas B.19 and B.21, the sequence {un}n∈N uniformly converges to some
u ∈ Dult(u X , uY ) and {μn}n∈N weakly converges to some μ ∈ C(μX , μY ) (after
taking appropriate subsequences of both sequences). Let

M := sup
(x,y)∈supp(μ)

u(x, y).

Let ε > 0 and letU = {(x, y) ∈ X ×Y | u(x, y) > M −ε}. Then,μ(U ) > 0. SinceU
is open, it follows that there exists a small ε1 > 0 such that μn(U ) > μ(U ) − ε1 > 0
for all n large enough (see e.g. [7, Thm. 2.1]). Moreover, by uniform convergence of
the sequence {un}n∈N, we have |u(x, y)− un(x, y)| ≤ ε for any (x, y) ∈ X ×Y when
n is large enough. Therefore, we obtain for n large enough

(∫

X×Y
(un(x, y))nμn(dx ×dy)

)1/n

≥ (μn(U ))1/n(M − 2ε)

≥ (μ(U ) − ε1)
1/n(M − 2ε).

Letting n → ∞, we obtain L ≥ M − 2ε. Since ε > 0 is arbitrary, L ≥ M ≥
u sturm
GW,∞(X ,Y).

B.1.2 Proof of Theorem 3.4

In this section, we devote to prove Theorem 3.4. To this end, we will first verify the
existence of optimal metrics and optimal couplings in (15).
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Proposition B.1 (Existence of optimal couplings) Let X = (X , u X , μX ) and Y =
(Y , uY , μY ) be compact ultrametric measure spaces. Then, there always exist u ∈
Dult(u X , uY ) and μ ∈ C(μX , μY ) such that for 1 ≤ p ≤ ∞,

u sturm
GW,p(X ,Y) = ‖u‖L p(μ).

Proof The following proof is a suitable adaptation from proof of [83, Lem. 3.3]. We
will only prove the claim for the case p < ∞ since the case p = ∞ can be shown in
a similar manner. Let un ∈ Dult(u X , uY ) and μn ∈ C(μX , μY ) be such that

(∫

X×Y
(un(x, y))pμn(dx ×dy)

)1/p

≤ u sturm
GW,p(X ,Y) + 1

n
.

ByLemmaB.19, {μn}n∈Nweakly converges (after taking an appropriate subsequence)
to some μ ∈ C(μX , μY ). By Lemma B.21, {un}n∈N uniformly converges (after taking
an appropriate subsequence) to some u ∈ Dult(u X , uY ). Then, it is easy to verify that

(∫

X×Y
(u(x, y))pμ(dx ×dy)

)1/p

≤ u sturm
GW,p(X ,Y).

��
As a direct consequence of the proposition, we get the subsequent result.

Corollary B.2 Fix 1 ≤ p ≤ ∞. Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be
compact ultrametric measure spaces. Then, there exist a compact ultrametric space
Z and isometric embeddings φ : X ↪→ Z and ψ : Y ↪→ Z such that

u sturm
GW,p(X ,Y) = d Z

W,p(φ# μX , ψ# μY ).

Beforewe come to the proof ofTheorem3.4, it remains to establish another auxiliary
result. We ensure that the Wasserstein pseudometric of order p on a compact pseudo-
ultrametric space (X , u X ) is for p ∈ [1,∞) a p-pseudometric and for p = ∞ a
pseudo-ultrametric, i.e., we prove for 1 ≤ p < ∞ that for all α1, α2, α3 ∈ P(X),

d (X ,u X )
W,p (μ1, μ3) ≤

((
d (X ,u X )
W,p (μ1, μ2)

)p + (
d (X ,u X )
W,p (μ2, μ3)

)p
)1/p

and for p = ∞ that for all α1, α2, α3 ∈ P(X)

d (X ,u X )
W,p (μ1, μ3) ≤ max

(
d (X ,u X )
W,p (μ1, μ2), d (X ,u X )

W,p (μ2, μ3)
)
.

Lemma B.3 Let (X , u X ) be a compact pseudo-ultrametric space. Then, for 1 ≤ p ≤
∞ the p-Wasserstein metric d (X ,u X )

W,p is a p-pseudometric onP(X). In particular, when
p = ∞, it is a pseudo-ultrametric on P(X).
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Proof We prove the statement by adapting the proof of the triangle inequality for the
p-Wasserstein distance (see e.g., [90, Thm. 7.3]).We only prove the casewhen p < ∞
whereas the case p = ∞ follows by analogous arguments.

Let α1, α2, α3 ∈ P(X), denote by μ12 an optimal transport plan between α1 and
α2 and by μ23 an optimal transport plan between α2 and α3 (see [91, Thm. 4.1] for the
existence of μ12 and μ23). Furthermore, let Xi be the support of αi , 1 ≤ i ≤ 3. Then,
by the Gluing Lemma [90, Lem. 7.6] there exists a measure μ ∈ P(X1× X2× X3)

with marginals μ12 on X1× X2 and μ23 on X2× X3. Clearly, we obtain

(
d (X ,u X )
W,p (α1, α3)

)p ≤
∫

X1×X2×X3

u X
p(x, z) μ(dx ×dy ×dz)

≤
∫

X1×X2×X3

(
u X

p(x, y) + u X
p(y, z)

)
μ(dx ×dy ×dz).

Here, we used that u X is an ultrametric, i.e., in particular a p-metric [64, Prop. 2.11].
With this we obtain that

(
d (X ,u X )
W,p (α1, α2)

)p ≤
∫

X1×X2

u X
p(x, y)μ12 (dx ×dy)

+
∫

X2×X3

u X
p(y, z)μ23 (dy ×dz)

= (
d (X ,u X )
W,p (α1, α2)

)p + (
d (X ,u X )
W,p (α2, α3)

)p
.

��

With Proposition B.1 and Lemma B.3 at our disposal we are now ready to prove
Theorem 3.4 which states that u sturm

GW,p is indeed a p-metric on Uw.

Proof of Theorem 3.4 It is clear that u sturm
GW,p is symmetric and that u sturm

GW,p(X ,Y) = 0 if

X ∼=w Y . Furthermore, we remark that u sturm
GW,p(X ,Y) ≥ d sturm

GW,p(X ,Y) by Propo-

sition 3.3. Since d sturm
GW,p(X ,Y) = 0 implies that X ∼=w Y ([84]), we have that

u sturm
GW,p(X ,Y) = 0 implies thatX ∼=w Y . It remains to verify the p-triangle inequality.

To this end, we only prove the case when p < ∞ whereas the case p = ∞ follows
by analogous arguments.

Let X ,Y,Z ∈ Uw. Suppose u XY ∈ Dult(u X , uY ) and uY Z ∈ Dult(uY , uZ ) are
optimal metric couplings such that

(
u sturm
GW,p(X ,Y)

)p = (
d (X�Y ,u XY )
W,p (μX , μY )

)p
,

(
u sturm
GW,p(Y,Z)

)p = (
d (Y�Z ,uY Z )
W,p (μY , μZ )

)p
.
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Further, define u XY Z on X � Y � Z as

u XY Z (x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u XY (x1, x2), x1, x2 ∈ X � Y ,

uY Z (x1, x2), x1, x2 ∈ Y � Z ,

inf {max(u XY (x1, y), uY Z (y, x2)) | y ∈ Y }, x1 ∈ X , x2 ∈ Z ,

inf {max(u XY (x2, y), uY Z (y, x1)) | y ∈ Y }, x1 ∈ Z , x2 ∈ X .

Then, by [93, Lem. 1.1] u XY Z is a pseudo-ultrametric on X � Y � Z that coincides
with u XY on X � Y and with uY Z on Y � Z . Thus by Lemma B.3 we obtain that

(
u sturm
GW,p(X ,Z)

)p ≤ (
d (X�Y�Z ,u XY Z )
W,p (μX , μZ )

)p

≤ (
d (X�Y�Z ,u XY Z )
W,p (μX , μY )

)p+ (
d (X�Y�Z ,u XY Z )
W,p (μY , μZ )

)p

= (
d (X�Y ,u XY )
W,p (μX , μY )

)p+ (
d (Y�Z ,uY Z )
W,p (μY , μZ )

)p

= (
u sturm
GW,p(X ,Y)

)p+ (
u sturm
GW,p(Y,Z)

)p
.

This gives the claim for p < ∞. ��

B.1.3 Proof of Theorem 3.7

In order to proof Theorem 3.7, wewill first establish the statement for finite ultrametric
measure spaces. For this purpose, we need to introduce some notation. Given X ,Y ∈
Uw, let Dult

adm(u X , uY ) denote the collection of all admissible pseudo-ultrametrics
on X � Y , where u ∈ Dult(u X , uY ) is called admissible, if there exists no u∗ ∈
Dult(u X , uY ) such that u∗ �= u and u∗(x, y) ≤ u(x, y) for all x, y ∈ X � Y .

Lemma B.4 For any X ,Y ∈ Uw, Dult
adm(u X , uY ) �= Ø. Moreover,

u sturm
GW,p(X ,Y) = inf

u∈Dult
adm(u X ,uY )

d (X�Y ,u)
W,p (μX , μY ).

Proof If {un}n∈N ⊆ Dult(u X , uY ) is a decreasing sequence (with respect to pointwise
inequality), it is easy to verify that u := inf n∈N un ∈ Dult(u X , uY ) and thus u is a
lower bound of {un}n∈N. Then, by Zorn’s lemma Dult

adm(u X , uY ) �= Ø. Therefore, we
obtain the claim. ��

Combined with Example 3.6, the following result implies that each u ∈
Dult

adm(u X , uY ) gives rise to an element in A.

Lemma B.5 Givenfinite spacesX ,Y ∈ Uw, for each u ∈ Dult
adm(u X , uY ), u−1(0) �= Ø.

Proof Assume otherwise that u−1(0) = Ø. Let (x0, y0) ∈ X ×Y be such that
u(x0, y0) = minx∈X ,y∈Y u(x, y). The existence of (x0, y0) is due to the finiteness
of X and Y . We define u(x0,y0) : X � Y × X � Y → R≥0 as follows:

(i) u(x0,y0)|X×X := u X and u(x0,y0)|Y×Y := uY .
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(ii) For (x, y) ∈ X ×Y ,

u(x0,y0)(x, y) := min (u(x, y),max(u X (x, x0), uY (y, y0))).

(iii) For any (y, x) ∈ Y × X , u(x0,y0)(y, x) := u(x0,y0)(x, y).

It is easy to verify that u(x0,y0) ∈ Dult(u X , uY ). Further, it is obvious that
u(x0,y0)(x0, y0) = 0 < u(x0, y0) and that u(x0,y0)(x, y) ≤ u(x, y) for all x, y ∈ X �Y
which contradicts with u ∈ Dult

adm(u X , uY ). Therefore, u−1(0) �= Ø. ��
Theorem B.6 Let X ,Y ∈ Uw be finite spaces. Then, we have for each p ∈ [1,∞)

that

u sturm
GW,p(X ,Y) = inf

(A,ϕ)∈A
d Z A
W,p

(
(φX

(A,ϕ))#
μX , (ψY

(A,ϕ))#
μY

)
. (24)

Proof By Lemma B.4 suffices to prove that u ∈ Dult
adm(u X , uY ) induces (A, ϕ) ∈ A

such that

d (X�Y ,u)
W,p (μX , μY ) ≥ d Z A

W,p

(
(φX

(A,ϕ))#
μX , (ψY

(A,ϕ))#
μY

)
.

Let u ∈ Dult
adm(u X , uY ). Define A0 := {x ∈ X | ∃ y ∈ Y such that u(x, y) = 0}

(A0 �= Ø by Lemma B.5). By Example 3.6, the map ϕ0 : A0 → Y taking x to y such
that u(x, y) = 0 is a well-defined isometric embedding. This means in particular that
(A0, ϕ0) ∈ A.

If u(x, y) ≥ uZ A0
(φX

(A0,ϕ0)
(x), ψY

(A0,ϕ0)
(y)) holds for all (x, y) ∈ X ×Y , then we

set A := A0 and ϕ := ϕ0. This gives

d (X�Y ,u)
W,p (μX , μY ) ≥ d Z A

W,p

(
(φX

(A,ϕ))#
μX , (ψY

(A,ϕ))#
μY

)
.

Otherwise, there exists (x, y) ∈ X\A0×Y\ϕ0(A0) such that

u(x, y) < uZ A0

(
φX

(A0,ϕ0)
(x), ψY

(A0,ϕ0)
(y)

)

(if x ∈ A0 or y ∈ ϕ0(A0), then u(x, y) ≥ uZ A0

(
φX

(A0,ϕ0)
(x), ψY

(A0,ϕ0)
(y)

)
must hold).

Let (x1, y1) ∈ X\A0×Y\ϕ0(A0) be such that

u(x1, y1) = min

{
u(x, y)

∣∣∣∣
(x, y) ∈ X\A0×Y\ϕ0(A0) and
u(x, y) < uZ A0

(
φX

(A0,ϕ0)
(x), ψY

(A0,ϕ0)
(y)

)
}

> 0.

The existence of (x1, y1) follows from finiteness of X and Y . It is easy to check that
ϕ0 extends to an isometry from A0 ∪ {x1} to ϕ0(A0) ∪ {y1} by taking x1 to y1. We
denote the new isometry ϕ1 and set A1 := A0 ∪ {x1}. If for any (x, y) ∈ X ×Y ,
we have that u(x, y) ≥ uZ A1

(φX
(A1,ϕ1)

(x), ψY
(A1,ϕ1)

(y)), then we define A := A1 and
ϕ := ϕ1. Otherwise, we continue the process to obtain A2, A3, . . . . This process will
eventually stop since we are considering finite spaces. Suppose the process stops at
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An , then A := An and ϕ := ϕn satisfy that u(x, y) ≥ uZ A (φX
(A,ϕ)(x), ψY

(A,ϕ)(y)) for
any (x, y) ∈ X ×Y . Therefore,

d (X�Y ,u)
W,p (μX , μY ) ≥ d Z A

W,p

(
(φX

(A,ϕ))#
μX , (ψY

(A,ϕ))#
μY

)
.

Since u ∈ Dult
adm(u X , uY ) is arbitrary, this gives the claim. ��

As a direct consequence of Theorem B.6, we obtain that it is sufficient, as claimed
in Remark 3.8, for finite spaces to infimize in (24) over the collection of all maximal
pairs A∗ ⊆ A. Recall that a pair (A, ϕ1) ∈ A is denoted as maximal, if for all pairs
(B, ϕ2) ∈ A with A ⊆ B and ϕ2|A = ϕ1 it holds A = B.

Corollary B.7 Let X ,Y ∈ Uw be finite spaces. Then, we have for each p ∈ [1,∞]
that

u sturm
GW,p(X ,Y) = inf

(A,ϕ)∈A∗ d Z A
W,p

(
(φX

(A,ϕ))#
μX , (ψY

(A,ϕ))#
μY

)
. (25)

By proving Theorem B.6, we have verified Theorem 3.7 for finite ultrametric mea-
sure spaces. Then, we will use Theorem B.6 and weighted quotients to demonstrate
Theorem 3.7. However, before we come to this, we need to establish the following
two auxiliary results.

Lemma B.8 Let X ∈ U be a compact ultrametric space. Let t > 0 and let p ∈ [1,∞).
Then, for any α, β ∈ P(X), we have that

(
d Xt
W,p(αt , βt )

)p ≥ (
d X
W,p(α, β)

)p − t p,

where αt is the push forward of α under the canonical quotient map Qt : X → Xt

taking x ∈ X to [x]t ∈ Xt .

Proof For any μt ∈ C(αt , βt ), it is easy to see that there exists μ ∈ C(α, β) such
that μt = (Qt × Qt )# μ where Qt × Qt : X × X → Xt × Xt maps (x, x ′) ∈ X × X to
([x]t , [x ′]t ). For example, suppose Xt = {[x1]t , . . . , [xn]t }, then one can let

μ :=
n∑

i, j=1

μt (([xi ]t , [x j ]t ))
α|[xi ]t

α([xi ]t )
⊗ β|[x j ]t

β([x j ]t )
,

where α|[xi ]t is the restriction of α on [xi ]t .
For any x, x ′ ∈ X , we have that (u X (x, x ′))p ≤ (u Xt ([x]t , [x ′]t ))

p + t p. Then

(
d X
W,p(α, β)

)p ≤
∫

X×X
(u X (x, x ′))p μ(dx ×dx ′)

≤
∫

X×X

(
(u Xt ([x]t , [x ′]t )

)p+ t p)μ(dx ×dx ′)

=
∫

X×X
(u X (Qt (x), Qt (x ′)))p μ(dx ×dx ′) + t p
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=
∫

Xt ×Xt

(
u Xt ([x]t , [x ′]t )

)p
μt (d[x]t ×d[x ′]t ) + t p

Infimizing over all μt ∈ C(αt , βt ), we obtain the claim. ��
Lemma B.9 Let X ∈ Uw and let p ∈ [1,∞]. Then, for any t > 0, we have that
u sturm
GW,p(Xt ,X ) ≤ t . In particular, lim t→0 u sturm

GW,p(Xt ,X ) = 0.

Proof It is obvious that (Xt )t ∼=w Xt . Hence, it holds by Theorem 3.14 that
u sturm
GW,∞(Xt ,X ) ≤ t . By Proposition 3.3 we have that for any p ∈ [1,∞],

u sturm
GW,p(Xt ,X ) ≤ u sturm

GW,∞(Xt ,X ) ≤ t .

��
With Lemmas B.8 and B.9 available, we can come to the proof of Theorem 3.7.

Proof of Theorem 3.7 It follows from the definition of u sturm
GW,p (see (8)) that

u sturm
GW,p(X ,Y) ≤ inf

(A,ϕ)∈A
d Z A
W,p

(
(φX

(A,ϕ))#
μX , (ψY

(A,ϕ))#
μY

)
.

Hence, we focus on proving the opposite inequality. Given any t > 0, by Lemma A.7,
both Xt and Yt are finite spaces. By Theorem B.6 we have that

u sturm
GW,p(Xt ,Yt ) = inf

(At ,ϕt )∈At

d
Z At
W,p

(
(φ

Xt
(At ,ϕt )

)
#
(μX )t , (ψ

Yt
(At ,ϕt )

)
#
(μY )t

)
,

where At := {(At , ϕt ) | Ø �= At ⊆ Xt is closed and ϕt : At ↪→ Yt is an
isometricembedding }.

For any (At , ϕt ) ∈ At , assume that At = {[x1]X
t , . . . , [xn]X

t } and that ϕt ([xi ]t ) =
[yi ]t ∈ Yt for all i = 1, . . . , n. Let A := {x1, . . . , xn}. Then, the map ϕ : A → Y
defined by xi �→ yi for i = 1, . . . , n is an isometric embedding. Therefore, (A, ϕ) ∈
A.

Claim 1 ((Z A)t , u(Z A)t )
∼= (Z At , uZ At

).

Proof of Claim 1 We define a map � : (Z A)t → Z At by [x]Z A
t �→ [x]X

t for x ∈ X and
[y]Z A

t �→ [y]Y
t for y ∈ Y\ϕ(A). We first show that � is well defined. For any x ′ ∈ X ,

if uZ A (x, x ′) ≤ t , then obviously we have that u X (x, x ′) = uZ A (x, x ′) ≤ t and thus
[x]X

t = [x ′]X
t . Now, assume that there exists y ∈ Y\ϕ(A) such that uZ A(x, y) ≤ t ,

i.e., [x]Z A
t = [y]Z A

t . Then, by finiteness of A and definition of Z A, there exists xi ∈ A
such that uZ A(x, y) = max(u X (x, xi ), uY (ϕ(xi ), y)) ≤ t . This gives that

uZ At

([x]X
t , [y]Y

t

) ≤ max
(
u Xt

([x]X
t , [xi ]X

t

)
, uYt

([ϕ(xi )]Y
t , [y]Y

t

)) ≤ t .

However, this happens only if uZ At
([x]X

t , [y]Y
t ) = 0, that is, [x]X

t is identifiedwith [y]Y
t

under the map ϕt . Therefore,� is well defined. It is easy to see from the definition that
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� is surjective. Thus, it suffices to show that � is an isometric embedding to finish
the proof. For any x, x ′ ∈ X such that u X (x, x ′) > t , we have that

u(Z A)t

([x]Z A
t , [x ′]Z A

t
) = uZ A (x, x ′)

= u X (x, x ′) = u Xt

([x]X
t , [x ′]X

t

) = uZ At

([x]X
t , [x ′]X

t

)
.

Similarly, for any y, y′ ∈ Y\ϕ(A) such that uY (y, y′) > t , we have that

u(Z A)t

([y]Z A
t , [y′]Z A

t
) = uZ At

([y]Y
t , [y′]Y

t

)
.

Now, consider x ∈ X and y ∈ Y\ϕ(A). Assume that uZ A(x, y) > t (otherwise
[x]Z A

t = [y]Z A
t ). Then, we have that

uZ A(x, y) = min
i=1,...,n

max(u X (x, xi ), uY (ϕ(xi ), y)) > t .

This implies that

uZ At

([x]X
t , [y]Y

t

) = min
i=1,...,n

max
(
u Xt

([x]X
t , [xi ]X

t

)
, uYt

(
ϕt ([xi ]X

t ), [y]Y
t

))

= min
i=1,...,n

max(u X (x, xi ), uY (ϕ(xi ), y))

= uZ A (x, y) = u(Z A)t

([x]Z A
t , [y]Z A

t
)
.

Therefore, � is an isometric embedding and thus we conclude the proof. ��
By Lemma B.8 we have that

(
d

Z At
W,p

((
φ

Xt
(At ,ϕt )

)
#
(μX )t ,

(
ψ

Yt
(At ,ϕt )

)
#
(μY )t

))p

≥
(

d Z A
W,p

((
φX

(A,ϕ)

)
#
μX ,

(
ψY

(A,ϕ)

)
#
μY

))p− t p

Therefore,

u sturm
GW,p(Xt ,Yt ) = inf

(At ,ϕt )∈At

d
Z At
W,p

((
φ

Xt
(At ,ϕt )

)
#
(μX )t ,

(
ψ

Yt
(At ,ϕt )

)
#
(μY )t

)

≥ inf
(A,ϕ)∈A

((
d Z A
W,p

((
φX

(A,ϕ)

)
#
μX ,

(
ψY

(A,ϕ)

)
#
μY

))p − t p
)1/p

.

Notice that the last inequality already holds whenwe only consider (A, ϕ) correspond-
ing to (At , ϕt ) ∈ At . By Lemma B.9, we have that

u sturm
GW,p(X ,Y) = lim

t→0
u sturm
GW,p(Xt ,Yt )

≥ inf
(A,ϕ)∈A

d Z A
W,p

((
φX

(A,ϕ)

)
#
μX ,

(
ψY

(A,ϕ)

)
#
μY

)
,

which concludes the proof. ��
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B.2 Proofs from Sect. 3.2

In this section, we give the complete proofs of the results stated in Sect. 3.2.

B.2.1 Proof of Proposition 3.10

Part 1. This follows directly from the definitions of uGW,p and dGW,p (see (11) and
(5)).
Part 2. By Jensen’s inequality we have that disultp (μ) ≤ disultq (μ) for any μ ∈
C(μX , μY ). Therefore, uGW,p(X ,Y) ≤ uGW,q(X ,Y).
Part 3. By Part 2 we know that {uGW,n(X ,Y)}n∈N is an increasing sequence with a
finite upper bound uGW,∞(X ,Y). Therefore, L := lim n→∞ uGW,n(X ,Y) exists and
it holds L ≤ uGW,∞(X ,Y).

To prove the opposite inequality, by Proposition B.10, there exists for each n ∈ N,
μn ∈ C(μX , μY ) such that

‖�∞
X ,Y ‖Ln(μn⊗μn) = uGW,n(X ,Y).

ByLemmaB.19, {μn}n∈Nweakly converges (after taking an appropriate subsequence)
to some μ ∈ C(μX , μY ). Let

M := sup
(x,y),(x ′,y′)∈supp(μ)

	∞(u X (x, x ′), uY (y, y′))

and for a given ε > 0 let

U = {
((x, y), (x ′, y′)) ∈ X ×Y × X ×Y | 	∞(u X (x, x ′), uY (y, y′)) > M − ε

}
.

Then, we have μ⊗μ(U ) > 0. As μn weakly converges to μ, we have that μn ⊗μn

weakly converges to μ⊗μ. Since U is open, there exists a small ε1 > 0 such that
μn ⊗μn(U ) > μ⊗μ(U ) − ε1 > 0 for n large enough (see e.g. [7, Thm. 2.1]).
Therefore,

‖�∞
X ,Y ‖Ln(μn⊗μn) ≥ (μn ⊗μn(U ))1/n(M − ε) ≥ (μ⊗μ(U ) − ε1)

1/n(M − ε).

Letting n → ∞, we obtain L ≥ M − ε. Since ε > 0 is arbitrary, we obtain L ≥ M ≥
uGW,∞(X ,Y).

B.2.2 Proof of Theorem 3.11

One main step to verify Theorem 3.11 is to demonstrate the existence of optimal
couplings.

Proposition B.10 LetX = (X , u X , μX ) andY = (Y , uY , μY ) be compact ultrametric
measure spaces. Then, for any p ∈ [1,∞], there always exists an optimal coupling
μ ∈ C(μX , μY ) such that uGW,p(X ,Y) = disultp (μ).
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Proof We will only prove the claim for the case p < ∞ since the case p = ∞ can be
proven in a similar manner. Let μn ∈ C(μX , μY ) be such that

‖	∞(u X , uY )‖L p(μn⊗μn) ≤ uGW,p(X ,Y) + 1

n
.

By Lemma B.19, {μn}n∈N weakly converges to some μ ∈ C(μX , μY ) (after taking an
appropriate subsequence). Then, by the boundedness and continuity of 	∞(u X , uY )

on X ×Y × X ×Y (cf. Lemma B.22) as well as the weak convergence of μn ⊗μn , we
have that

disultp (μ) = lim
n→∞ disultp (μn) ≤ uGW,p(X ,Y).

Hence, uGW,p(X ,Y) = disultp (μ). ��
Based on Proposition B.10, it is straightforward to prove Theorem 3.11.

Proof of Theorem 3.11 It is clear that uGW,p is symmetric and that uGW,p(X ,Y) = 0
if X ∼=w Y . Furthermore, we remark that uGW,p(X ,Y) ≥ dGW,p(X ,Y) by Propo-
sition 3.10. Since dGW,p(X ,Y) = 0 implies that X ∼=w Y (see [60]), we have that
uGW,p(X ,Y) = 0 implies thatX ∼=w Y . It remains to verify the p-triangle inequality.
To this end, we only prove the case when p < ∞ whereas the case p = ∞ follows
by analogous arguments.

Now let X ,Y,Z be three ultrametric measure spaces. Let μXY ∈ C(μX , μY ) and
μY Z ∈ C(μY , μZ ) be optimal (cf. Proposition B.10). By the Gluing Lemma [90, Lem.
7.6], there exists a measure μXY Z ∈ P(X ×Y × Z) with marginals μXY on X ×Y
and μY Z on Y × Z . Further, we define μX Z = (πX Z )# μ ∈ P(X × Z), where πX Z

denotes the canonical projection X ×Y × Z → X × Z . Then

(uGW,p(X ,Z))p ≤ ‖	∞(u X , uZ )‖p
L p(μX Z ⊗μX Z )

= ‖	∞(u X , uZ )‖p
L p(μXY Z ⊗μXY Z )

≤ ‖	∞(u X , uY )‖p
L p(μXY Z ⊗μXY Z ) + ‖	∞(uY , uZ )‖p

L p(μXY Z ⊗μXY Z )

= ‖	∞(u X , uY )‖p
L p(μXY ⊗μXY ) + ‖	∞(uY , uZ )‖p

L p(μY Z ⊗μY Z )

= (uGW,p(X ,Y))p + (uGW,p(Y,Z))p,

where the second inequality follows from the fact that 	∞ in an ultrametric on R≥0
(cf. [64, Exam. 2.7]) and the observation that an ultrametric is automatically a p-metric
for any p ∈ [1,∞] [64, Prop. 2.11]. ��

B.2.3 Proof of Theorem 3.14

We first prove that

uGW,∞(X ,Y) = inf {t ≥ 0 |Xt ∼=w Yt } (26)
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and then show that the infimum is attainable.
Since X0 ∼=w X and Y0 ∼=w Y , if X0 ∼=w Y0, then X ∼=w Y and thus by Theo-

rem 3.11

uGW,∞(X ,Y) = 0 = inf {t ≥ 0 |Xt ∼=w Yt }.

Now, assume that for some t > 0, Xt ∼=w Yt . By Lemma A.7, for some n ∈
N we can write Xt = {[x1]t , . . . , [xn]t } and Yt = {[y1]t , . . . , [yn]t } such that
u Xt ([xi ]t , [x j ]t ) = uYt ([yi ]t , [y j ]t ) and μX ([xi ]t ) = μY ([yi ]t ). Let μX

i := μX |[xi ]t

andμY
i := μY |[yi ]t for all i = 1, . . . , n. Letμ := ∑n

i=1 μX
i ⊗μY

i . It is easy to check
that μ ∈ C(μX , μY ) and supp(μ) = ⋃n

i=1[xi ]t ×[yi ]t . Assume (x, y) ∈ [xi ]t ×[yi ]t

and (x ′, y′) ∈ [x j ]t ×[y j ]t . If i �= j , then u Xt ([xi ]t , [x j ]t ) = uYt ([yi ]t , [y j ]t ) and
thus

	∞(u X (x, x ′), uY (y, y′)) = 	∞(u Xt ([xi ]t , [x j ]t ), uYt ([yi ]t , [y j ]t )) = 0.

If i = j , then u X (x, x ′), uY (y, y′) ≤ t and thus 	∞(u X (x, x ′), uY (y, y′)) ≤ t . In
either case, we have that

uGW,∞(X ,Y) ≤ sup
(x,y),(x ′,y′)∈supp(μ)

	∞(u X (x, x ′), uY (y, y′)) ≤ t .

Therefore, uGW,∞(X ,Y) ≤ inf {t ≥ 0 |Xt ∼=w Yt }.
Conversely, suppose μ ∈ C(μX , μY ) and let

t := sup
(x,y),(x ′,y′)∈supp(μ)

	∞(u X (x, x ′), uY (y, y′)).

By [60, Lem. 2.2], we know that supp(μ) is a correspondence between X and Y . We
define amap ft : Xt → Yt by taking [x]X

t ∈ Xt to [y]Y
t ∈ Yt such that (x, y) ∈ supp(μ).

It is easy to check that ft iswell defined andmoreover ft is an isometry (see for example
the proof of [64, Thm. 5.1]). Next, we prove that ft is actually an isomorphism between
Xt and Yt . For any [x]X

t ∈ Xt , let y ∈ Y be such that (x, y) ∈ supp(μ) (in this case,
[y]Y

t = ft ([x]X
t )). If there exists (x ′, y′) ∈ supp(μ) such that x ′ ∈ [x]X

t and y′ /∈ [y]Y
t ,

then 	∞(u X (x, x ′), uY (y, y′)) = uY (y, y′) > t , which is impossible. Consequently,
μ([x]X

t ×(Y\[y]Y
t )) = 0 and similarly, μ((X\[x]X

t )×[y]Y
t ) = 0. This yields that

μX ([x]X
t ) = μ([x]Y

t ×Y ) = μ([x]X
t ×[y]Y

t ) = μ(X ×[y]Y
t ) = μY ([y]Y

t ).

Therefore, ft is an isomorphism between Xt and Yt . Hence, we have that
uGW,∞(X ,Y) ≥ inf {t ≥ 0 |Xt ∼=w Yt } and hence uGW,∞(X ,Y) = inf {t ≥
0 |Xt ∼=w Yt }.

Finally, we show that the infimum of inf {t ≥ 0 |Xt ∼=w Yt } is attainable. Let
δ := inf{t ≥ 0 |Xt ∼=w Yt }. If δ > 0, let {tn}n∈N be a decreasing sequence converging
to δ such that Xtn

∼=w Ytn for all tn . Since Xδ and Yδ are finite, Xtn = Xδ and Ytn = Yδ

when n is large enough. This immediately implies thatXδ
∼=w Yδ . Now, if δ = 0, then
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by (26) we have that uGW,∞(X ,Y) = δ = 0. By Theorem 3.11, X ∼=w Y . This is
equivalent to Xδ

∼=w Yδ . Therefore, the infimum of inf {t ≥ 0 |Xt ∼=w Yt } is always
attainable.

B.2.4 Proof of Theorem 3.18

An important observation for the proof of Theorem3.18 is that the snowflake transform
relates the p-Wasserstein pseudometric on a pseudo-ultrametric space X with the 1-
Wasserstein pseudometric on the space Sp(X), 1 ≤ p < ∞.

Lemma B.11 Given a pseudo-ultrametric space (X , u X ) and p ≥ 1, we have for any

α, β ∈ P(X) that d (X ,u X )
W,p (α, β) = (d

Sp(X)

W,1 (α, β))1/p.

Remark B.12 Since Sp◦u X and u X induce the same topology and thus the same Borel

sets on X , P(X) = P(Sp(X)) and thus the expression d
Sp(X)

W,1 (α, β) in the lemma is
well defined.

Proof of Lemma B.11 Suppose μ1, μ2 ∈ C(α, β) are optimal for d X
W,p(α, β) and

d
Sp(X)

W,1 (α, β), respectively (see Sect. B.5.1 for the existence of μ1 and μ2). Then,

(
d (X ,u X )
W,p (α, β)

)p =
∫

X×X
(u X (x, y))p μ1(dx ×dy)

=
∫

X×X
Sp(u X )(x, y)μ1(dx ×dy) ≥ d

Sp(X)

W,1 (α, β),

and

d
Sp(X)

W,1 (α, β) =
∫

X×X
Sp(u X )(x, y) μ2(dx ×dy)

=
∫

X×X
(u X (x, y))p μ2(dx ×dy) ≥ (

d (X ,u X )
W,p (α, β)

)p
.

Therefore, d (X ,u X )
W,p (α, β) = (d

Sp(X)

W,1 (α, β))1/p . ��
With Lemma B.11 at our disposal we can prove Theorem 3.18.

Proof of Theorem 3.18 Let μ ∈ C(μX , μY ). Then,

‖	∞(u X , uY )‖p
L p(μ×μ) = ‖	∞(u X

p, uY
p)‖L1(μ×μ).

By infimizing over μ ∈ C(μX , μY ) on both sides, we obtain that (uGW,p(X ,Y))p =
uGW,1(Sp(X ), Sp(Y)).

To prove the second part of the claim, let u ∈ Dult(u X , uY ). By Lemma B.11 we
have that

(
d (X�Y ,u)
W,p (μX , μY )

)p = d
(Sp(X)�Sp(Y ),Sp(u))

W,1 (μX , μY ).

Finally, infimizing over u ∈ Dult(u X , uY ) yields
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u sturm
GW,p(X ,Y)p = u sturm

GW,1(Sp(X ), Sp(Y))

��
As a direct consequence of Theorem 3.18, we obtain the following relation between

(Uw, u sturm
GW,1) and (Uw, u sturm

GW,p) for p ∈ [1,∞).

Corollary B.13 For each p ∈ [1,∞), the metric space (Uw, u sturm
GW,1) is isometric to the

snowflake transform of (Uw, u sturm
GW,p), i.e., Sp(Uw, u sturm

GW,p)
∼= (Uw, u sturm

GW,1).

Proof Consider the snowflake transform map Sp : Uw → Uw sending X ∈ Uw to
Sp(X) ∈ Uw. It is obvious that Sp is bijective. By Theorem 3.18, Sp is an isometry
from Sp(Uw, u sturm

GW,p) to (Uw, u sturm
GW,1). Therefore, Sp(Uw, u sturm

GW,p)
∼= (Uw, u sturm

GW,1). ��

B.3 Proofs from Sect. 3.3

Throughout the following, we demonstrate the open claims from Sect. 3.3.

B.3.1 Proof of Theorem 3.19

First, we focus on the statement for p = 1, i.e., on showing

uGW,1(X ,Y) ≤ 2usturm
GW,1(X ,Y). (27)

Let u ∈ Dult(u X , uY ) and μ ∈ C(μX , μY ) be such that

u sturm
GW,1(X ,Y) =

∫
u(x, y) μ(dx ×dy).

The existence of u and μ follows from Proposition B.1.

Claim 1 For any (x, y), (x ′, y′) ∈ X ×Y , we have

	∞(u X (x, x ′), uY (y, y′)) ≤ max(u(x, y), u(x ′, y′)) ≤ u(x, y) + u(x ′, y′).

Proof of Claim 1 We only need to show that

	∞(u X (x, x ′), uY (y, y′)) ≤ max(u(x, y), u(x ′, y′)).

If u X (x, x ′) = uY (y, y′), then there is nothing to prove. Otherwise, we assumewithout
loss of generality that u X (x, x ′) < uY (y, y′). If max(u(x, y), u(x ′, y′)) < uY (y, y′),
then by the strong triangle inequality we must have u(x, y′) = uY (y, y′) = u(x ′, y).
However, u(x ′, y) ≤ max(u X (x, x ′), u(x, y)) < uY (y, y′), which leads to a contra-
diction. Therefore,

	∞(u X (x, x ′), uY (y, y′)) ≤ max(u(x, y), u(x ′, y′)).

��
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By Claim 1, we have that

∫∫

X×Y×X×Y
	∞(u X (x, x ′), uY (y, y′)) μ(dx ×dy) μ(dx ′×dy′)

≤
∫

X×Y
u(x, y) μ(dx ×dy) +

∫

X×Y
u(x ′, y′) μ(dx ′×dy′) ≤ 2u sturm

GW,1(X ,Y).

Therefore, uGW,1(X ,Y) ≤ 2usturm
GW,1(X ,Y).

Applying Theorem 3.18 and (27), yields that for any p ∈ [1,∞)

uGW,p(X ,Y) = (uGW,1(Sp(X ), Sp(Y)))1/p

≤ (2u sturm
GW,1(Sp(X ), Sp(Y)))1/p = 21/p u sturm

GW,p(X ,Y).

B.3.2 Proof of Results in Example 3.21

It follows from [60, Rem. 5.17] that

d sturm
GW,p

(
�̂n(1), �̂2n(1)

) ≥ 1

4
,

dGW,p
(
�̂n(1), �̂2n(1)

) ≤ 1

2

(
3

2n

)1/p

.

Then, by Proposition 3.3, we have that

u sturm
GW,p

(
�̂n(1), �̂2n(1)

) ≥ d sturm
GW,p

(
�̂n(1), �̂2n(1)

) ≥ 1

4
.

Let μn denote the uniform probability measure of �̂n(1). Since �̂n(1) has
the constant interpoint distance 1, it is obvious that for any coupling μ ∈
C(μn, μ2n), disp(μ) = disultp (μ) This implies that uGW,p(�̂n(1), �̂2n(1)) =
2dGW,p(�̂n(1), �̂2n(1)) ≤ (3/(2n))1/p.

B.3.3 Proof of Theorem 3.22

First, we prove that u sturm
GW,∞(X ,Y) ≥ uGW,∞(X ,Y). Indeed, for any u ∈ Dult(u X , uY )

and μ ∈ C(μX , μY ), we have that

sup
(x,y)∈supp(μ)

u(x, y) = sup
(x,y),(x ′,y′)∈supp(μ)

max(u(x, y), u(x ′, y′))

≥ sup
(x,y),(x ′,y′)∈supp(μ)

	∞(u X (x, x ′), uY (y, y′)) ≥ uGW,∞(X ,Y),

where the first inequality follows from Claim 1 in the proof of Theorem 3.19. Then,
by a standard limit argument, we conclude that u sturm

GW,∞(X ,Y) ≥ uGW,∞(X ,Y).
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Next, we prove that u sturm
GW,∞(X ,Y) ≤ min{t ≥ 0 |Xt ∼=w Yt }. Let t > 0 be such

that Xt ∼=w Yt and let ϕ : Xt → Yt denote such an isomorphism. Then, we define a
function u : X � Y × X � Y → R≥0 as follows:

1. u|X×X := u X and u|Y×Y := uY ;
2. for any (x, y) ∈ X ×Y ,

u(x, y) :=
{

uYt (ϕ([x]X
t ), [y]Y

t ), if ϕ([x]X
t ) �= [y]Y

t ,

t, if ϕ([x]X
t ) = [y]Y

t ;

3. for any (y, x) ∈ Y × X , u(y, x) := u(x, y).

Then, it is easy to verify that u ∈ Dult(u X , uY ) and that u is actually an ultrametric.
Let Z := (X � Y , u). By Lemma 2.8, we have

u sturm
GW,∞(X ,Y) ≤ d Z

W,∞(μX , μY ) = max
B∈V (Z)\{Z}

μX (B) �=μY (B)

diam(B∗).

We verify that d Z
W,∞(μX , μY ) ≤ t next. It is obvious that Zt ∼= Xt ∼= Yt . Write Xt =

{[xi ]X
t }n

i=1 and Yt = {[yi ]Y
t }n

i=1 such that [yi ]Y
t = ϕ([xi ]X

t ) for each i = 1, . . . , n.
Then, [xi ]Z

t = [yi ]Z
t and Zt = {[xi ]Z

t | i = 1, . . . , n}. Since ϕ is an isomorphism,
for any i = 1, . . . , n we have that μX ([xi ]X

t ) = μY ([yi ]Y
t ) and thus μX ([xi ]Z

t ) =
μY ([yi ]Z

s ) = μY ([xi ]Z
t ) when μX and μY are regarded as pushforward measures

under the inclusion map X ↪→ Z and Y ↪→ Z , respectively. Now for any B ∈ V (Z)

(cf. Sect. 2.3), if diam(B) ≥ t , then B is the union of certain [xi ]Z
t ’s in Zt and thus

μX (B) = μY (B). If diam(B) < t and diam(B∗) > t , then there exists some xi such
that B = [xi ]Z

s and [xi ]Z
s = [xi ]Z

t where s := diam(B). This implies that μX (B) =
μY (B). In consequence, we have that d Z

W,∞(μX , μY ) ≤ t and thus u sturm
GW,∞(X ,Y) ≤

d (X�Y ,u)
W,∞ (μX , μY ) ≤ t . Therefore, u sturm

GW,∞(X ,Y) ≤ inf {t ≥ 0 |Xt ∼=w Yt }.
Finally, by invoking Theorem 3.14, we conclude that

u sturm
GW,∞(X ,Y) = uGW,∞(X ,Y).

B.3.4 Proof of Theorem 3.23

We prove the result via an explicit construction. By Theorem 3.22, we have s =
u sturm
GW,∞(X ,Y) = uGW,∞(X ,Y). By Theorem 3.14, there exists an isomorphism

ϕ : Xs → Ys . Since s > 0, by Lemma A.7, both Xs and Ys are finite spaces. Let
Xs = {[x1]X

s , . . . , [xn]X
s }, Ys = {[y1]Y

s , . . . , [yn]Y
s } and assume [yi ]Y

s = ϕ([xi ]X
s ) for

each i = 1, . . . , n. Let A := {x1, . . . , xn} and define φ : A → Y by sending xi to yi

for each i = 1, . . . , n. We prove that (A, φ) satisfies the conditions in the statement.
Since ϕ is an isomorphism, for any 1 ≤ i < j ≤ n,

uY (yi , y j ) = uYs ([yi ]Y
s , [y j ]Y

s )

= uYs (ϕ([xi ]X
s ), ϕ([x j ]X

s )) = u Xs ([xi ]X
s , [x j ]X

s ) = u X (xi , x j ).
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This implies that φ : A → Y is an isometric embedding and thus (A, φ) ∈ A.
It is obvious that (Z A)s is isometric to both Xs andYs . In fact, [xi ]Z A

s = [yi ]Z A
s in Z A

for each i = 1, . . . , n and (Z A)s = {[xi ]Z A
s | i = 1, . . . , n}. Since ϕ is an isomorphism,

for any i = 1, . . . , n we have that μX ([xi ]X
s ) = μY ([yi ]Y

s ) and thus μX ([xi ]Z A
s ) =

μY ([yi ]Z A
s ) = μY ([xi ]Z A

s ) when μX and μY are regarded as pushforward measures
under the inclusion maps X → Z A and Y → Z A, respectively. Now for any B ∈
V (Z A) (cf. Sect. 2.3), if diam(B) ≥ s, then B is the union of certain [xi ]Z A

s ’s and
thus μX (B) = μY (B). If otherwise diam(B) < s and diam(B∗) > s, then there
exists xi such that B = [xi ]Z A

t and [xi ]Z A
t = [xi ]Z A

s where t := diam(B). This
implies that μX (B) = μY (B). By Lemma 2.8, we have d Z A

W,∞(μX , μY ) ≤ s and thus

d Z A
W,∞(μX , μY ) = s since d Z A

W,∞(μX , μY ) is an upper bound for s = u sturm
GW,∞(X ,Y)

due to (8).

B.3.5 Proof of Theorem 3.25

In this section, we prove Theorem 3.25 by modifying the proof of [60, Prop. 5.3].

Lemma B.14 Let (X , u X ) and (Y , uY ) be compact ultrametric spaces and let S ⊆
X ×Y be non-empty. Assume that sup(x,y),(x ′,y′)∈S 	∞(u X (x, x ′), uY (y, y′)) ≤ η.
Define uS : X � Y × X � Y → R≥0 as follows:

(i) uS|X×X := u X and uS|Y×Y := uY ;
(ii) for any (x, y) ∈ X ×Y , uS(x, y) := inf(x ′,y′)∈S max(u X (x, x ′), uY (y, y′), η);
(iii) for any (x, y) ∈ X ×Y , uS(y, x) := uS(x, y).

Then, uS ∈ Dult(u X , uY ) and uS(x, y) ≤ η for all (x, y) ∈ S.

Proof That uS ∈ Dult(u X , uY ) essentially follows by [93, Lem. 1.1]. It remains to
prove the second half of the statement. For (x, y) ∈ S, we set (x ′, y′) := (x, y). This
yields

uS(x, y) ≤ max(u X (x, x ′), uY (y, y′), η) = max(0, 0, η) = η.

��
Proof of Theorem 3.25 Let μ ∈ C(μX , μY ) be a coupling s.t. ‖�∞

X ,Y ‖L p(μ⊗μ) < δ5.
Set ε := 4vδ(X) ≤ 4. By [60, Claim 10.1], there exist a positive integer N ≤ [1/δ] and
points x1, . . . , xN in X such that min i �= j u X (xi , x j ) ≥ ε/2, min i μX (B X

ε (xi )) > δ

and μX
(⋃N

i=1 B X
ε (xi )

) ≥ 1 − ε.

Claim 1 For every i = 1, . . . , N there exists yi ∈ Y such that

μ
(
B X

ε (xi )× BY
2(ε+δ)(yi )

) ≥ (1 − δ2)μX (B X
ε (xi )).

Proof of Claim 1 Assume the claim is false for some i and let

Qi (y) = B X
ε (xi )×(Y\BY

2(ε+δ)(y)).
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Then, as μ ∈ C(μX , μY ) it holds

μX (B X
ε (xi )) = μ

(
B X

ε (xi )×Y
)

= μ
(
B X

ε (xi )× BY
2(ε+δ)(y)

) + μ
(
B X

ε (xi )×
(
Y\BY

2(ε+δ)(y)
))

.

Consequently, we have that μ(Qi (y)) ≥ δ2μX (B X
ε (xi )). Further, let

Qi := {
(x, y, x ′, y′) ∈ X ×Y × X ×Y | x, x ′ ∈ B X

ε (xi ), uY (y, y′) ≥ 2(ε + δ)
}
.

Clearly, it holds for (x, y, x ′, y′) ∈ Qi that

�∞
X ,Y (x, y, x ′, y′) = 	∞(u X (x, x ′), uY (y, y′)) = uY (y, y′) ≥ 2δ.

Further, we have that μ⊗μ(Qi ) ≥ δ4. Indeed, it holds

μ⊗μ(Qi ) =
∫

B X
ε (xi )×Y

∫

Qi (y)

1μ(dx ′×dy′) μ(dx ×dy)

=
∫

B X
ε (xi )×Y

μ(Qi (y)) μ(dx ×dy)

= μX (B X
ε (xi ))

∫

Y
μ(Qi (y)) μY (dy) ≥ (μX (B X

ε (xi )))
2 δ2 ≥ δ4.

However, this yields that

‖�∞
X ,Y ‖L p(μ⊗μ) ≥ ‖�∞

X ,Y ‖L1(μ⊗μ)

≥ ‖�∞
X ,Y1Qi ‖L1(μ⊗μ) ≥ 2δ ·μ⊗μ(Qi ) ≥ 2δ5,

which contradicts ‖�∞
X ,Y ‖L p(μ⊗μ) < δ5. ��

Define for each i = 1, . . . , N , Si := B X
ε (xi )× BY

2(ε+δ)(yi ). Then, by Claim 1,

μ(Si ) ≥ δ(1 − δ2), for all i = 1, . . . , N .

Claim 2 �∞
X ,Y (xi , yi , x j , y j ) ≤ 6(ε + δ) for all i, j = 1, . . . , N .

Proof of Claim 2 Assume the claim fails for some (i0, j0), i.e.,

	∞(u X (xi0 , x j0), uY (yi0 , y j0)) > 6(ε + δ) > 0.

Then,wehave	∞(u X (xi0 , x j0), uY (yi0 , y j0)) = max(u X (xi0 , x j0), uY (yi0 , y j0)).We
assume without loss of generality that

u X (xi0 , x j0) = 	∞(u X (xi0 , x j0), uY (yi0 , y j0)) > uY (yi0 , y j0).
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Consider any (x, y) ∈ Si0 and (x ′, y′) ∈ S j0 . By the strong triangle inequality and the
fact that u X (xi0 , x j0) > 6(ε+δ) > ε, it is easy to verify that u X (x, x ′) = u X (xi0 , x j0).
Moreover,

uY (y, y′) ≤ max
(
uY (y, yi0), uY (yi0 , y j0), uY (y j0 , y′)

)

< max
(
2(ε + δ), u X (xi0 , x j0), 2(ε + δ)

) = u X (xi0 , x j0) = u X (x, x ′).

Therefore,�∞
X ,Y (x, y, x ′, y′) = u X (x, x ′) = u X (xi0 , x j0) = �∞

X ,Y (xi0 , yi0 , x j0 , y j0) >

6(ε + δ) > 2δ. Consequently, we have that

‖�∞
X ,Y ‖L p(μ⊗μ) ≥ ‖�∞

X ,Y ‖L1(μ⊗μ)

≥ ‖�∞
X ,Y1Si0

1S j0
‖L1(μ⊗μ) ≥ 2δμ(Si0)μ(S j0) > 2δ(δ(1 − δ2))2.

However, for δ ≤ 1/2, 2δ(δ(1 − δ2))2 ≥ 2δ5. This leads to a contradiction. ��
Consider S ⊆ X ×Y given by S := {(xi , yi ) | i = 1, . . . , N }. Let uS be the

ultrametric on X � Y given by Lemma B.14. By Claim 2,

sup
(x,y),(x ′,y′)∈S

�∞
X ,Y (x, y, x ′, y′) ≤ 6(ε + δ).

Then, for all i = 1, . . . , N we have that uS(xi , yi ) ≤ 6(ε + δ) and for any
(x, y) ∈ X ×Y we have that uS(x, y) ≤ max(diam(X), diam(Y ), 6(ε + δ)) ≤
max(diam(X), diam(Y ), 27) =: M ′.Here in the second inequalityweuse the assump-
tion that δ < 1/2 and the fact that ε = 4vδ(X) ≤ 4.

Claim 3 Fix i ∈ {1, . . . , N }. Then, for all (x, y) ∈ Si , it holds uS(x, y) ≤ 6(ε + δ).

Proof of Claim 3 Let (x, y) ∈ Si . Then, u X (x, xi ) ≤ ε and uY (y, yi ) ≤ 2(ε + δ).
Then, by the strong triangle inequality for uS we obtain

uS(x, y) ≤ max {u X (x, xi ), uY (y, yi ), uS(xi , yi )}
≤ max {ε, 2(ε + δ), 6(ε + δ)} ≤ 6(ε + δ).

��
Let L := ⋃N

i=1 Si . The next step is to estimate the mass of μ in the complement of
L .

Claim 4 μ(X ×Y\L) ≤ ε + δ.

Proof of Claim 4 For each i = 1, . . . , N , let

Ai := B X
ε (xi )×(Y\BY

2(ε+δ)(yi )).

Then,

Ai = (
B X

ε (xi )×Y
)\(B X

ε (xi )× BY
2(ε+δ)(yi )

) = (
B X

ε (xi )×Y
)\Si .
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Hence, μ(Ai ) = μ(B X
ε (xi )×Y ) − μ(Si ) = μX (B X

ε (xi )) − μ(Si ), where the last
equality follows from the fact that μ ∈ M(μX , μY ). By Claim 1, we have that
μ(Si ) ≥ μX (B X

ε (xi ))(1 − δ2). Consequently, μ(Ai ) ≤ μX (B X
ε (xi ))δ

2. Notice that

X ×Y\L ⊆
(

X
∖ N⋃

i=1

B X
ε (xi )

)
×Y ∪

( N⋃

i=1

Ai

)
.

Hence,

μ(X ×Y\L) ≤ μX

(
X

∖ N⋃

i=1

B X
ε (xi )

)
+

N∑

i=1

μ(Ai )

≤ 1 − μX

( N⋃

i=1

B X
ε (xi )

)
+

N∑

i=1

δ2μX (B X
ε (xi )) ≤ ε + N ·δ2 ≤ ε + δ.

Here, the third inequality follows from the choice of the points xi s at the beginning of
this section and from the fact that N ≤ [1/δ]. ��

Now,

∫

X×Y
(uS(x, y))p μ(dx ×dy) =

(∫

L
+

∫

X×Y\L

)
(uS(x, y))p μ(dx ×dy)

≤ (6(ε + δ))p + M ′ p · (ε + δ).

Since we have for any a, b ≥ 0 and p ≥ 1 that a1/p + b1/p ≥ (a + b)1/p, we obtain

u sturm
GW,p(X ,Y) ≤ (ε + δ)1/p(6(ε + δ)1−1/p + M ′)

≤ (ε + δ)1/p(27 + M ′) ≤ (4vδ(X ) + δ)1/p · M,

where we used ε = 4vδ(X ) and M := 2max(diam(X), diam(Y )) + 54 ≥
M ′ + 27. Since the roles of X and Y are symmetric, we have u sturm

GW,p(X ,Y) ≤
(4min(vδ(X ), vδ(Y )) + δ)1/p · M . ��

B.4 Proofs from Sect. 3.4

The subsequent section contains the full proofs of the statements in Sect. 3.4.

B.4.1 Proof of Theorem 3.27

Part 1. We first prove that (Uw, uGW,p) is non-separable for each p ∈ [1,∞]. Recall
notation in Example 3.5 and consider the family {�̂2(a)}a∈[1,2].

Claim 1 For all a �= b ∈ [1, 2], uGW,p(�̂2(a), �̂2(b)) = 2−1/p	∞(a, b) ≥ 2−1/p,
where 2−1/∞ := 1.
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Proof of Claim 1 First note by Theorem 4.1 that

uGW,p(�̂2(a), �̂2(b)) ≥ SLBult
p (�̂2(a), �̂2(b)).

It is easy to verify that SLBult
p (�̂2(a), �̂2(b)) = 2−1/p	∞(a, b). On the other hand,

consider the diagonal coupling between μa and μb, then for p ∈ [1,∞)

uGW,p(�̂2(a), �̂2(b)) ≤
(
2 · 	∞(a, b)p · 1

2
· 1
2

)1/p

= 2−1/p	∞(a, b),

and for p = ∞, uGW,∞(�̂2(a), �̂2(b)) ≤ 	∞(a, b). This concludes the proof. ��
By Claim 1, we have that {�̂2(a)}a∈[1,2] is an uncountable subset of Uw with

pairwise distance greater than 2−1/p , which implies that (Uw, uGW,p) is non-separable.
Now for p ∈ [1,∞), we show that uGW,p is not complete. Consider the family

{�2n (1)}n∈N of 2n-point spaces with unitary interpoint distances. Endow each space
�2n (1) with the uniform measure μn and denote the corresponding ultrametric mea-
sure space by �̂2n (1). It is proven in [84, Exam. 2.2] that {�̂2n (1)}n∈N is a Cauchy
sequence with respect to dGW,p without a compact metric measure space as limit. It
is not hard to check that

uGW,p(�̂2m (1), �̂2n (1)) = 2dGW,p(�̂2m (1), �̂2n (1)), for all n, m ∈ N.

Therefore, {�̂2n (1)}n∈N is a Cauchy sequence with respect to uGW,p without limit in
Uw. This implies that (Uw, uGW,p) is not complete.

By Theorem 3.19 and that (Uw, uGW,p) is not separable, (Uw, u sturm
GW,p) is not separa-

ble. As for completeness, consider the subset X := {1 − 1/n}n∈N ⊆ (R≥0,	∞). By
Lemma A.2, X is not a compact ultrametric space. Let μ0 ∈ P(X) be a probability
defined as follows:

μ0

({
1 − 1

n

})
:= 2−n, for all n ∈ N.

For each N ∈ N, let X N := {1 − 1/n | n = 1, . . . , N }. Since each X N is finite,
(X N ,	∞) is a compact ultrametric space. Let μN ∈ P(X N ) be a probability defined
as follows:

μN

({
1 − 1

n

})
:=

{
2−n, 1 ≤ n < N ,

2−N+1 n = N .

Then, it is easy to verify (e.g. via Theorem 3.7) that {(X N ,	∞, μN )}N∈N is a u sturm
GW,p

Cauchy sequence with (X ,	∞, μ0) being the limit. Since the set X is not compact,
(X ,	∞, μ0) /∈ Uw and thus (Uw, u sturm

GW,p) is not complete.
Part 2. That (Uw, uGW,∞) is non-separable is already proved in Part 1. We
prove completeness next. Given a Cauchy sequence {Xn = (Xn, un, μn)}n∈N with
respect to uGW,∞, we have that the underlying ultrametric spaces {Xn}n∈N form
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a Cauchy sequence w.r.t. uGH due to Corollary 3.16. Since (U , uGH) is complete
(see [93, Prop. 2.1]), there exists a compact ultrametric space (X , u X ) such that
lim n→∞ uGH(Xn, X) = 0.

Let {δn}n∈N be a sequence of positive numbers converging to 0 such that δn ≥
uGH(Xn, X). By Theorem 2.5, we have that (Xn)δn

∼= Xδn . Denote by μ̂n ∈ P(Xδn )

the pushforward of (μn)δn under the isometry. Furthermore, we have by Lemma A.7
that Xδn is finite and we let Xδn = {[x1]δn , . . . , [xk]δn } for x1, . . . , xk ∈ X . Based on
this, we define νn := ∑k

i=1 μ̂n([xi ]δn ) ·δxi ∈ P(X), where δxi is the Dirac measure
at xi . Since X is compact, P(X) is weakly compact. Therefore, the sequence {νn}n∈N
has a cluster point ν ∈ P(X).

Now we show that X := (X , u X , ν) is a uGW,∞ cluster point of {Xn}n∈N and
thus the limit of {Xn}n∈N (since {Xn}n∈N is Cauchy). Without loss of generality, we
assume that {νn}n∈N weakly converges to ν. Fix any ε > 0, we need to show that
uGW,∞(X ,Xn) ≤ ε when n is large enough. For any fixed x∗ ∈ X , [x∗]ε is both
an open and closed ball in X . Therefore, ν([x∗]ε) = lim n→∞ νn([x∗]ε) (see e.g. [7,
Thm. 2.1]). Since δn → 0 as n → ∞, there exists N1 > 0 such that for any n > N1,
δn < ε. We specify an isometry ϕn : (Xn)δn → Xδn that gives rise to the construction
of νn . Then, we let ψn : (Xn)ε → Xε be the isometry such that the following diagram
commutes:

(Xn)δn Xδn

(Xn)ε Xε

ϕn

ε-quotient ε-quotient
ψn

Assume that [x∗]X
ε = ⋃l

i=1[xi ]X
δn
. Let xn∗ ∈ Xn be such that ψn([xn∗ ]Xn

ε ) = [x∗]X
ε and

let xn
1 , . . . , xn

l ∈ Xn be such that ϕn([xn
i ]Xn

δn
) = [xi ]X

δn
for each i = 1, . . . , l. Then,

[xn∗ ]Xn
ε = ⋃l

i=1[xn
i ]Xn

δn
. Therefore,

νn([x∗]X
ε ) =

l∑

i=1

νn([xi ]X
δn

)

=
l∑

i=1

μ̂n([xi ]X
δn

) =
l∑

i=1

μn
([xn

i ]Xn
δn

) = μn
([xn∗ ]Xn

ε

)
.

Since Xn is a Cauchy sequence, there exists N2 > 0 such that uGW,∞(Xn,Xm) < ε

when n, m > N2. Then, by Theorem 3.14, (Xn)ε ∼=w (Xm)ε for all n, m > N2.
By Lemma A.7, (Xn)ε is finite, then (Xn)ε has cardinality independent of n when
n > N2. For all n > N2, we define the finite set An := {μn([xn]Xn

ε ) | xn ∈ Xn}.
An is independent of n since (Xn)ε ∼=w (Xm)ε for all n, m > N2. This implies
that μn([xn∗ ]Xn

ε ) only takes value in a finite set An . Combining with the fact that
lim n→∞ μn([xn∗ ]Xn

ε ) = lim n→∞ νn([x]X
ε ) = ν([x∗]X

ε ) exists, there exists N3 > 0
such that when n > N3, μn([xn∗ ]ε) ≡ C for some constant C . This implies that
ν([x∗]X

ε ) = μn([xn∗ ]Xn
ε ), when n > max(N1, N2, N3). Since Xε is finite, there
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exists a common N > 0 such that for all n > N and for all [x∗]ε ∈ Xε we
have ν([x∗]X

ε ) = μn([xn∗ ]Xn
ε ), where [xn∗ ]Xn

ε = ψ−1
n ([x∗]X

ε ) ∈ (Xn)ε. This indi-
cates that νε = (ψn)# (μn)ε when n > N . Therefore, Xε

∼=w (Xn)ε and thus
uGW,∞(X ,Xn) ≤ ε.

B.4.2 Proof of Proposition 3.28

Next, we will demonstrate Proposition 3.28. However, before we come to this we
recall some facts about p-metric and p-geodesic spaces.

Lemma B.15 ([64, Prop. 7.30]) Given p ∈ [1,∞), if X is a p-metric space, then X is
not q-geodesic for all 1 ≤ q < p.

Lemma B.16 ([64, Prop. 7.27]) Let X be a geodesic metric space. Then, for any p ≥ 1,
S1/p(X) is p-geodesic, where Sα denotes the snowflake transform for α > 0 (cf. Sect.
3.3).

For p = 1, the proof is based on the following property of the 1-Wasserstein space.

Lemma B.17 ([9, Thm. 5.1]) Let X be a compact metric space. Then, the space
W1(X) := (P(X), d X

W,1) is a geodesic space.

Based on the above results and Corollary B.2, the proof of Proposition 3.28 is
straightforward.

Proof of Proposition 3.28 Let X and Y be two compact ultrametric measure spaces.
First, we consider the case p = 1. By Corollary B.2, there exist a compact ultrametric
space Z and isometric embeddings φ : X ↪→ Z and ψ : Y ↪→ Z such that

u sturm
GW,p(X ,Y) = d Z

W,p(φ# μX , ψ# μY ).

The space W1(Z) is geodesic (cf. Lemma B.17). Therefore, there exists a Wasserstein
geodesic γ̃ : [0, 1] → W1(Z) connecting φ# μX and ψ# μY . This induces a curve
γ : [0, 1] → Uw where for each t ∈ [0, 1],

γ (t) := (
supp(γ̃ (t)), u|supp(γ̃ (t))×supp(γ̃ (t)), γ̃ (t)

)
.

Note that γ (0) ∼=w X and γ (1) ∼=w Y and hence we simply replace γ (0) and γ (1)
with X and Y , respectively. Now, for each s, t ∈ [0, 1], we have that

d sturm
GW,1(γ (s), γ (t)) ≤ d Z

W,1(γ̃ (s), γ̃ (t))

= |s − t |d Z
W,1(γ̃ (0), γ̃ (1)) = |s − t |d sturm

GW,1(X ,Y).

Therefore, γ is a geodesic connecting X and Y and thus (Uw, u sturm
GW,1) is geodesic.

For the case p > 1, by Corollary B.13, Sp(Uw, u sturm
GW,p)

∼= (Uw, u sturm
GW,1). This

implies that S1/p(Uw, u sturm
GW,1)

∼= (Uw, u sturm
GW,p). Hence, by Lemma B.16, (Uw, u sturm

GW,p)

is p-geodesic. ��
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B.5 Technical Details from Sect. 3

In this section, we address various technical issues from Sect. 3.

B.5.1 TheWasserstein Pseudometric

Given a set X , a pseudometric is a symmetric function dX : X × X → R≥0 satisfy-
ing the triangle inequality and dX (x, x) = 0 for all x ∈ X . Note that if moreover
dX (x, y) = 0 implies x = y, then dX is a metric. There is a canonical identification
on pseudometric spaces (X , dX ): x ∼ x ′ if dX (x, x ′) = 0. Then, ∼ is in fact an
equivalence relation and we define the quotient space X̃ = X/∼. Define a function
d̃X : X̃ × X̃ → R≥0 as follows:

d̃X ([x], [x ′]) :=
{

dX (x, x ′) if dX (x, x ′) �= 0,

0 otherwise.

d̃X turns out to be a metric on X̃ . In the sequel, the metric space (X̃ , d̃X ) is referred
to as the metric space induced by the pseudometric space (X , dX ). Note that d̃X

preserves the induced topology (see e.g. [41]) and thus the quotient map � : X → X̃
is continuous.

Analogously to theWasserstein distance, which is defined for probability measures
on metric spaces, we define the Wasserstein pseudometric for measures on compact
pseudometric spaces as done in [85]. Letα, β ∈ P(X). Then, we define for p ∈ [1,∞)

the Wasserstein pseudometric of order p as

d (X ,dX )
W,p (α, β) :=

(
inf

μ∈C(α,β)

∫

X×X
(dX (x, y))p μ(dx ×dy)

)1/p

(28)

and for p = ∞ as

d (X ,dX )
W,∞ (α, β) := inf

μ∈C(α,β)
sup

(x,y)∈supp(μ)

u(x, y). (29)

It is easy to see that the Wasserstein pseudometric is closely related to the Wasserstein
distance on the induced metric space. More precisely, one can show the following.

Lemma B.18 Let (X , dX ) denote a compact pseudometric space, let α, β ∈ P(X).
Then, it follows for p ∈ [1,∞] that

d (X ,dX )
W,p (α, β) = d (X̃ ,d̃X )

W,p (�# α,�# β) (30)

and that the infimum in (28) (resp. in (29) if p = ∞) is attained for some μ ∈ C(α, β).

Proof In the course of this proof we focus on the case p < ∞ and remark that the
case p = ∞ follows by similar arguments. The quotient map allows us to define the
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map θ : C(α, β) → C(�# α,�# β) via μ �→ (� ×�)# μ. It is easy to see that θ is
well defined and surjective. Furthermore, it holds by construction that

∫

X×X
(dX (x, y))p μ(dx ×dy) =

∫

X̃×X̃
(d̃X (x, y))p θ(μ)(dx ×dy)

for all μ ∈ C(α, β). Hence, (30) follows.
We come to the second part of the claim. By [91, Sect. 4] there exists an optimal

coupling μ̃∗ ∈ C(�# α,�# β) such that

d (X̃ ,d̃X )
W,p (�# α,�# β) =

(∫

X̃×X̃
(d̃X (x, y))p μ̃∗(dx ×dy)

)1/p

.

In consequence, we find using our previous results that for any μ∗ ∈ θ−1(μ̃∗) it holds

d (X̃ ,d̃X )
W,p (�# α,�# β) =

(∫

X̃×X̃
(d̃X (x, y))p μ̃∗(dx ×dy)

)1/p

=
(∫

X×X
(dX (x, y))p μ∗(dx ×dy)

)1/p

= d (X ,dX )
W,p (α, β).

This yields the claim. ��
B.5.2 Regularity of the Cost Functionals of uGW,p and u sturm

GW,p

In the remainder of this section, we collect various technical results required to demon-
strate the existence of optimizers in the definitions of u sturm

GW,p (see (8)) and uGW,p (see
(11)).

Lemma B.19 Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be compact ultrametric
measure spaces. Then, μ ∈ C(μX , μY ) ⊆ P(X ×Y ,max(u X , uY )) is compact w.r.t.
weak convergence.

Proof The proof follows directly from [21, Lem. 2.2]. ��
Lemma B.20 LetX ,Y ∈ Uw. Let D1 ⊆ Dult(u X , uY ) be a non-empty subset satisfying
the following: there exist (x0, y0) ∈ X ×Y and C > 0 such that u(x0, y0) ≤ C for all
u ∈ D1. Then, D1 is pre-compact with respect to uniform convergence.

Proof Let {un}n∈N ⊆ D1 be a sequence. Note that X ×Y ⊆ X � Y × X � Y . Let
vn := un|X×Y . For any n ∈ N and any (x, y), (x ′, y′) ∈ X ×Y , we have that

|un(x, y) − un(x ′, y′)| ≤ u X (x, x ′) + uY (y, y′)
≤ 2max(u X , uY )((x, y), (x ′, y′)).

Thismeans that {vn}n∈N is equicontinuouswith respect to the ultrametricmax{u X , uY }
on X ×Y . Now, since un(x0, y0) ≤ C , we have that for any (x, y) ∈ X ×Y ,

un(x, y) ≤ 2max(u X , uY )((x, y), (x0, y0)) + un(x0, y0)
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≤ 2max(diam(X), diam(Y )) + C .

Consequently, {vn}n∈N is uniformly bounded. By the Arzéla–Ascoli theorem ([47,
Thm. 7 on p.61]), each subsequence of {vn}n∈N has a uniformly convergent sub-
sequence. Hence, we assume without loss of generality that {vn}n∈N converges to
v : X ×Y → R≥0.

Now, we define a symmetric function u : X � Y × X � Y → R≥0 as follows:

(i) u|X×X := u X and u|Y×Y := uY ;
(ii) u|X×Y := v; for (y, x) ∈ Y × X , we let u(y, x) := u(x, y).

It is easy to verify that u ∈ Dult(u X , uY ) and that u is a cluster point of the sequence
{un}n∈N. Therefore, D1 is pre-compact. ��
Lemma B.21 Let X = (X , u X , μX ) and Y = (Y , uY , μY ) be compact ultrametric
measure spaces. Let {μn}n∈N ⊆ C(μX , μY ) be a sequence weakly converging to μ ∈
C(μX , μY ). Let {un}n∈N ⊆ Dult(u X , uY ). Suppose that there exist a non-decreasing
sequence {pn}n∈N ⊆ [1,∞) and C > 0 such that for all n ∈ N,

(∫

X×Y
(un(x, y))pn μn(dx ×dy)

)1/pn

≤ C .

Then, {un}n∈N uniformly converges to some u ∈ Dult(u X , uY ) (up to taking a subse-
quence).

Proof The following argument adapts the proof of [83, Lem. 3.3] to the current setting.
For any (x0, y0) ∈ supp(μ), there exist ε, δ > 0 and N ∈ N such that for all n ≥ N

C ≥
(∫

X×Y
(un(x, y))pn μn(dx ×dy)

)1/pn

≥
∫

X×Y
un(x, y)μn (dx ×dy)

≥
∫

B X
ε (x0)×BY

ε (y0)
un(x, y) μn(dx ×dy)

≥
∫

B X
ε (x0)×BY

ε (y0)
(un(x0, y0) − 2ε) μn(dx ×dy)

≥ (un(x0, y0) − 2ε)
(
μ(B X

ε (x0)× BY
ε (y0)) − δ

)
.

Therefore, {un(x0, y0)}n≥N is uniformly bounded. By Lemma B.20, we have that
{un}n∈N has a uniformly convergent subsequence. ��
Lemma B.22 Let X , Y be ultrametric spaces, then

	∞(u X , uY ) : X ×Y × X ×Y → R≥0

is continuous with respect to the product topology (induced by max(u X , uY , u X , uY )).
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Proof Fix (x, y, x ′, y′) ∈ X ×Y × X ×Y and ε > 0. Choose 0 < δ < ε such that
δ < u X (x, x ′) if x �= x ′ and δ < uY (y, y′) if y �= y′. Then, consider any point
(x1, y1, x ′

1, y′
1) ∈ X ×Y × X ×Y such that

u X (x, x1), uY (y, y1), u X (x ′, x ′
1), uY (y′, y′

1) ≤ δ.

For u X (x1, x ′
1), we have the following two situations:

(i) x = x ′: u X (x1, x ′
1) ≤ max(u X (x1, x), u X (x, x ′

1)) ≤ δ < ε;
(ii) x �= x ′: u X (x1, x ′

1) ≤ max(u X (x1, x), u X (x, x ′), u X (x ′, x ′
1)) = u X (x, x ′). Sim-

ilarly, u X (x, x ′) ≤ u X (x1, x ′
1) and thus u X (x, x ′) = u X (x1, x ′

1).

Similar result holds for uY (y1, y′
1).

This leads to four cases for 	∞(u X (x1, x ′
1), uY (y1, y′

1)):

(i) x = x ′, y = y′: In this case we have u X (x1, x ′
1), uY (y1, y′

1) < ε. Then,

∣∣	∞(u X (x1, x ′
1), uY (y1, y′

1)) − 	∞(u X (x, x ′), uY (y, y′))
∣∣

= 	∞(u X (x1, x ′
1), uY (y1, y′

1)) ≤ ε;

(ii) x = x ′, y �= y′: Now u X (x1, x ′
1) < ε and uY (y1, y′

1) = uY (y, y′). If uY (y, y′) ≥
ε > u X (x1, x ′

1), then

∣∣	∞(u X (x1, x ′
1), uY (y1, y′

1)) − 	∞(u X (x, x ′), uY (y, y′))
∣∣

= |uY (y, y′) − uY (y, y′)| = 0.

Otherwise uY (y, y′) < ε, which implies that 	∞(u X (x1, x ′
1), uY (y1, y′

1)) ≤ ε

and 	∞(u X (x, x ′), uY (y, y′)) = uY (y, y′) ≤ ε. Therefore,

∣
∣	∞(u X (x1, x ′

1), uY (y1, y′
1)) − 	∞(u X (x, x ′), uY (y, y′))

∣
∣ ≤ ε;

(iii) x �= x ′, y = y′: Similarly with (ii) we have

∣∣	∞(u X (x1, x ′
1), uY (y1, y′

1)) − 	∞(u X (x, x ′), uY (y, y′))
∣∣ ≤ ε;

(iv) x �= x ′, y �= y′: Now u X (x1, x ′
1) = u X (x, x ′) and uY (y1, y′

1) = uY (y, y′).
Therefore,

∣∣	∞(u X (x1, x ′
1), uY (y1, y′

1)) − 	∞(u X (x, x ′), uY (y, y′))
∣∣ = 0.

In conclusion, whenever u X (x, x1), uY (y, y1), u X (x ′, x ′
1), uY (y′, y′

1) ≤ δ we have
that

∣∣	∞(u X (x1, x ′
1), uY (y1, y′

1)) − 	∞(u X (x, x ′), uY (y, y′))
∣∣ ≤ ε.

Therefore, 	∞(u X , uY ) is continuous with respect to the metric max(u X , uY , u X ,

uY ). ��
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B.5.3 uGW,p and the One Point Space

Below, we prove that uGW,p, 1 ≤ p ≤ ∞, between an arbitrary X ∈ Uw and the one
point ultrametric measure space ∗ agrees with the p-diameter of X (see e.g., [60]):
for 1 ≤ p ≤ ∞ as diam p(X ) := ‖dX‖L p(μX ⊗μX ).

Proposition B.23 Let∗ ∈ Uw be the one-point space. Then, it holds for any1 ≤ p ≤ ∞
that uGW,p(X , ∗) = diam p(X ).

Proof Note that in this case, for every x, x ′ ∈ X 	∞(u X (x, x ′), u∗(∗, ∗)) =
	∞(u X (x, x ′), 0) = u X (x, x ′). Therefore, thanks to this observation, and the fact that
μ := μX ⊗δ∗ is the unique coupling between μX and δ∗, (10) leads to the claim. ��

C Technical Details from Sect. 4

C.1 Proofs from Sect. 4

In this section, we state the full proofs of the results from Sect. 4.

C.1.1 Proof of Theorem 4.1

Part 1. We observe that for any point x in an ultrametric space X , there always
exists x ′ ∈ X such that u X (x, x ′) = diam(X) (see [27]). Since by assump-
tion μX is fully supported, sX ,∞ ≡ diam(X) is a constant function. Therefore,
	∞(sX ,∞(x), sY ,∞(y)) ≡ 	∞(diam(X), diam(Y )) for all x ∈ X and y ∈ Y . This
implies that FLBult∞(X ,Y) = 	∞(diam(X), diam(Y )). By [64, Cor. 5.3] and Corol-
lary 3.16, we have that

uGW,∞(X ,Y) ≥ uGH(X , Y ) ≥ 	∞(diam(X), diam(Y )) = FLBult∞(X ,Y).

Part 2. The proof for dGW,p(X ,Y) ≥ TLBp(X ,Y) in [60, Sect. 6] can be used
essentially without any change for showing uGW,p(X ,Y) ≥ TLBult

p (X ,Y). Hence,

it remains to show that TLBult
p (X ,Y) ≥ SLBult

p (X ,Y):

Proposition C.1 Let X ,Y ∈ Uw and let p ∈ [1,∞]. Then, TLBult
p (X ,Y) ≥

SLBult
p (X ,Y).

In order to prove Proposition C.1, we need the following technical lemma.

Lemma C.2 Let X = (X , dX , μX ) ∈ Uw. Then, spec(X) := {u X (x, x ′) | x, x ′ ∈ X }
is a compact subset of (R≥0,	∞).

Proof By Lemma A.7, we have that for each t > 0, Xt is a finite set. Let {tn}∞n=1
be a positive sequence decreasing to 0. Then, it is easy to see that spec(X) =⋃∞

n=1 spec(Xtn ). Since each spec(Xtn ) is a finite set, spec(X) is a countable set.
Now, pick any 0 �= t ∈ spec(X). Suppose t is a cluster point in spec(X). Then,

there exists infinitely many s ∈ spec(X) greater than t/2. However, this will result in
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Xt/2 being an infinite set, which contradicts the fact that Xt/2 is finite. Therefore, 0 is
the only possible cluster point of spec(X). By Lemma A.2, we have that spec(X) is
compact. ��

Next we demonstrate Proposition C.1 and hence finish the proof of Theorem 4.1.

Proof of Proposition C.1 We first prove the case when p < ∞. Let dhX (x) :=
u X (x, ·)# μX and let dhY (y) := uY (y, ·)# μY . Further, define

d HX := (u X )# (μX ⊗μX ), d HY := (uY )# (μY ⊗μY ).

Lemma C.2 implies that the set S := spec(X) ∪ spec(Y ) is a compact subset of
(R≥0,	∞). It is easy to see that supp (dhX ), supp(dhY ), supp(d HX ), supp(d HY ) ⊆
S ⊆ R≥0. Now, recall by Proposition 4.4 that SLBult

p (X ,Y) = d (S,	∞)
W,p (d HX , d HY )

and

TLBult
p (X ,Y) =

(
inf

π∈C(μX ,μY )

∫

X×Y

(
d (S,	∞)
W,p (dhX (x), dhY (y))

)p
μ(dx ×dy)

)1/p

.

Further, we observe for any x ∈ X and y ∈ Y that

d (S,	∞)
W,p (dhX (x), dhY (y)) = inf

πxy∈C(dhX (x),dhY (y))

(∫

S×S
	

p∞(s, t) πxy(ds ×dt)

)1/p

.

For the remainder of this proof, the metric on S ⊆ R≥0 is always given by 	∞.
Additionally, P(S) denotes the set of probability measures on S and we equip P(S)

with the Borel σ -field with respect to the topology induced by weak convergence.

Claim 1 There is ameasurable choice (x, y) �→ π∗
xy such that for each (x, y) ∈ X ×Y ,

π∗
x,y is an optimal transport plan between dhX (x) and dhY (y).

Proof of Claim 1 Since both 	1 and 	∞ induce the same topology on S, and thus the

same Borel sets on S, d
(R≥0,	1)

W,p and d
(R≥0,	∞)

W,p metrize the same weak topology on
P(S). By [61, Rem. 2.5], the following two maps are continuous with respect to the
weak topology and thus measurable:

�1 : X → P(S), x �→ dhX (x) and �2 : Y → P(S), y �→ dhY (y).

Since S is compact, the space (P(S), d (S,	∞)
W,p ) is separable [91, Thm. 6.18]. This

yields thatB(P(S)×P(S)) = B(P(S))⊗B(P(S)) [33, Prop. 1.5]. Hence, the prod-
uct� : X ×Y → P(S)×P(S)of�1 and�2, definedby (x, y) �→ (dhX (x), dhY (y))

is measurable [33, Prop. 2.4]. Then, a direct application of [91, Cor. 5.22] gives the
claim. ��

Now, we have that for every μ ∈ C(μX , μY ) that

∫

X×Y

(
d (S,	∞)
W,p (dhX (x), dhY (y))

)p
μ(dx ×dy)
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=
∫

X×Y

∫

S×S
	

p∞(s, t) π∗
xy(ds ×dt) μ(dx ×dy)

=
∫

S×S
	

p∞(s, t)�μ(ds ×dt),

by Fubini’s Theorem, where �μ ∈ P(S × S) is defined as

�μ(A) :=
∫

X×Y
π∗

xy(A) μ(dx ×dy)

for any measurable A ⊆ S × S. We remark that by Claim 1 the measure �μ is well
defined. Next, we verify that �μ ∈ C(d HX , d HY ). For any measurable A ⊆ (S,	∞)

we have

�μ(A× S) =
∫

X×Y
π∗

x,y(A× S) μ(dx ×dy)

=
∫

X×Y
dhX (x)(A) μ(dx ×dy)

=
∫

X
dhX (x)(A) μX (dx)

(i)=
∫

X

∫

X
1{dX (x,x ′)∈A} μX (dx ′) μX (dx) = d HX (A),

where we have applied the marginal constraints for πxy and μ. Further, (i) follows
by the change-of-variables formula. The analogous arguments give that �μ(S × B) =
d HY (B) for any measurable B ⊆ S. Thus, we conclude that for everyμ ∈ C(μX , μY )

∫

X×Y

(
d (S,	∞)
W,p (dhX (x), dhY (y))

)p
μ(dx ×dy) =

∫

S×S
	

p∞(s, t)�μ(ds ×dt)

≥ inf
π∈C(d HX ,d HY )

∫

S×S
	∞(s, t) π(ds ×dt) = (

d (S,	∞)
W,p (d HX , d HY )

)p
.

This gives the claim for p < ∞.
Next, we prove the assertion for the case p = ∞. Note that for any p < ∞

TLBult
p (X ,Y) = inf

μ∈C(μX ,μY )

∥∥d (S,	∞)
W,p (dhX ( ·), dhY ( ·))∥∥L p(μ)

≤ inf
μ∈C(μX ,μY )

∥
∥d (S,	∞)

W,∞ (dhX ( ·), dhY ( ·))∥∥L∞(μ)
= TLBult∞(X ,Y),

where the inequality holds since d (S,	∞)
W,p ≤ d (S,	∞)

W,∞ and ‖·‖L p(μ) ≤ ‖·‖L∞(μ).
By [35, Prop. 3] we have that

SLBult∞(X ,Y) = d (S,	∞)
W,∞ (d HX , d HY )

= lim
p→∞ d (S,	∞)

W,p (d HX , d HY ) = lim
p→∞ SLBult

p (X ,Y).
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Therefore,

SLBult∞(X ,Y) = lim
p→∞ SLBult

p (X ,Y)

≤ lim sup
p→∞

TLBult
p (X ,Y) ≤ TLBult∞(X ,Y).

��

C.1.2 Proof of Proposition 4.4

We only prove the first statement for p ∈ [1,∞). The case p = ∞ as well as the
second statement can be proven in a similar manner.

By directly using the change-of-variables formula, we have the following:

SLBult
p (X ,Y) = inf

γ∈C(μX ⊗μX ,μY ⊗μY )
‖	∞(u X , uY )‖p

L p(γ )

= inf
γ∈C(μX ⊗μX ,μY ⊗μY )

‖	∞‖p
L p((u X ×uY )# γ ),

where

u X ×uY : X × X ×Y ×Y → R≥0×R≥0

maps (x, x ′, y, y′) to (u X (x, x ′), uY (y, y′)). By Lemma A.5,

(u X ×uY )# C(μX ⊗μX , μY ⊗μY ) = C((u X )# (μX ⊗μX ), (uY )# (μY ⊗μY )).

Therefore,

SLBult
p (X ,Y) = inf

γ∈C(μX ⊗μX ,μY ⊗μY )

∫

R≥0×R≥0

(	∞(s, t))p (u X ×uY )# γ (ds ×dt)

= inf
γ̃∈C((u X )# (μX ⊗μX ),(uY )# (μY ⊗μY ))

∫

R≥0×R≥0

(	∞(s, t))p γ̃ (ds ×dt)

= d
(R≥0,	∞)

W,p

(
(u X )# (μX ⊗μX ), (uY )# (μY ⊗μY )

)
.

C.1.3 An Example: SLBult vs. TLBult

We will demonstrate that there are ultrametric measure spaces X1 and X2 such that
SLBult

p (X1,X2) = 0, while it holds TLBult
p (X1,X2) > 0.

Consider the three point space �3(1) = ({x1, x2, x3}, u) where u(xi , x j ) = 1
whenever i �= j . Construct two probability measures μ1 := 2

3δx1 + 1
6δx2 + 1

6δx3 and
μ2 := 1

3δx1 + ( 1
3 − 1

2
√
3

)
δx2 + ( 1

3 + 1
2
√
3

)
δx3 . We then let X1 := (�3(1), μ1) and

X2 := (�3(1), μ2). Obviously, u# (μ1⊗μ1) = u# (μ2⊗μ2) = δ0/2 + δ1/2. Then,
by Proposition 4.4 we immediately have that SLBult

p (X1,X2) = 0 for any p ∈ [1,∞].
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Now, note that u(x1, ·)# μ1 = 2δ0/3 + δ1/3, which is different from u(xi , ·)# μ2 for
each i = 1, 2, 3. This implies (by Proposition 4.4) that TLBult

p (X1,X2) > 0 for any
p ∈ [1,∞].

Note that this example works as well for showing that TLBp(X1,X2) >

SLBp(X1,X2) = 0.

D Technical Details from Sect. 5

D.1 Technical Details from Sect. 5.2

Here, we list the precise results for the comparisons of the spaces Xi , 1 ≤ i ≤ 4,
illustrated in Fig. 7. They are gathered in Tables 1 and 2.

Table 1 Comparison of different ultrametric measure spaces I:

uGW,1 uGW,∞
X1 X2 X3 X4 X1 X2 X3 X4

X1 0.0000 0.9333 0.2444 0.2511 0.0000 2.1000 1.1000 2.000

X2 0.9333 0.0000 1.1778 1.0956 2.1000 0.0000 2.1000 2.1000

X3 0.2444 1.1778 0.0000 0.4493 1.1000 2.1000 0.0000 2.0000

X4 0.2511 1.0956 0.4493 0.0000 2.0000 2.1000 2.0000 0.0000

The values of uGW,1(Xi ,X j ) (approximated by Algorithm 1) and uGW,∞(Xi ,X j ), 1 ≤ i ≤ j ≤ 4, where
Xi , 1 ≤ i ≤ 4, denote the ultrametric measure spaces displayed in Fig. 7

Table 2 Comparison of different ultrametric measure spaces II:

SLBult
1

X1 X2 X3 X4

X1 0.0000 0.9333 0.2444 0.0778

X2 0.9333 0.0000 1.1778 1.0111

X3 0.2444 1.1778 0.0000 0.2764

X4 0.0778 1.0111 0.2764 0.0000

The values of SLBult
1 (Xi ,X j ), 1 ≤ i ≤ j ≤ 4, where Xi , 1 ≤ i ≤ 4, denote the ultrametric measure

spaces displayed in Fig. 7

D.2 Technical Details from Sect. 5.3

Here, we state more results for the comparison of the ultrametric measure spaces
illustrated in Fig. 7 and give the precise construction of the ultrametric spaces Zi

k,t ,
2 ≤ k ≤ 5, t = 0, 0.2, 0.4, 0.4, 1 ≤ i ≤ 15.
The ultrametric measure spaces from Fig. 7 See Table 3 for the results of comparing
the ultrametric dissimilarity spaces in Fig. 7 based on dGW,1 and SLB1.
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Table 3 Comparison of different ultrametric measure spaces III:

dGW,1 SLB1

X1 X2 X3 X4 X1 X2 X3 X4

X1 0.0000 0.0444 0.0222 0.2111 0.0000 0.0444 0.0222 0.0422

X2 0.0444 0.0000 0.0667 0.2556 0.0444 0.0000 0.0667 0.0867

X3 0.0222 0.0667 0.0000 0.2253 0.0222 0.0667 0.0000 0.0573

X4 0.2111 0.2556 0.2253 0.0000 0.0422 0.0867 0.0573 0.0000

The values of dGW,1(Xi ,X j ) (approximated by Algorithm 1) and SLB1(Xi ,X j ), 1 ≤ i ≤ j ≤ 4, where
(Xi , dXi , μXi ), 1 ≤ i ≤ 4, denote the ultrametric measure spaces displayed in Fig. 7

Construction of Zk For each k = 2, 3, 4, 5 we first draw a sample with 100×k points
from the distribution

∑k
i=0 U [1.5(k − 1), 1.5(k − 1) + 1]/k, where U [a, b] denotes

the uniform distribution on [a, b]. For each sample, we employ the single linkage
algorithm to create a dendrogram, which then induces an ultrametric on the given
sample. We further draw a 30-point subspace from each ultrametric space and denote
it by Zk . These four spaces have similar diameter values between 0.5 and 0.6. Each
space Zk is equippedwith theuniformprobabilitymeasure and the resultingultrametric
measure space is denoted by Zk = (Zk, uZk , μZk ), k = 2, 3, 4, 5. We remark that k
can be regarded as the number of blocks in the dendrogram representation of the
obtained ultrametric measure spaces (see the top row of Fig. 8 for a visualization of
three 3-block spaces).

Perturbations at level t . Given a perturbation level t ≥ 0 and an ultrametric space X ,
we consider the quotient space Xt . Each equivalence class [x]t ⊆ X is an ultrametric
subspace of X . If |[x]t | > 1, we letm := |spec([x]t )|−1 and write spec([x]t ) = {0 <

s1 < · · · < sm}. Let δ := diam([x]t ). We generate m uniformly distributed numbers
from [0, t − δ] and sort them according to ascending order to obtain a1 ≤ · · · ≤ am .
We then perturb u X |[x]t ×[x]t by replacing si with si + ai for each i = 1, . . . , m. We
do the same for all equivalence classes [x]t and thus obtain a new ultrametric on X .
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