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Abstract

We investigate compact ultrametric measure spaces which form a subset /Y of the
collection of all metric measure spaces MY, In analogy with the notion of the ultramet-
ric Gromov—Hausdorff distance on the collection of ultrametric spaces U/, we define
ultrametric versions of two metrics on UV, namely of Sturm’s Gromov—Wasserstein
distance of order p and of the Gromov—Wasserstein distance of order p. We study the
basic topological and geometric properties of these distances as well as their relation
and derive for p = oo a polynomial time algorithm for their calculation. Further, sev-
eral lower bounds for both distances are derived and some of our results are generalized
to the case of finite ultra-dissimilarity spaces. Finally, we study the relation between
the Gromov—Wasserstein distance and its ultrametric version (as well as the relation
between the corresponding lower bounds) in simulations and apply our findings for
phylogenetic tree shape comparisons.
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1 Introduction

Over the last decade the acquisition of ever more complex data, structures and shapes
has increased dramatically. Consequently, the need to develop meaningful methods for
comparing general objects has become more and more apparent. In numerous appli-
cations, e.g. in molecular biology [16, 40, 49], computer vision [42, 56] and electrical
engineering [50, 70], it is important to distinguish between different objects in a pose
invariant manner: two instances of a given object in different spatial orientations are
deemed to be equal. Furthermore, also the comparisons of graphs, trees, ultramet-
ric spaces and networks, where mainly the underlying connectivity structure matters,
have grown in importance [20, 26]. One possibility to compare two general objects in
a pose invariant manner is to model them as metric spaces (X, dx) and (Y, dy) and
regard them as elements of the collection of isometry classes of compact metric spaces
denoted by M (i.e. two compact metric spaces (X, dx) and (Y, dy) are in the same
class if and only if they are isometric to each other which we denote by X = Y). It
is possible to compare (X, dx) and (Y, dy) via the Gromov—-Hausdorff distance [29,
38], which is a metric on M. It is defined as

don(X, ¥) = inf, 45 (¢ (X), Y (Y)), (1)

where ¢: X — Z and ¢: Y — Z are isometric embeddings into a common metric
space (Z, dz) and d}(lz,dz ) denotes the Hausdorffdistance in Z. The Hausdorff distance
is a metric on the collection S(Z) of all compact subsets of a metric space (Z, dz)
and, for A, B € S(Z), is defined as follows:

dI_(IZ’dZ)(A, B) := max (sup binfdz(a, b), sup ing dz(a, b))~

acAbeB beB A€

While the Gromov—-Hausdorff distance has been applied successfully to various shape
and data analysis tasks (see e.g. [11-15, 18, 19, 62]), it turns out that it is generally
convenient to equip the modelled objects with additional structure rendering them
as metric measure spaces [59, 60]. A metric measure space X = (X, dx, ux) is a
triple, where (X, dx) denotes a metric space and px is a Borel probability measure
on X with full support. This additional probability measure can be thought of as
signalling the importance of different regions in the modelled object. Moreover, two
metric measure spaces X = (X,dy, nuyx) and Y = (Y, dy, uy) are considered as
isomorphic (denoted by X =,, )) iff there exists an isometry ¢: (X, dx) — (Y, dy)
such that gy ux = wny. Here, gy denotes the pushforward map induced by ¢. From
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now on, MY denotes the collection of all (isomorphism classes of) compact metric
measure spaces.

The metric measure space structure allows us to regard objects as probability
measures instead of compact sets. Hence, it is possible to substitute the Hausdorff
component in (1) by a relaxed notion of proximity, namely the Wasserstein distance.
This distance is fundamental to a variety of mathematical developments and is also
known as Kantorovich distance [44], Kantorovich—Rubinstein distance [45], Mallows
distance [57] or as the Earth Mover’s distance [78]. Given a compact metric space
(Z,dz),let P(Z) denote the space of probability measures on Z and let«, 8 € P(Z).
Then, the Wasserstein distance of order p, for 1 < p < 00, between « and 3 is defined
as

1/p
dy/ 9 (. B) :=( inf f (dz(x,y))l’wxxdy)) : @
neCl,p) Jzxz

and for p = oo as

d(Z dz)( B) := inf sup  dz(x,y), G)
neC(e.B) (x,y)esupp(u)

where supp (u) stands for the support of 1 and C(e, B) denotes the set of all couplings
of o and B, i.e., the set of all probability measures p on the product space Z x Z such
that

w(AxZ)=a(A) and u(ZxB) = B(B)

for all Borel measurable sets A and B of Z. It is worth noting that the Wasserstein
distance between probability measures on the real line admits a closed form solution
(see [90] and also Remark 2.10). We note that (2) and (3) can be unified into a more
compact expression via L”-norms:

Ay @ )= inf |dzllLrgy. 1= p < oo
neC(a,p)

To simplify the presentation of our results in this paper, we will adopt this notation
throughout what follows. To facilitate readers to understand our notation, we provide
expanded version of important formulas in Section A of the Supplementary Material.

Sturm [83] has shown that replacing the Hausdorff distance in (1) with the Wasser-
stein distance yields a meaningful metric on MY. Let X = (X, dx, nx) and
Y = (Y, dy, ny) be two metric measure spaces. Then, Sturm’s Gromov—Wasserstein
distance of order p, 1 < p < 00, is defined as

dgwip (X, V) 1= igfx// dé\/z,;lZ)@# Wwx, Y iy), “4)

for isometric embeddings ¢: X — Z, ¥: Y — Z into a metric space (Z, dz).
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Based on similar ideas but starting from a different representation of the Gromov—
Hausdorff distance, Mémoli [59, 60] derived a computationally more tractable and
topologically equivalent metric on MY, namely the Gromov—Wasserstein distance:
For 1 < p < oo, the p-diston‘ionl of a coupling u € C(uy, py) is defined as

disp(u) == |ldx — dyllLr(uow)-

The Gromov—Wasserstein distance of order p, 1 < p < 00, is defined as

dow p(X,)) = inf  dis (). 5)

1
2 peClux,my)

Itis known that in general dgw, , < dé%{,m; and that the inequality can be strict [60].

Although both dét\‘,lf“; and dgw,p, 1 < p < oo, are in general NP-hard to compute
[60], it is possible to efficiently approximate dgw, , via conditional gradient descent
[60, 72]. This has led to numerous applications and extensions of this distance [4, 17,
22,179, 86].

In many cases, since the direct computation of either of these distances can be oner-
ous, the determination of the degree of similarity between two datasets is performed
via firstly computing invariant features out of each dataset (e.g. global distance distri-
butions [68]) and secondly by suitably comparing these features. This point of view has
motivated the exploration of inverse problems arising from the study of such features
[10, 60, 61, 84].

Clearly, MY contains various, extremely general spaces. However, in many applica-
tions one has prior knowledge about the metric measure spaces under consideration and
it is often reasonable to restrict oneself to work on specific sub-collections O% € MV,
For instance, it could be known that the metrics of the spaces considered are induced
by the shortest path metric on some underlying trees and hence it is unnecessary to
consider the calculation of dGSt\‘,{,r“‘;‘, anddgw, p, 1 < p < oo, forall of M¥. The potential
advantages of focusing on a specific sub-collection OV are twofold. On the one hand,
it might be possible to use the features of OV to gain computational benefits. On the
other hand, it might be possible to refine the definition dét\‘;\,r‘g anddgw,p, 1 < p < o0,
to obtain more informative comparisons on O%. Naturally, it is of interest to identify
and study these subclasses and the corresponding refinements. This approach has been
pursued to study (variants of) the Gromov—Hausdorff distance on compact ultrametric
spaces by Zarichnyi [93] and Qiu [73], and on compact p-metric spaces by Mémoli
and Wan [64]. Here, the metric space (X, dy) is called a p-metric space (1 < p < 00),
ifforall x, x/, x” € X itholds dx (x, x”) < (dx(x, x")P +dx (x", x”)P)V/P_ Further, the
metric space (X, uy) is called an ultrametric space, if ux fulfills the strong triangle
inequality, i.e., it holds for all x, x’, x” € X that

ux(x, x") < max (ux(x, x'), ux (', x”)). 6)

I The term p-distortion” is not used in [59, 60]. However, the quantity dis () is introduced as J (@) in
both references.
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In particular, Mémoli et al. [63] derived a polynomial time algorithm for computing the
ultrametric Gromov—Hausdorff distance ugy between two finite ultrametric spaces
(X,uyx) and (Y, uy) (see Sect. 2.2) defined as

nen(X, V)= inf, dE 7 (G (X), Y (Y)), ©)

where ¢: X — Z and ¢ : Y — Z are isometric embeddings into a common ultra-
metric space (Z, uz) and dh(lz’”) denotes the Hausdorff distance on Z.
A further motivation to study (surrogates of) the distances d(s}%‘\,m; and dgw,p

restricted on a subset O% comes from the idea of slicing which originated as a method
. . . d o
to efficiently estimate the Wasserstein distance d\S »(@ B) between probability mea-

sures « and B supported in a high dimensional Euclidean space R? [78]. The original
idea is that given any line £ in R¢ one first obtains a; and B¢, the respective pushfor-
wards of o and B under the orthogonal projection map 7¢: RY — ¢, and then one
invokes the explicit formula for the Wasserstein distance for probability measures on

R (see Remark 2.10) to obtain a lower bound to d&%iip (e, B) without incurring the pos-
sibly high computational cost associated to solving an optimal transportation problem.
This lower bound is improved via repeated (often random) selections of the line £ [8,
48, 78].

Recently, Le et al. [54] pointed out that, thanks to the fact that the 1-Wasserstein
distance also admits an explicit formula when the underlying metric space is a tree [25,
31, 58], one can also devise tree slicing estimates of the distance between two given
probability measures by suitably projecting them onto tree-like structures. Most likely,
the same strategy is successful for suitable projections on random ultrametric spaces,
as on these there is also an explicit formula for the Wasserstein distance [46]. The same
line of work has also recently explored in the Gromov—Wasserstein scenario [53, 89]
and could be extended based on efficiently computable restrictions (or surrogates) of
dé%‘v”’; and dgw, p. Inspired by the results of Mémoli and Wan [64] and Mémoli [63]
on the ultrametric Gromov—Hausdorff distance as well as the results of Kloeckner
[46], who derived an explicit representation of the Wasserstein distance on ultrametric
spaces, we study the collection of compact ultrametric measure spaces UY < MV,
where X = (X, uyx, nx) € U, whenever the underlying metric space (X, uy) is a
compact ultrametric space.

In terms of applications, ultrametric spaces (and thus also ultrametric measure
spaces) arise naturally in statistics as metric encodings of dendrograms [18, 43] which
is a graph theoretical representation of ultrametric spaces, in the context of phyloge-
netic trees [82], in theoretical computer science in the probabilistic approximation of
finite metric spaces [5, 32], and in physics in the context of a mean-field theory of spin
glasses [65, 74].

Especially for phylogenetic trees (and dendrograms), where one tries to characterize
the structure of an underlying evolutionary process or the difference between two
such processes, it is important to have a meaningful method of comparison, i.e., a
meaningful metric on U%. However, it is evident from the definition of dét\‘{,rf;‘, and
its relationship with dgw,, (see [60]), that the ultrametric structure of X', Y € UV

is not taken into account in the computation of either dé%{,“g (X, V) ordgw, p(X,)),
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Distance =7
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Fig.1 Comparison between ultrametric measure spaces. Our objective is to devise methods for comparing
ultrametric measure spaces that take into account their unique structure, as represented by dendrograms
with weights on each of their leaves

1 < p < oo. Hence, we suggest, just as for the ultrametric Gromov—Hausdorff
distance, to adapt the definition of d ‘t“rm (see (4)) as well as the one of dgw,, (see
(5)) and verify that this makes the comparisons of ultrametric measure spaces more
sensitive and for p = oo leads to a polynomial time algorithm for the derivation of
the proposed metrics.

1.1 The Proposed Approach

Let ¥ = (X,ux,ux) and Y = (Y, uy, ny) be ultrametric measure spaces. We aim
to define meaningful distances for comparing them (see Fig. 1).

Reconsidering the definition of Sturm’s Gromov—Wasserstein distance in (4), we
propose to only infimize over ultrametric spaces (Z, uz). Thus, we define for p €
[1, oo] Sturm’s ultrametric Gromov—Wasserstein distance of order p as

uGw (X, V) = inf dy P (@ px. Y ), ®)

where ¢: X — Z, ¥ : Y — Z are isometric embeddings into an ultrametric space
(Z,uz).

In subsequent sections of this paper, we will establish several theoretically appealing
properties of uSt“m;? Unfortunately, we will verify that, although an explicit for-
mula for the Wasserstein distance of order p on ultrametric spaces exists [46], for

€ [1, 00) the calculation of udy™ » yields a highly non-trivial combinatorial opti-
mlzatlon problem (see Sect. 3.1.1). T herefore, we demonstrate that an adaptation of
the Gromov—Wasserstein distance defined in (5) yields a topologically equivalent and
easily approximable distance on /" In order to define this adaption, we need to intro-
duce some notation. For a,b > O and 1 < g < oo let Ay(a, b) = |a? — bi|Va,
Further define A (a, b) := max(a, b) whenever a # b and Ao (a, b) = 0ifa = b.
Now, we can rewrite dgw, p, 1 < p < 00, as follows:

dow,p(X,)) = inf ||A1(an dy)llLr(uew) - ©)]

1
2 peClux. iy

Considering the derivation of dgw, » in [60] and the results on the closely related ultra-
metric Gromov—Hausdorff distance studied in [64] and [63], this suggests replacing
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A1 in (9) with A in order to incorporate the ultrametric structures of (X, uy, ix)
and (Y, uy, ny) into the comparison. Hence, we define the p-ultra-distortion of a
coupling u € C(ux, uy) forl < p < oo as

dis;“(u) = Ao (ux, uy)llLr (uew)- (10)

The ultrametric Gromov—Wasserstein distance of order p € [1, o], is given as

ucw,p(X,Y) = inf dis;h(,u). (11D
neC(ux,my)

Due to the structural similarity between dgw,, and ugw,,, we expect that many
properties of dgw,, extend to ugw, p. In particular, we will establish that ugw_ , can
be approximated” via conditional gradient descent and also admits several polynomial
time computable lower bounds which are useful in applications.

Itis worth mentioning that Sturm [84] studied the family of so-called L?--distortion
distances similar to our construction of ugw, ,. In our language, for any p, g € [1, 00),
the LP-9-distortion distance is constructed by infimizing over the (p, ¢g)-distortion
defined by replacing Ao with (A,)? in (10). This distance shares many properties
with dgw, p.

1.2 Overview of Our Results

Section 2. We generalize the results of [ 18] on the relation between ultrametric spaces
and dendrograms and establish a bijection between compact ultrametric spaces and
proper dendrograms (see Definition 2.1). After recalling some results on the ultra-
metric Gromov—Hausdorff distance (see (7)), we use the connection between compact
ultrametric spaces and dendrograms to reformulate the expression of the p-Wasserstein
distance (1 < p < o0) on ultrametric spaces derived by [46] in terms of proper den-
drograms. This allows us to derive a formulation of the co-Wasserstein distance on
ultrametric spaces and to study the Wasserstein distance on compact subspaces of the
ultrametric space (R>o, Aso), Which will be relevant when studying lower bounds of
uGgw,p, 1 < p < oo.

Section 3. We demonstrate that ugw,, and ug{,‘vrfr;, 1 < p < o0, are p-metrics
on the collection of ultrametric measure spaces L% . We derive several alternative
representations for ué‘{,‘j“; and study the relation between the metrics ué‘{,‘j“; andugw, p.
In particular, we show that, while for 1 < p < oo it holds in general that ugw,, <
21/p ugf\‘,‘&n;, both metrics coincide for p = 00, i.€., UGW.co = ué‘%&’go Furthermore, we
show that an alternative representation of uGw, o leads to a polynomial time algorithm

for the calculation of uGw, o (as well as udy™ ). Moreover, we study the topological

properties of (¥, uét{}&”;,) and UY, ugw,p), 1 < p < 0o. Most importantly, we show

that ué‘{,‘&";, and ugw, , induce the same topology on U/¥ which is also different from

2 Here “approximation” is meant in the sense that one can write code which will locally minimize the
functional. There are in general no theoretical guarantees that these algorithms will converge to a global
minimum.
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the one induced by dé‘\‘{,rf‘;, /dcw.p, 1 < p < 0o. More precisely, the topology induced

by ugw, p (resp. ugy'™,) onU* is much finer than that induced by dgw,  (resp. dgy )-

As we will show in Sect. 5, the distance ugw,  is more sensitive to certain differences
of the ultrametric measure spaces considered than dgw, ,. While we further prove that
the metric spaces (U™, ué‘&}’?’) and (UY, ugw,p), 1 < p < oo, are neither complete

nor separable metric space, we demonstrate that the ultrametric space (Y, uét{,‘&“;o s

which coincides with (UY, uGgw o), is complete. Finally, we establish that ((/¥, u(s;t{,‘\f“f

is a geodesic space.

Section 4. It seems impossible to derive a polynomial time algorithm for the calculation
of u é‘{;}“}a andugw,p, 1 < p < oo.Consequently, based on easily computable invariant
features, we derive several polynomial time computable lower bounds for ugw, p,
1 < p < oo. Due to the structural similarity between dgw,, and ugw, p, these are in
a certain sense analogous to those derived in [59, 60] for dgw, ,. Among other things,
we show that

uGw,p(X. V) = SLBU (X, V) := inf I Aso G up)llLoy).
yeCux®ux, iy Quy)

We verify that the lower bound SLB“,‘,lt can be reformulated in terms of the Wasser-
stein distance on the ultrametric space (R>o, Aoo) (We derive an explicit formula

for d\f\,]%o’[\m) in Sect. 2.3). This allows us to efficiently compute SLB‘;,“(X ,)) in

O(max (| X[, |Y])?) steps.

Section 5. We illustrate the behavior and relation between ugw,1 (which can be approx-
imated via conditional gradient descent) and SLB‘lllt in a set of examples. We also
carefully illustrate the differences between ugw,1 and SLBY", and dow,1 and SLB;
(see Sect. 4 for a definition), respectively.

1.3 Related Work

In order to better contextualize our contribution, we now describe related work, both in
applied and computational geometry, and in phylogenetics (where notions of distance
between trees have arisen naturally).

Metrics between trees: the phylogenetics perspective. In phylogenetics, where one
chief objective is to infer the evolutionary relationship between species via methods
that evaluate observable traits (such as DNA sequences), the need to be able to measure
dissimilarity between different trees arises from the fact that the process of reconstruc-
tion of a phylogenetic tree may depend on the set of genes being considered. At the
same time, even for the same set of genes, different reconstruction methods could be
applied which would result in different trees. As such, this has led to the development
of many different metrics for measuring distance between phylogenetic trees. Exam-
ples include the Robinson—Foulds metric [77], the subtree-prune and regraft distance
[39], and the nearest-neighbor interchange distance [76].

As pointed out in Owen and Provan [69], many of these distances tend to quantify
differences between tree topologies and often do not take into account edge lengths. A
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certain phylogenetic tree metric space which encodes for edge lengths was proposed
in Billera et al. [6] and studied algorithmically in [69]. This tree space assumes that
all trees have the same set of taxa. An extension to the case of trees over different
underlying sets is given in Grindstaff and Owen [37]. Lafond et al. [51] considered
one type of metrics on possibly multilabeled phylogenetic trees with a fixed number
of leafs. As the authors pointed out, a multilabeled phylogenetic tree in which no leafs
are repeated is just a standard phylogenetic tree, whereas a multilabeled phylogenetic
tree in which all labels are equal defines a tree shape. The authors then proceeded
to study the computational complexity associated to generalizations of some of the
usual metrics for phylogenetic trees (such as the Robinson—Foulds distance) to the
multilabeled case. Colijn and Plazzotta [23] studied a metric between (binary) phy-
logenetic tree shapes based on a bottom to top enumeration of specific connectivity
structures. The authors applied their metric to compare evolutionary trees based on
the HA protein sequences from human influenza collected in different regions.

Metrics between trees: the applied geometry perspective. From a different perspec-
tive, ideas from applied geometry and applied and computational topology have been
applied to the comparison of tree shapes in applications in probability, clustering and
applied and computational topology.

Metric trees are also considered in probability theory in the study of models for ran-
dom trees together with the need to quantify their distance; Evans [30] described some
variants of the Gromov—Hausdorff distance between metric trees. See also Greven et
al. [36] for the case of metric measure space representations of trees and a certain
Gromov—Prokhorov type of metric on the collection thereof.

Trees, in the form of dendrograms, are abundant in the realm of hierarchical cluster-
ing methods. In their study of the stability of hierarchical clustering methods, Carlsson
and Mémoli [18] utilized the Gromov-Hausdorff distance between the ultrametric
representation of dendrograms. Schmiedl [80] proved that computing the Gromov—
Hausdorff distance between tree metric spaces is NP-hard. Liebscher [55] suggested
some variants of the Gromov—Hausdorff distance that are applicable in the context of
phylogenetic trees. As mentioned before, Zarichnyi [93] introduced the ultrametric
Gromov—Hausdorff distance ugy between compact ultrametric spaces (a special type
of tree metric spaces). Certain theoretical properties such as precompactness of ugy
have been studied in Qiu [73]. In contrast with the NP-hardness of computing dgy,
Mémoli et al. [63] devised a polynomial time algorithm for computing ugy.

In computational topology merge trees arise through the study of the sublevel sets
of a given function [1, 75] with the goal of shape simplification. Morozov et al. [66]
developed the notion of interleaving distance between merge trees which is related
to the Gromov—Hausdorff distance between trees through bi-Lipschitz bounds. In
Agarwal et al. [2], exploiting the connection between the interleaving distance and the
Gromov-Hausdorff between metric trees, the authors approached the computation of
the Gromov—-Hausdorff distance between metric trees in general and provide certain
approximation algorithms. Touli and Wang [87] devised fixed-parameter tractable
(FPT) algorithms for computing the interleaving distance between metric trees. One
can imply from their methods an FPT algorithm to compute a 2-approximation of the
Gromov—Hausdorff distance between ultrametric spaces. Mémoli et al. [63] devised
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an FPT algorithm for computing the exact value of the Gromov—Hausdorff distances
between ultrametric spaces.

2 Preliminaries

In this section we briefly summarize the basic notions and concepts required throughout
the paper.

2.1 Ultrametric Spaces and Dendrograms

It is well known that ultrametric spaces possess tree-like structures. In particular, it
was established in [18] that finite ultrametric spaces are equivalent to the so-called
dendrograms. In this way, we generalize this equivalence to the case of compact
ultrametric spaces.

We first introduce some definitions and some notation. Given a set X, a partition of
X isaset Px = {X;}ies where [ is any index set, @ # X; C X, X; N X; = @ forall
i # jeland|J;.; Xi = X. We call each element X; a block of the given partition
Px and denote by Part (X) the collection of all partitions of X. For two partitions Py
and Py we say that Py is finer than Py, if for every block X; € Py there exists a
block X; € Py such that X; C X}.

Definition 2.1 (Proper dendrogram) Given a set X (not necessarily finite), a proper
dendrogram 0y : [0, oo) — Part(X) is a map satisfying the following conditions:

(1) Ox(s) is finer than Ox (r) forany 0 < s <t < oo.
(i1) Ox(0) is the finest partition consisting only singleton sets.
(iii) There exists T > O such that for any t > T, 6x(¢#) = {X} is the trivial partition.
(iv) Foreacht > 0, there exists € > 0 such that Ox (t) = Ox (¢') forall ¢’ € [t, t + ¢].
(v) For any distinct points x, x’ € X, there exists Ty,» > 0 such that x and x’ belong
to different blocks in Oy (T /).
(vi) Foreacht > 0, 6x(t) consists of only finitely many blocks.
(vii) Let {#,},en be a decreasing sequence such that lim,_, .., = 0 and let X, €
Ox (t,). If forany 1 <n <m, X,, € X, then () ,cny X # O.

When X is finite, a function 0y : [0, oo) — Part(X) satisfying conditions (i) to (iv)
will satisfy conditions (v), (vi) and (vii) automatically, and thus a proper dendrogram
reduces to the usual dendrogram (see [18, Sect. 3.1] for a formal definition). Let O
be a proper dendrogram over a set X. For any x € X and ¢t > 0, we denote by [x]X the
block in 6(¢) that contains x € X and abbreviate [x],X to [x]; when the underlying set
X is clear from the context. Similarly to Carlsson and Mémoli [18], who considered
the relation between finite ultrametric spaces and dendrograms, we will prove that
there is a bijection between compact ultrametric spaces and proper dendrograms. In
particular, one can show that the subsequent theorem generalizes [18, Thm. 9]. Since
its proof depends on several concepts not yet introduced, we postpone it to the proof of
Theorem 2.2. We remark that compact ultrametric spaces have been also characterized
via other terminology such as synchronized rooted tree in [46] and comb metric space
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in [52]. We chose to work with dendrogram as it provides a succinct and illustrative
description of ultrametric spaces.

Theorem 2.2 Given a set X, denote by U(X) the collection of all compact ultrametrics
on X and D(X) the collection of all proper dendrograms over X. For any 0 € D(X),
consider ug defined as follows:

Vx,x' € X, ug(x,x') = inf{t > 0| x, x" belong to the same block on(t)}.

Then, ug € U(X) and the map Yx : D(X) — U(X) sending 0 to uy is bijective.

Remark 2.3 From now on, we denote by 6y the proper dendrogram corresponding to a
given compact ultrametric ux on X under the bijection given above. Note that a block
[x]; in Ox (¢) is actually the closed ball B;(x) in X centered at x with radius ¢. So for
each t > 0, Ox(¢) partitions X into a union of several closed balls in X with respect
touy.

2.2 The Ultrametric Gromov-Hausdorff Distance

Both dét\‘,{,rf;‘, and dgw,p, 1 < p < oo, are by construction closely related to the
Gromov—Hausdorff distance. In a recent paper, Mémoli et al. [63] studied an ultra-
metric version of this distance, namely the ultrametric Gromov—-Hausdorff distance
(denoted as ugy). Since we will demonstrate several connections between ué‘{,‘j%,
uGw,p, 1 < p < 00, and this distance, we briefly summarize some of the results in

[63, 64]. We start by recalling the formal definition of ugy.

Definition 2.4 Let (X, ux) and (Y, uy) be two compact ultrametric spaces. Then, the
ultrametric Gromov—Hausdorff between X and Y is defined as

uGn(X,¥) = inf, 47D (¢ (X), Y (1)),

where ¢: X — Z and : Y — Z are isometric embeddings (distance preserving
transformations) into the ultrametric space (Z, uz).

Zarichnyi [93] has shown that ugp is an ultrametric on the isometry classes of com-
pact ultrametric spaces, which is denoted by ¢/, and Mémoli and Wan [64] identified
a structural theorem (cf. Thm. 2.5) that gives rise to a polynomial time algorithm for
ugH. More precisely, it was proven in [64] that ugy can be calculated via so-called
quotient ultrametric spaces, which we define next. Let (X, uy) be any ultrametric
space and let # > 0. We define an equivalence relation ~; on X as follows: x ~; x iff
uy(x,x") <t. We denote by [x] tX (resp. [x];) the equivalence class of x under ~; and
by X, the set of all such equivalence classes. In fact, [x]X = {x' € X |u(x, x") < t}
is exactly the closed ball centered at x with radius ¢ and corresponds to a block in the
corresponding proper dendrogram Oy (¢) (see Remark 2.3). Thus, one can think of X;
as a “set representation” of Oy (t). We define uy, : X; x X; — Rx¢ as follows:

MX(X,.X/), [x]t # [x/]ls

ux, (5l ) o= ol ]
) t — r-

@ Springer



Discrete & Computational Geometry

L4

Fig.2 Metric quotient: An ultrametric space (black) and its quotient at level ¢ (red)

Then, (X;, ux,) is an ultrametric space which we call the quotient of (X, ux) at level
t (see Fig. 2 for an illustration). It turns out that the quotient spaces characterize ugy
as follows.

Theorem 2.5 (Structural theorem for ugy, [64, Thm. 5.7]) Let (X, ux) and (Y, uy)
be two compact ultrametric spaces. Then,

ucn(X,Y) =inf{r > 0| X, = Y,}.

Remark 2.6 Let (X, uy)and (Y, uy) denote two finite ultrametric spaces and let¢ > 0.
The quotient spaces X; and Y; can be considered as vertex weighted, rooted trees [63].
Hence, it is possible to check whether X; = Y; in polynomial time [3]. Consequently,
Theorem 2.5 induces a simple, polynomial time algorithm to calculate ugy between
two finite ultrametric spaces.

2.3 Wasserstein Distance on Ultrametric Spaces

Kloeckner [46] uses the representation of ultrametric spaces as so-called synchronized
rooted trees to derive an explicit formula for the Wasserstein distance on ultrametric
spaces. By the constructions of the proper dendrograms and of the synchronized rooted
trees (see Sect. A.2.1), it is immediately clear how to reformulate the results of [46] on
compact ultrametric spaces in terms of proper dendrograms. To this end, we need to
introduce some notation. For a compact ultrametric space X, let fx be the associated
proper dendrogram and let V(X) := J,.(0x () = {[x];|x € X, > 0}. V(X) is in
fact the collection of all closed balls in X except for singletons {x} such that x is a
cluster point3 (see Lemma A.8). For B € V(X), we denote by B* the smallest (under
inclusion) element in V (X) such that B g B* (for the existence and uniqueness of
B* see Lemma A.1).

Theorem 2.7 (Wasserstein distance on ultrametric spaces, [46, Thm. 3.1]) Let X € U.
Foralla, B € P(X)and 1 < p < oo, we have

(dv’ﬂ,p(oe, ﬂ))p =271 Z (diam (B*)? — diam (B)”) |a(B) — B(B)|,

BeV(X)\{X}

where diam (B) denotes the diameter of the set B.

3 A cluster point x in a topological space X is such that any neighborhood of x contains countably many
points in X.
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Fig. 3 Illustration of (R, Aco): This is the dendrogram for a subspace of (R>(, Axo) consisting of 5
arbitrary distinct points of R4

We extend Lemma 2.7 to the case p = oco.

Lemma 2.8 Let X € U. Then, for any o, B € P(X), we have

dy ,B) = diam (B*). 12
W00 (@ B) el ) iam (B™) (12)
a(B)#B(B)

The proof of Lemma 2.8 is technical and we postpone it to Sect. A.1.2.

2.3.1 Wasserstein Distance on (R>g, Aoc)

The non-negative half real line R>o endowed with A turns out to be an ultramet-
ric space (cf. [64, Example 2.7]). Finite subspaces of (R>g, As) are of particular
interest in this paper. These spaces possess a particular structure (see Fig. 3) and the
computation of the Wasserstein distance on them can be further simplified.

Theorem 2.9 (dé\,ﬂifo’l\w) between finitely supported measures) Suppose o, 8 are two
probability measures supported on a finite subset {xo, . . ., X, } of R>0, Aco) such that
0<xg<x1 <---<xp Denote a; == a({x;}) and B; :== B({x;}). Then, we have for
p € [1, 00) that

n—1

d\;ﬂ%o,Aw)(m ) = 2””(2 Z(aj = Bj)

i=0 ' j=0

n 1/p
SN oM —ﬂi|~x;’) ENGE)
i=0

Let Fy and Fg denote the cumulative distribution functions of a and B, respectively.
Then, for the case p = 0o we obtain

(R>0,A00)
dy, = (a, B) = max max  Xx;i1, Maxx;).
Woeo g O<izn—1 TV o<izn '

Fo(xi)#Fp(xi) o #Pi
Proof Clearly, V(X) = {{xo, x1,...,xi}|i =1,...,n}U{{x;}|i =1, ..., n} (recall

that each set corresponds to a closed ball). Thus, we conclude the proof by applying
Lemmas 2.7 and 2.8. O
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Remark 2.10 (Closed-form solution for dv(vR;O )

(RZOsAoo)
dW

) As a closed-form solution for

is given by Theorem 2.9, we also note a classic closed-form solution for
Wasserstein distance on R equipped with Euclidean distance A:

1 1/p
dy M (@, ﬁ)=<f0 |F;1(r>—F,;1<r)|"dt) : (14)

where F, and Fg are cumulative distribution functions of « and 8, respectively. It

>0, A
turns out that closed-form solutions exist for more general d\;\, 0:A)

q < p, and we show more details in Sect. A.3.1.

,q € (1,00) and

Remark2.11 (Case p = 1) Note that when p = 1, by combining (13) with (14), we
obtain that for any finitely supported probability measures «, 8 € P(Rxo),

dy 7 @, B) = (d(RA”( ﬁ)+2x,|a, m)

= % (dv%“?#”(a, B) +/ x o — Bl <dx>>,
R

where «;, B; and x; are defined similarly as in Theorem 2.9 and we write the sum
Yo Xi la; — Bi| into an integral for a succinct expression which requires no speci-
fication of the supports of the measures. The formula indicates that the 1-Wasserstein
distance on (R>0p, Ao) is the average of the usual 1-Wasserstein distance on (R>p, A1)
and a “weighted total variation distance”. The weighted total variation like distance
term is sensitive to difference of supports. For example, let « = §;, and 8 = §,,, then
Jr X la — Bl (dx) = x1 + x2 if x1 5 x2.

Remark 2.12 (Extension to compactly supported measures) In fact, X € (R>0, Aco)
is compact if and only if it is either a finite set or a countable set containing zero
and with zero being the unique cluster point (w.r.t. the usual Euclidean distance A1)
(see Lemma A.2). Hence, it is straightforward to extend Theorem 2.9 to compactly
supported measures and we refer to Sect. A.3 for the missing details.

3 Ultrametric Gromov-Wasserstein Distances

In this section we investigate the properties of usmrm

and study the relation between them.

as well as ugw, p, 1 < p < o0,

3.1 Sturm’s Ultrametric Gromov-Wasserstein Distance

We begin by establishing several basic properties of uéf{f&“;, 1 < p < o0, including a
proof that u ‘“‘rm is indeed a metric (or more precisely a p-metric) on the collection

of compact ultrametric measure spaces U™ .
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The definition of ué‘{‘,}“} given in (8) is clunky, technical and in general not easy to

work with. Hence, the first observation to make is the fact that uéf{,’&”;, 1 <p<oo,

3 sturm. ,, sturm DS
shares a further property with dgy’ bt UGW.p, can be calculated by minimizing over

pseudo-ultrametrics* instead of isometric embeddings.

Lemma3.1 Let X = (X, ux, ux) andY = (Y, uy, py) be two ultrametric measure
spaces. Let D" (ux, uy) denote the collection of all pseudo-ultrametrics u on the
disjoint union X UY such that u|xxx = ux and ulyxy = uy. Let p € [1, oo]. Then,
it holds that

um XYy = inf dGO" (ux, ), (15)

ueDM (uy,uy)

where dv(v},(; Y0 denotes the Wasserstein pseudometric of order p defined in (28) (resp.
in (29) for p = 00) in Sect. B.5.1.

Proof The claim follows by the same arguments as Lemma 3.3 (iii) in [83]. m]

Remark 3.2 (Wasserstein pseudometric) The Wasserstein pseudometric is a natural
extension of the Wasserstein distance to pseudometric spaces and has for example
been studied in [85]. In Sect. B.5.1 we carefully show that it is closely related to
the Wasserstein distance on a canonically induced metric space. We further establish
that the Wasserstein distance and the Wasserstein pseudometric share many relevant
properties. Hence, we do not notationally distinguish between these two concepts.

The representation of ué‘{,‘vm;, 1 < p < o0, given by the above lemma is much more

accessible and we first use it to establish the subsequent basic properties of uét{,‘vm;,

(see Sect. B.1.1 for a full proof).
Proposition 3.3 Let X', Y € UY. Then, the following hold:

(i) For any p € [1, oo], we always have that uét{,{;“;, (X,)) > dé‘\‘,‘vm; (X, ).
(ii) Forany 1 < p < g < 0o, we have that ué&%(?(, V) < ué‘{,‘}“& (X, ).
(iii) It holds that lim ,_, « ué‘%}f?,()(, V) = Uiy a (X, V).

We use Lemma 3.1 to prove that ((/Y, ucs}‘\‘,‘;frl‘)) is indeed a metric space.

Theorem 3.4 u%‘{{,mp is a p-metric on the collection UV of compact ultrametric mea-

sure spaces. In particular, when p = oo, u\"  is an ultrametric.

In order to increase the readability of this section we postpone the proof of Theorem 3.4
to Sect. B.1.2. In the course of the proof, we will, among other things, verify the
existence of optimal metrics and optimal couplings in (15) (see Proposition B.1).
Furthermore, it is important to note that the topology induced on 4% by u(if{,]&“;,, 1<
p < o0, is different from the one induced by d(}‘\‘,{,”; This is well illustrated in the
following example.

4 A pseudo-ultrametric is a pseudometric which satisfies the strong triangle inequality (cf. (6)); see
Sect. B.5.1 for the definition and further discussion on pseudometrics.
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Y b l b 3 3
: A
o—©O
Fig. 4 Common ultrametric spaces: Representation of the two kinds of ultrametric spaces Z (middle and
right) into which we can isometrically embed the spaces X and Y (left)

Example 3.5 (uly™ " and dg S , induce different topologies) This example is an adap-
tation from [64, Exam 4. 17] For each a > 0, denote by Aj(a) the two-point metric
space with interpoint distance a. Endow with Aj(a) the uniform probability mea-
sure i, and denote the corresponding ultrametric measure space As(a). Now, let
X = 22(1) and let &), := 22(1 + 1/n) for n € N. It is easy to check that for any
1<p<oo, d(:fvuv”g(;\f Xn) = 1/(2n) and ugy™ (X, X,) =2~ /P (1 4+ 1/n) where
we adopt the convention that 1/00 = 0. Hence as n goes to infinity A}, will converge
to X in the sense of dét\‘,lvrm but not in the sense of u St“rm ,forany 1 < p < o0.

sturm

3.1.1 Alternative Representations of ug,y p

In this subsection, we derive an alternative representation for u““rm defined in (8).
We mainly focus on the case p < oo, however it turns out that the results also hold
for p = oo (see Sect. 3.3).

Let X, Y € UV and recall the definition of ug{,‘vm;j, p € [1, o], given in (8), i.e.,

. Z,
U™ (X, V) = lgfwdév,,,“”(w#m, Vi wy),

where ¢: X — Z and ¢: Y — Z are isometric embeddings into an ultrametric
space (Z, uz). It turns out that we only need to consider relatively few possibilities of
mapping two ultrametric spaces into a common ultrametric space. Exemplarily, this
is shown in Fig. 4, where we see two finite ultrametric spaces and two possibilities for
a common ultrametric space Z.

Indeed, it is straightforward to write down all reasonable embeddings and target
spaces. We define the set

(16)

={(A,<p) @ # A C X isclosed and }

¢: A — Y is an isometric embedding

Clearly, A # @, as it holds for each x € X that {({x}, ¢y)} ey S A, where ¢, is the
map sending x to y € Y. Another possibility to construct elements in A is illustrated
in the subsequent example.

Example 3.6 Let X, ) € UY be finite spaces and letu € D" (uy, uy). Ifu=1(0) # @,
wedefine A ;= mx (u_l(O)) C X,wherermy: X x Y — X isthe canonical projection.
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Then, the map ¢: A — Y defined by sending x € A to y € Y such that u(x, y) =0
is an isometric embedding and (A, ¢) € A.

Now, fix two compact spaces X,) € UV. Let (A,p) € Aandlet Zy, = XU
(Y\@(A)) € X U Y. Furthermore, define uz, : Z4 x Z4 — R as follows:

() uz,lxxx :=ux and uz, |y\p(A)x¥\p(4) := Uy |¥\p(A)xY\p(4)-
(ii)) Forany x € Aand y € Y\@(A) define uz, (x, y) :=uy(y, ¢(x)).
(iii) Forx € X\A and y € Y\¢p(A) let

uz,(x,y) :=inf{max (ux(x, a), uy(¢(a), y)) la € A}.

(iv) Forany x € X and y € Y\@(A), uz,(y,x) :=uz,(x,y).

Then, (Z4, uz,) is an ultrametric space such that X and Y can be mapped isometrically

into Z 4 (see [93, Lem. 1.1]). Letqb (A.0) and 1//(YA‘ %) denote the corresponding isometric
embeddings of X and Y, respectlvely This allows us to derive the following statement,
whose proof is postponed to Sect. B.1.3.

Theorem 3.7 Let X, Y € UY. Then, we have for each p € [1, 00) that
UGy (X, V) = inf Ay (@8 o). ix. (W ) (17)
UGW, p oyea W \\ P )y X Wia gy 1Y )-

Remark 3.8 Let X, ) € U™ be finite spaces. The representation of uff{,‘&f‘;(é\f ),
1 < p < oo, given by Theorem 3.7 is very explicit and recasts the computation of
ug Shum (X V), 1 < p < o0, as a combinatorial problem. In fact, the set .4 in (17) can
be further reduced. More precisely, we demonstrate in Sect. B.1.3 (see Corollary B.7)
that it is sufficient to infimize over the set of all maximal pairs, denoted by A*. Here, a
pair (A, ¢1) € A is denoted as maximal, if for all pairs (B, ¢2) € A with A C B and
@214 = ¢ it holds A = B. Using the ultrametric Gromov—Hausdorff distance (see
(7)) it is possible to determine if two ultrametric spaces are isometric in polynomial
time [63, Lem. 68]. However, this is clearly not sufficient to identify all (A, ¢) € A*
in polynomial time. Especially, for a given, viable A € X, there are usually multiple
ways to define the corresponding map ¢ (see Example 3.9 right below this remark).
Furthermore, for 1 < p < 0o, we have neither been able to further restrict the set .A*
nor to identify the optimal (A* ¢™*). This just leaves a brute force approach which is
computationally not feasible. On the other hand, for p = co we are able to explicitly
construct the optimal pair (A% ¢*) (see Theorem 3.23).

Example 3.9 Let {d;}!_, be pairwise different real numbers with 0 < d; < 1. Let
X = {x }’ 1.2 , be a set with 2n points. Then, we define ux as follows:

,,,,,

0 ifi=aandj=0b;
ux(xf, xg)=1{d; ifi #£aandj=b;
1 ifj#b
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uy is obviously an ultrametric on X. Let {d]"}_, be pairwise different real numbers
with 0 < df < 1. Assume d} # d; for all i, j = 1,...,n. We similarly define
an ultrametnc space (Y, uy) w.rt. {d; ¢ 1- Equip both spaces with some probability
measures 1y and wy. Consider the m1n1mlzat10n problem

{W(Ai,?pf)eA*} Wp<(¢(A w)) KX, (I//é,w))# MY)’

where we use the notation from Theorem 3.7 and Remark 3.8. If we let A =
{le.}j=1m,,, then it is easy to see that |{¢ | (A, ¢) € A*}| = 2"n!, which suggests
that it is not possible to solve the above minimization problem in polynomial time
using a brute force approach.

3.2 The Ultrametric Gromov-Wasserstein Distance

In this section, we consider basic properties of ugw, , and prove the analogue of
Theorem 3.4, i.e., we verify that also ugw,), is a p-metric, 1 < p < oo, on the
collection of ultrametric measure spaces.

The subsequent proposition collects basic properties of ugw, , which are also shared
by udw™ (cf Proposition 3.3). We refer to Sect. B.2.1 for its proof.

Proposition 3.10 Let X, Y € UY. Then, the following claims hold:

(1) Forany p € [1, 00], we always have that ugw,p(X,Y) = dow, p(X, V).
(ii) Forany 1 < p < q < o9, it holds ugw,p(X, Y) < ugw,q(X, ).
(iii) We have that lim p_, 0o ugw,p(X, V) = ucw,co(X, V).

Next, we verify that ugw, , is indeed a metric on the collection of ultrametric
measure spaces.

Theorem 3.11 The ultrametric Gromov—Wasserstein distance ugw, p is a p-metric on
the collection U™ of compact ultrametric measure spaces. In particular, when p = oo,
UGW .00 IS an ultrametric.

The full proof of Theorem 3.11, which is based on the existence of optimal couplings
in (11) (see Proposition B.10), is postponed to Sect. B.2.2.

Remark 3.12 (ugw,, and dgw,, induce different topologies) Reconsidering Exam-
ple 3.5, it is easy to verify that in this setting ugw, , (X, X,) = 271/7(1 + 1/n) while
dow, p(X, Xy) = 1/(21/Pn), 1 < p < co. Hence, just like usmrm and dé%‘vr“;, UGW, p
and dgw, , induce different topologies on /*. This result can also be obtained from
Sect. 3.4 where we derive that ugw,, and usu"m give rise to the same topology.
Together with the fact that ugw,, > dow,p, we know that ugw, induces a finer
topology than the one induced by dgw,,. In this way, ugw, , is more sensitive to
perturbations in ultrametric data sets. In particular, unlike the metric dgw, p, ugw, p
is able to differentiate between different types of perturbation. This point is further
examined in Sect. 5.3 where we empirically show that dgw, , is indifferent to different
types of noise whereas ugw,  is sensitive to ‘large scale’ perturbation.
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1 O-O-O—O0- 00 )—()

Fig.5 Weighted Quotient: An ultrametric measure space (black) and its weighted quotient at level ¢ (red)

Remark 3.13 As for the case of dgw,p, 1 < p < oo, [60, Sect. 7], it follows that
for two finite ultrametric measure spaces X" and ) the computation of ugw, (X', J),
1 < p < oo, boils down to solving a (non-convex) quadratic program. This is in
general NP-hard [71]. In contrast, for p = oo, we will derive a polynomial time
algorithm to determine ugw, oo (X, Y) (cf. Sect. 3.2.1).

3.2.1 Alternative Representations of ugw, oo

In this section, we will derive an alternative representation of ugw,~ that resembles
the one of ugy derived in [64, Thm. 5.1]. It also leads to a polynomial time algorithm
for the computation of ugw, . For this purpose, we define the weighted quotient of
an ultrametric measure space. Let X = (X, uy, ux) € UV and let r > 0. Then, the
weighted quotient of X atlevel ¢, is given as X; = (X;, ux,, ix,), where (X;, ux,) is
the quotient of the ultrametric space (X, ux) atlevel ¢ (see Sect. 2.2) and nx, € P(X;)
is the pushforward of u x under the canonical quotient map Q;: (X, ux) — (X, ux,)
sending x to [x]; for x € X. Figure 5 illustrates the weighted quotient in a simple
example.

Based on this definition, we show the following theorem, whose proof is postponed
to Sect. B.2.3.

Theorem3.14 Let X = (X, ux, ux)and) = (Y, uy, uy) be two compact ultramet-
ric measure spaces. Then, it holds that

UGW,00(X, V) = min{r > 0| X; =y Wi} (18)

Remark 3.15 The weighted quotients X; and ); can be considered as vertex weighted,
rooted trees and thus it is possible to verify whether X; =y, ) in polynomial time [3].
In consequence, we obtain a polynomial time algorithm for the calculation of uGgw co-
See p. 27 for the details.

The representations of ugy in Theorem 2.5 and ugw, o in Theorem 3.14 strongly

resemble themselves. As a direct consequence of both Theorems 2.5 and 3.14, we
obtain the following comparison between the two metrics.

Corollary 3.16 Let X', Y € UY. Then, it holds that

UGW,00(X, V) = ugn(X, Y). 19)
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The inequality (19) is sharp. Indeed, by [64, Cor. 5.3] we know that if the considered
ultrametric spaces (X, ux) and (Y, uy) have different diameters (w.l.o.g. diam (X) <
diam(Y)), then ugu(X, Y) = diam(Y). The same statement also holds for ugw,

Corollary 3.17 Let X, Y € UY be such that diam (X) < diam(Y). Then,
UGW,00(X, Y) = diam(Y) = ugu(X, ).

Proof The first equality follows directly from [64, Cor. 5.3]. For the second equality,
let r := diam(Y). It is obvious that X} =, * =,, ), where * denotes the one point
ultrametric measure space. Let s € (diam(X), diam(Y)), then &A; =, * whereas
Y 2y *. By Theorem 3.14, ugw, (X, Y) =t = diam(Y). O

3.3 The Relation Between ugw,p and ué‘w“’:‘

In this section, we study the relation of ug St“rm and ugw,p, 1 < p < 0o, and establish
the topological equivalence between the two metrics.

3.3.1 Lipschitz Relation
We first study the Lipschitz relation between ug;t{,{,m; and uGw, p. For this purpose, we
have to distinguish the cases p < oo and p = oco.

The case p < oco. We start the consideration of this case by proving that it is essentially
enough to consider the case p = 1 (see Theorem 3.18). To this end, we need to
introduce some notation. For each « > 0, we define a function Sy : R>0 — Rx>g
by x — x*. Given an ultrametric space (X, uyx) and « > 0, we abuse the notation
and denote by S, (X) the new space (X, Syouy). It is obvious that S, (X) is still an
ultrametric space. This transformation of metric spaces is also known as the snowflake
transform [24]. Let X = (X, uyx, ux) and Y = (Y, uy, ny) denote two ultrametric
measure spaces. Let 1 < p < 0o. We denote by S, (X) the ultrametric measure space
(X, Spoux, ux). The snowflake transform can be used to relate ugw, , (X', V) as well
as uét{,’\;“;) (X, V) withugw,1(Sp (&), Sp(V)) and ugy" (S, (X)), Sp(V)), respectively.

Theorem 3.18 Let X, Y € UY and let p € [1, 00). Then, we obtain

(uGw.p(X, W)’ = uGw.1(Sp(X), S,V)),
(1w (X, D))" = ugwi (Sp(X), Sp(M)).
We give full proof of Theorem 3.18 in Sect. B.2.4. Based on this result, we can

directly relate the metrics ugw, , and u St“m[lj by only considering the case p = 1 and
prove the following Theorem 3.19 (see Sect. B.3.1 for its proof).

Theorem 3.19 Let X, Y € U¥. Then, we have for p € [1, 00) that

uGw.p(X. Y) < 2P ugym (X, ).
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The subsequent example verifies that the coefficient in Theorem 3.19 is tight.

Example 3.20 For each n € N, let &, be the three-point space A3(1) (i.e. the 3-point
space labeled by {x1, x>, x3} where all distances are 1) with a probability measure p x"
such that ux (x1) = ux"(x2) = 1/(2n) and ux"(x3) =1 —1/n.LetY = *xand uy
be the only probability measure on Y. Then, it is routine (using Proposition B.23 from
Sect. B.5.3) to check that ugw,1 (X, V) = 2(1—-3/(4n))/n and ué‘{,{,‘“l (X, V) = 1/n.
Therefore, we have

ugw,1(Xn, V) )
Example 3.21 (ué}{,‘}z‘) and ugw, p are not bi-Lipschitz equivalent) Following [60, Rem.
5.17], we verify in Sect. B.3.2 that for any positive integer n

- - 1 - - 3\/»
uét\l;&fr,l,(An(l), Azn(l)) > 1 and qu,p(An(l), A2n(1)) < (ﬂ) .

Here, A, (1) denotes the n-point metric measure space with interpoint distance 1 and
the uniform probability measure. Thus, there exists no constant C > 0 such that
ugw‘g(é\f, V) < C-ugw,p(X,)) holds for every input spaces X' and ). Hence,

Sturm o . .
“G\l)lv, » and uGw, , are not bi-Lipschitz equivalent.

The case p = oo. Next, we consider the relation between u(‘;t{,*\f“go and uGw,co- By

taking the limit p — oo in Theorem 3.19, one might expect that uét{,léf“oo > UGW,00-
In fact, we prove that the equality holds (see Sect. B.3.3).

Theorem 3.22 Let X', Y € UY. Then, it holds that
UGN oo (X, V) = uGwW.00 (X, V).
One application of Theorem 3.22 is to explicitly derive the minimizing pair (A, ¢) €

A* in (25) for p = oo (see Sect. B.3.4 for an explicit construction).

Theorem3.23 Let X,Y € UV. Let s := usG“\‘{,moo (X, Y) and assume that s > 0. Then,

there exists (A, ¢) € A defined in (16) such that

sturm

U (X, V) = dil s (i 1y,

where Z 5 denotes the ultrametric space defined in Sect. 3.1.1.

3.3.2 Topological Equivalence Between ugw,p and uéwrp

Mémoli [60] proved the topological equivalence between dgw, , and da‘w‘“‘g We estab-

lish an analogous result for ugw, , and u&f{;j“; To this end, we recall the modulus of

mass distribution.

@ Springer



Discrete & Computational Geometry

Definition 3.24 ([36, Defn. 2.9]) Given § > 0 we define the modulus of mass distri-
bution of X € UW as

vs(X) i=inf{e > 0| px(fx:px (B (x) < 8}) < e},

where B (x) denotes the open ball centered at x with radius e.

We note that vs(X) is non-decreasing, right-continuous and bounded above by 1.
Furthermore, it holds that lim s\ o vs(X) = 0 [36, Lem. 6.5]. With Definition 3.24 at
hand, we derive the following theorem.

Theorem3.25 Let X,V € UV, p € [1,00) and § € (0, 1/2). Then, whenever
ugw, p(X,Y) < 8 we have

U™ (X, V) < (4-min(vs(X), vs(W) +8) "7 M,
where M := 2 -max (diam (X), diam (Y)) + 54.

Remark 3.26 Since it holds that lim s\ o v5(X) = 0 and that 2-1/p uét\‘;;“; > UGW,p
(see Theorem 3.19), the above theorem gives the topological equivalence between
ugw,p and u“”““ 1 < p < oo (the topological equivalence between uy™, and

UGW 00 holds tr1V1a11y thanks to Theorem 3.22).

The proof of the Theorem 3.25 follows the same strategy used for proving [60,
Prop. 5.3] and we refer to Sect. B.3.5 for the details.

3.4 Topological and Geodesic Properties

In this section, we consider the topology induced by ugw,, and ué[{,{}“;’ on UV and

discuss the geodesic properties of both ugw, , and u S‘“m[l) forl < p < oco.
Completeness and separability. We derive the subsequent theorem whose proof is
postponed to Sect. B.4.1.

Theorem 3.27

(i) For p € [1, 00), U, ugw,p) and UY, u(‘f{g‘;‘,) are neither complete nor separa-
ble.
(i) U™, ugw.c0) = UY, uét{,*&“éo) is complete but not separable.

Geodesic property. A geodesic in a metric space (X, dx) is a continuous func-
tion y: [0,1] — X such that for each s,r € [0, 1], dx(y(s),y(®) = |s —
t|-dx(y(0), y(1)). We say a metric space is geodesic if for any two distinct points
x,x" € X, there exists a geodesic y : [0, 1] — X such that y (0) = x and y (1) = x'.
For any p € [1, 00), the notion of p-geodesic is introduced in [64]: A p-geodesic in
a metric space (X, dx) is a continuous function y : [0, 1] — X such that for each
5,1 €[0,1],dx(y(s), y(®) = |s — t|'/7-dx (y(0), y(1)). Similarly, we say a metric
space is p-geodesic if for any two distinct points x, x” € X, there exists a p-geodesic
y: [0, 1] — X such that y(0) = x and (1) = x’. Note that a 1-geodesic is a usual
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geodesic and a 1-geodesic space is a usual geodesic space. The subsequent theorem
sturm

establishes (p-)geodesic properties of (UY, UGw. p) for p € [1, 00). A full proof is
given in Sect. B.4.2.

Theorem 3.28 For any p € [1, 00), the space (UY, ué‘{,’vm;’) is p-geodesic.

Remark 3.29 Due to the fact that a p-geodesic space cannot be geodesic when p > 1
(cf. Lemma B.15), (UY, ué‘{,‘&%) is not geodesic for all p > 1.

Remark 3.30 Though the geodesic properties of (Y, ué{,‘&f‘;), 1 < p < oo are clear,

we remark that geodesic properties of (U™, ugw, p), 1 < p < 00, still remain unknown
to us.

Remark 3.31 (Case p = o0) Being an ultrametric space itself (cf. Theorem 3.11),
UY, ucw.0) (= UV, ug{,lvrfnoo)) is totally disconnected, i.e., any subspace with at least
two elements is disconnected [81]. This in turn implies that each continuous curve in
(UY, ugw. o) is constant. Therefore, (UY, ugw o) is not a p-geodesic space for any
p €[l,00).

4 Lower Bounds for ugw,p

Let X = (X,ux,ux)and Y = (Y, uy, uy) be two ultrametric measure spaces. The

metrics u(s}t{,‘j";, and ugw, p respect the ultrametric structure of the spaces A and ). Thus,

one would hope that comparing ultrametric measure spaces with ué‘\‘}\f“; Or UGw, p is

more meaningful than doing it with the usual Gromov—Wasserstein distance or Sturm’s
distance. Unfortunately, for p < oo, the computation of both ug{,lvm[l] and ugw,p is
complicated and for p = 0o both metrics are extremely sensitive to differences in the
diameters of the considered spaces (see Corollary 3.17). Thus, it is not feasible to use
these metrics in many applications. However, we can derive meaningful lower bounds
for ugw, p (and hence also for ucs;t\%f‘;) that resemble those of the Gromov—Wasserstein
distance. Naturally, the question arises whether these lower bounds are better/sharper
than the ones of the usual Gromov—Wasserstein distance in this setting. This question
is addressed throughout this section and will be readdressed in Sect. 5 as well as in
the Supplementary Material.

In[60], the author introduced three lower bounds for dgw, , that are computationally
less expensive than the calculation of dgw, ,. We will briefly review these three lower
bounds and then define candidates for the corresponding lower bounds for ugw . In

the sequel, we always assume p € [1, oo].
First lower bound. Let sx ,: X — Rxo, x = |lux(x, -)llLr(uy)- Then, the first

lower bound FLB, (X, V) for dgw, (X, )) is defined as follows:

FLB,(X,)) = inf  |[A1(sx,p, Sy, p)lLr(w)-

1
2 peClux,my)
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Following our intuition of replacing A with A -, we define the ultrametric version
of FLB as

FLBY'(X. V) := inf [ Aco(sx.pr sy, p)ILr(u)-
neCuy.py)

Second lower bound. The second lower bound SLB, (X, V) for dgw,, (X, )) is

given as

SLB,,(X,y) = inf )||A1(ux,uy)||Lp(y).

1
2 yeClux®ux,ny®uy

Thus, we define the ultrametric second lower bound between two ultrametric mea-
sure spaces A and ) as follows:

SLBY' (X, Y) = inf | Acoux: up)lizeg)-
yeC(ux®ux, iy ®uy)

Third lower bound. Before we introduce the final lower bound, we have to
define several functions. First, let I‘;( v XXYxXxY — Rso, (x,y,x,)) —

Ai(ux(x,x"),uy(y,y’)) and let SZ}?: X xY — Rsg, p €[1, 00], be given by

QLx,y) = inf Tk (v, - Dl
P neCux,my) Xy =

Then, the third lower bound TLB, is given as

1
TLB,(X,)Y):= - inf |Q] .
b 2 peClux.y) 7 L

Analogously to the definition of previous ultrametric versions, we define I'f®, : X x ¥ x

XxY = Rxg, (x,y,x,y) > Asc(ux(x,x"), uy(y, y")). Further, for p € [1, oo],
let Q77: X x Y — R> be given by

QY (x,y):= inf TFy(x, y, - )lerg-
neC(ux,py) ’

Then, the ultrametric third lower bound between two ultrametric measure spaces X’
and ) is defined as

TLBY(X,)):= inf  [Q%lLr(0)-
p neC(ux.my) r 2

4.1 Properties and Computation of the Lower Bounds

Next, we examine the quantities FLB", SLBY" and TLB"" more closely. Since
Aso(a,b) = Ai(a,b) = |a — b| for any a,b > 0, it is easy to conclude that
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Fig. 6 TLB‘;,“ and uGw, p induce different topologies. For the two non-isomorphic ultrametric measure

spaces depicted above, TLB“I’,ll equals 0 whereas uGw, , > 0. This example is the same as the one given in
[60, Fig. 8]

FLBY'> FLB,,, SLBY' > SLB, and TLBY" > TLB,,. Moreover, the three ultramet-
ric lower bounds satisty the following theorem (for a complete proof see Sect. C.1.1).

Theorem 4.1 Let X, Y € UV and let p € [1, o0].

(i) ugw,(X,Y) > FLBY (X, V).
(i) ugw,p(X,¥) = TLBY (X, ) = SLBY (X, V).

Remark 4.2 Interestingly, it turns out that FLB;lt is not a lower bound of ugw, , in
general when p < oo. For example, let X = {x1,x2,...,x,}and Y = {y1,..., y»}
and define ux such that ux (x1, x2) = 1 and ux (x;, x;) = 28;%; for (i, j) # (1,2),
@, ))#@,Dandi,j=1,...,n Letuy(y;,y;) = 28i%j,i,j =1,...,n,and let
x and py be uniform measures on X and Y, respectively. Then, ugw 1 (X, Y) < 4/ n?
whereas FLB‘l‘h(X, V) = (4n — 4)/n2 which is greater than ugw,1(X, )) as long
as n > 2. Moreover, we have in this case that FLB‘I‘“(X ,Y) = O(1/n) whereas
ugw,1(X,Y) = O(I/nz). Hence, there exists no constant C > 0 such that FLB‘flt <
C-ucw,1 in general.

Remark 4.3 There exist ultrametric measure spaces X and )’ such that TLB‘[‘}‘(X , )
equals 0 whereas ugw, (X, ) > 0 (an example is given in [60, Fig. 8] and see Fig. 6
for anillustration). Furthermore, there are spaces X" and Y such that SLB‘;,lt X, ) =0
whereas TLB;“(X ,Y) > 0 (see Sect. C.1.3). The analogous statement is true for
TLB, and SLB,, which are nevertheless useful in applications (see e.g. [34]).

From the structure of SLB‘I’,lt and TLB‘I‘,]t itis obvious that their computation leads to
different optimal transport problems (see e.g. [90]). However, in analogy to [21, Thm.
3.1] we can rewrite SLB;lt and TLB;lt in order to further simplify their computation.
The full proof of the subsequent proposition is given in Sect. C.1.2.

Proposition4.4 Let X, Y € UV and let p € [1, o0]. Then, we find that
. R> s\ oo
(i) SLBY(X, V) = dyy " (ux)s (x @ 1) () (tty @ pay).
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.. R>0,A00
(i) Foreachx,y € X xY, QF(x,y) = dv(v,;,o Dux (x, g pix uy (Y, - )# ply).

Remark 4.5 Since Theorem 2.9 gives an explicit formula for the Wasserstein distance
on (R>0, Ax) between finitely supported probability measures, these alternative rep-
resentations of the lower bound SLBL,‘)lt and the cost functional 277 drastically reduce

the computation time of SLB‘I‘,lt and TLB‘;,“, respectively. In particular, we note that
this allows us to compute SLB‘;,“, 1 < p < oo, between finite ultrametric measure
spaces X’ and ) in O (max (| X|, |Y])?) steps.

Proposition 4.4 allows us to directly compare SLB‘lllt and SLB;.

Corollary 4.6 For any finite ultrametric measure spaces X and ), we have that

SLB{"'(X,)) = SLB;(X,))

1 (20)
+t5 /Rl |(ux)# (ux @ ux) — (uy)s (y @ uy)| (dr).

Proof The claim follows from Proposition 4.4 and Remark 2.11. O

This corollary implies that SLB‘I’,lt is more rigid than SLB,, since the second sum-
mand on the right-hand side of (20) is sensitive to distance perturbations. This is also
illustrated very well in the subsequent example.

Example 4.7 Recall notations from Example 3.5. Forany d, d’ > 0, welet X := A, (d)
andlet Y := A,(d’). Assume that X and Y have underlying sets {x{, x5} and {y;, y2},
respectively. Define uy € P(X) and uy € P(Y) as follows. Let a1, &x > 0 be such
that o) + ap = 1. Let pux(x1) = uy(y1) = op and let ux(x2) = py(y2) := .
Then, it is easy to verify that

(i) ugw,1(X,Y) =SLB{"(X,Y) = 2a100A00(d, d').
(i) dow,1(X,Y) =SLB1(X,)) = aja2A1(d,d") = ajaz|d — d'|.

(iil) 5 [t |x)s (ux @ px) — (y)s (wy @ uy)| (dt) = araa(d + d') Sazar-
From (i) and (ii) we observe that both second lower bounds are tight. Moreover, since
we obviously have that (d +d")8424’ + |d —d'| = 2Ao(d, d'), we have also verified
(20) through this example. Unlike SLB; (X, )V) being proportional to |d — d’|, as long
asd # d',evenif |d —d'| is small, Axo(d, d") = max(d, d") which results in a large
value of SLB‘lﬂt(X , V) when d and d’ are large numbers. This example illustrates that
SLB'Illt (and hence ugw,1) is rigid with respect to distance perturbation.

5 Computational Aspects

In this section, we investigate algorithms for approximating/calculating ugw p, 1 <
p < oo. Furthermore, we evaluate for p < oo the performance of the computationally
efficient lower bound SLBLI',lt introduced in Sect. 4 and compare our findings to the
results of the classical Gromov—Wasserstein distance dgw, p (see (5)). Matlab imple-
mentations of the presented algorithms and comparisons are available at https://github.
com/ndag/uGW.
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5.1 Algorithms

Let ¥ = (X, ux, ux)and Y = (¥, uy, ny) be two finite ultrametric measure spaces
with cardinalities m and n, respectively.

The case p < oco. Recall Remark 3.13 which highlights that the exact calculation of
ugw,p(X, ) for p < oo is infeasible. However, in many practical applications it is
sufficient to work with good approximations of this metric. Therefore, we propose
to approximate (local minima of) ugw, , (X, Y) for p < 0o via conditional gradient
descent. To this end, we note that the gradient G that arises from (10) can in the
present setting be expressed with the following partial derivative with respect to ;& €

Clux, py)

Gij =2 > (Aoolux(xi,xx), uy (yj, y0))" 1t @1

k=1 I1=1

forall ]l <i <mand 1 < j < n. As we deal with a non-convex minimization
problem, the performance of the gradient descent strongly depends on the starting
coupling ;9. Therefore, we follow the suggestion of Chowdhury and Needham [22]
and employ a Markov Chain Monte Carlo Hit-And-Run sampler to obtain multiple
random start couplings. Running the gradient descent from each point in this ensemble
greatly improves the approximation in many cases. For a precise description of the
proposed procedure, we refer to Algorithm 1.

Algorithm 1 ugw ,(X,Y, p, N, L)

//Create a list of random couplings
couplings =CreateRandomCouplings(N)
stat_points = cell(N)
for i=1:N do
p,(o) =couplings{i}
for j=1:L do
G = Gradient from (21) w.r.t. u(‘i*])
) = Solve OT with ground loss G
y@ = J% /AL find y € [0, 1] that minimizes dis5 (nU =1 4y (@) — nU=1))
wD =1 =yDypl=D 4Dl
end for
stat_points{i }= /L(L)
end for
Find p* in stat_points that minimizes dis‘;,“(,u)

result = dis‘;,lt (7%

The case p = oo. In what follows, we present the details of the polynomial time
algorithm for the computation of ugw, oo(= ué‘{}&fﬁo) hinted at in Remark 3.15. Let
spec(X) = {ux(x,x)|x,x’ € X} denote the spectrum of X. Then, it is evident
that in order to find the minimum in (18), we only have to check &; =, ), for each
t € spec(X)Uspec(Y), starting from the largest to the smallest and ugw o is given as
the smallest ¢ such that X; =, ). This can be done in polynomial time by considering

@ Springer



Discrete & Computational Geometry

‘ A /\
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Fig.7 Ultrametric measure spaces: Four non-isomorphic ultrametric measure spaces denoted (from left to
right) as X; = (X, dx;, nx;), 1 <i <4

X; and ); as weighted rooted trees and by solving a tree isomorphism problem (e.g., by
using a slight modification of the algorithm in [3, Exam. 3.2]. Roughly, this algorithm
assigns codes to any two given trees, respectively, by summarizing neighborhood
information of vertices of the trees in a bottom-up manner, and then ascertains whether
these two trees are isomorphic by comparing their codes.). This gives rise to a simple
algorithm (see Algorithm 2) to calculate z,tc,w,oo.5

Algorithm 2 ugw (X, ))

spec = sort(spec(X) U spec(Y), ‘descent’)
for i = 1: length(spec) do

t = spec(i)

if Xt ';EPW yt then

return spec(i — 1)

end if
end for
return 0

5.2 The Relation Between ugw,1, Ugw, o and SLB;IIt

In order to understand how uGw, ,, (or at leastits approximation), uGw,co and SLB;lt are
influenced by small structural changes of the considered ultrametric measure spaces,
we exemplarily consider the ultrametric measure spaces X; = (X;, dx;, ux;),1 <i <
4, displayed in Fig. 7. These differ only by one characteristic (e.g. one side length or
the equipped measure). Exemplarily, we calculate ugw,1(X;, X;) (approximated with
Algorithm 1, where L = 5000 and N = 40), SLB‘]‘h(X,-, &;) and ugw,co (i, Xj),
1 <i, j <4.Inparticular, note that we use Algorithm 1 to determine ugw,1(X;, &;),
1 <i < 4. Firstofall, we observe that ugw,1 and SLB‘lllt are influenced by the change
in the diameter of the spaces the most and attain (up to differences of order 10~7) the
same value for the comparison of the spaces X;, 1 < i < 3 (see Tables 1 and 2 in
Sect. D.1 for the complete results). The picture changes for the comparisons of A;,

5 The algorithm can be sped up via a binary search process which we do not include for simplicity of
presentation.

@ Springer



Discrete & Computational Geometry

1 <i < 3 with Xy. Here, SLB‘lJlt attains significantly lower values than ugw, ;. While
we cannot be completely sure that we approximate the global minima of ugw, 1 for these
comparisons, the other results (and especially the approximation of ugw,1(Xs, X4))
imply that we should be reasonably close. All in all, this suggests that changes in
metric influence SLB‘lllt in a similar fashion as ugw,1, while changes in the measure
have less impact on SLB‘{“. We can also conclude that the proposed algorithm for the
approximation of ugw,1 works reasonably well in this simple setting.

Further, we observe that ugw o attains for almost all comparisons the maximal
possible value. Only the comparison of A with &3, where the only small scale structure
of the space was changed, yields a value that is smaller than the maximum of the
diameters of the considered spaces.

5.3 Comparison of ugw,1, SLBY™, dgw,1 and SLB;

In the remainder of this section, we will demonstrate the differences between ugw 1,
SLB‘I‘h, dcw,1 and SLB;. To this end, we first compare the metric measure spaces in
Fig. 7 based on dgw,1 and SLB;. We observe that dgw 1 (approximated in the same
manner as ugw,1) and SLB; are hardly influenced by the differences between the
ultrametric measure spaces X;, 1 < i < 4. In particular, it is remarkable that dgw
is affected the most by the changes made to the measure and not the metric structure
(see Table 3 in Sect. D.2 for the complete results).

Next, we consider the differences between the aforementioned quantities more
generally. For this purpose, we generate four ultrametric spaces Z, 1 < k < 4, with
totally different dendrogram structures, whose diameters are between 0.5 and 0.6 (for
the precise construction of these spaces see Sect. D.2). For each t = 0, 0.2, 0.4, 0.6,
we perturb each Z; independently to generate 15 ultrametric spaces Z,’;’ s 1 <i <15

such that (Z,’;.t), = (Zi), for all i. The spaces Z,i ; are called perturbations of Zy at

level t (see Fig. 8 for an illustration and see Sect. D.2 for more details). The spaces
z ,’( , are endowed with the uniform probability measure and we obtain a collection of
ultrametric measure spaces Z,’;’ ,- Naturally, we refer to k as the class of the ultrametric
measure spaces Z,i,t. We compute for each ¢ the quantities ugw,1 (approximated
with Algorithm 1, L = 100, N = 5), SLB‘f“, dgw,1 (approximated with conditional
gradient descent, 100 gradient steps) and SLLB; among the resulting 60 ultrametric
measure spaces. Note that it is shown in Sect. B of the Supplementary Material that
Algorithm 1 approximates ugw, reasonably well in this setting. The results, where
the spaces have been ordered lexicographically by (k, i), are visualized in Fig. 9. As
previously, we observe that ugw,; and SLB‘I1lt as well as dgw,1 and SLB; behave
in a similar manner. More precisely, we see that both dgw,; and SLB; discriminate
well between the different classes and that their behavior does not change too much
for an increasing level of perturbation. On the other hand, ugw,1 and SLB'lllt are very
sensitive to the level of perturbation. For small ¢ they discriminate better than dgw 1
and SLB; between the different classes and pick up clearly that the perturbed spaces
differ. However, if the level of perturbation becomes too large both quantities start to
discriminate between spaces from the same class (see Fig. 9).
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number of blocks: 2 08 number of blocks: 3 08 number of blocks: 4 08 number of blocks: 5
0.6 0.6 0.6 0.6
04 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 Le==1 0 e sh B 0 AEaTl 0
perturbations at level: 0 perturbations at level: 0.2 perturbations at level: 0.4 perturbations at level: 0.6
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 Tl 0 0 0

Fig. 8 Randomly sampled ultrametric measure spaces: Illustration of Z; for k = 2, 3,4, 5 (top row) and
instances for perturbations of Z4 with respect to perturbation level ¢ € {0, 0.2, 0.4, 0.6} (bottom row)

'uSLB pertubation at level 0 uSLB pertubation at level 0.2 uSLB pertubation at level 0.4 uSLB pertubation at level 0.6

2 8 &8 8 8 3
2 2 &8 =2 0B =
2 28 &8 8 8 3
2 8 &8 8 8 3
2 2 &8 8 08 =
2 28 & 8 8 3

uGW pertubation at level 0 uGW pertubation at level 0.2 uGW pertubation at level 0.4 uGW pertubation at level 0.6

dSLB pertubation at level 0 dSLB pertubation at level 0.2 dSLB pertubation at level 0.4 dSLB pertubation at level 0.6

dGW pertubation at level 0

60 ) 40 60 20 40 60
Fig. 9 uGW‘l/SLBlfh and dgw,1/SLB; among randomly generated ultrametric measure
spaces: Heatmap representations of SLB‘I‘I‘(Z]’; £ ]’c; t) (top row), MGW,](Z;; o Z,’cl, t) (second row),

SLB, (2] ,. ;;’,t) (third row) and dGW,l(Z/it’Z;i;,) (bottom row), k, k" € {1,...,4} and i,i’ €
..., 158 ’
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In conclusion, ugw,1 and SLB‘I1lt are sensitive to differences in the large scales of
the considered ultrametric measure spaces. While this leads (from small 7) to good
discrimination in the above example, it also highlights that they are (different from
dgw,1 and SLB) susceptible to large scale noise.

5.4 Phylogenetic Tree Shape Comparison

In Sect. C of the Supplementary Material, we apply our lower bound SLBY", as well
as SLB; and the tree shape metric dcp > introduced in [23, Eq. (4)], to the task of
phylogenetic tree shape comparison: we use these distances to compare two sets of
phylogenetic tree shapes based on the HA protein sequences from human influenza
collected in different world regions. It turns out that (i) both SLB‘I11t and SLB are able
to detect some more refined clustering structure than dcp 2 and (ii) SLB‘I‘]t is more
discriminating than SLB; between tree shapes from different clusters.

6 Concluding Remarks

Since we suspect that computing ugw,, and ué},{}m for finite p leads to NP-hard
problems, it seems interesting to identify suitable collections of ultrametric measure
spaces where these distances can be computed in polynomial time as done for the
Gromov-Hausdorff distance in [63].

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/500454-023-00583-0.
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In this section we give the proofs of various results form Sect. 2.
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A.1.1 Proof of Theorem 2.2

Recall that for a given 6 € D(X), we define up : X x X — R as follows:
ug(x,x') :==inf {r > 0 | x and x’ belong to the same block of 6(¢)}.

It is easy to verify that uy is an ultrametric. For any Cauchy sequence {x,},cn in
(X, ug), let D; := sup,, ,~; ug(xm, xn) for each i € N. Then, each D; < oo and
lim;_, o D; = 0. By definition of ug, for each i € N the set {x,,}f;i is contained in
the block [x;]p, € 8(D;). Let X; := [x;]p, for each i € N. Then, obviously we have
that X; € X; forany 1 <i < j. By condition (vii) in Definition 2.1, we have that
Nieny Xi # D. Choose x € [);cy Xi» then it is easy to verify that x, = lim ,, o0 X,
and thus (X, up) is a complete space. To prove that (X, ug) is a compact space, we
need to verify that for each r > 0, X; is a finite space (cf. Lemma A.7). Since 6(¢) is
finite by condition (vi) in Definition 2.1, we have that X, = {[x]; |x € X} = 6(¢) is
finite and thus X is compact. Therefore, we have proved that up € U/(X). Based on
this, the map Yy : D(X) — U(X) defined by 6 — uy is well defined.

Now given u € U(X), we define a map 6, : [0, co) — Part(X) as follows: for
each ¢t > 0, consider the equivalence relation ~; with respect to u, i.e., x ~; x’ iff
u(x,x’) < t. This is actually the same equivalence relation defined in Sect. 2.2 for
introducing quotient ultrametric spaces. We then let 6, (¢) to be the partition induced
by ~, i.e., 6,(t) = X;. It is not hard to show that 6, satisfies conditions (i)—(v) in
Definition 2.1. Since X is compact, then 6, () = X, is finite for each # > 0 and thus 6,
satisfies condition (vi) in Definition 2.1. Now, let {#, },,en be adecreasing sequence such
that lim ,_, 5o f, = 0 and let X, € 6x(t,) be such that forany 1 <n < m, X,, C X,,.
Since each X, = [x,];, for some x, € X, X, is a compact subset of X. Since X is
also complete, we have that [ neN Xn # O. Therefore, 6, satisfies condition (vii) in
Definition 2.1 and thus 6, € D(X). Then, we define the map Ay : U(X) — D(X) by
U 0,.

It is easy to check that Ay is the inverse of Yx and thus we have established that
Tx: D(X) — U(X) is bijective.

A.1.2 Proof of Lemma 2.8

First of all, we prove that the following supremum is attained to verify that the right-
hand side of (12) is well defined

sup diam(B™).
BeV(X)\{X}
a(B)#B(B)

Fix any Byp € V(X)\{X} such that «(Bg) # B(Bp). Then, it is obvious that
diam(BS‘) > (0. By Lemma A.7, Xdiam(B(’;) is finite. So there are only finitely many
B € V(X)\{X} such that diam(B) > diam(Bg) and thus diam (B*) > diam(B).
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This implies that the supremum above is attained and thus

sup diam(B*) = max diam(B"). (22)
BeV(X)\{X} BeV(O)\{X}
a(B)#B(B) a(B)#B(B)

Let By denote the maximizer in (22) and let § := diam (BY). It is easy to see that for
any x € X, a([x]s) = B([x]s).
By Strassen’s theorem (see for example [28, Thm. 11.6.2]),

dw .o (o, B) = inf {r > 0 | for any closed subset A C X, a(A) < ,B(Ar)}, (23)

where A" :={x € X |ux(x, A) <r}.

Since «(B1) # B(B1), we assume without loss of generality that «(B1) > B(B1).
By definition of B, it is obvious that (By)® = BY (recall: § := diam(BY)) and
(B1)" = By forall 0 < r < §. Therefore, «(B1) < B((B1)") only when r > §. By
(23), this implies that dw «(c, 8) > . Conversely, for any closed set A, we have
that A% = U, calx]s. For two closed balls in ultrametric spaces, either one includes
the other or they have no intersection. Therefore, there exists a subset S € A such
that [x]s N [x']s = @ for all x, x’ € S and x # x/, and that A% = [ eslx]s. Then,
a(A) < a(A®) = ¥ csa(lxls) = Y,cs B([x]s) = B(A®). Hence, dw,oo (@, B) < 8
and thus we conclude the proof.

A.2 Technical Details from Sect. 2
In this section, we address various technical issues from Sect. 2.
A.2.1 Synchronized Rooted Trees

A synchronized rooted tree, is a combinatorial tree T = (V, E) with arooto € V
and a height function #: V — [0, 0o) such that h~1(0) coincides with the leaf set
and h(v) < h(v*) for each v € V\{o}, where v* is the parent of v. Similarly as
in Theorem 2.2 that there exists a correspondence between ultrametric spaces and
dendrograms, an ultrametric space X uniquely determines a synchronized rooted tree
Tx [46].

Given (X, ux) € U, recall from Sect. 2.3 that V(X) := (J,.(0x(¢) and that for
each B € V(X)\{X}, B* denotes the smallest element in V (X) containing B. The
existence of B* is guaranteed by the following lemma:

LemmaA.1 Let X € U. Foreach B € V (X) suchthat B # X, there exists B*€ V (X)
such that B* # B and B*C B’ for all B'€ V(X) with B G B'.

Proof Let § := diam(B). Let x € B, then B = [x]s. By Lemma A.7, X; is a finite
set. Consider §* := min{ux; ([x]s, [x']s) | [x]s # [x]s}. Let B* := [x]s+, then B* is
the smallest element in V (X) containing B under inclusion. Indeed, B* # B and if
B C B’ for some B’ € V(X), then B'= [x], for some r > §. It is easy to see that for
all § < r < 8%, [x], = [x]s. Therefore, if B’ # B, we must have that r > §* and thus
B*=[x]s+ C [x], = B'. |
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Now, we construct the synchronized rooted tree Tx corresponding to X via the
proper dendrogram fx associated with u x. We first define a combinatorial tree Ty =
(Vx, Ex) as follows: we let Vx := V(X); for any distinct B, B’ € Vy, we let
(B, B') € Ey iff either B = (B")* or B’ = B*. We choose X € Vx to be the root
of Tx, then any B # X in Vx has a unique parent B*. We define hx: Vx — [0, 00)
such that hx (B) := diam(B)/2 for any B € Vx. Now, Tx endowed with the root X
and the height function hx is a synchronized rooted tree. It is easy to see that X can
be isometrically identified with h;l (0) of the so-called metric completion of Tx (see
[46, Sect. 2.3] for details). With this construction Lemma 2.7 follows directly from
[46, Lem. 3.1].

A3 dV(VR;"’A”") Between Compactly Supported Measures

Next, we demonstrate that Theorem 2.9 extends naturally to the case of compactly
supported probability measures in (R>q, A o). For this purpose, it is important to note
that compact subsets of (R>0, Aso) have a very particular structure as shown by the
next lemma.

LemmaA.2 Let X € (R>o, Axo). X is a compact subset iff X is either a finite set or
a countable set containing 0 and with 0 being the unique cluster point (w.r.t. the usual
Euclidean distance A1).

Proof If X is finite, then obviously X is compact. Assume that X is a countable
set with O being the unique cluster point (w.r.t. the usual Euclidean distance Ap). If
{xs}nen € X is a Cauchy sequence with respect to Ao, then either x;, is a constant
when 7 is large or lim,— o x, = 0. In either case, the limit of {x,},cN belongs to X
and thus X is complete. Now for any ¢ > 0, by Lemma A.7, X, is a finite set. Denote
Xe = {Ix1le, ..., [xnle}. Then, {xi, ..., x,} is a finite e-net of X. Therefore, X is
totally bounded and thus X is compact.

Now, assume that X is compact. Then, for any ¢ > 0, X, is a finite set. Suppose
Xe = {[x1le, ---, [xn]e} where 0 < x; < x» < --- < x,. Further, we have that
Aso(xi,xj) = xj whenever 1 <i < j < n. This implies that

(i) x; >eforall2 <i <n;
(i) [xi]le = {x;} forall2 <i < n.

Therefore, X N (g, 00) = {x3, ..., x,} is a finite set. Since ¢ > 0 is arbitrary, X is at
most countable and has no cluster point (w.r.t. the Euclidean distance A1) other than
0. If X is countable, then 0 must be a cluster point and by compactness of X, we have
that 0 € X. O

Based on the special structure of compact subsets of (R>o, Aso), We derive the
following extension of Theorem 2.9.

Theorem A.3 (dv(vgzo’AW) between compactly supported measures) Let X := {0} U
{xili € N} € Rsgsuchthat0 < ... < x5 < Xp—1 < ... < x1 and 0 is the only
cluster point w.r.t. the usual Euclidean distance. Let o, B € P(X). Let o; := a({x;})
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fori € Nand ag := a({0}). Similarly, let B; := B({x;}) and Bo := B{0}). Then for
p € [l, 00),

Z(ij—ﬁj)+ao—ﬂo

j=i

r r - r e
SRR \m—ﬂ»x,—) :

i=l

o0
R=0,A00 _
dy o . B) =2 VP(Z

i=2

Let Fy, and Fg be the cumulative distribution functions of a and B, respectively. Then,

Rs0.A
a'\fV = ), B) = max( max  x;_j, max x,-).
’ 2<i<o0 1<i<oo

Fy (xi)#Fp(xi) o £

Proof Note that V(X) = {{0} U {x;|j > i}|i € NJU{{x;} |i € N} (recall that each
set corresponds to a closed ball). Thus, we conclude by applying Lemmas 2.7 and 2.8.
O

A.3.1 Closed-Form Solution for dvf,R?’A")

In this section, we will derive the subsequent theorem.

Theorem A4 Given 1 < p,q < oo and two compactly supported probability mea-
sures o and 8 on R>o, we have that

1 1/p
dv(vﬂiz,o’l\q)(ot, B) < (/O Ag(F7 M), Fﬁ_l(t))pdt> .

When q < p, the equality holds whereas when q > p, the equality does not hold in
general.

One important ingredient for the proof is the following direct adaptation of [67,
Lem. 1].

LemmaA.5 Let X, Y be two Polish metric spaces and let f: X — Randg: Y — R
be measurable maps. Denoteby f x g: X XY — R? the map (x, y) — (f(x), g()).
Then, for any py € P(X) and ny € P(Y)

(f x@)#Cux, y) = C(fu iy, g4 iy).

Based on Lemma A.5, we show the following auxiliary result.

LemmaA6 Let 1| < g < p < oo. Assume that o and B are compactly supported
probability measures on Rx(. Then,

(A= (@, B) = (g0 (Sw e (Sn B,

where S;: R>9 — Rxq taking x to x4 is the q-snowflake transform defined in Sect.
3.3.
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Proof Since p/q > 1 and by Lemma A.5 we have that

R>0,A4) p .
d a, = inf Ay (x, V)P n(dx xd
(dw., " (@ B) Lot /RWRW( g, )P pu(dx xdy)
= inf f 1S () = S/ pu(dx x dy)
uneC(a,p) R>oxRx>g
= inf / s — t1P/9(Sy x Sy)u u(ds x di)
neC(a,p) R>oxRxq

= (dy 25 M (Spnen (S B

With Lemma A.6 at our disposal, we can demonstrate Theorem A .4.

Proof of Theorem A.4 We first note that

che" @ B) = inf B 6,

where & and 7 are two random variables with marginal distributions « and 8, respec-
tively. Moreover, let ¢ be the random variable uniformly distributed on [0, 1], then
F; 1(¢) has distribution function F, and F ﬁ_ ! (¢) has distribution function Fg (see for

example [88]). Let § = F,;l(g) and n = Fﬂ‘l(;), then we have

R>0,A4)
dw,p

1 1/p
(@, B) < (E(Ag (€, PNYP = ( /O Ag(F @), F,;la))f’dt) :
Next, we assume that ¢ < p. By Lemma A.6, we have that

(A= (@ 8) = (dy 20 (Spower. (S ).

Then,
R> ~
(dyg 20 (S e, (S B)) 7 / |Fog () = Fg a0/ dt,

where Fy 4 and Fg , are distribution functions of (Sy)# « and (S, )# B, respectively. It
is easy to verify that Fy 4(t) = (Fy L(#))? and Fg ) = (F_1 (1))4. Therefore,

1/p
dv(vﬂ%o'Aq)(Ol,ﬁ)=</0 Ag(FN (). F (t))”dt> .

Finally, we demonstrate that for ¢ > p the equality does not hold in general. We
first consider the extreme case p = 1 and ¢ = oo (though we require ¢ < o0 in
the assumptions of the theorem, we relax this for now). Let «p = 81/2 + §2/2 and
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Po = 82/2 + 63/2 where §; means the Dirac measure at point x € Rx¢. Then, we
have that

d(RzOvAoo)

3 1
Vit oo =3 <3 = [ A0 F @
0

5
2

It is not hard to see that both d\i,R;O’Aq)(ao, Bo) and

1 1/p
( / Ag(F (), F,g‘(r)wdr)
0

are continuous with respect to p € [1, o0) and g € [1, oo]. Then, for p close to 1 and
q < oo large enough, and in particular, p < g, we have that

Rx>0,A4)

1 1/p
dy (ao,ﬁo)<</0 Aq(Fa_l(t),Fﬁl(t))pdt> :

A.3.2 Miscellaneous

In the remainder of this section, we collect several technical results that find implicit
or explicit usage throughout Sect. 2.

Lemma A.7 A complete ultrametric space X is compact iff for any t > 0, X, is finite.

Proof Wan [92, Lem. 2.3] proves that whenever X is compact, X, is finite for any
t > 0.

Conversely, we assume that X, is finite for any # > 0. We only need to prove that X
is totally bounded. For any ¢ > 0, X, is a finite set and thus there exist x1, ..., x, € X
such that X, = {[x1]e, ..., [xn]e}. Now, for any x € X, there exists x; for some
i =1,...,nsuchthat x € [x;],. This implies that ux (x, x;) < e. Therefore, the set
{x1,...,x,} € X is an g-net of X. Then, X is totally bounded and thus compact. O

Lemma A.8 V (X) is the collection of all closed balls in X except for singletons {x}
such that x is a cluster point in X.

Proof Given any t > O and x € X, [x]; = B;(x) = {x' € X|ux(x,x) < t}.
Therefore, V (X) is a collection of closed balls in X. On the contrary, any closed ball
B;(x) with positive radius ¢+ > 0 coincides with [x]; € Ox(¢) and thus belongs to
V (X). Now, for any singleton {x} = By(x), if x is not a cluster point, then there exists
t > 0 such that B,(x) = {x} which implies that {x} € V(X). If x is a cluster point,
then for any ¢ > 0, {x} ; B:(x) = [x];. This implies that {x} # [x]; forallt > 0 and
thus {x} ¢ V(X). This concludes the proof. O
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B Technical Details from Sect. 3
B.1 Proofs from Sect. 3.1

Next, we give the missing proofs of the results stated in Sect. 3.1.

B.1.1 Proof of Proposition 3.3

Part 1. This directly follows from the definitions of ué‘{‘,}% and dét\‘,{,rf‘;, (see (8) and

).
Part 2. This simply follows from Jensen’s inequality.
Part 3. By Part 2, {uét{,‘&“;l (X, V) }uen is an increasing sequence with a finite upper
bound u(s}t{,{;“;o (X, ). Therefore, L := lim, oo udym(X,Y) exists and L <
X D)

Next, we come to the opposite inequality. By Proposition B.1, there exist u, €
D" (uyx, uy) and u, € C(ux, ny) such that

1/n
</X Y(u,,(x,y»"un(dxxdy)) — U, Y).

By Lemmas B.19 and B.21, the sequence {u,},cN uniformly converges to some
u € D"(uy,uy) and {u,}neny weakly converges to some u € C(uy, y) (after
taking appropriate subsequences of both sequences). Let

M = sup  u(x,y).
(x,y)esupp(u)

Lete > OandletU = {(x,y) € X xY |u(x,y) > M —e¢}. Then, u(U) > 0. Since U
is open, it follows that there exists a small 1 > 0 such that u,(U) > u(U) — &1 > 0
for all n large enough (see e.g. [7, Thm. 2.1]). Moreover, by uniform convergence of
the sequence {u, },eN, we have |u(x, y) —u,(x, y)| < e forany (x, y) € X x Y when
n is large enough. Therefore, we obtain for n large enough

1/n
( /X Y(un(x,y»”un(dxxdy)) > (U (UNV™(M — 2¢)

> (uU) —e)'/"(M — 2e).

Letting n — oo, we obtain L > M — 2¢. Since ¢ > 0 is arbitrary, L > M >
u sturm (X y)
GW,00 ’ .

B.1.2 Proof of Theorem 3.4

In this section, we devote to prove Theorem 3.4. To this end, we will first verify the
existence of optimal metrics and optimal couplings in (15).
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Proposition B.1 (Existence of optimal couplings) Let X = (X,ux,ux) and Y =
(Y, uy, uy) be compact ultrametric measure spaces. Then, there always exist u €
D" (uy, uy) and pu € C(uyx, wy) such that for 1 < p < oo,

“(s}t\%?;(X, V) = llullpr-

Proof The following proof is a suitable adaptation from proof of [83, Lem. 3.3]. We
will only prove the claim for the case p < oo since the case p = 0o can be shown in
a similar manner. Let u, € D"(uy, uy) and w, € C(ux, y) be such that

1/p 1
(/ (tn (x, )P tin (dx Xdy)> < ugw (X, V) + —.
XxY n

By LemmaB.19, {u, },en weakly converges (after taking an appropriate subsequence)
tosome u € C(uy, nwy). By Lemma B.21, {u, },cn uniformly converges (after taking
an appropriate subsequence) to some u € D"(uy, uy). Then, it is easy to verify that

1/p
<fx Y(u(x,y»"u(dxxdy)) < U™ (X, ).

As a direct consequence of the proposition, we get the subsequent result.

CorollaryB.2 Fix 1 < p < oc0. Let X = (X,ux,pux) and Y = (Y, uy, pny) be
compact ultrametric measure spaces. Then, there exist a compact ultrametric space
Z and isometric embeddings ¢: X — Z and . Y — Z such that

Ul (XL V) = df , @ px. e py).

Before we come to the proof of Theorem 3.4, it remains to establish another auxiliary
result. We ensure that the Wasserstein pseudometric of order p on a compact pseudo-
ultrametric space (X, uy) is for p € [1,00) a p-pseudometric and for p = oo a
pseudo-ultrametric, i.e., we prove for 1 < p < oo that for all o1, o2, @3 € P(X),

1/p
A5 s 1) = (@G5 G 1) + (@5 (. 1))

and for p = oo that for all «, az, a3 € P(X)

X, X, X
dv(v,pMX)(Ml, u3) < max (dV(V,puX)(Ml’ ©2), d\;\,’p“X)(M, 13)).

LemmaB.3 Ler (X, uy) be a compact pseudo-ultrametric space. Then, for 1 < p <
oo the p-Wasserstein metric dv(vX’”X )isa p-pseudometric on P(X). In particular, when
p = 09, it is a pseudo-ultrametric on P(X).
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Proof We prove the statement by adapting the proof of the triangle inequality for the
p-Wasserstein distance (see e.g., [90, Thm. 7.3]). We only prove the case when p < oo
whereas the case p = oo follows by analogous arguments.

Let o1, a2, @3 € P(X), denote by w12 an optimal transport plan between o1 and
a» and by 73 an optimal transport plan between «; and o3 (see [91, Thm. 4.1] for the
existence of (17 and u73). Furthermore, let X; be the support of ;, 1 < i < 3. Then,
by the Gluing Lemma [90, Lem. 7.6] there exists a measure i € P(X| x X3 x X3)
with marginals w12 on X1 x X3 and 23 on X3 x X3. Clearly, we obtain

(g™ (o, 3))” < / ux” (x, z) p(dx x dy x dz)
X1xX2xX3

= / (uxp(x, y) +ux?(y, Z)) u(dx xdy xdz).
X1 xXo2xX3

Here, we used that ux is an ultrametric, i.e., in particular a p-metric [64, Prop. 2.11].
With this we obtain that

(dv(v),(},”)(al,az))p < / ux?(x, y) uia (dx xdy)
X1xX2

+ / ux? (v, 2) s (dy x d2)
X2 xX3

= (dv(v);""’()(m L))’ + (d\;(\,)fl')uX)(az, 3))".

With Proposition B.1 and Lemma B.3 at our disposal we are now ready to prove
Theorem 3.4 which states that uét{,‘V“; is indeed a p-metric on U".

Proof of Theorem 3.4 1t is clear that uét{‘V‘"?; is symmetric and that ué‘\‘;jg (X,)) =0if
X =, Y. Furthermore, we remark that ué‘{,‘vr‘f;)(X ,)) = d&t\‘,{,r“; (X, Y) by Propo-
sition 3.3. Since dét\‘;‘,r’r;()( ,Y) = 0 implies that X =, ) ([84]), we have that
uét{g”]‘) (X, Y) = O0implies that X =, V. It remains to verify the p-triangle inequality.
To this end, we only prove the case when p < oo whereas the case p = oo follows
by analogous arguments.

Let X,),Z € UY. Suppose uxy € D"(ux,uy) and uyy; € D"“(uy,uz) are
optimal metric couplings such that

(™ (X, )" = (g, (ux, wy))”

(™ . 2))7 = (dy 57" Py, nz))’
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Further, define uxyz on X UY U Z as

uxy(xi, x2), X1, xoeXuy,

uyz(x1, x2), X1, x2eYUZ,
uxyz(xi, x2) =3 .

inf {max (uxy (x1, y), uyz(y,x2)) |y €Y}, x1 €X, x2 € Z,

inf {max(uxy (x2, y), uyz(y,x1)) |y €Y}, x1€Z, xo € X.

Then, by [93, Lem. 1.1] uxyz is a pseudo-ultrametric on X U Y LI Z that coincides
with uxy on X 'Y and with uyz on Y U Z. Thus by Lemma B.3 we obtain that

d. (XuYuZ XY (11 Mz))p

(ugwm (X, 2))7 < (dy
(d (XuYuZ MXYZ)(MX’ MY))p‘I‘ (d\;\/)’(;YUZ’MXYZ)(MY’ N«Z))p
= (dw
(u

IA

d(XuY MXY)(,LLX, ,LLY))p (d (YUZ,MYZ)(MY’ /’LZ))p
gm(x,y))’) (ug7p (V. 2))".

This gives the claim for p < co. O

B.1.3 Proof of Theorem 3.7

In order to proof Theorem 3.7, we will first establish the statement for finite ultrametric
measure spaces. For this purpose, we need to introduce some notation. Given X, ) €
Uuv, let D:gm(u X, uy) denote the collection of all admissible pseudo-ultrametrics
on X UY, where u € D"(uy, uy) is called admissible, if there exists no u* €
D" (uy, uy) such that u* # u and u*(x, y) < u(x,y) forallx,y e X UY.

LemmaB.4 Forany X,Y € U¥, D'

adm

(ux,uy) # @. Moreover,

Xuy,
WD) = it a8 e ).

ul
ueDM (ux.uy)

Proof If {u, },eny C DMy, uy)isa decreasing sequence (with respect to pointwise
inequality), it is easy to verify that ¥ := inf ,enu, € D"(uy, uy) and thus u is a
lower bound of {u,},cN. Then, by Zorn’s lemma D;‘é‘m (ux,uy) # @. Therefore, we
obtain the claim. O

Combined with Example 3.6, the following result implies that each u €

D:(lfm (ux,uy) gives rise to an element in A.

LemmaB.5 Givenfinite spaces X, ) € UV, foreachu € pult (ux, uy), u="10) # Q.

adm

Proof Assume otherwise that u~1(0) = @. Let (xo, y0) € X xY be such that
u(xo, yo) = minyex,yey u(x, y). The existence of (xp, yo) is due to the finiteness
of X and Y. We define u(y,,yp): X UY x X UY — R as follows:

() U(xg,yo) [ xxx 1= ux and u(xg, yo)lyxy = uy.
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@ii) For (x,y) € X x7,
U (xg,y0) (X, ¥) :=min (u(x, y), max (ux (x, xo), uy (¥, ¥0)))-

(iii) Forany (y,x) € Y X X, U(xy,yo) (V> X) 1= U(xg, o) (X, ¥).

It is easy to verify that u(x,y,) € D"'(ux, uy). Further, it is obvious that
U (xp,y0) (X0, Y0) = 0 < u(x0, yo) and that uy,,y)(x, y) < u(x,y)forallx,y €e XUY

which contradicts with u € D;étm(u x, uy). Therefore, u=1(0) # @. O

TheoremB.6 Let X', ) € UV be finite spaces. Then, we have for each p € [1, o0)
that

s . z X Y
“Csit\L’l;fr;w(X’ Y) =(A}(gfeAdW/}p ((¢(A,f/’))# 1x: (ia )y wy)- 24)
Proof By Lemma B.4 suffices to prove that u € D:}fm (ux,uy) induces (A, p) € A
such that
Xuy, z
g (s i) = Al (@ ) 1xs (W), 1 ).
Let u € DI (ux,uy). Define Ag := {x € X|3y € Y suchthatu(x,y) = 0}

(Ap # @ by Lemma B.5). By Example 3.6, the map ¢o: Ag — Y taking x to y such
that u(x, y) = 0 is a well-defined isometric embedding. This means in particular that
(Ao, o) € A.

Ifu(x,y) > uz,, (¢(’§‘0’ o0 ) w(YAO’ o0y (¥)) holds for all (x, y) € X x Y, then we
set A := Ag and ¢ := ¢g. This gives

Xuy, V4
A" (s i) = A (@ ) 1xs (W), 1y ).

Otherwise, there exists (x, y) € X\Ag x Y'\¢o(Ap) such that
w(x, ¥) <z, (B 000 ¥ingp0) )

(if x € Ag or y € o(Ao), then u(x, y) > uz, (¢, 00 )5 Vo, o0 () must hold).
Let (x1, y1) € X\ Ao X Y\¢o(Ap) be such that

(x,y) € X\Agx Y\@p(Ap) and } -0
u(x, y) < uZAO((p(}I(‘\O,(Po)(x)’ 1ﬂ(}:“o,(po)(y)) .

u(xy, y1) = min {u(x, y)

The existence of (x1, y;) follows from finiteness of X and Y. It is easy to check that
@o extends to an isometry from Ag U {x1} to ¢9(Ap) U {y1} by taking x; to y;. We
denote the new isometry ¢; and set A} := Ao U {x}. If for any (x,y) € X xY,
we have that u(x, y) > ”ZA1(¢<)541,<p1)(x)’ w(’;hw)(y)), then we define A := A and
¢ = ¢1. Otherwise, we continue the process to obtain A,, Az, .... This process will
eventually stop since we are considering finite spaces. Suppose the process stops at
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Ay, then A := A, and ¢ := @, satisfy that u(x, y) > uz, (qb{; o), w(YA () for
any (x, y) € X x Y. Therefore,

xXuy, V4
g (. ey) = dyl (@8 ), x. (Wh ), 1Y)

Since u € DUt

ndm (U X, Uy) is arbitrary, this gives the claim. O

As a direct consequence of Theorem B.6, we obtain that it is sufficient, as claimed
in Remark 3.8, for finite spaces to infimize in (24) over the collection of all maximal
pairs A* C A. Recall that a pair (A, ¢1) € A is denoted as maximal, if for all pairs
(B, ) € Awith A C B and ¢3|4 = ¢ it holds A = B.

Corollary B.7 Let X,Y € UV be finite spaces. Then, we have for each p € [1, 0]
that

ugw (X, V) = inf g (@ o), 115 (Ul ) 1), (25)

p)eA*

By proving Theorem B.6, we have verified Theorem 3.7 for finite ultrametric mea-
sure spaces. Then, we will use Theorem B.6 and weighted quotients to demonstrate
Theorem 3.7. However, before we come to this, we need to establish the following
two auxiliary results.

LemmaB.8 Let X € U be a compact ultrametric space. Lett > 0 and let p € [1, 00).
Then, for any o, B € P(X), we have that

(dy. (e, )" = (diy, (e, B))" =17,

where o; is the push forward of « under the canonical quotient map Q;: X — X;
taking x € X to [x]; € X;.

Proof For any u; € C(ay, B;), it is easy to see that there exists u € C(«a, 8) such
that u; = (Q; x Q) where Q; x Q;: X x X — X, x X; maps (x,x") € X x X to
([x1s, [x]y). For example, suppose X; = {[x1];, ..., [x,]:}, then one can let

oy, ® Blix;1
a([x1) — Blx;l)’

wi= Y we(((xiles 1)

ij=1

where a|[y;, is the restriction of & on [x;];.
For any x, x’ € X, we have that (ux (x, x))? < (ux,([x];, [x'];))? + t”. Then

(dv)\(,,p((x, B)’ < /x X(ux(x,x/))p,u(dx x dx)
5/ ((ux, ([x1y, [x10))7 + t7) p(dx x dx')
XxX

=/X X(ux(Qz(X), 0: (XM pdx xdx’) + 17
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N /X X (”X,([x],, [x/]t))p,u,(d[x], xd[x']y) + 1P

Infimizing over all u; € C(oy, 8;), we obtain the claim. O

LemmaB.9 Let X € UY and let p € [1,00]. Then, for any t > 0, we have that

uéf{,’&”l‘) (X, X) < t. In particular, lim,_ ué‘{,’&f‘;)(X,, X)=0.

Proof 1t is obvious that (X;); =, X;. Hence, it holds by Theorem 3.14 that
ué{{,’&moo(.)c}, X) < t. By Proposition 3.3 we have that for any p € [1, oo,

{1 t
uGw.p (X, X) < ugwoo (X, X) < t.

[m}
With Lemmas B.8 and B.9 available, we can come to the proof of Theorem 3.7.

Proof of Theorem 3.7 1t follows from the definition of ucs}t{,‘vrn[l, (see (8)) that
sturm ¢ 3 inf dZA X Y
UGw, p( V) S(Alc/rjl)e.A w)p((fﬁ(A,(p))# mx, (W(A,(p))# MY)-

Hence, we focus on proving the opposite inequality. Given any ¢ > 0, by Lemma A.7,
both &} and ) are finite spaces. By Theorem B.6 we have that

. Za, X Y;
WG Y = inf Ay (@, ), (00 W, ), (20)0),
where A, = {(A;,¢1) | @ # A, C X,isclosedand ¢;: A, < Y isan
isometricembedding }.

For any (A;, ¢;) € A;, assume that A, = {11, ..., [xn]tx} and that ¢, ([x;];) =
[vil: € Yo foralli = 1,...,n. Let A := {x1,...,x,}. Then, the map ¢p: A — Y
defined by x; — y; fori =1, ..., n is an isometric embedding. Therefore, (A, ¢) €

A.
Claim 1 ((Za)r, u(zy),) = (Za, uz,,).

Proof of Claim 1 We define amap W: (Z4); — Z4, by [)c],ZA — [x]tX for x € X and

[y]tZA — [y],Y for y € Y\ (A). We first show that ¥ is well defined. For any x" € X,
ifugz, (x,x") <, then obviously we have that ux (x, x") = uz,(x, x’) <t and thus
[x],X = [x/],X. Now, assume that there exists y € Y\¢(A) such that uz, (x,y) < t,
ie., [x],ZA = [y],ZA. Then, by finiteness of A and definition of Z 4, there exists x; € A

such that uz, (x, y) = max(ux (x, x;), uy (¢(x;), y)) < t. This gives that
uz, (Ix15 1)) < max (ux, (Ix15 B 0). uy, (oG, 1)) <t

However, this happens only if u z, ([x]¥, [y]}') = 0, thatis, [x],¥ is identified with [y])
under the map ¢, . Therefore, W is well defined. It is easy to see from the definition that
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W is surjective. Thus, it suffices to show that W is an isometric embedding to finish
the proof. For any x, x” € X such that ux (x, x") > ¢, we have that

iz (X174 [X17A) = uz, (x, ')
= ux(x, x) = ux, (X1}, 1) = uz, (1217 ['1).

Similarly, for any y, y’ € Y\@(A) such that uy (y, y’) > t, we have that

z z
ucz, (DA 1Y) = uz,, (D1 D).
Now, consider x € X and y € Y\¢(A). Assume that uz,(x,y) > t (otherwise

[x]%4 = [y]?*). Then, we have that

uz,(x.y) = min max(ux(x,x;), uy(p(xi),y)) > t.

.....

This implies that

uz,, (Ix15, [y],)—l min max (ux, ([x15 [xi17). uy, (¢ (x5, 1))

.....

=l_1?1n max (uy (x, x;), uy (p(x;), y))

=uz,(x,y) = M(ZA),([X], ) [y], ).

Therefore, W is an isometric embedding and thus we conclude the proof. O

By Lemma B.8 we have that

At t p
( ¢ ((¢(A, <,0t)) (1 x)s (I/f(i\z,%))# (MY)I))
p
z (d\%’f,‘p((qﬁ(}f‘h(ﬁ))# HXs (w(YA,w))# MY)) — 7

Therefore,
sturm _ . Za, Y
Ugw, p(Xt» Vo) _(A,,g,l;feAt dw’p((fﬁ(At (pt)) (LX)t (W(At,%))# (MY)t)

1/p

>(A1£)f€A<( ((¢(A gﬂ)) 1€ (w&,w))# MY))p _ tp>

Notice that the last inequality already holds when we only consider (A, ¢) correspond-
ing to (Ay, ;) € A;. By Lemma B.9, we have that

ugw (X, V) = im ugy’, (A, Vi)

z
Z(Am)feAdWAp((‘f’()imﬂ))# 1x (w({“*‘/’))# ),

which concludes the proof. O
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B.2 Proofs from Sect. 3.2

In this section, we give the complete proofs of the results stated in Sect. 3.2.

B.2.1 Proof of Proposition 3.10

Part 1. This follows directly from the definitions of ugw, , and dgw,, (see (11) and
(5.
Part 2. By Jensen’s inequality we have that dis‘[‘,h(u) < disgl‘(u) for any p €
C(ux, iuy)- Therefore, ugw, (X, V) < ugw,q(X, V).
Part 3. By Part 2 we know that {ugw » (X, V)}nen is an increasing sequence with a
finite upper bound uGw, o0 (X, ). Therefore, L := lim ,,_, o gw,» (X, V) exists and
itholds L < ugw, (X, ).

To prove the opposite inequality, by Proposition B.10, there exists for eachn € N,
Un € C(uyx, wy) such that

TRy L @) = uGw.n (X, D).

By Lemma B.19, {11, },en weakly converges (after taking an appropriate subsequence)
to some u € C(uyx, uy). Let

M := sup Aco(ux(x, x"), uy(y, y"))
(x,y),(x’,y")esupp (1)

and for a given ¢ > 0 let
U={((x.9), @,y) € XY XX XY | Aoolux(x,x'), uy(y,y)) > M — e}.

Then, we have un® u(U) > 0. As u,, weakly converges to w, we have that u, ® u,
weakly converges to u® w. Since U is open, there exists a small &1 > 0 such that
UnQ@up(U) > n@uU) — &1 > 0 for n large enough (see e.g. [7, Thm. 2.1]).
Therefore,

IT Y Il (ua@in) = (n® n (UN" (M — £) = (@ u(U) — e)/™(M — &).

Letting n — oo, we obtain L > M — ¢. Since ¢ > 0 is arbitrary, we obtain L > M >
uGW,OO(Xv y)

B.2.2 Proof of Theorem 3.11

One main step to verify Theorem 3.11 is to demonstrate the existence of optimal
couplings.

PropositionB.10 Let X = (X, ux, ux)and) = (Y, uy, uy) be compact ultrametric
measure spaces. Then, for any p € [1, 00], there always exists an optimal coupling
i € Clux. py) such that ugw,p(X. Y) = dis}' ().
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Proof We will only prove the claim for the case p < oo since the case p = oo can be
proven in a similar manner. Let u,, € C(ux, iy) be such that

[ Aco(ux, uy)llLe(u,@u,) < uow,p(X, ) + e

By Lemma B.19, {i, },en weakly converges to some i € C(uy, ny) (after taking an
appropriate subsequence). Then, by the boundedness and continuity of A (ux, uy)
on X x Y x X xY (cf. Lemma B.22) as well as the weak convergence of u, ® u,, we
have that

disy' (1) = lim_dis} (a) < ugw.p(X, V).
n—oo

Hence, ugw, p(X, V) = disy" (n). o
Based on Proposition B.10, it is straightforward to prove Theorem 3.11.

Proof of Theorem 3.11 Tt is clear that ugw, , is symmetric and that ugw, ,(X,)) =0
if X =y, ). Furthermore, we remark that ugw, »(X, ) > dow,p(X,Y) by Propo-
sition 3.10. Since dgw, (X, Y) = 0 implies that X =y, Y (see [60]), we have that
ugw,p(X,Y) = O0implies that X =, V. It remains to verify the p-triangle inequality.
To this end, we only prove the case when p < oo whereas the case p = oo follows
by analogous arguments.

Now let X', Y, Z be three ultrametric measure spaces. Let uxy € C(ux, pny) and
uyz € C(uy, iz) be optimal (cf. Proposition B.10). By the Gluing Lemma [90, Lem.
7.6], there exists a measure uyyz € P(X xY x Z) with marginals pxy on X xY
and pyz on Y x Z. Further, we define uyz = (mxz)s u € P(X x Z), where wxz
denotes the canonical projection X x Y x Z — X x Z. Then

(6w, p(X, 2)7 < 18oox, uD ] p (s s @uxs)
= [ Aco(ux, uZ)”zp(U-XYZ@WvXYZ)

= Moo (ux, MY)”i”(lLXYZ@)MXYZ) + 1 Aso(uy, MZ)||€I)(MXYZ®MXYZ)

= [ Ao Ux, UL b gy opry) F 1800 @y UL b1y s00r0)

= (ugw,p(X, YN’ + (ugw,p Y, 2)7’,

where the second inequality follows from the fact that A, in an ultrametric on R
(cf. [64, Exam. 2.7]) and the observation that an ultrametric is automatically a p-metric
for any p € [1, oo] [64, Prop. 2.11]. O

B.2.3 Proof of Theorem 3.14
We first prove that

UGW,00(X, V) = inf{r = 0] &; =y Vi) (26)

@ Springer



Discrete & Computational Geometry

and then show that the infimum is attainable.
Since Xy =y X and Yy =y YV, if Ay =y o, then X =, Y and thus by Theo-
rem 3.11

UGW,00(X, V) =0 =inf{r > 0| &, =y Y}

Now, assume that for some ¢+ > 0, &; =, );. By Lemma A.7, for some n €
N we can write X; = {[x1),...,[xx]¢} and Yy = {[y1)s, ..., [ynl;} such that
ux, ([xile, [x;10) = wy, ([yile, [yjl) and ux ([xil:) = py ([yilo)- Let ux" == pxl),
and py' := pylpy,, foralli = 1,...,n.Letp := Y 7, ux' ® uy'. Itis easy to check
that € C(ux, py) and supp(u) = Uj_; [xi]; X [yi];. Assume (x, y) € [x;1 x [yils
and (x',y") € [x;1 x[y;l. If i # j, then uy, ([xi1;, [x;1:) = wuy,([yil;:, [y;];) and
thus

Acolux (x,x"), uy(y, ¥)) = Moo (ux, (xi1r, [xj10), uy, ([yile, [yj1) = 0.

Ifi = j, then ux(x, x"),uy(y,y’) <t and thus Axo(ux(x,x), uy(y,y)) < t.In
either case, we have that

UGW,00 (X, Y) < sup Aco(ux(x,x"), uy(y, y")) <t.
(x,¥),(x",y")esupp (1)

Therefore, ugw 0o(X,Y) <inf{t > 0| &X; =y W}
Conversely, suppose u € C(ux, ny) and let

= sup Aco(ux (x, x"), uy(y, y)).
(x,¥),(x",y")esupp (1)

By [60, Lem. 2.2], we know that supp(u) is a correspondence between X and Y. We
defineamap f;: X; — Y;bytaking [x],X € X;to [y]tye Y; suchthat (x, y) € supp(w).
Itis easy to check that f; is well defined and moreover f; is anisometry (see for example
the proof of [64, Thm. 5.1]). Next, we prove that f; is actually an isomorphism between
A; and ). For any [x],X € X, let y € Y be such that (x, y) € supp(w) (in this case,
1Y = f,(Ix]X)). If there exists (x/, y') € supp(u) such that x’ € [x]X and y' ¢ [y1},
then Aoo(ux (x, x'), uy(y,y’)) = uy(y,y’) > t, which is impossible. Consequently,
w([x1X x (Y\[y1})) = 0 and similarly, u((X\[x]}) x [y]¥) = 0. This yields that

px (15) = w(x1Y x V) = u(@x1X x [y17) = w(X x [y17) = uy (y1D).

Therefore, f; is an isomorphism between A; and );. Hence, we have that
UGW,00(X,Y) = inf{t > 0|, =y i} and hence ugw, oo(X,)) = inf{r >
01X =w Wi}

Finally, we show that the infimum of inf{r > 0| &; =,, )} is attainable. Let
§:=inf{r = 0| &; =y, V;}.If 6 > O, let {t,},,en be a decreasing sequence converging
to & such that X;, =y ), for all #,,. Since X5 and Vs are finite, X;, = X5 and V;, = Vs
when 7 is large enough. This immediately implies that X5 =y, Vs. Now, if § = 0, then
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by (26) we have that ugw oo(X,)) = § = 0. By Theorem 3.11, X =, Y. This is
equivalent to X5 =, V5. Therefore, the infimum of inf{t > 0| X; =, );} is always
attainable.

B.2.4 Proof of Theorem 3.18

An important observation for the proof of Theorem 3.18 is that the snowflake transform
relates the p-Wasserstein pseudometric on a pseudo-ultrametric space X with the 1-
Wasserstein pseudometric on the space §,(X), 1 < p < oo.

Lemma B.11 Given a pseudo-ultrametric space (X, ux) and p > 1, we have for any
o, € P(X) that 3 (@, B) = @y} (. ))'/7.
Remark B.12 Since S,oux and uy induce the same topology and thus the same Borel

sets on X, P(X) = P(S,(X)) and thus the expression dvf,’il(x)(oz, B) in the lemma is
well defined.

Proof of LemmaB.11 Suppose w1, up € C(w, B) are optimal for d\){, (o, B) and

S” ( )(a B), respectively (see Sect. B.5.1 for the existence of 11 and 7). Then,

(@S5 (@, ) /Xx<ux(x,y>>"m(dxxdy>

Sp(X)

=/ S, (ux) (x y) s (dx xdy) = d’ X (@, B,
XxX

and
a3 (o, p) = fx Sy (0(x.3) pa(dr xdy)
=/ (ux (x, )P pa(dx xdy) = (dyg 2 (o, )"
XxX

Therefore, d\,(v)’(l’,uX)( B = SP(X)

a, VP o

With Lemma B.11 at our dlsposal we can prove Theorem 3.18.

Proof of Theorem 3.18 Let ;1w € C(uux, ity). Then,

| Aco(ux, MY)”L/’(/,LX/L) = [ Ao (ux?, qu)”Ll(u.XpL)'

By infimizing over u € C(ux, fty) on both sides, we obtain that (ugw, (X, V)P =

ugw,1(Sp(X), Sp(I)).
To prove the second part of the claim, let u € Du“(u x,uy). By Lemma B.11 we
have that
xuy, (Sp(XUS,(Y),Sp ()
(g (e wn)” = dy i ).

Finally, infimizing over u € D““(u X, Uuy) yields
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ugw p (X, VP = ugw (Sp(X), Sp(V)

]

As adirect consequence of Theorem 3.18, we obtain the following relation between
U, ugw) and UV, ué‘{,’&r‘;‘,) for p € [1, 00).

Corollary B.13 For each p € [1, 00), the metric space (U, uét{,{;n}) is isometric to the

st . st ~ st
snowflake transform of U, ué\‘,‘&f}), ie, S,UY, ué\‘,‘&‘g = UV, ué{};“})

Proof Consider the snowflake transform map S,: % — UY sending X € U™ to
Sp(X) € UY. It is obvious that S, is bijective. By Theorem 3.18, S, is an isometry
from S, (U, ué‘{,’&ﬂ) to U™, ugw™)- Therefore, S, (U™, uét{gf‘;) = U gy, o

B.3 Proofs from Sect. 3.3
Throughout the following, we demonstrate the open claims from Sect. 3.3.
B.3.1 Proof of Theorem 3.19
First, we focus on the statement for p = 1, i.e., on showing
ugw,1(X, V) < 2ugwh (X, V). 27

Letu € D""(uy, uy) and u € C(ux, ny) be such that

um (2, ) = /uoc,y)u(dxxdy).

The existence of u and u follows from Proposition B.1.
Claim 1 For any (x, y), (x’, y') € X x Y, we have

Aco(ux (x, x"), uy(y, ")) < max(u(x, y), u(x’, y)) < ulx,y) +u(x’y".
Proof of Claim 1T We only need to show that

Aoo(ux (x, x"), uy(y, y")) < max(u(x, y), u(x’, y").

Ifux(x,x") = uy(y, y'), then there is nothing to prove. Otherwise, we assume without
loss of generality that uy (x, x") < uy(y, y'). If max (u(x, y), u(x’, y)) < uy(y,y),
then by the strong triangle inequality we must have u(x, y') = uy(y, y') = u(x’, y).
However, u(x’, y) < max(ux(x,x’), u(x,y)) < uy(y,y’), which leads to a contra-

diction. Therefore,

Aco(ux (x, x), uy (y,y) < max(u(x, ), u(x, y)).
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By Claim 1, we have that

/ / Aoolux (o XY, uy (3, ) (dx x dy) (dx’ x dy')
XxYxXxY

< / u(x, y) u(dx xdy)+/ u(x, y) uldx' xdy') < zugsv‘f‘;(x,y).
XxY XxY

Therefore, ugw,1(X,Y) < 2u%‘{{}"‘1 (X,)).
Applying Theorem 3.18 and (27), yields that for any p € [1, 0o0)

uGw,p(X, V) = (uaw.1(Sp(X), S,(M))N'?
< QuEW(Sp(X), SN =2 udim (X, V).
B.3.2 Proof of Results in Example 3.21

It follows from [60, Rem. 5.17] that

A& (An(1), Mgy (1)) =

’

3\!/P
() -

daw,p(Bn(1), Agu(1)) <

Rl = A=

Then, by Proposition 3.3, we have that

FN

uSW (An(1), Do (1)) = dSW (An(1), Agy (1)) =

Let u, denote the uniform probability measure of K (1). Since Z (1) has
the constant interpoint distance 1, it is obvious that for any coupling u €
C(ttn, o), disp(n) = dis¥(u) This implies that ugw,,(As(1), Az (1)) =

2dw, p(An(1), Agn(1)) < (3/<2n>)1/".

B.3.3 Proof of Theorem 3.22

First, we prove thatug\‘gf‘éo (X,)) > ugw,0 (X, V). Indeed, forany u € DUy, uy)
and u € C(uyx, iy), we have that

sup  u(x,y) = sup max (u(x, y), u(x’, y"))
(x,y)€supp (1) (x,¥),(x",y")esupp (1)
= sup Aco(ux(x, x"), uy (y,y") > ugw,00(X., ),

(x,y),(x,y")€supp (1)

where the first inequality follows from Claim 1 in the proof of Theorem 3.19. Then,
sturm

by a standard limit argument, we conclude that UGW. oo (X V) = ugw, 00 (X, )).

@ Springer



Discrete & Computational Geometry

Next, we prove that ué‘&f“oo(X, Y) < min{t > 0| X; =y Vr}. Lett > 0 be such
that X; =y, ); and let ¢ : A} — ) denote such an isomorphism. Then, we define a
functionu: X UY x X LY — R as follows:

1. ulxxx :=ux and u|yxy = uy;
2. forany (x,y) € X XY,

we,y) o= | @I DI, o) # D)
A 12 if p(Lx) = D1

3. forany (y,x) € ¥ x X, u(y, x) :=u(x, y).

Then, it is easy to verify that u € D”h(u X, uy) and that u is actually an ultrametric.
Let Z := (X UY,u). By Lemma 2.8, we have

sturm . *
X, < dé max diam(B).
Ugw, oo( V) < W, OO(MX ny) = BeV(\(2) (BY)
ux(B)#uy (B)

We verify that d\,zv,oo(ux, iy) <t next. Itis obvious that Z, = X; = Y;. Write X; =
{lxi1¥Y_, and Yy = {[y;17}/_, such that [y;]Y = ¢([x;]1¥) foreachi = 1,...,n
Then, [xi],z = [yi],z and Z, = {[xi],Z |i = 1,...,n}. Since ¢ is an isomorphism,
forany i = 1,...,n we have that ux([xi]f() = ;Ly([y,-],y) and thus MX([Xi],Z) =
y,y([y,-]sz) = uy([x; ,Z) when pyx and py are regarded as pushforward measures
under the inclusion map X < Z and Y — Z, respectively. Now for any B € V(Z)
(cf. Sect. 2.3), if diam(B) > ¢, then B is the union of certain [xi],Z’s in Z; and thus
ux(B) = ny(B). If diam(B) < t and diam(B*) > ¢, then there exists some x; such
that B = [x,]Z and [x,] [x,], where s := diam (B). This implies that ux(B) =

uy (B). In consequence, we have that dw,oo(“X iy) <t and thus uc‘f{,{ﬁfgo(zl’ ) <

A (jux, iy) < t. Therefore, udm (X, V) < inf{t = 0] Zy V).

Finally, by invoking Theorem 3.14, we conclude that
UG (X, V) = uGw,00 (X, V).
B.3.4 Proof of Theorem 3.23

We prove the result via an explicit construction. By Theorem 3.22, we have s =
sturm

UGw. (X V) = ugw,0(X, ). By Theorem 3.14, there exists an isomorphism

¢: Xy = Y. Since s > 0, by Lemma A.7, both X and ))s are finite spaces. Let

Xy =l alf) Y = (], - ., Dal¥ ) and assume [y;]Y = @([x; 1Y) for

eachi =1,...,n.Let A :={x1,...,x,} and define ¢: A — Y by sending x; to y;

foreachi =1, ..., n. We prove that (A, ¢) satisfies the conditions in the statement.
Since ¢ is an isomorphism, forany 1 <i < j <n,

uy (yi, y;) = uy, (i1}, [y;1)
= uy, (P(x15), p([x;15)) = ux, (1%, [x;15) = ux (xi, x;).
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This implies that ¢: A — Y is an isometric embedding and thus (A, ¢) € A.

Itis obvious that (Z 4), is isometric to both X and Y;. In fact, [x;]%4 = [y 1%4in Z4
foreachi =1,...,nand (Z4); = {[x,-]SZA |i =1,...,n}.Since ¢ is an isomorphism,

forany i = 1,...,n we have that ux ([x;1¥) = uy([y;]¥) and thus px ([x;]17) =

uy([yi]SZA) = ,uy([xi]sZA) when py and py are regarded as pushforward measures
under the inclusion maps X — Z4 and ¥ — Z4, respectively. Now for any B €
V(Z4) (cf. Sect. 2.3), if diam(B) > s, then B is the union of certain [xi]sZA’s and
thus ux(B) = uy(B). If otherwise diam(B) < s and diam(B*) > s, then there
exists x; such that B = [xl-],ZA and [x,-],ZA = [x;]%* where ¢ := diam(B). This
implies that ux (B) = uy(B). By Lemma 2.8, we have d\i/joo(ﬂxv iy) < s and thus

dvzvf_‘oo(ux, y) = s since dvzvf,‘oo(MXs Wy) is an upper bound for s = ué‘{’,}"“oo(X, %)
due to (8).

B.3.5 Proof of Theorem 3.25

In this section, we prove Theorem 3.25 by modifying the proof of [60, Prop. 5.3].

LemmaB.14 Let (X,uyx) and (Y,uy) be compact ultrametric spaces and let S C
X x Y be non-empty. Assume that sup(, ) (vy)es Moo (ttx (x, xN,uy(y,y)) < n.
Defineug: X UY x X UY — Rxg as follows:

(1) uslxxx :=ux and us|lyxy := uy;
(i) for any (x.y) € X x ¥, us(x,y) := inf 1y es max ey (x, x'), uy (v, ¥). 0);
(iii) for any (x,y) € X XY, us(y, x) := ug(x, y).

Then, us € D" (ux, uy) and us(x, y) < n forall (x,y) € S.

Proof That us € D" (ux, uy) essentially follows by [93, Lem. 1.1]. It remains to
prove the second half of the statement. For (x, y) € S, we set (x/, y) := (x, y). This
yields

ug(x,y) <max (ux(x,x), uy(y,y), n) =max(0,0,n) = 1.
O

Proof of Theorem 3.25 Let j € C(ux, puy) be a coupling s.t. [Ty [lLr(ueu) < 8.
Sete := 4vs(X) < 4.By [60, Claim 10.1], there exist a positive integer N < [1/6] and
points x1, ..., xy in X such that min;.; ux(x;, x;) > &/2, min; ,ux(BSX(xi)) >4

and px (UL, BX(x)) = 1 —e.

Claim1 Foreveryi =1, ..., N there exists y; € Y such that
(B (xi) x By, 5 () = (1 = 8%) ux (BX (x)).
Proof of Claim 1 Assume the claim is false for some i and let

Qi(y) = B (xi) x (Y\Bj(o15/(0).
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Then, as u € C(ux, iy) it holds

ux(BY (i) = (B (xi) x Y)
= (B (6i) % Bl 15 ) + 1(BX (i) x (Y\BY( 1))

Consequently, we have that £ (Q; (y)) > 821 X(BSX (x;)). Further, let
Qi :={(x,y.x,y) e XxYxXxY |x,x'€ BX(x)), uy(y,y) = 2(e +8)}.
Clearly, it holds for (x, y, x, y') € Q; that
PRy, y, X\ ¥) = Nooux (x, x"), uy (y, ¥)) = uy(y,y") = 26.

Further, we have that u ® u(Q;) > 8*. Indeed, it holds

nu(Q;) = / 1 pu(dx' xdy') u(dx x dy)
BX (xi)xY J Qi (y)

— / 1(0i () (dx x dy)
Bg((x,')XY
— ux(BX (x) /Y Qi) iy (@) = (ux (BX (k)28 = 6*.
However, this yields that

||F§2Y P (uen) = ”F)ogY “Ll(u@u)
> IT 10, 11 (ugyy = 28 @ u(Qi) > 287,

which contradicts ||F§’(°,Y||pr®,i) < 8. O

Define foreachi = 1,..., N, S; = Bg((xi) X BZY(H(;)(yi). Then, by Claim 1,
w(S;) >8(1 —8%),foralli=1,...,N.

Claim2 'Y, (x;, yi, xj, y;) < 6(¢+8) foralli, j=1,...,N.
Proof of Claim 2 Assume the claim fails for some (ig, jo), i.e.,
Aoo(ux (xig, Xjo), uy (¥ig, ¥jo)) > 6(e +6) > 0.

Then, we have Ao (ux (Xig, Xjo)» Uy (Vig» ¥jo)) = max (ux (Xiy, Xjo), uy (Vig> ¥jo))- We
assume without loss of generality that

ux (Xig, Xjo) = Noo(ux (Xig, Xjo), uy Vig» ¥jo)) > uy (Vigs Yjo)-
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Consider any (x, y) € Sj, and (x', y') € Sj,. By the strong triangle inequality and the
factthat ux (x;, xj,) > 6(¢+08) > &, itis easy to verify thatux (x, x') = ux(xig, Xjo)-
Moreover,

uy (y, ") < max (uy (y, yig), uy (Vig» ¥jo)» tty (¥jg» ¥))
< max(Z(s +8), ux (xiy, xjy), 2(e + 8)) =ux(xiy, Xj,) = ux(x, x).

Therefore, F;'(O’Y(x, v, X, y) =ux(x, x") = ux(xj5, X)) = F;’(O,Y(xio, Yio» Xjos Yjo) >
6(e + &) > 2§. Consequently, we have that

||F()>(<?Y”LP(M®M) = ”F;(“iy”[‘l(#@w)
> Py ls, L It uapy = 281(Sig) 1(Sjg) > 28(8(1 — 8%))°.
However, for § < 1/2,28(8(1 — §2))> > 28°. This leads to a contradiction. O

Consider S € X xY given by § := {(x;,yi))|i = 1,..., N}. Let ug be the
ultrametric on X LI Y given by Lemma B.14. By Claim 2,

sup Yy, y, X,y <6(s+96).
(x,y),(x',y")eS

Then, for all i = 1,..., N we have that ug(x;,y;) < 6(¢ + &) and for any
(x,y) € XxY we have that ug(x, y) < max(diam(X), diam(Y),6(¢ 4+ 8)) <
max (diam (X), diam(Y), 27) =: M’. Here in the second inequality we use the assump-
tion that § < 1/2 and the fact that ¢ = 4vs(X) < 4.

Claim3 Fixi € {1, ..., N}. Then, for all (x, y) € S;, it holds ug(x, y) < 6(e + 3).

Proofof Claim 3 Let (x,y) € S;. Then, ux(x,x;) < € and uy(y, y;) < 2(s + 9).
Then, by the strong triangle inequality for # s we obtain

us(x,y) < maxf{uyx(x, x;), uy(y, yi), us(xi, yi)}
< max{e,2(e +8),6(c +8)} < 6(e + §).

O

Let L := U1N=1 S;. The next step is to estimate the mass of 1 in the complement of
L.

Claim4 w(X xY\L) <& +3.
Proofof Claim4 Foreachi =1,..., N, let

Aj = BEX(xi) X (Y\B2Y(8+5) (3i)-
Then,
A = (BX () x Y)\(BX (i) x By 15, 0) = (BX (x) x Y)\S;.
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Hence, u(A;) = n(BX(xj) xY) — u(Si) = ux(BX(x;j)) — u(S;), where the last
equality follows from the fact that u € M(uyx, uy). By Claim 1, we have that
w(Si) > ux (BX(x;))(1 — §%). Consequently, j(A;) < ux(BX(x;))8%. Notice that

N N
XxY\L C (X\UB;‘(x,-)) XY U (UA,).
i=1 i=1

Hence,
N N

w(X xY\L) < pux (X \ U Bj‘(m)) + ) u(A)
i=1 i=1

N N
<1 —MX<UB§(x,~)> +Y Sux(BX (i) <e+ N8 <e+6.

i=1 i=1

Here, the third inequality follows from the choice of the points x;s at the beginning of
this section and from the fact that N < [1/6]. O

Now,

/ (us(x, )P pn(dx xdy) = </ +/ )(us(x,y))”u(dx xdy)
XxY L XxY\L
< (6(+8) +M?". (¢ +59).

Since we have for any a, b > 0 and p > 1 that a!/? + bY/P > (a + b)'/P, we obtain

UG (X, V) < (e +8)/P(6(e +8)! 7P + M)
<@ +8)PQT+ M) < (4vs(X) +8)'/7- M,

where we used ¢ = 4vs(X) and M := 2max(diam(X), diam(Y)) + 54
M’ + 27. Since the roles of X and ) are symmetric, we have ué‘{,‘vr‘; X,

(4min(vs(X), v5(Y)) + 8)/7- M.

o AV

B.4 Proofs from Sect. 3.4
The subsequent section contains the full proofs of the statements in Sect. 3.4.
B.4.1 Proof of Theorem 3.27

Part 1. We first prove that (U™, ugw, ) is non-separable for each p € [1, oo]. Recall
notation in Example 3.5 and consider the family {A»(a)}aef1,2]-

Claim 1 For all a # b € [1,2], ugw,p(A2(a), Ax(b)) = 271 /P As(a, by = 2717,
where 271/ .= 1,
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Proof of Claim 1 First note by Theorem 4.1 that
uGw.p(A2(a), Ay (b)) = SLBY' (Ay(a), Ax(b)).

It is easy to verify that SLB‘;,“(KZ((J), zz(b)) =271/P A (a, b). On the other hand,
consider the diagonal coupling between 1, and up, then for p € [1, 00)

" - 1 1\
ugw,p(Az(a), Ax(b)) < (2 - Aoo(a, b)? - 3 5) =27 As(a, b),

and for p = oo, qu,oo(’A\z(a), /A\z(b)) < Axo(a, b). This concludes the proof. 0O

By Claim 1, we have that {ZZ(a)}ae[l,Z] is an uncountable subset of ¥ with
pairwise distance greater than 2~ /7 which implies that (¥, ugw p) isnon-separable.

Now for p € [1, 00), we show that ugw, , is not complete. Consider the family
{A2: (1)} ,en of 2"-point spaces with unitary interpoint distances. Endow each space
Aon (1) with the uniform measure 1, and denote the corresponding ultrametric mea-
sure space by Zzn(l). It is proven in [84, Exam. 2.2] that {Zgn(l)}neN is a Cauchy
sequence with respect to dgw, , without a compact metric measure space as limit. It
is not hard to check that

uGw. p(Aan (1), Ay (1)) = 2dgw. p(Aan (1), Api(1)), forall n,m € N.

Therefore, {Kzn (D}nen is a Cauchy sequence with respect to ugw, , without limit in
UY. This implies that U™, ugw, p) is not complete.

By Theorem 3.19 and that (4", ugw, ) is not separable, /™, ué‘{,’vr‘,“;) is not separa-
ble. As for completeness, consider the subset X := {1 — 1/n},eny € (R>0, Axo). By
Lemma A.2, X is not a compact ultrametric space. Let g € P(X) be a probability

defined as follows:
1 _
wol 31— — :=27"  forall n e N.
n

Foreach N € N, let Xy := {1 — 1/n|n = 1,..., N}. Since each Xy is finite,
(Xn, Axo) is a compact ultrametric space. Let uy € P(Xy) be a probability defined

as follows:
| 1 . 27" 1<n<N,
at nf) 27Nt p=N.
sturm

Then, it is easy to verify (e.g. via Theorem 3.7) that {(Xn, Aco, UN)}NeN 1S @ UGW. p
Cauchy sequence with (X, A, it0) being the limit. Since the set X is not compact,
(X, Ao, (o) ¢ UV and thus UV, ué‘{,‘vm;,) is not complete.

Part 2. That (UY, ugw. ) is non-separable is already proved in Part 1. We
prove completeness next. Given a Cauchy sequence {X,, = (X, un, Un)}neny With
respect to ugw,oo, we have that the underlying ultrametric spaces {X,},en form
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a Cauchy sequence w.r.t. ugy due to Corollary 3.16. Since (U, ugn) is complete
(see [93, Prop. 2.1]), there exists a compact ultrametric space (X, uy) such that
lim ;o0 uGH (X, X) = 0.

Let {8, },en be a sequence of positive numbers converging to O such that §, >
ucu(Xn, X). By Theorem 2.5, we have that (X,)s, = X, . Denote by &, € P(Xs,)
the pushforward of (i,)s, under the isometry. Furthermore, we have by Lemma A.7
that X, is finite and we let X5, = {[x1]s,, . .., [x«]ls,} for x1, ..., xx € X. Based on
this, we define v, := Zle Pn([xils,) -8y, € P(X), where &, is the Dirac measure
at x;. Since X is compact, P(X) is weakly compact. Therefore, the sequence {v, },eN
has a cluster point v € P(X).

Now we show that X' := (X, ux,v) is a ugw,co cluster point of {X},},en and
thus the limit of {&},},en (since {X,},en is Cauchy). Without loss of generality, we
assume that {v,},en weakly converges to v. Fix any ¢ > 0, we need to show that
UGW.00 (X, &) < & when n is large enough. For any fixed x, € X, [x4]¢ is both
an open and closed ball in X. Therefore, v([x4]s) = lim ;o0 vy ([x4]e) (seC €.8. [7,
Thm. 2.1]). Since §,, — 0 as n — o0, there exists N > 0 such that for any n > Ny,
8, < e. We specify an isometry ¢, : (X,)s, = Xs, that gives rise to the construction
of v,. Then, we let ¥, : (X;,)¢ — X, be the isometry such that the following diagram
commutes:

(Xn)s, LN Xs,

8—quotientl ls -quotient

Yn
(Xn)e — Xe

Assume that [x,]¥ = (Jj_; [x;]¥ . Letx? € X,, be such that v, ([x715") = [x,]¥ and
let x{, ..., x/ € X, be such that <pn([xf]§i”) = [xi]gi foreachi = 1,...,[. Then,
1 = Ul ]gi”. Therefore,

l
V(5 0) = ) va (1)

i=1
I I

=Y 1) = Y s (1 157) = pan (1x215).
i=1 i=1

Since &), is a Cauchy sequence, there exists N2 > 0 such that ugw oo (Xn, Xn) < €
when n,m > Nj. Then, by Theorem 3.14, (X)), =w (X)) for all n,m > Ns.
By Lemma A.7, (X,), is finite, then (X,). has cardinality independent of n when
n > Nj. For all n > N;, we define the finite set A, := {,u,n([x"]g(") [ x" e X,}.
A, is independent of n since (&), =y (&) for all n,m > N,. This implies
that ,un([xf]g( ") only takes value in a finite set A,. Combining with the fact that
1m0 i ([XP127) = 1im 00 va ([x]1X) = v([x,]X) exists, there exists N3 > 0
such that when n > N3, u,([x}]s) = C for some constant C. This implies that
v([x*]g() = un([xﬁ]g(”), when n > max(Nj, Ny, N3). Since X, is finite, there
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exists a common N > O such that for all n > N and for all [x.], € X, we
have v([x,]X) = ua([x213"), where [x213" = ¥ ([x,]¥) € (Xy)e. This indi-
cates that v = (¥,)# (Uy)e When n > N. Therefore, X; =, (&,). and thus
UGW,00 (X, Ay) < €.

B.4.2 Proof of Proposition 3.28

Next, we will demonstrate Proposition 3.28. However, before we come to this we
recall some facts about p-metric and p-geodesic spaces.

Lemma B.15 ([64, Prop. 7.30]) Given p € [1, 00), if X is a p-metric space, then X is
not q-geodesic forall 1 < q < p.

Lemma B.16 ([64, Prop. 7.27]) Let X be a geodesic metric space. Then, forany p > 1,
S1/p(X) is p-geodesic, where Sy denotes the snowflake transform for a > 0 (cf. Sect.
3.3).

For p = 1, the proof is based on the following property of the 1-Wasserstein space.

LemmaB.17 ([9, Thm. 5.1]) Let X be a compact metric space. Then, the space
Wi (X) := (P(X), dv)é,l) is a geodesic space.

Based on the above results and Corollary B.2, the proof of Proposition 3.28 is
straightforward.

Proof of Proposition 3.28 Let X and ) be two compact ultrametric measure spaces.
First, we consider the case p = 1. By Corollary B.2, there exist a compact ultrametric
space Z and isometric embeddings ¢: X < Z and ¢ : Y < Z such that

uSW (X, V) = dg (s tx. Vi iy ).

The space W1(Z) is geodesic (cf. Lemma B.17). Therefore, there exists a Wasserstein
geodesic ¥: [0, 1] — W (Z) connecting ¢ wx and v# wy. This induces a curve
y: [0, 11 = UY where for each ¢ € [0, 1],

y(t) = (SUPP Yy ®), Ulsupp(F (1)) x supp(F (1)) » 77(t))

Note that ¥ (0) =, X and y (1) =,, Y and hence we simply replace ¥ (0) and y (1)
with X and ), respectively. Now, for each s, t € [0, 1], we have that

dEWT (v (5), ¥ (1)) < dig (7 (), (1))
= |s — t]dig, (F(0), P(1) = |s — 1] dSWT (X, V).

Therefore, y is a geodesic connecting X and ) and thus (¥, ué‘{,‘?‘]‘) is geodesic.

For the case p > 1, by Corollary B.13, S,U", uét{,l\ff‘;) = U ugW™)- This
?mplies that. Si/pUY, u(ij\‘,‘\f”{ = Uv ua‘\‘;&“;) Hence, by Lemma B.16, /Y, ué‘\‘,‘\f“;
is p-geodesic. O

@ Springer



Discrete & Computational Geometry

B.5 Technical Details from Sect. 3

In this section, we address various technical issues from Sect. 3.

B.5.1 The Wasserstein Pseudometric

Given a set X, a pseudometric is a symmetric function dx: X x X — R satisfy-
ing the triangle inequality and dx(x,x) = O for all x € X. Note that if moreover
dx(x,y) = 0 implies x = y, then dx is a metric. There is a canonical identification
on pseudometric spaces (X,dy): x ~ x’ if dx(x,x’) = 0. Then, ~ is in fact an
equivalence relation and we define the quotient space X=X /~. Define a function
dx: X x X — Rsq as follows:

/! . !/
Jx(ix), [ 2= § AXC0 e, ) 20,
0 otherwise.
d x turns out to be a metric on X. In the sequel, the metric space (f , d. x) is referred
to as the metric space induced by the pseudometric space (X, dx). Note that dy
preserves the induced topology (see e.g. [41]) and thus the quotient map W: X — X
is continuous.

Analogously to the Wasserstein distance, which is defined for probability measures
on metric spaces, we define the Wasserstein pseudometric for measures on compact
pseudometric spaces as done in [85]. Letow, 8 € P(X). Then, we define for p € [1, 00)
the Wasserstein pseudometric of order p as

1/p
dv(vx’dX)(a’ ,8) = ( inf / (dx (x, y))p,U«(dx Xdy)) (28)
P neC.p) Jxxx

and for p = oo as

dv(vX;‘.fm(oe,ﬂ) = inf sup  u(x,y). (29)
, neC@.B) (x,y)esupp(i)

It is easy to see that the Wasserstein pseudometric is closely related to the Wasserstein
distance on the induced metric space. More precisely, one can show the following.

LemmaB.18 Let (X, dx) denote a compact pseudometric space, let a, 8 € P(X).
Then, it follows for p € [1, oo] that

d\,(s,)f,’,dX)(a, B) = d\,i,)f})dX)(W# a, Wi B) (30)

and that the infimum in (28) (resp. in (29) if p = o0) is attained for some 1 € C(c, B).

Proof In the course of this proof we focus on the case p < oo and remark that the
case p = oo follows by similar arguments. The quotient map allows us to define the
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map 0: C(a, B) — C(Wya, Uy B) via u > (W x W)y . It is easy to see that 0 is
well defined and surjective. Furthermore, it holds by construction that

/ (dx (x, )P u(dx xdy) =f~ _(dx(x, )" 0(u)(dx x dy)
XxX XxX

for all u € C(a, B). Hence, (30) follows.
We come to the second part of the claim. By [91, Sect. 4] there exists an optimal
coupling &* € C(Wy o, W4 B) such that

5~ " 1/p
dy ™ (Wy or, Wy ) = ( / _(dx (x, y))? [i*(dx xdy)) :

XxX

In consequence, we find using our previous results that for any u* € 6~ (fi*) it holds
(X.dy) ¥ ~ r
dy YWy, Wy p) = </~ (dx(x, )P " (dx xdy))
XxX

I/p
- ( fx X(dx(x,ynl’u*(dxxdy)) = dy ;¥ (@ ).

This yields the claim. O

B.5.2 Regularity of the Cost Functionals of ucw,p and uéfﬁ’?

In the remainder of this section, we collect various technical results required to demon-

strate the existence of optimizers in the definitions of u(‘;‘{,’&";‘) (see (8)) and ugw, p (see

(11)).
LemmaB.19 Let X = (X,uyx,ux) and Y = (Y,uy, uy) be compact ultrametric

measure spaces. Then, i € C(ux, uy) € P(X x Y, max(uy, uy)) is compact w.r.t.
weak convergence.

Proof The proof follows directly from [21, Lem. 2.2]. O

LemmaB.20 Let X,y ¢ UV.Let D; C D“lt(ux, uy) be anon-empty subset satisfying
the following: there exist (xg, yo) € X X Y and C > 0 such that u(xo, yo) < C for all
u € Dy. Then, Dy is pre-compact with respect to uniform convergence.

Proof Let {u,}nen € Dj be a sequence. Note that X xY € X U Y xX uY. Let

Up = uy|xxy. Forany n € N and any (x, y), (x’, y') € X x Y, we have that

lun(x, y) — uy(x’, Y| < ux(x,x") +uy(y,y)
<2max(ux, uy)((x,y), (x, ).

This means that {v,, },en is equicontinuous with respect to the ultrametric max {ux, uy}
on X x Y. Now, since u, (xo, yo) < C, we have that for any (x,y) € X x Y,

up(x,y) <2max(uy,uy)((x,y), (x0, ¥0)) + un(xo0, ¥0)
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< 2max(diam(X), diam(Y)) + C.

Consequently, {v,},en is uniformly bounded. By the Arzéla—Ascoli theorem ([47,
Thm. 7 on p.61]), each subsequence of {v,},en has a uniformly convergent sub-
sequence. Hence, we assume without loss of generality that {v,},en converges to
v: X XY — Ryo.

Now, we define a symmetric function u: X 1Y x X UY — R>q as follows:

(1) u|X><X =uyx and u|yxy = uy;
(i) u|xxy :=v;for (y,x) € Y x X, we letu(y, x) := u(x, y).

It is easy to verify that u € D""(ux, uy) and that u is a cluster point of the sequence
{un}nen. Therefore, Dy is pre-compact. O

LemmaB.21 Let X = (X,ux,ux) and Y = (Y,uy, uy) be compact ultrametric
measure spaces. Let {iuy}neny € C(ux, my) be a sequence weakly converging to u €
Clux, my). Let {up}nen C Duh(ux, uy). Suppose that there exist a non-decreasing
sequence {py}nen C [1, 00) and C > 0 such that for alln € N,

1/pn
(/ (un(x,y))"”un(dxxdy)) < C.
XxY

Then, {u,},en uniformly converges to some u € DMy, uy) (up to taking a subse-
quence).

Proof The following argument adapts the proof of [83, Lem. 3.3] to the current setting.
For any (x¢, yo) € supp(u), there exist ¢, 6 > 0 and N € N such that foralln > N

L/pn
C> ( / (n (x, 9))P" s (dx xdy))
XxY

> / uy (X, y) oy (dx x dy)
XxY

>

/ U (X, ¥) pn(dx X dy)
BX(x0)x B} (y0)

>

/ (ttn (30, Y0) — 2) 1tn(dx x dy)
BX (x0)xBY (y0)
> (un(x0, 0) — 28) (w(B (x0) x B} (y0)) — ).

Therefore, {u,(x0, yo)}n>n is uniformly bounded. By Lemma B.20, we have that
{un}nen has a uniformly convergent subsequence. O

LemmaB.22 Let X, Y be ultrametric spaces, then
Aco(ux,uy): X xY xXxY — Rxg

is continuous with respect to the product topology (induced by max (uy, uy, ux, uy)).
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Proof Fix (x,y,x,y) € XxYxXxY and ¢ > 0. Choose 0 < § < ¢ such that
8 < ux(x,x)if x # x" and § < uy(y,y’) if y # y'. Then, consider any point
(x1, y1, X7, y]) € X xY x X x Y such that

ux (x, x1), uy (y, y1), ux(x’s xp), uy (5, yp) < 8.

For uyx (x1, xi ), we have the following two situations:

() x = x"1ux(xr, x}) < max(uy(x1, x), ux(x,x))) <8 <&
(i) x # x"tux(x1, x)) < max(ux(x,x), ux(x, x"), ux (', x1)) = ux(x, x). Sim-
ilarly, ux (x, x") < ux(x1, x}) and thus ux (x, x') = ux(x, x}).

Similar result holds for uy (y1, y}).
This leads to four cases for Aqo(ux (x1, x7), uy (y1, ¥})):

(i) x = x’, y = y": In this case we have ux (x1, x}), uy(y1, ¥}) < €. Then,

| Ao (x (x1, x7), uy (31, Y1) — Moo (ux (x, x), uy (v, ¥))|
= AOO(“X(xlsx;)7 ”Y(}’l» yi)) S &

() x =x"y # y:Nowux(xy,x)) <eanduy(yi, y)) = uy(y, y). lfuy(y,y) >
e > ux(xy, x}), then

| Ao (x (x1, x7), uy (31, Y1) — Moo (ux (x, x), uy (v, y)|
= luy(y,y') —uy(y,y) =0.

Otherwise uy (y, y') < &, which implies that As(ux (x1, x]), uy (y1, yp) < ¢
and Aoo(ux (x,x"), uy(y,y")) = uy(y,y") < e. Therefore,

| Ao (ux (x1, x7), uy (31, ¥1) — Moo (ux (x, X)), uy (v, Y))| < &
(iii) x # x, y = y’: Similarly with (ii) we have
| Aoo(ux (x1, x7), uy (v, Y1) — Moo (ux (x, x"), uy (v, ¥))| < &

(v) x # x,y # y': Now ux(x1, x}) = ux(x,x’) and uy(y1,y)) = uy(y,y).
Therefore,

| Aoo(ux (x1, x7), uy (y1, Y1) — Aco(ux (x, x'), uy (v, y'))| = 0.

In conclusion, whenever uy (x, x1), uy(y, y1), ux (x', xi), uy(y', yi) < § we have
that

| Aso(ux (x1, x7), uy (1, ¥])) — Moo (ux (x, x'), uy (v, y))| < e.

Therefore, A (ux, uy) is continuous with respect to the metric max (ux, uy, uy,
uy). O
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B.5.3 ugw,p and the One Point Space

Below, we prove that ugw, », 1 < p < 0o, between an arbitrary X € " and the one
point ultrametric measure space * agrees with the p-diameter of X (see e.g., [60]):
for 1 < p < oo as diam,(X) := |ldx|lLr(uyxouy)-

Proposition B.23 Letx € UY be the one-point space. Then, it holds forany1 < p < oo
that ugw,p (X, *) = diam, (X).

Proof Note that in this case, for every x,x’ € X Ago(ux(x,x), us(x, %)) =
Aso(ux(x,x’),0) = ux(x, x). Therefore, thanks to this observation, and the fact that
W= x4, is the unique coupling between pyx and d,, (10) leads to the claim. O

C Technical Details from Sect. 4

C.1 Proofs from Sect. 4

In this section, we state the full proofs of the results from Sect. 4.
C.1.1 Proof of Theorem 4.1

Part 1. We observe that for any point x in an ultrametric space X, there always
exists x’ € X such that uyx(x,x’) = diam(X) (see [27]). Since by assump-
tion py is fully supported, sy oo = diam(X) is a constant function. Therefore,
Ao (5X,00(X), SY.00()) = Aso(diam(X), diam(Y)) forall x € X and y € Y. This
implies that FLng(X, Y) = Axo(diam(X), diam(Y)). By [64, Cor. 5.3] and Corol-
lary 3.16, we have that

UGW.00 (X, V) = ucH(X, ¥) = Aoo(diam (X), diam(Y)) = FLBY (X, V).

Part 2. The proof for dgw ,p(X,Y) > TLB,(X,)) in [60, Sect. 6] can be used
essentially without any change for showing ugw, »(X,)) > TLB‘;,“(X , V). Hence,

it remains to show that TLB‘;,“(X D) > SLB;“(X D)

PropositionC.1 Let X,Y € UY and let p € [1,00]. Then, TLB‘;,“(X,y) >
SLBY(X, D).

In order to prove Proposition C.1, we need the following technical lemma.

LemmaC2 Let X = (X,dyx, ux) € UY. Then, spec(X) := {ux(x,x)|x,x € X}
is a compact subset of (R>0, Axo).

Proof By Lemma A.7, we have that for each r > 0, X, is a finite set. Let {£,}°°
be a positive sequence decreasing to 0. Then, it is easy to see that spec(X) =
U§3°=1 spec(X;,). Since each spec(X;,) is a finite set, spec(X) is a countable set.
Now, pick any 0 # ¢ € spec(X). Suppose ¢ is a cluster point in spec(X). Then,
there exists infinitely many s € spec(X) greater than ¢/2. However, this will result in
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X2 being an infinite set, which contradicts the fact that X, 5 is finite. Therefore, 0 is
the only possible cluster point of spec(X). By Lemma A.2, we have that spec(X) is
compact. O

Next we demonstrate Proposition C.1 and hence finish the proof of Theorem 4.1.

Proof of Proposition C.1 We first prove the case when p < oo. Let dhy(x) =
ux(x, )4y and let dhy(y) := uy(y, - )# iy. Further, define

dHy = (ux)# (ux®ux), dHy := (uy)s (uy ® uy).

Lemma C.2 implies that the set S := spec(X) U spec(Y) is a compact subset of
(R>0, Aco). Itiseasy to see that supp (dh x), supp(dhy), supp(d Hy), supp(d Hy) C
S C Rx(. Now, recall by Proposition 4.4 that SLBY"' (X, ) = dvi,f},Am)(dHX, d Hy)
and

1/p
TLBY" (X, y)=< inf / (dy = (dhx (x), dhy(y)))” ,u(dxxdy)) .
meClux.ny) JXxY '

Further, we observe for any x € X and y € Y that

l/p
(5. Ano) . »
d (dhx(x), dhy(y)) = inf (/ AL (s, 0) 7 (dsxdt)) .
W.p Y Tay€Cldhx (0).dhy () \Ssxs w

For the remainder of this proof, the metric on § € Rxq is always given by As.
Additionally, P(S) denotes the set of probability measures on S and we equip P(S)
with the Borel o-field with respect to the topology induced by weak convergence.

Claim 1 There is a measurable choice (x, y) — n;‘y such that foreach (x, y) € X x Y,
nj,y is an optimal transport plan between dh y (x) and dhy ().

Proof of Claim 1 Since both A and A induce the same topology on S, and thus the

(R>0,A1) (R>0,A)
dW dW

same Borel sets on S, dy, and dy, metrize the same weak topology on
P(S). By [61, Rem. 2.5], the following two maps are continuous with respect to the
weak topology and thus measurable:

®1: X = P(S), x = dhy(x) and ®2: Y — P(S), y— dhy(y).

Since § is compact, the space (P(S), dy ">’ is separable [91, Thm. 6.18]. This
yields that B(P(S) x P(S)) = B(P(S)) @hé(P(S)) [33, Prop. 1.5]. Hence, the prod-
uct®: X xY — P(S) x P(S) of @1 and &5, defined by (x, y) = (dhx(x), dhy(y))
is measurable [33, Prop. 2.4]. Then, a direct application of [91, Cor. 5.22] gives the
claim. O

Now, we have that for every u € C(ux, py) that
/ () (@h (). dhy(7)))” (dx x dy)
XxY
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=/ / Ago(s,t)n;‘y(dsxdt)u(dxxdy)
XxYJSxS
- / ALy(s. 1) Ti(ds x d),

SxS

by Fubini’s Theorem, where i € P(S x S) is defined as

n(A) :=f 7y (A) p(dx x dy)
XxY

for any measurable A € § x S. We remark that by Claim 1 the measure  is well
defined. Next, we verify that & € C(d Hy, d Hy). For any measurable A C (S, As)
we have

w(AxS) :/ n;y(AxS)u(dx x dy)
XxY

:/ dhy (x)(A) n(dx xdy)

XxY

:/;(dhx(X)(A)MX(dx)

- /X/x]l{dx(x,x’)eA} ux(dx') ux (dx) = dHx (A),

where we have applied the marginal constraints for 7, and w. Further, (i) follows
by the change-of-variables formula. The analogous arguments give that (S x B) =
d Hy (B) for any measurable B C S. Thus, we conclude that forevery u € C(ix, py)

/X Y(dv(vsij“’)(dhX(X),dhy(y)))pu(dxxdy)= / ALy (s, 1) Fe(ds x di)

SxS§

. (S,Ax0) 14
> inf Aoo(s, t)m(ds xdt) = (d dHy,dH .
ST /S Aol s ) = (645 . d )

This gives the claim for p < oo.
Next, we prove the assertion for the case p = co. Note that for any p < oo

TLBY(X,)) = inf || 52 dhy (), dhy(-
Py = inf A @), dhy )] g

< inf FASIEONG e Ldhy(- . — TLBYt X)),
_MGC(IITX»ILY)” w.oo (@hx (). dhy( ))“L () oo (X, )

where the inequality holds since d, (5, Ac0)

S, Aoo
W £ dy iy and I llLrgo < -l
By [35, Prop. 3] we have that

SLBU (X, V) = dy 2% (dHx, d Hy)
— lim g 5A% _ ult
= lim dy'~ (dHy. dHy) = lim SLB}'(X. ).

p—00
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Therefore,
SLBY!(X,Y) = lim SLBY'(X,))
p—)OO

< lim sup TLBY' (X', V) < TLBY (X, ).

p—>00

C.1.2 Proof of Proposition 4.4

We only prove the first statement for p € [1, 00). The case p = oo as well as the
second statement can be proven in a similar manner.
By directly using the change-of-variables formula, we have the following:

SLBUlt(X, V) = inf 1 Ano iy . uy)|”
g yClux@ux. ny®uy) LP(y)

= inf IA

p
= oo“Lp )
yeCux@ux .y ®ty) (x>xuy)yy)

where
ux xuy: X x X xYxY - R0 xRxo
maps (x, x’, y, ') to (uyx (x, x"), uy(y,y’)). By Lemma A.5,
(ux xuy)#Clux @ux, by ®uy) = C((ux)# (Lx @ ux), (uy)y (Ly @ ny)).

Therefore,

SLB;lt(X9 Y) = inf / (Aoso(s, )P (ux X uy)s y(ds x dt)
yeC(ux @ ux. iy ® y) JR-oxRsg

= inf f (Aoo(s, )P Y (ds x dt)
YeC((ux)# (ux®ux), (uy)g (Y ®uy)) JRooxRxg

= dyg 50 (x)w (ex ® ). (uy)s (ny ® ay)).

C.1.3 An Example: SLB"t vs. TLBU!t

We will demonstrate that there are ultrametric measure spaces X] and AX> such that
SLBY' (X, X) = 0, while it holds TLBY" (X1, X2) > 0.

Consider the three point space A3(1) = ({x1, x2, x3}, u) where u(x;, x;) = 1
whenever i # j. Construct two probability measures | := %(le + %SXZ + %8)@ and
1o = 38 + (5 - ﬁg)ax2 +(3+ ﬁg)am. We then let X; = (As(1), 1) and
Xy = (A3z(1), o). Obviously, ug (u1 @ u1) = ug (L2 Q@ u2) = 8o/2 + 81/2. Then,
by Proposition 4.4 we immediately have that SLB‘;,“(X 1, X2) = Oforany p € [1, oo].
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Now, note that u(x1, -)# 1 = 280/3 + 81/3, which is different from u(x;, - )4 u> for
each i = 1, 2, 3. This implies (by Proposition 4.4) that TLB‘;I‘(XI, X>) > 0O for any
p € [l, o0l

Note that this example works as well for showing that TLB, (X1, A2) >
SLB, (&7, A2) = 0.

D Technical Details from Sect. 5
D.1 Technical Details from Sect. 5.2

Here, we list the precise results for the comparisons of the spaces A;, 1 < i < 4,
illustrated in Fig. 7. They are gathered in Tables 1 and 2.

Table 1 Comparison of different ultrametric measure spaces 1:

UGw,1 UGW, 00
X X, X Xy X X, X Xy

X 0.0000 0.9333 0.2444 0.2511 0.0000 2.1000 1.1000 2.000

Xy 0.9333 0.0000 1.1778 1.0956 2.1000 0.0000 2.1000 2.1000
X3 0.2444 1.1778 0.0000 0.4493 1.1000 2.1000 0.0000 2.0000
Xy 0.2511 1.0956 0.4493 0.0000 2.0000 2.1000 2.0000 0.0000

The values of ugw, 1 (X;, X;) (approximated by Algorithm 1) and uGw, 0o (Xj, Xj), 1 <i < j < 4, where
X;, 1 <i <4, denote the ultrametric measure spaces displayed in Fig. 7

Table 2 Comparison of different ultrametric measure spaces II:

SLBY!t

X X X3 Xy
X 0.0000 0.9333 0.2444 0.0778
X 0.9333 0.0000 1.1778 10111
X3 0.2444 1.1778 0.0000 0.2764
Xy 0.0778 10111 0.2764 0.0000

The values of SLB‘f“(X,-, X i), 1 <i < j <4, where X;, 1 <i < 4, denote the ultrametric measure
spaces displayed in Fig. 7

D.2 Technical Details from Sect. 5.3

Here, we state more results for the comparison of the ultrametric measure spaces
illustrated in Fig. 7 and give the precise construction of the ultrametric spaces Z,i’ .
2<k<51=0,02,04,04,1<i<15.

The ultrametric measure spaces from Fig. 7 See Table 3 for the results of comparing
the ultrametric dissimilarity spaces in Fig. 7 based on dgw,; and SLB;.
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Table 3 Comparison of different ultrametric measure spaces II1I:

dgw 1 SLB;
X X, X3 Xy X X, X3 Xy

X 0.0000 0.0444 0.0222 0.2111 0.0000 0.0444 0.0222 0.0422
Xy 0.0444 0.0000 0.0667 0.2556 0.0444 0.0000 0.0667 0.0867
X3 0.0222 0.0667 0.0000 0.2253 0.0222 0.0667 0.0000 0.0573
Xy 0.2111 0.2556 0.2253 0.0000 0.0422 0.0867 0.0573 0.0000

The values of dgw,1(X;, X;) (approximated by Algorithm 1) and SLB; (X}, X;), 1 <i < j < 4, where
(X;,d X; s IX; ), 1 <i <4, denote the ultrametric measure spaces displayed in Fig. 7

Construction of Zj Foreachk = 2, 3, 4, 5 we first draw a sample with 100 x k points
from the distribution fozo U[1.5(k — 1), 1.5(k — 1) + 1]/k, where U|[a, b] denotes
the uniform distribution on [a, b]. For each sample, we employ the single linkage
algorithm to create a dendrogram, which then induces an ultrametric on the given
sample. We further draw a 30-point subspace from each ultrametric space and denote
it by Zi. These four spaces have similar diameter values between 0.5 and 0.6. Each
space Zy is equipped with the uniform probability measure and the resulting ultrametric
measure space is denoted by 2y = (Zy, uz,, uz,). k = 2,3,4,5. We remark that k
can be regarded as the number of blocks in the dendrogram representation of the
obtained ultrametric measure spaces (see the top row of Fig. 8 for a visualization of
three 3-block spaces).

Perturbations at level t. Given a perturbation level ¢ > 0 and an ultrametric space X,
we consider the quotient space X;. Each equivalence class [x]; € X is an ultrametric
subspace of X. If |[x];| > 1, weletm := |spec([x];)| — 1 and write spec([x];) = {0 <
S] < +-- < Sp}. Let 6 := diam([x];). We generate m uniformly distributed numbers
from [0, t — §] and sort them according to ascending order to obtain a; < --- < a,.
We then perturb u x |[x], x [x], Dy replacing s; with s; 4+ a; foreachi =1,...,m. We
do the same for all equivalence classes [x]; and thus obtain a new ultrametric on X.
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