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Abstract
Acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) are heterogeneous conditions. The 
spatiotemporal evolution of these heterogeneities is complex, and it is difficult to elucidate the mechanisms driving its pro-
gression. Through previous quantitative analyses, we explored the distributions of cellular injury and neutrophil infiltration 
in experimental VILI and discovered that VILI progression is characterized by both the formation of new injury in quasi-
random locations and the expansion of existing injury clusters. Distributions of neutrophil infiltration do not correlate with 
cell injury progression and suggest a systemic response. To further examine the dynamics of VILI, we have developed a 
novel computational model that simulates damage (cellular injury progression and neutrophil infiltration) using a stochastic 
approach. Optimization of the model parameters to fit experimental data reveals that the range and strength of interdepend-
ence between existing and new damaged regions both increase as mechanical ventilation patterns become more injurious. The 
interdependence of cellular injury can be attributed to mechanical tethering forces, while the interdependence of neutrophils 
is likely due to longer-range cell signaling pathways.

Keywords  Mechanical ventilation · Cellular automata · Stochastic model · Numerical optimization · Mouse model · 
Spatiotemporal heterogeneity

Introduction

Critical illness, such as COVID-19, and severe injury may 
cause acute respiratory distress syndrome (ARDS). ARDS is 
a dangerous and potentially fatal respiratory condition with 
approximately a 40% mortality rate [1]. Positive pressure 
ventilation is key to the management of ARDS because it 
can allow patients to maintain gas exchange [2]. Despite 
its life saving necessity, mechanical ventilation can lead 
to ventilator-induced lung injury (VILI), which exacer-
bates the deficits of the injured lung through overdistension 

(volutrauma), cyclic collapse and reopening of the dis-
tal airspaces (atelectrauma), and inflammatory responses 
(biotrauma) [3–9].

Spatiotemporal heterogeneity is a characteristic of both 
ARDS and VILI. The distribution of ventilation is inherently 
heterogeneous due to the effects of gravity, lung anatomy, and 
localized injury. This results in variability in alveolar tidal vol-
umes, septal strains, and extent of participation in gas exchange 
throughout the lung. Ventilation distribution is also dependent 
on the applied pressures [10] and ventilation patterns [11], and 
the degree of alveolar ventilation heterogeneity has been shown 
to increase with injury [12–14]. In severe cases of ARDS and 
VILI, collapse or flooding of the alveoli and small airways 
results in a substantial reduction in the fraction of the lung 
available to accept incoming gas; this phenomenon is referred 
to as ‘baby lung’ [15]. These alterations in regional mechanics 
also occur at smaller length scales where the flooding of alveoli 
increases distension in adjacent patent regions [16] due to the 
physical interconnections between the alveoli (parenchymal 
tethering). The field-to-field variability of this heterogeneity 
has been quantified using markers such as edema, cellular 
damage, and alveolar collapse [17–22]. Organ-scale-imaging 
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techniques have also shown the heterogeneous regional distri-
butions of injury and inflammation [23–26], despite at a lower 
spatial resolution than can be achieved with light microscopy.

However, the dynamic changes in heterogeneities during 
injury progression are complex, and the underlying mecha-
nisms driving the progression are difficult to elucidate. One 
approach to understanding the causes and effects of spatial 
heterogeneity is through computational approaches such as 
the finite element method (FEM) that allow analysis of the 
microscale pattern of stress and strain propagation based on 
parenchymal tethering forces [27–30]. However, validation 
and verification of these predictions through experiments 
remains an elusive goal.

Our recent experimental study [31] analyzed both the 
micro- and macro-scale distributions of cellular injury as 
VILI progressed and revealed that new injury forms in quasi-
random locations and also propagates outward from sites of 
existing injury. Leukocyte recruitment also occurs during 
VILI [3, 4, 32–34], but the pattern of infiltration suggests a 
systemic response [31]. To better explain the spatiotemporal 
evolution of injury, the current study uses a novel computa-
tional model, fit to experimental data, to recapitulate our in 
vivo quantification of injury propagation during VILI. This 
inverse modeling approach facilitates more thorough analy-
sis of the complex experimental results.

In this custom computational model, a synthesized grid of 
initially healthy cells undergoes various simulated ventila-
tion patterns which causes injury development and neutro-
phil recruitment. Optimization of the model parameters to 
fit our experimental data [31] reveals the range and strength 
of interdependence between existing and new damage. The 
parameters governing this interdependence allow us to 
understand how damage is occurring and how its progres-
sion changes under different ventilation conditions. Model 
optimizations reveal significant parameter differences 
between cell injury formation and neutrophil infiltration, 
suggesting different driving mechanisms for each process.

Materials and Methods

A glossary of symbols and abbreviations is provided in 
Table 1.

Previous Experimental Data

Previous Animal Experiments

In previously published work, we ventilated initially healthy 
mice with three ventilation protocols: Protect ventilation 
(positive end-expiratory pressure (PEEP) = 3 cmH2O, res-
piratory rate (RR) = 250 breaths/min, and set tidal volume 
(VT) = 7 mL/kg); p30 ventilation (PEEP = 0 cmH2O, RR = 50 

breaths/min, and plateau pressure (Pplat) = 30 cmH2O); or 
p37.5 ventilation (PEEP = 0 cmH2O, RR = 50 breaths/min, 
and Pplat = 37.5 cmH2O). Elastance measurements were 
taken throughout ventilation to track the inflicted changes in 
respiratory mechanics. Tissue was harvested after elastance 
had minimally increased, doubled, and quadrupled for the 
injuriously ventilated groups (p30 and p37.5). Protect ven-
tilation was terminated after ~ 4.5 hours to match the long-
est ventilation time of the injurious ventilation groups. The 
changes in elastance as ventilation progresses are shown in 
Fig. 1A. An additional Control group received only 10 min-
utes of stabilizing ventilation before the tissue was harvested. 
Each group consists of 5 subjects. Independent uniform ran-
dom sections of tissue are stained, imaged, and analyzed to 
identify the locations of all cell nuclei (DAPI + ), injured cells 
(PI + , Fig. 1B–E, red dots), and neutrophils (Ly6G + ). The 
area occupied by lung tissue was also segmented (Fig. 1B, 
white) using the signal from the DAPI channel [31].

Overall Density

The overall density, in cells per area, of each marked cell 
type (DAPI + , PI + , Ly6G + ) is calculated for each section 
of tissue (e.g. Fig. 1B–E, # red PI + points per white area in 
µm2). These densities are normalized by total lung volume 
[31]. The mean and standard deviation of overall density 
are then calculated for the control and experimental groups 
using each section of tissue (~20 sections per mouse, ~ 100 
sections per group) as a data point.

Density‑Based Spatial Clustering of Applications with Noise 
(DBSCAN)

Tightly packed regions of PI + and Ly6G + cells were iden-
tified using the Density-Based Spatial Clustering of Appli-
cations with Noise algorithm (DBSCAN) [31]. In the cur-
rent study, we use the portion of that analysis that groups 
together cells within 30 µm of each other. Figure 2 shows the 
DBSCAN clustering for representative sections with mod-
erate (Fig. 2A, 2xH30 section) and severe (Fig. 2B, 4xH30 
section) injury. The per-animal mean and standard deviation 
of the number of cells (either PI + or Ly6G + ) in each cluster 
are used as an input data point for the model fitting.

Computational Model of Injury Progression

A probabilistic cellular automata model is developed to reca-
pitulate and analyze the spatiotemporal evolution of damage 
(cellular injury and neutrophil accumulation) observed in the 
experimental data. A synthesized grid of initially healthy lung 
cells (Fig. 3A, white dots) undergoes simulated ventilation; 
the likelihood of any individual ‘cell’ becoming damaged is a 
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combination of a baseline level of probability and a probability 
increase based on the local concentration of damaged cells. 
At any given timestep, the likelihood of each ‘cell’ becoming 
damaged is defined by

where PInj represents the probability of any given ‘cell’ 
becoming damaged and PBase represents the baseline 

(1)PInj = PBase +

(
#Inj(r)

#Tot(r)
× PLocal

)

,

probability of damage occurring in a cell that is currently 
undamaged. To account for damage interdependence, #Inj 
represents the number of existing damaged ‘cells’ (Fig. 3B, 
red dots) within the region of influence (Fig. 3B, blue 
shaded) which is defined by radius, r (Fig. 3B, black arrow), 
#Tot represents the total number of ‘cells’ within that region 
of influence, and PLocal represents the coefficient of prob-
ability increase based on the local concentration of dam-
aged cells. For each point at every timestep, PInj is com-
pared to a random number drawn from a uniform distribution 

Fig. 1   A Fold changes in respiratory elastance (H) as a function of 
ventilation time. Ventilation is terminated based on the desired level 
of inflicted injury as measured by fold change in H for all injuriously 
ventilated groups: 1.1xH30, 2xH30, 4xH30, and 4xH37.5. Protect 
ventilation is stopped after a set time of ~ 4.5 h. B–E Identification 
of lung tissue (white area) and centroids of injured cells (red dots) 

in a fluorescent microscopy image of a whole lung lobe. These data 
come from our prior experiments [31]. B Representative lung section 
from p30 group. C Representative lung section from Control group. 
D Representative lung section from Protect group. E Representative 
lung section from p37.5 group
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(MATLAB rand) between 0 and 1. An undamaged cell 
becomes damaged if PInj > rand, and it is currently undam-
aged. The random number generator is seeded with a unique 
number based on the current date and time (MATLAB now 
function).

To mimic the in vivo conditions and experimental data 
sampling, the damage progresses on a 3-dimensional grid 
and 2-dimensional planes of that grid are sampled for anal-
ysis. Figure 3C demonstrates how simulated damage pro-
gresses in the 3-dimensional cube. The model parameters 
are algorithmically optimized to match the mean and stand-
ard deviation of both tissue density and DBSCAN cluster 

sizes, as described in the above sections, Overall Density 
and DBSCAN.

Defining Model Parameters

The model outcome is affected by the setting of static param-
eters: total cell density, sampling spacing, grid size (length 
of cubic synthesized grid of ‘cells’), timestep, and number of 
iterations (repeated runs for each unique set of parameters). 
The initial cubic grid is composed of uniformly distributed 
cells (potential sites of damage) with density equal to that 
of all cells in the experimental lung sections (total cell den-
sity = 3.7 × 10-3 cells/µm2). Every x–y plane is sampled and 

Table 1   Glossary of symbols and abbreviations

Symbol or abbreviation Definition

Control Experimental group minimally ventilated
Protect Experimental group ventilated with PEEP = 3 cmH2O, RR = 250 

breaths/min, and set VT = 7 mL/kg for ~ 4.5 hours
p30 Experimental groups ventilated with PEEP = 0 cmH2O, RR = 50 

breaths/min, and Pplat = 30 cmH2O
1.1xH30 Experimental group ventilated with p30 ventilation until a minimal 

(1.1x) increase in elastance (H)
2xH30 Experimental group ventilated with p30 ventilation until a doubling 

(2x) increase in elastance (H)
4xH30 Experimental group ventilated with p30 ventilation until a quadrupling 

(4x) increase in elastance (H)
p37.5 Experimental groups ventilated with PEEP = 0 cmH2O, RR = 50 

breaths/min, and Pplat = 37.5 cmH2O
4xH37.5 Experimental group ventilated with p37.5 ventilation until a quadru-

pling (4x) increase in elastance (H)
PInj Probability of any given simulated cell becoming damaged
PBase Baseline probability of damage occurring in a simulated cell that is 

currently undamaged
PLocal Coefficient of probability increase based on the local concentration of 

damaged cells
r Radius defining the region of influence
#Inj Number of existing damaged simulated cells within the region of influ-

ence
#Tot Total number of simulated cells within that region of influence
tstep Timestep
PBase Pre−Normalization P

Base
 prior to being normalized by the timestep size

PLocal Pre−Normalization P
Local

 prior to being normalized by the timestep size
OF Objective function
N Number of time points analyzed for any given experimental group
μE
D

Mean of overall density of experimental data
μS
D

Mean of overall density of simulated data
σE
D

Standard deviation of overall density of experimental data
σS
D

Standard deviation of overall density of simulated data
μE
C

Mean of cluster size of experimental data
μS
C

Mean of cluster size of simulated data
σE
C

Standard deviation of cluster size of experimental data
σS
C

Standard deviation of cluster size of simulated data
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used as a ‘tissue section’ for analysis (sampling spacing = 1 
cell). Simulated tissue sections are analyzed identically to 
the experimental tissue sections. We sample every plane to 
maximize the output data from each simulation.

Settings for grid size, timestep, and number of iterations 
are selected to provide the most computationally efficient 
model that still yields stable results (Fig. 4A–D) using the 
p37.5 ventilation cellular injury data. This group requires 
the most computationally expensive set of static parameters 
because it has the shortest ventilation time and most rapid 
injury progression (requiring the smallest time step to stabi-
lize) and has the most heterogeneous distribution of injury 
(homogenous distributions stabilize at a smaller grid size 
and larger time step than heterogeneous distributions). The 
best-fit variable parameters for the p37.5 ventilation cellular 
injury group are analyzed at a variety of grid size, timestep, 
and iteration values. The combination of these static parame-
ters that minimizes run time and maximizes model precision 
is found through a combination of automated and manual 
iterating with various combinations.

All experimental groups for both cellular injury pro-
gression and neutrophil infiltration use the same static 

parameter values (total cell density, sampling spacing, grid 
size, timestep, and number of iterations).

Optimized Parameters

PBase (baseline probability of damage occurring), PLocal 
(strength of interdependence between damaged regions), and 
r (range of interdependence between damaged regions) are 
algorithmically optimized to fit the model to our experimen-
tal data. PBase and PLocal are continuous variables. Because 
the grid is made of uniform distributed points, r is a discrete 
variable. Both PBase and PLocal values are affected by changes 
in the timestep size. Accordingly, the following equations 
are used to eliminate the timestep size-dependence of those 
probabilities:

These equations are developed by analyzing the relation-
ship between the model output and timestep when PBase or 

(2)PBase = PBase Pre−Normalization × tstep,

(3)PLocal = PLocal Pre−Normalization × tstep
1.7.

Fig. 2   Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) groups identified cells into clusters (inset in A, purple 
dots with shaded area and yellow dots with shaded area) while allow-
ing isolated cells to remain unclustered (inset in A, black dot). These 
data come from our prior experiments [31]. Each group of colored 

dots represents a distinct cluster of cellular injury. The identified neu-
trophils are not shown in these figures. A Representative section from 
2xH30 showing moderate cellular injury (PI + ). B Representative 
section from 4xH30 showing severe cellular injury (PI + )



	 C. L. Mattson, B. J. Smith 

1 3

PLocal are held constant. The relationship between PBase and 
timestep is linear (Equation 2); the relationship between 
PLocal  and timestep is exponential where a linear fit of the 
log–log relationship has a slope of 1.7 (Equation 3). These 
relationships are graphically shown in Supplemental Fig. 
S1 A&B.

Using these equations makes a more robust timestep-
independent model. They also allow for faster preliminary 
computations, with larger time steps, to determine the con-
straints for each optimized parameter.

Modeling Injury Progression vs. Neutrophil Infiltration

For the simulated PI + (cellular injury) progression, the ini-
tial grid is made up of entirely healthy cells because the 
Control tissue had essentially no PI + cells. The objective 
function for parameter optimization in the cell injury simula-
tions consists of the mean and standard deviation of overall 
PI + density as well as the mean and standard deviation of 
DBSCAN PI + cluster size. The DBSCAN analysis for the 
simulated injury groups adjacent cells into clusters (d = 1 

cell or 33 µm); this is the smallest Euclidean distance that 
can be used on the synthesized uniform grid of cells. This 
is similar to the distance used for the experimental data 
(d = 30 µm). All other parameters are identical to the cel-
lular spacing DBSCAN used for the experimental data [31].

The injury progression is simulated for p30, p37.5, and 
Protect groups to match the experimental ventilation dura-
tions. p30 data were collected after 0.94 hours of simulated 
ventilation (1.1xH30 experimental group—minimal increase 
in elastance), 3.46 hours of simulated ventilation (2xH30 
experimental group—doubling of elastance), and 4.38 hours 
of simulated ventilation (4xH30 experimental group—
quadrupling of elastance). p37.5 data were collected after 
2.06 hours of simulated ventilation (4xH37.5 experimental 
group—quadrupling of elastance). Protect ventilation was 
simulated for 4.58 hours (Protect experimental group—
duration chosen to match the longest ventilation time of the 
injuriously ventilated animals).

The objective function for cellular injury progression is

Fig. 3   A Grid of initially healthy simulated ‘cells’ (white dots). B 
Schematic of increased damage probability due to local concentration 
of damage. The likelihood of the central cell (black dot) becoming 
damaged increases as damage (red dot) forms within the region of 
influence (blue shaded circle), defined by radius of interdependence, 

r (black arrow). The diagram is shown in 2-dimensions for ease of 
understanding; the simulations are conducted in 3-dimensions. C 
Demonstration of damage progression in 3-dimensions. Damaged 
cells (red dots) develop in clusters as simulated ventilation progresses
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where OF is the objective function, N is the number of time-
points analyzed in the experimental group, � is the mean, 
� is the standard deviation, subscript D is overall density, 

(4)

OF = 1
N
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,

subscript C is the cluster size, superscript E is experimen-
tal data, and superscript S is simulated data. The difference 
between each component of the objective function is divided 
by the experimental value to ensure that each component is 
weighted evenly.

For simulated neutrophil (Ly6G + ) dynamics, the initial 
grid is seeded with resident neutrophils to match the in vivo 
neutrophil distributions of the Control group. The objec-
tive function for parameter optimization in the neutrophil 
infiltration simulations consists of the mean and standard 

Fig. 4   Normalized model output refers to the objective function 
normalized by the output for the last (most computationally expen-
sive) value. All analyses are performed on the p37.5 ventilation cel-
lular injury data. A Normalized model output versus grid size (edge 
length of cubic synthesized grid of ‘cells’). The smallest grid size that 
provides results within 5% (dotted lines) of the last sampled value is 
chosen for the model optimization. A grid length of 130 cells is used 
for model optimization (gray line). B Normalized model output ver-

sus the number of iterations run for each unique set of parameters. 
The optimized model is run for 64 iterations at each set of parameters 
(gray line). C Normalized model output versus number of simulation 
timesteps for the p37.5 group. A timestep of 12 seconds (618 total 
timesteps for p37.5 group) is selected for model optimizations (gray 
line). D Log–log plot of normalized model output versus number of 
timesteps for p37.5 group
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deviation of overall Ly6G + density. The neutrophil density 
is very high causing a large amount of clustering that is not 
necessarily due to heterogeneous distribution. This makes 
the DBSCAN results for this data unreliable [35]. As in the 
experimental study, neutrophil progression is tracked from 
Control to Protect and Control to 4xH30.

The objective function for the progression of neutrophil 
infiltration is

where all variables have the same meanings as those of 
Equation 4.

Parameter Optimization

PBase and PLocal are identified for each value of r separately. 
Values of increasing r are tested until the optimized value 
of the objective function at the current value of r is greater 
than that of the previous r value (e.g., if the optimization 
at r = 3 cells yields a greater objective function value than 
r = 2 cells , then r = 4 cells will not be tested).

For each run of the model, the simulated density is com-
pared to the projected experimental density at every timestep; 
if simulated density(tstep) > 1.5 × experimental density(tstep) 
the simulation is terminated. This saves time on computa-
tionally expensive parameter sets that generate unreasonably 
high densities.

Coarse, uniform grid searches are performed for each 
value of r using larger time steps and a single iteration for 
each unique set of model parameters. These relatively quick 
searches allow us to visualize the overall layout of the error 
surface. These error surface estimations are used to con-
servatively refine the bounds used for particle swarm optimi-
zation (MATLAB particleswarm function). The number of 
particles in the swarm (SwarmSize) is set to 50, and the itera-
tions stop when the relative change in the objective function 
value over the last 20 iterations (MaxStallIterations) is less 
than the specified tolerance of 1x10-3 (FunctionTolerance). 
The tolerance is conservatively set based on the standard 
error present in the stochastic model.

Parameter Bounds for Optimization

The maximum possible PBase for each ventilation pat-
tern is found by setting PBase Pre−Normalization in Equation 2 
to the mean overall density at the end time in units of 
# Injured Cells∕# Total Cells (converted from the [31] 
units of # Injured Cells∕�m2 using the density of all 
cells in the lung). The maximum possible PLocal is equal 
to the total number of cells within the selected region of 

(5)OF =
1

N

N∑

i=1

(
|
|
|
|
|

(
�E
D
− �S

D

)
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D

|
|
|
|
|
+
|
|
|
|
|

(
�E
D
− �S

D

)

�E
D

|
|
|
|
|

)

,

interdependence (defined by the r value): when r = 1 cell , 
PLocal = 6; when r = 2 cells , PLocal = 32; when r = 3 cells , 
PLocal = 122; etc. The lower bounds are set to 0 for both 
PBase and PLocal.

Finding Joint Confidence Intervals

Due to the stochastic nature of the model, the error surfaces 
contain noise/discontinuities (Fig. 5A, B, Supplemental Vid-
eos 1&2) and the optimizer does not find the exact same 
solution every time. Therefore, the best-fit parameter values 
are better defined as a region (termed estimated joint confi-
dence interval) rather than a single point. To avoid having to 
run the computationally intensive optimization many times, 
we perform a fine grid search around the best-fit parameter 
values to determine these parameter regions of best fit.

Each optimization (e.g., unique ventilation group and 
unique value of r) is run twice. The bounds for the fine grid 
search are determined through visual inspection of these 
error surfaces. A mesh grid containing 400 points (20 evenly 
spaced PBase values and 20 evenly space PLocal values) is then 
used. The joint confidence interval is the boundary at which 
the maximum of the optimizers best-fit value (mean + stand-
ard error) intersects with the minimum of the surrounding 
grid points (mean – standard error).

Parameter Interdependence

The interdependence between each set of optimized param-
eters ( PBase , PLocal , and r ) is determined. These values are 
calculated by using the error surface (Fig. 5B) and inter-
polating between the particle swarm optimization points 
(Fig. 5A). For example, to calculate the interdependence 
between PLocal and PBase , the error surface from the best-fit 
value of r is used. A set of PBase values are selected and, for 
each value of PBase , the PLocal value yielding the minimum 
objective function is found. Note that the minimum objec-
tive function values are greater than the global minimum. 
Spearman’s correlation coefficients (MATLAB corr function 
with type set to ‘Spearman’) are then calculated for the set 
of PBase , PLocal coordinates. The correlations are found for 
each set of parameters; the resulting coefficients are shown 
in Table 2.

Sensitivity Analysis

Sensitivity analyses are performed for each optimized 
parameter. PBase and PLocal values are individually varied 
by ± 5% and ± 25% while all other values are kept the same. 
r values are varied by ± 1 cell while all other values are kept 
the same.
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Statistical Analysis

Data are tested for normal distribution using Anderson-
Darling tests (significance level = 0.05). The distributions 
of cellular injury density are not normally distributed for 
any groups (Fig. 7B). Cluster sizes of cellular injury are 
normally distributed for Protect and 1.1xH30, but not for the 
other groups (Fig. 9). The distributions of neutrophil density 
are normally distributed for all groups (Fig. 10B). All data-
sets that are non-normally distributed contain sufficiently 
high sample sizes to qualify for parametric statistical tests 
[36]. Two-sample t tests are used to compare corresponding 
simulated and experimental data for each group. The nor-
mality tests and t tests are performed in MATLAB.

Results

Summary of Previous Spatiotemporal Analysis

A robust analysis of the distributions of cellular injury dur-
ing VILI progression shows that VILI begins as diffuse 

injury in quasi-random locations. Injury progression is char-
acterized by the expansion of existing regions of injury as 
well as new, diffuse injury formation. Neutrophil infiltration 
is shown to follow a more systemic response during venti-
lation, which is not dependent on ventilation pattern [31]. 
These findings inform the formulation of the computational 
model.

Static Parameter Determination

Static parameters are defined to give stable results when the 
model output produced from that value falls within 5% of 
the 5 most computationally expensive values tested. The 
minimum grid size that provides stable model results is 
found to be 130 cells in cubic length (Fig. 4A) for a total 
of 2,197,000 cells in the domain. The minimum number of 
iterations (repeated runs with the same parameters) required 
for a stable fit is 40 (Fig. 4B). Since the computer cluster 
used to run the simulations contains 64 cores per node, we 
used 64 iterations to maximize resource utilization.

The model output does not converge until the timestep 
≲ 2.5 seconds (> 2719 time steps for p37.5) as shown in 
Fig. 4C&D. Optimization run times were excessive with 

Fig. 5   Representative error (objective function) surface resulting from particle swarm optimization. A Data points sampled during particle 
swarm optimization. B 2-Dimensional view of error surface plot found through linear interpolation of sampled particles (parameter sets)

Table 2   Spearman’s correlation 
coefficients for each set of 
optimized parameters

P
Local

 and P
Base

 are strongly correlated. There is a weak interdependence between both P
Local

 and r ; and 
P
Base

 and r

Baseline probabil-
ity,P

Base

Local density probabil-
ity,P

Local

Radius of inter-
dependence, r

Baseline probability, P
Base

1 − 0.9434 0.4286
Local density probability, P

Local
− 0.9434 1 − 0.4857

Radius of interdependence, r 0.4286 − 0.4857 1
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such a small timestep; therefore, we chose a timestep of 12 
seconds where the curve visually starts to plateau (Fig. 4C). 
Although we could not optimize the model at the ideal 
timestep, the developed timestep-dependent equations 
(Equations 2&3) do eventually plateau as is evident in the 
log–log plot (Fig. 4D).

Parameter Interdependence

Analysis of parameter interdependence (Table 2) reveals a 
strong inverse relationship between  PBase and PLocal , where 
an increase in  PBase causes a consistent decrease in PLocal . 

PBase and r have a weak positive correlation. PLocal and r have 
a weak inverse correlation.

Cellular Injury Simulations

Figure 6A shows that the minimum objective function (the 
best fit) is found when r = 2 cells for p37.5 and r = 1 cell for 
p30 ventilation. The Protect group has a minimum objective 
function at PLocal = 0 so the value of r is irrelevant (Equa-
tion 1). Accordingly, all the analyses of the Protect group 
are done at r = 1 cell . The injurious ventilation groups (p30 

Fig. 6   A Mean (points) and standard error (bars) of the cellular injury 
best-fit objective functions at different values of r . p37.5 is signifi-
cantly better at r = 2 cells than at any other r value. The best fit for 
p30 is found at r = 1 cell . Protect has no significant differences 
across r values because the best fit is at P

Local
= 0 . B Sensitivity 

analysis of 5% change in P
Local

 and P
Base

 for cellular injury. Protect 

P
Local

 is tested at zero (no bar), the best-fit value, and 2 × 10-7, a value 
slightly outside the Protect joint confidence interval. C Sensitivity 
analysis of 1 cell change in r for cellular injury. Protect is not affected 
by changes to r because the best-fit value of P

Local
  is zero. D Sensi-

tivity analysis of 25% change in P
Local

 and P
Base

 for cellular injury. 
Protect P

Local
 is tested at zero (no bar), the best-fit value, and 2 × 10-5
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and p37.5) have significantly better solutions at the best-fit 
values of r.

Joint confidence intervals for the best-fit parameters for 
each group’s respective values of r are shown in Fig. 7A and 
the parameter values are listed in Table 3. Both injurious 
ventilation patterns (p30 and p37.5) show significant eleva-
tion of PBase over Protect. PLocal shows significant increases 
with ventilation harmfulness (Protect → p30 → p37.5); r 
also increases with ventilation severity.

Cellular injury density correlates well between the 
experimental and simulated data (Fig. 7B) with no sig-
nificant differences between corresponding groups. The 
means of the experimental densities and their correspond-
ing simulated densities show no significant differences 
(Fig. 7B). The full distributions of cellular injury (Fig. 8) 
also show qualitative correlation with their simulated 
counterparts: all groups show a right skewness and similar 

values of outlier data points. Both Figs. 7B and 8 use each 
tissue slice as a data point.

Cellular injury cluster size also correlates well between 
the experimental and simulated data (Fig. 9A). No cor-
responding groups show significant differences between 
experimental and simulated data at a significance value 
of p < 0.05. The full distributions of cluster size (Fig. 9B) 
show qualitative correlation as well, having similar skew-
ness and outliers.

Sensitivity analysis of PBase and PLocal (Fig. 6B) show 
that a 5% change in parameter values cause a greater per-
centage change in the objective function for the injuriously 
ventilated groups (p30 and p37.5). Protect shows a damp-
ened response to changes in PBase , which is not unexpected 
as this group contains very minimal injury. Protect PLocal 
is tested at zero (the best-fit value) and 2 × 10-7 (a value 
slightly outside the Protect joint confidence interval). A 
25% change in parameter values PBase and PLocal causes a 

Fig. 7   A Joint confidence intervals for cellular injury optimizations. 
p37.5 confidence interval (red region) is shown for r = 2 cells ; p30 
(purple region) and Protect (brown region) confidence intervals are 
shown for r = 1 cell . B Mean (colored dots) and standard deviation 
(colored error bars) of experimental injury density are compared to 

mean (black line) and standard deviation (gray-shaded region) of sim-
ulated injury progression. No statistical differences are found between 
the experimental data and the corresponding simulated injury densi-
ties

Table 3   Best-fit parameter values for all groups

Radius of interdependence is shown in units of grid cells and micrometers (converted using the grid spacing). The micrometer spacing is used to 
compare model results to previous studies

Marker Cellular injury Neutrophils

Experimental group Protect p30 p37.5 Protect p30

Baseline probability, P
Base

(×10−7) 0.77 5.9 4.7 160 1.3

Local density probability, P
Local

(×10−3) 0 2.4 7.4 1.2 3.1
Radius of interdependence, r N/A 1 cell or 33 µm 2 cells or 66 µm 5 cells or 165 µm 8 cells or 264 µm
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greater than 25% change in the resulting objective func-
tion (Fig. 6D). Here, the changed value of Protect PLocal is 
set to 2 × 10-5. A 1 cell change in r causes a greater than 
100% change in the resulting objective function (Fig. 6C). 
Changes in r do not alter the objective function for Protect 
as the best-fit value of PLocal = 0 (the r value is obsolete).

Neutrophil Infiltration Simulations

In the neutrophil infiltration simulations, the objective func-
tion is minimized at r = 8 cells for p30 and r = 5 cells for 
Protect (Fig. 10A). The joint confidence intervals of best 
fit for these r values are shown in Fig. 10A, and the best-fit 
parameter values are in Table 3. Protect has a significantly 
higher PBase , while p30 has a significantly greater PLocal . The 
simulated progression of neutrophil infiltration correlates 
with the experimental data (Fig. 10B).

The minimum objective function (best fit) for the neutro-
phil simulations is found when r = 5 cells for Protect and 
r = 8 cells for p30 ventilation. Both groups have signifi-
cantly better solutions at the best-fit values of r (Fig. 11A). 
Sensitivity analyses show that a 5% change in parameter 
values PBase and PLocal causes a greater than 5% change in 
the resulting objective function (Fig. 11B); a 25% change in 
parameter values PBase and PLocal causes a greater than 25% 
change in the resulting objective function (Fig. 11D); and 
a 1 cell change in r causes a greater than 10% change in the 
resulting objective function (Fig. 11C).

Discussion

Our prior quantitative analyses of cellular injury and neu-
trophil distributions during VILI [31] revealed that VILI 
progression is characterized by initiation of diffuse damage 
(cellular injury formation and neutrophil accumulation) in 

Fig. 8   Comparisons of cellular injury density distributions (box 
plots) between the experimental data (white background) and simu-
lated data (gray background) for all ventilation groups

Fig. 9   A Comparisons of mean and standard deviation of cellular 
injury cluster size. Statistical comparisons are performed between 
corresponding experimental (solid bars) and simulated (dotted bars) 
data. No ventilation groups show significant differences between 
simulated data (dotted bars) and corresponding experimental data 

(solid bars) at p < 0.05. B Comparisons of cellular injury cluster size 
distributions (box plots) between the experimental data (white back-
ground) and simulated data (gray background) for all ventilation 
groups
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quasi-random locations and the expansion of existing dam-
aged regions. To further understand that rich experimental 
dataset, we developed a cellular automata-based computa-
tional model governed by the baseline probability of damage 
occurring ( PBase ), the strength of interdependence between 
existing and new damaged regions ( PLocal) , and the range of 
interdependence between these damaged regions ( r ). The 
stochastic model successfully fits datasets that start with no 
positively marked cells (PI + , cellular injury) and datasets 
that start with a resident population of positively marked 
cells (Ly6G + , neutrophils). The optimized parameter values 
provide simple, direct comparisons between groups which 
are easy to interpret and provide insight into system dynam-
ics of VILI progression. Sensitivity analyses reveal that 
all three optimized parameters are important to the model 
dynamics.

During cellular injury progression, the probability of 
randomly located injury ( PBase ) increases with injuri-
ous compared to protective ventilation. The range ( r ) and 
strength ( PLocal ) of interdependence between existing and 
new injury also increases as ventilation pressure increases 
(Fig. 7A; Table 3). This interdependence between injured 
regions plays the dominant role in VILI progression, which 
relates to the high levels of heterogeneity (Fig. 7B, red and 
purple error bars; Fig. 8) and injury clustering (Fig. 9A, B) 
observed in these groups experimentally [31]. We postulate 
that mechanical tethering forces are the driver behind this 
interdependence because the best-fit radii for the injuriously 
ventilated groups (Table 3, r ) correlate with those found 
in finite element models of strain propagation – greatest 

strain increases extend ~ 2 alveolar diameters (≈100 µm 
for our study) out from a central stiffened ‘alveolus’ [37]. 
Our observed increase in r as ventilation pressure increases 
(Protect → p30 → p37.5) also correlates with finite element 
models: increasing the induced strain [37] and increasing the 
size of an existing region of damage [38] causes increases in 
the range of strain propagation.

Interdependence also affects infiltrating neutrophils, with 
injurious ventilation (p30) being more heavily influenced by 
interdependence compared to protective ventilation (Protect) 
(Fig. 10A). This correlates with previous cellular automata 
models of the targeted response of immune cells to local-
ized areas of injury [39] and high strain regions [40]. Our 
prior quantification of neutrophil distributions did not sug-
gest heterogeneous distributions or differences between p30 
and Protect ventilation [31]; the model optimization reveals 
novel insights not available from data analysis alone. The 
radii of interdependence for these groups are much higher 
than that of cellular injury (Table 3). These ranges of inter-
dependence are not readily explainable by tethering forces 
or atelectrauma, and are likely due to longer-range signaling 
mechanisms [41].

Limitations

This model is a relatively simple, computationally tenable 
simulation of a very complicated problem. Increasing the 
model complexity dramatically increased the computation 
time, so the current version was used as a first pass at defin-
ing the dynamics of VILI propagation. In the future, more 

Fig. 10   A Joint confidence intervals for neutrophil infiltration param-
eters. p30 confidence interval (purple region) is shown for r = 8 cells ; 
Protect confidence interval is shown for r = 5 cells . B Mean (colored 
dots) and standard deviation (colored error bars) of experimental neu-

trophil density are compared to mean (black line) and standard devia-
tion (gray-shaded region) of simulated neutrophil infiltration. No sta-
tistical differences are found between the experimental data and the 
corresponding simulated neutrophil densities
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complex versions of the model (e.g., a dynamic region of 
influence) could be implemented to better replicate the 
experimental data. For reference, a single iteration of the 
deployed model for the best-fit parameters of p30 takes ~ 15 
minutes to run on two AMD EPYC 7502 32 core processors 
with 512 GB of DDR4 memory. The run time of a single 
iteration varies greatly depending on the parameter values 
and the simulated ventilation time (increases in PBase , PLocal , 
r , or ventilation time all increase run time). Particle swarm 
optimization within refined bounds (as detailed in the Mate-
rials and Methods—Parameter Optimization section) takes 
between 3–7 days to converge.

The limited experimental data used to fit the model also 
introduce limitations. The p30 PI + data are fit to 4 time 
points and all other progressions are only fit to 2 time-
points. While parameter optimization shows that a single 
region of unique best-fit values exists for each experimental 
group (Fig. 5A, B and Supplemental Videos 1&2), adding 
additional data points could alter these best-fit parameters 
and facilitate more complete physiological interpretations. 
Future studies can increase the number of experimental 
timepoints sampled for each ventilation pattern.

The experimental data used for parameter optimiza-
tion are that of pure VILI with no pre-existing injury. 

Fig. 11   A Mean and standard error of the neutrophil infiltration best-
fit objective functions at different r values. Protect is significantly 
better at r = 5 cells than at any other r value. The best fit for p30 is 
found at r = 8 cells ; this is significantly better than all other r values 
except r = 7 (there is overlap in the standard error for r = 7 and r = 8 

best fits). B Sensitivity analysis of 5% change in P
Local

 and P
Base

 for 
infiltrating neutrophils. C Sensitivity analysis of 1 cell change in r for 
infiltrating neutrophils. D Sensitivity analysis of 25% change in P

Local
 

and P
Base

 for infiltrating neutrophils
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Mechanical ventilation has been shown to induce lung 
injury even in initially healthy lungs. However, future 
studies may perform this entire study on a model of pre-
existing lung injury, which would provide more relevant 
physiological insights into ventilation of predisposed lungs 
(e.g., ARDS patients). These studies could be performed 
with the existing model, as illustrated by the successful 
recapitulation of neutrophil progression which begins with 
resident populations of damaging cells.

Also note that the model was designed to recapitulate 
the behavior of cellular injury (PI + ) progression. The 
neutrophil infiltration is fit using the same model for com-
parative purposes, but there are some added limitations in 
this application. Namely, there are a set number of cells 
available in this model with pre-defined locations, based 
on total cell density in the lung. In vivo, more cells could 
be added to the lung/grid as neutrophils infiltrate.

Summary

To summarize, our novel stochastic model recapitulates 
VILI progression in two markers of damage—cellular injury 
and infiltrating neutrophils—during both lung-protective 
and injurious ventilations. Model parameter optimization 
using experimental data simplifies and explains the find-
ings of complex quantitative analyses and provides addi-
tional insights that are not apparent from data analysis alone. 
The range and strength of interdependence between dam-
aged regions are shown to increase as ventilation patterns 
become more harmful. In the future, these methods could 
be applied to different ventilation patterns, injury models, 
or organ systems to determine which conditions minimize 
detrimental interdependency.
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