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Abstract

Acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) are heterogeneous conditions. The
spatiotemporal evolution of these heterogeneities is complex, and it is difficult to elucidate the mechanisms driving its pro-
gression. Through previous quantitative analyses, we explored the distributions of cellular injury and neutrophil infiltration
in experimental VILI and discovered that VILI progression is characterized by both the formation of new injury in quasi-
random locations and the expansion of existing injury clusters. Distributions of neutrophil infiltration do not correlate with
cell injury progression and suggest a systemic response. To further examine the dynamics of VILI, we have developed a
novel computational model that simulates damage (cellular injury progression and neutrophil infiltration) using a stochastic
approach. Optimization of the model parameters to fit experimental data reveals that the range and strength of interdepend-
ence between existing and new damaged regions both increase as mechanical ventilation patterns become more injurious. The
interdependence of cellular injury can be attributed to mechanical tethering forces, while the interdependence of neutrophils
is likely due to longer-range cell signaling pathways.

Keywords Mechanical ventilation - Cellular automata - Stochastic model - Numerical optimization - Mouse model -
Spatiotemporal heterogeneity

Introduction

Critical illness, such as COVID-19, and severe injury may
cause acute respiratory distress syndrome (ARDS). ARDS is
a dangerous and potentially fatal respiratory condition with
approximately a 40% mortality rate [1]. Positive pressure
ventilation is key to the management of ARDS because it
can allow patients to maintain gas exchange [2]. Despite
its life saving necessity, mechanical ventilation can lead
to ventilator-induced lung injury (VILI), which exacer-
bates the deficits of the injured lung through overdistension
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(volutrauma), cyclic collapse and reopening of the dis-
tal airspaces (atelectrauma), and inflammatory responses
(biotrauma) [3-9].

Spatiotemporal heterogeneity is a characteristic of both
ARDS and VILI. The distribution of ventilation is inherently
heterogeneous due to the effects of gravity, lung anatomy, and
localized injury. This results in variability in alveolar tidal vol-
umes, septal strains, and extent of participation in gas exchange
throughout the lung. Ventilation distribution is also dependent
on the applied pressures [10] and ventilation patterns [11], and
the degree of alveolar ventilation heterogeneity has been shown
to increase with injury [12—14]. In severe cases of ARDS and
VILI, collapse or flooding of the alveoli and small airways
results in a substantial reduction in the fraction of the lung
available to accept incoming gas; this phenomenon is referred
to as ‘baby lung’ [15]. These alterations in regional mechanics
also occur at smaller length scales where the flooding of alveoli
increases distension in adjacent patent regions [16] due to the
physical interconnections between the alveoli (parenchymal
tethering). The field-to-field variability of this heterogeneity
has been quantified using markers such as edema, cellular
damage, and alveolar collapse [17-22]. Organ-scale-imaging
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techniques have also shown the heterogeneous regional distri-
butions of injury and inflammation [23-26], despite at a lower
spatial resolution than can be achieved with light microscopy.

However, the dynamic changes in heterogeneities during
injury progression are complex, and the underlying mecha-
nisms driving the progression are difficult to elucidate. One
approach to understanding the causes and effects of spatial
heterogeneity is through computational approaches such as
the finite element method (FEM) that allow analysis of the
microscale pattern of stress and strain propagation based on
parenchymal tethering forces [27-30]. However, validation
and verification of these predictions through experiments
remains an elusive goal.

Our recent experimental study [31] analyzed both the
micro- and macro-scale distributions of cellular injury as
VILI progressed and revealed that new injury forms in quasi-
random locations and also propagates outward from sites of
existing injury. Leukocyte recruitment also occurs during
VILI [3, 4, 32-34], but the pattern of infiltration suggests a
systemic response [31]. To better explain the spatiotemporal
evolution of injury, the current study uses a novel computa-
tional model, fit to experimental data, to recapitulate our in
vivo quantification of injury propagation during VILI. This
inverse modeling approach facilitates more thorough analy-
sis of the complex experimental results.

In this custom computational model, a synthesized grid of
initially healthy cells undergoes various simulated ventila-
tion patterns which causes injury development and neutro-
phil recruitment. Optimization of the model parameters to
fit our experimental data [31] reveals the range and strength
of interdependence between existing and new damage. The
parameters governing this interdependence allow us to
understand how damage is occurring and how its progres-
sion changes under different ventilation conditions. Model
optimizations reveal significant parameter differences
between cell injury formation and neutrophil infiltration,
suggesting different driving mechanisms for each process.

Materials and Methods

A glossary of symbols and abbreviations is provided in
Table 1.

Previous Experimental Data
Previous Animal Experiments

In previously published work, we ventilated initially healthy
mice with three ventilation protocols: Protect ventilation
(positive end-expiratory pressure (PEEP) =3 cmH,0, res-
piratory rate (RR) =250 breaths/min, and set tidal volume
(V1) =7 mL/kg); p30 ventilation (PEEP=0 cmH,0, RR=50
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breaths/min, and plateau pressure (Pplat) =30 cmH,0); or
p37.5 ventilation (PEEP =0 cmH,0, RR =50 breaths/min,
and Pplat=37.5 cmH,0). Elastance measurements were
taken throughout ventilation to track the inflicted changes in
respiratory mechanics. Tissue was harvested after elastance
had minimally increased, doubled, and quadrupled for the
injuriously ventilated groups (p30 and p37.5). Protect ven-
tilation was terminated after ~4.5 hours to match the long-
est ventilation time of the injurious ventilation groups. The
changes in elastance as ventilation progresses are shown in
Fig. 1A. An additional Control group received only 10 min-
utes of stabilizing ventilation before the tissue was harvested.
Each group consists of 5 subjects. Independent uniform ran-
dom sections of tissue are stained, imaged, and analyzed to
identify the locations of all cell nuclei (DAPI+), injured cells
(PI+, Fig. 1B-E, red dots), and neutrophils (Ly6G + ). The
area occupied by lung tissue was also segmented (Fig. 1B,
white) using the signal from the DAPI channel [31].

Overall Density

The overall density, in cells per area, of each marked cell
type (DAPI+, PI+, Ly6G +) is calculated for each section
of tissue (e.g. Fig. 1B-E, # red PI+ points per white area in
um?). These densities are normalized by total lung volume
[31]. The mean and standard deviation of overall density
are then calculated for the control and experimental groups
using each section of tissue (~20 sections per mouse, ~ 100
sections per group) as a data point.

Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

Tightly packed regions of PI+and Ly6G + cells were iden-
tified using the Density-Based Spatial Clustering of Appli-
cations with Noise algorithm (DBSCAN) [31]. In the cur-
rent study, we use the portion of that analysis that groups
together cells within 30 um of each other. Figure 2 shows the
DBSCAN clustering for representative sections with mod-
erate (Fig. 2A, 2xH30 section) and severe (Fig. 2B, 4xH30
section) injury. The per-animal mean and standard deviation
of the number of cells (either PI+or Ly6G + ) in each cluster
are used as an input data point for the model fitting.

Computational Model of Injury Progression

A probabilistic cellular automata model is developed to reca-
pitulate and analyze the spatiotemporal evolution of damage
(cellular injury and neutrophil accumulation) observed in the
experimental data. A synthesized grid of initially healthy lung
cells (Fig. 3A, white dots) undergoes simulated ventilation;
the likelihood of any individual ‘cell’ becoming damaged is a
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Fig.1 A Fold changes in respiratory elastance (H) as a function of
ventilation time. Ventilation is terminated based on the desired level
of inflicted injury as measured by fold change in H for all injuriously
ventilated groups: 1./xH30, 2xH30, 4xH30, and 4xH37.5. Protect
ventilation is stopped after a set time of~4.5 h. B-E Identification
of lung tissue (white area) and centroids of injured cells (red dots)

combination of a baseline level of probability and a probability
increase based on the local concentration of damaged cells.
At any given timestep, the likelihood of each ‘cell’ becoming
damaged is defined by

#1,(1)
X
#Toz(r)

P[nj = PBas‘e + < PL()U[tl> > (1)

where P,,; represents the probability of any given ‘cell’
becoming damaged and Pp,, represents the baseline

B) 4xH30 PI+ Tissue Section

D) Protect Pl+ Tissue Section

in a fluorescent microscopy image of a whole lung lobe. These data
come from our prior experiments [31]. B Representative lung section
from p30 group. C Representative lung section from Control group.
D Representative lung section from Protect group. E Representative
lung section from p37.5 group

probability of damage occurring in a cell that is currently
undamaged. To account for damage interdependence, #,,,
represents the number of existing damaged ‘cells’ (Fig. 3B,
red dots) within the region of influence (Fig. 3B, blue
shaded) which is defined by radius, r (Fig. 3B, black arrow),
#7,; represents the total number of ‘cells’ within that region
of influence, and P, ., represents the coefficient of prob-
ability increase based on the local concentration of dam-
aged cells. For each point at every timestep, P, is com-
pared to a random number drawn from a uniform distribution
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Table 1 Glossary of symbols and abbreviations

Symbol or abbreviation

Definition

Control

Protect
p30
1.1xH30
2xH30
4xH30
p37.5

4xH37.5

#Tm
t

step
PBasc Pre—Normalization

pLoca] Pre—Normalization

O

Z

T T a aF T
NvATmOYAmgwomowom

Q Qq

Experimental group minimally ventilated

Experimental group ventilated with PEEP=3 cmH,0, RR=250
breaths/min, and set V=7 mL/kg for~4.5 hours

Experimental groups ventilated with PEEP =0 cmH,0, RR =50
breaths/min, and Pplat=30 cmH,0

Experimental group ventilated with p30 ventilation until a minimal
(1.1x) increase in elastance (H)

Experimental group ventilated with p30 ventilation until a doubling
(2x) increase in elastance (H)

Experimental group ventilated with p30 ventilation until a quadrupling
(4x) increase in elastance (H)

Experimental groups ventilated with PEEP=0 cmH,0, RR=50
breaths/min, and Pplat=37.5 cmH,0

Experimental group ventilated with p37.5 ventilation until a quadru-
pling (4x) increase in elastance (H)

Probability of any given simulated cell becoming damaged

Baseline probability of damage occurring in a simulated cell that is
currently undamaged

Coefficient of probability increase based on the local concentration of
damaged cells

Radius defining the region of influence

Number of existing damaged simulated cells within the region of influ-
ence

Total number of simulated cells within that region of influence
Timestep

Py, prior to being normalized by the timestep size

P, ... Drior to being normalized by the timestep size

Objective function

Number of time points analyzed for any given experimental group
Mean of overall density of experimental data

Mean of overall density of simulated data

Standard deviation of overall density of experimental data
Standard deviation of overall density of simulated data

Mean of cluster size of experimental data

Mean of cluster size of simulated data

Standard deviation of cluster size of experimental data

Standard deviation of cluster size of simulated data

(MATLAB rand) between 0 and 1. An undamaged cell
becomes damaged if Pj,; > rand, and it is currently undam-
aged. The random number generator is seeded with a unique
number based on the current date and time (MATLAB now
function).

To mimic the in vivo conditions and experimental data
sampling, the damage progresses on a 3-dimensional grid
and 2-dimensional planes of that grid are sampled for anal-
ysis. Figure 3C demonstrates how simulated damage pro-
gresses in the 3-dimensional cube. The model parameters
are algorithmically optimized to match the mean and stand-

ard deviation of both tissue density and DBSCAN cluster
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sizes, as described in the above sections, Overall Density
and DBSCAN.

Defining Model Parameters

The model outcome is affected by the setting of static param-
eters: total cell density, sampling spacing, grid size (length
of cubic synthesized grid of ‘cells’), timestep, and number of
iterations (repeated runs for each unique set of parameters).
The initial cubic grid is composed of uniformly distributed
cells (potential sites of damage) with density equal to that
of all cells in the experimental lung sections (total cell den-
sity =3.7 x 1073 cells/um?). Every x—y plane is sampled and
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A) 2xH30 Pl+ Tissue Section

Fig.2 Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) groups identified cells into clusters (inset in A, purple
dots with shaded area and yellow dots with shaded area) while allow-
ing isolated cells to remain unclustered (inset in A, black dot). These
data come from our prior experiments [31]. Each group of colored

used as a ‘tissue section’ for analysis (sampling spacing =1
cell). Simulated tissue sections are analyzed identically to
the experimental tissue sections. We sample every plane to
maximize the output data from each simulation.

Settings for grid size, timestep, and number of iterations
are selected to provide the most computationally efficient
model that still yields stable results (Fig. 4A-D) using the
p37.5 ventilation cellular injury data. This group requires
the most computationally expensive set of static parameters
because it has the shortest ventilation time and most rapid
injury progression (requiring the smallest time step to stabi-
lize) and has the most heterogeneous distribution of injury
(homogenous distributions stabilize at a smaller grid size
and larger time step than heterogeneous distributions). The
best-fit variable parameters for the p37.5 ventilation cellular
injury group are analyzed at a variety of grid size, timestep,
and iteration values. The combination of these static parame-
ters that minimizes run time and maximizes model precision
is found through a combination of automated and manual
iterating with various combinations.

All experimental groups for both cellular injury pro-
gression and neutrophil infiltration use the same static

B) 4xH30 PI+ Tissue Section

dots represents a distinct cluster of cellular injury. The identified neu-
trophils are not shown in these figures. A Representative section from
2xH30 showing moderate cellular injury (PI+). B Representative
section from 4xH30 showing severe cellular injury (PI+)

parameter values (total cell density, sampling spacing, grid
size, timestep, and number of iterations).

Optimized Parameters

Py, (baseline probability of damage occurring), P, .
(strength of interdependence between damaged regions), and
r (range of interdependence between damaged regions) are
algorithmically optimized to fit the model to our experimen-
tal data. Py, and P, ., are continuous variables. Because
the grid is made of uniform distributed points, r is a discrete
variable. Both Py, and P, , ., values are affected by changes
in the timestep size. Accordingly, the following equations
are used to eliminate the timestep size-dependence of those
probabilities:

PBaA‘e = PBaxe Pre—Normalization X txtep’ (2)

1.7

3

P Local = P Local Pre—Normalization X tszep

These equations are developed by analyzing the relation-
ship between the model output and timestep when Py, or
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Fig.3 A Grid of initially healthy simulated ‘cells’ (white dots). B
Schematic of increased damage probability due to local concentration
of damage. The likelihood of the central cell (black dot) becoming
damaged increases as damage (red dot) forms within the region of
influence (blue shaded circle), defined by radius of interdependence,

P; . are held constant. The relationship between Pp,,, and
timestep is linear (Equation 2); the relationship between
P; .. and timestep is exponential where a linear fit of the
log—log relationship has a slope of 1.7 (Equation 3). These
relationships are graphically shown in Supplemental Fig.
S1 A&B.

Using these equations makes a more robust timestep-
independent model. They also allow for faster preliminary
computations, with larger time steps, to determine the con-
straints for each optimized parameter.

Modeling Injury Progression vs. Neutrophil Infiltration

For the simulated PI+ (cellular injury) progression, the ini-
tial grid is made up of entirely healthy cells because the
Control tissue had essentially no PI+cells. The objective
function for parameter optimization in the cell injury simula-
tions consists of the mean and standard deviation of overall
PI+density as well as the mean and standard deviation of
DBSCAN PI +cluster size. The DBSCAN analysis for the
simulated injury groups adjacent cells into clusters (d=1
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r (black arrow). The diagram is shown in 2-dimensions for ease of
understanding; the simulations are conducted in 3-dimensions. C
Demonstration of damage progression in 3-dimensions. Damaged
cells (red dots) develop in clusters as simulated ventilation progresses

cell or 33 um); this is the smallest Euclidean distance that
can be used on the synthesized uniform grid of cells. This
is similar to the distance used for the experimental data
(d=30 um). All other parameters are identical to the cel-
lular spacing DBSCAN used for the experimental data [31].

The injury progression is simulated for p30, p37.5, and
Protect groups to match the experimental ventilation dura-
tions. p30 data were collected after 0.94 hours of simulated
ventilation (/. /xH30 experimental group—minimal increase
in elastance), 3.46 hours of simulated ventilation (2xH30
experimental group—doubling of elastance), and 4.38 hours
of simulated ventilation (4xH30 experimental group—
quadrupling of elastance). p37.5 data were collected after
2.06 hours of simulated ventilation (4xH37.5 experimental
group—quadrupling of elastance). Protect ventilation was
simulated for 4.58 hours (Protect experimental group—
duration chosen to match the longest ventilation time of the
injuriously ventilated animals).

The objective function for cellular injury progression is
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Fig.4 Normalized model output refers to the objective function sus the number of iterations run for each unique set of parameters.
normalized by the output for the last (most computationally expen- The optimized model is run for 64 iterations at each set of parameters
sive) value. All analyses are performed on the p37.5 ventilation cel- (gray line). C Normalized model output versus number of simulation

lular injury data. A Normalized model output versus grid size (edge timesteps for the p37.5 group. A timestep of 12 seconds (618 total
length of cubic synthesized grid of ‘cells’). The smallest grid size that timesteps for p37.5 group) is selected for model optimizations (gray
provides results within 5% (dotted lines) of the last sampled value is line). D Log-log plot of normalized model output versus number of
chosen for the model optimization. A grid length of 130 cells is used timesteps for p37.5 group

for model optimization (gray line). B Normalized model output ver-

| N ( Mg _ ﬂf) ) ( GIE) _ O'LS) ) subscript C is the clu.ster size, superscript E is experimen-
Op = N Z - + B tal data, and superscript S is simulated data. The difference
i=1 Hp °p @ between each component of the objective function is divided
( HE — ul) (cf - ag) by the experimental value to ensure that each component is
+ E E ’ weighted evenly.
He °c

For simulated neutrophil (Ly6G + ) dynamics, the initial
grid is seeded with resident neutrophils to match the in vivo
neutrophil distributions of the Control group. The objec-
tive function for parameter optimization in the neutrophil
infiltration simulations consists of the mean and standard

where O, is the objective function, N is the number of time-
points analyzed in the experimental group, u is the mean,
o is the standard deviation, subscript D is overall density,
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deviation of overall Ly6G + density. The neutrophil density
is very high causing a large amount of clustering that is not
necessarily due to heterogeneous distribution. This makes
the DBSCAN results for this data unreliable [35]. As in the
experimental study, neutrophil progression is tracked from
Control to Protect and Control to 4xH30.

The objective function for the progression of neutrophil

infiltration is
>’ Q)]

{ N
Op = —
where all variables have the same meanings as those of
Equation 4.

(g = 3)
uy,

Parameter Optimization

Py, and P, , ., are identified for each value of r separately.
Values of increasing r are tested until the optimized value
of the objective function at the current value of r is greater
than that of the previous r value (e.g., if the optimization
at r = 3 cells yields a greater objective function value than
r = 2 cells, then r = 4 cells will not be tested).

For each run of the model, the simulated density is com-
pared to the projected experimental density at every timestep;
if simulated density(t,,) > 1.5 X experimental density(t,,)
the simulation is terminated. This saves time on computa-
tionally expensive parameter sets that generate unreasonably
high densities.

Coarse, uniform grid searches are performed for each
value of r using larger time steps and a single iteration for
each unique set of model parameters. These relatively quick
searches allow us to visualize the overall layout of the error
surface. These error surface estimations are used to con-
servatively refine the bounds used for particle swarm optimi-
zation (MATLAB particleswarm function). The number of
particles in the swarm (SwarmSize) is set to 50, and the itera-
tions stop when the relative change in the objective function
value over the last 20 iterations (MaxStalllterations) is less
than the specified tolerance of 1x10° (FunctionTolerance).
The tolerance is conservatively set based on the standard
error present in the stochastic model.

Parameter Bounds for Optimization

The maximum possible Py, for each ventilation pat-
tern is found by setting Pg, . pro_Normatization il Equation 2
to the mean overall density at the end time in units of
# Injured Cells /# Total Cells (converted from the [31]
units of # Injured Cells/um® using the density of all
cells in the lung). The maximum possible P, ., is equal
to the total number of cells within the selected region of
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interdependence (defined by the r value): when r = 1 cell,
Py, = 6; Wwhen r =2 cells, Py, = 32; when r = 3 cells,
Py, = 122; etc. The lower bounds are set to O for both

PBaxe and PLocal'
Finding Joint Confidence Intervals

Due to the stochastic nature of the model, the error surfaces
contain noise/discontinuities (Fig. 5A, B, Supplemental Vid-
eos 1&2) and the optimizer does not find the exact same
solution every time. Therefore, the best-fit parameter values
are better defined as a region (termed estimated joint confi-
dence interval) rather than a single point. To avoid having to
run the computationally intensive optimization many times,
we perform a fine grid search around the best-fit parameter
values to determine these parameter regions of best fit.

Each optimization (e.g., unique ventilation group and
unique value of r) is run twice. The bounds for the fine grid
search are determined through visual inspection of these
error surfaces. A mesh grid containing 400 points (20 evenly
spaced Pp,, values and 20 evenly space P; ., values) is then
used. The joint confidence interval is the boundary at which
the maximum of the optimizers best-fit value (mean + stand-
ard error) intersects with the minimum of the surrounding
grid points (mean — standard error).

Parameter Interdependence

The interdependence between each set of optimized param-
eters (Pgups Procar» @nd 1) is determined. These values are
calculated by using the error surface (Fig. 5B) and inter-
polating between the particle swarm optimization points
(Fig. 5A). For example, to calculate the interdependence
between P; ., and Py, ., the error surface from the best-fit
value of r is used. A set of Py, , values are selected and, for
each value of P, the P, ., value yielding the minimum
objective function is found. Note that the minimum objec-
tive function values are greater than the global minimum.
Spearman’s correlation coefficients (MATLAB corr function
with type set to ‘Spearman’) are then calculated for the set
of Py.ep Procar cOOrdinates. The correlations are found for
each set of parameters; the resulting coefficients are shown
in Table 2.

Sensitivity Analysis

Sensitivity analyses are performed for each optimized
parameter. Py, , and P, values are individually varied
by + 5% and +25% while all other values are kept the same.
r values are varied by + 1 cell while all other values are kept
the same.
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Table 2 Spearman’s correlation
coefficients for each set of
optimized parameters

Baseline probabil-  Local density probabil-  Radius of inter-

ity,Pguse ity.P el dependence, r
Baseline probability, Py, 1 —0.9434 0.4286
Local density probability, P; ., —0.9434 1 —0.4857
Radius of interdependence, r 0.4286 —0.4857 1

Py, and Pp, ., are strongly correlated. There is a weak interdependence between both P; ., and r; and
Py, and r

>
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Fig.5 Representative error (objective function) surface resulting from particle swarm optimization. A Data points sampled during particle
swarm optimization. B 2-Dimensional view of error surface plot found through linear interpolation of sampled particles (parameter sets)

Statistical Analysis

Data are tested for normal distribution using Anderson-
Darling tests (significance level =0.05). The distributions
of cellular injury density are not normally distributed for
any groups (Fig. 7B). Cluster sizes of cellular injury are
normally distributed for Protect and 1.1xH30, but not for the
other groups (Fig. 9). The distributions of neutrophil density
are normally distributed for all groups (Fig. 10B). All data-
sets that are non-normally distributed contain sufficiently
high sample sizes to qualify for parametric statistical tests
[36]. Two-sample ¢ tests are used to compare corresponding
simulated and experimental data for each group. The nor-
mality tests and ¢ tests are performed in MATLAB.

Results
Summary of Previous Spatiotemporal Analysis

A robust analysis of the distributions of cellular injury dur-
ing VILI progression shows that VILI begins as diffuse

injury in quasi-random locations. Injury progression is char-
acterized by the expansion of existing regions of injury as
well as new, diffuse injury formation. Neutrophil infiltration
is shown to follow a more systemic response during venti-
lation, which is not dependent on ventilation pattern [31].
These findings inform the formulation of the computational
model.

Static Parameter Determination

Static parameters are defined to give stable results when the
model output produced from that value falls within 5% of
the 5 most computationally expensive values tested. The
minimum grid size that provides stable model results is
found to be 130 cells in cubic length (Fig. 4A) for a total
of 2,197,000 cells in the domain. The minimum number of
iterations (repeated runs with the same parameters) required
for a stable fit is 40 (Fig. 4B). Since the computer cluster
used to run the simulations contains 64 cores per node, we
used 64 iterations to maximize resource utilization.

The model output does not converge until the timestep
< 2.5 seconds (> 2719 time steps for p37.5) as shown in
Fig. 4C&D. Optimization run times were excessive with
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best-fit objective functions at different values of r. p37.5 is signifi-
cantly better at r = 2 cells than at any other r value. The best fit for
p30 is found at r =1 cell. Protect has no significant differences
across r values because the best fit is at P, ., = 0. B Sensitivity
analysis of 5% change in P;, ., and P, for cellular injury. Protect

such a small timestep; therefore, we chose a timestep of 12
seconds where the curve visually starts to plateau (Fig. 4C).
Although we could not optimize the model at the ideal
timestep, the developed timestep-dependent equations
(Equations 2&3) do eventually plateau as is evident in the
log-log plot (Fig. 4D).

Parameter Interdependence
Analysis of parameter interdependence (Table 2) reveals a

strong inverse relationship between Py, and P, ,, Where
an increase in Pjp,,, causes a consistent decrease in P; -
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Py 1 tested at zero (no bar), the best-fit value, and 2x 107, a value
slightly outside the Protect joint confidence interval. C Sensitivity
analysis of 1 cell change in r for cellular injury. Protect is not affected
by changes to r because the best-fit value of P, ., is zero. D Sensi-
tivity analysis of 25% change in P, ., and Py, for cellular injury.
Protect Py, is tested at zero (no bar), the best-fit value, and 2 x 10~

Py, and r have a weak positive correlation. P;,

a weak inverse correlation.

ocqr @0d 7 have

Cellular Injury Simulations

Figure 6A shows that the minimum objective function (the
best fit) is found when r = 2 cells for p37.5 and r = 1 cell for
p30 ventilation. The Protect group has a minimum objective
function at P;,.,; = 0 so the value of r is irrelevant (Equa-
tion 1). Accordingly, all the analyses of the Protect group
are done atr = 1 cell. The injurious ventilation groups (p30
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Fig.7 A Joint confidence intervals for cellular injury optimizations.
p37.5 confidence interval (red region) is shown for r = 2 cells; p30
(purple region) and Protect (brown region) confidence intervals are
shown for r = 1 cell. B Mean (colored dots) and standard deviation
(colored error bars) of experimental injury density are compared to

and p37.5) have significantly better solutions at the best-fit
values of r.

Joint confidence intervals for the best-fit parameters for
each group’s respective values of 7 are shown in Fig. 7A and
the parameter values are listed in Table 3. Both injurious
ventilation patterns (p30 and p37.5) show significant eleva-
tion of Py, over Protect. P, ., shows significant increases
with ventilation harmfulness (Protect — p30 — p37.5); r
also increases with ventilation severity.

Cellular injury density correlates well between the
experimental and simulated data (Fig. 7B) with no sig-
nificant differences between corresponding groups. The
means of the experimental densities and their correspond-
ing simulated densities show no significant differences
(Fig. 7B). The full distributions of cellular injury (Fig. 8)
also show qualitative correlation with their simulated
counterparts: all groups show a right skewness and similar

Table 3 Best-fit parameter values for all groups

B) 6-x10°
® Protect )
5-[ @ 1.1xH30
2xH30
4r| ® 4xH30
® 4xH37.5

Density (Injured Cells/pm 2)

®

0 05 1 15_2 25 3 35 4 45 5
Time (hours)
Experimental Statistical

Data Model

mean (black line) and standard deviation (gray-shaded region) of sim-
ulated injury progression. No statistical differences are found between
the experimental data and the corresponding simulated injury densi-
ties

values of outlier data points. Both Figs. 7B and 8 use each
tissue slice as a data point.

Cellular injury cluster size also correlates well between
the experimental and simulated data (Fig. 9A). No cor-
responding groups show significant differences between
experimental and simulated data at a significance value
of p <0.05. The full distributions of cluster size (Fig. 9B)
show qualitative correlation as well, having similar skew-
ness and outliers.

Sensitivity analysis of Py, and P; ., (Fig. 6B) show
that a 5% change in parameter values cause a greater per-
centage change in the objective function for the injuriously
ventilated groups (p30 and p37.5). Protect shows a damp-
ened response to changes in Py, which is not unexpected
as this group contains very minimal injury. Protect Py,
is tested at zero (the best-fit value) and 2x 1077 (a value
slightly outside the Protect joint confidence interval). A

25% change in parameter values Py, and P; ., causes a

Marker Cellular injury Neutrophils

Experimental group Protect p30 p37.5 Protect p30

Baseline probability, Py, (x1077) 0.77 5.9 4.7 160 1.3

Local density probability, P, ,.,,(x107%) 0 2.4 7.4 1.2 3.1

Radius of interdependence, r N/A 1 cell or 33 um 2 cells or 66 pm 5 cells or 165 um 8 cells or 264 ym

Radius of interdependence is shown in units of grid cells and micrometers (converted using the grid spacing). The micrometer spacing is used to

compare model results to previous studies

@ Springer



C. L. Mattson, B. J. Smith

1.4210°
[C] Experimental P
&~ 1.2r | Simulated °* o
e °
2 41 e o
i)
6 [ ]
O ggl - .
8 B
5 ® [} :
= 0.6+ . -"
; O' 0.
:.U:) 0.4+ o®
C
(0]
O 0.2} T :
‘C
0 E SRR :
& o0 0 ey %
G o
o®F L ART g e m«\“&‘

Fig.8 Comparisons of cellular injury density distributions (box
plots) between the experimental data (white background) and simu-
lated data (gray background) for all ventilation groups

greater than 25% change in the resulting objective func-
tion (Fig. 6D). Here, the changed value of Protect P, ., is
set to 2x 107, A 1 cell change in r causes a greater than
100% change in the resulting objective function (Fig. 6C).
Changes in r do not alter the objective function for Protect
as the best-fit value of P; ., = O (the r value is obsolete).
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Fig.9 A Comparisons of mean and standard deviation of cellular
injury cluster size. Statistical comparisons are performed between
corresponding experimental (solid bars) and simulated (dotted bars)
data. No ventilation groups show significant differences between
simulated data (dotted bars) and corresponding experimental data
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Neutrophil Infiltration Simulations

In the neutrophil infiltration simulations, the objective func-
tion is minimized at » = 8 cells for p30 and r = 5 cells for
Protect (Fig. 10A). The joint confidence intervals of best
fit for these r values are shown in Fig. 10A, and the best-fit
parameter values are in Table 3. Protect has a significantly
higher Py, while p30 has a significantly greater P; ;. The
simulated progression of neutrophil infiltration correlates
with the experimental data (Fig. 10B).

The minimum objective function (best fit) for the neutro-
phil simulations is found when » = 5 cells for Protect and
r = 8 cells for p30 ventilation. Both groups have signifi-
cantly better solutions at the best-fit values of r (Fig. 11A).
Sensitivity analyses show that a 5% change in parameter
values Py, and P;, ., causes a greater than 5% change in
the resulting objective function (Fig. 11B); a 25% change in
parameter values Py, and P}, causes a greater than 25%
change in the resulting objective function (Fig. 11D); and
a 1 cell change in r causes a greater than 10% change in the
resulting objective function (Fig. 11C).

Discussion

Our prior quantitative analyses of cellular injury and neu-
trophil distributions during VILI [31] revealed that VILI
progression is characterized by initiation of diffuse damage
(cellular injury formation and neutrophil accumulation) in

[ ] Experimental

’345 I Simulated

D 40t
040

535-

Clust
S

(solid bars) at p<0.05. B Comparisons of cellular injury cluster size
distributions (box plots) between the experimental data (white back-
ground) and simulated data (gray background) for all ventilation
groups
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quasi-random locations and the expansion of existing dam-
aged regions. To further understand that rich experimental
dataset, we developed a cellular automata-based computa-
tional model governed by the baseline probability of damage
occurring (Pg,,), the strength of interdependence between
existing and new damaged regions (P;,.,;), and the range of
interdependence between these damaged regions (r). The
stochastic model successfully fits datasets that start with no
positively marked cells (PI+, cellular injury) and datasets
that start with a resident population of positively marked
cells (Ly6G +, neutrophils). The optimized parameter values
provide simple, direct comparisons between groups which
are easy to interpret and provide insight into system dynam-
ics of VILI progression. Sensitivity analyses reveal that
all three optimized parameters are important to the model
dynamics.

During cellular injury progression, the probability of
randomly located injury (Pp,,) increases with injuri-
ous compared to protective ventilation. The range (r) and
strength (P;,.,;) of interdependence between existing and
new injury also increases as ventilation pressure increases
(Fig. 7A; Table 3). This interdependence between injured
regions plays the dominant role in VILI progression, which
relates to the high levels of heterogeneity (Fig. 7B, red and
purple error bars; Fig. 8) and injury clustering (Fig. 9A, B)
observed in these groups experimentally [31]. We postulate
that mechanical tethering forces are the driver behind this
interdependence because the best-fit radii for the injuriously
ventilated groups (Table 3, r) correlate with those found
in finite element models of strain propagation — greatest

A) 3
g2t 000000000
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g 2
D-_I
1.5¢
®
1 /
r=5
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Fig. 10 A Joint confidence intervals for neutrophil infiltration param-
eters. p30 confidence interval (purple region) is shown for r = 8 cells;
Protect confidence interval is shown for r = 5 cells. B Mean (colored
dots) and standard deviation (colored error bars) of experimental neu-

strain increases extend ~2 alveolar diameters (=100 um
for our study) out from a central stiffened ‘alveolus’ [37].
Our observed increase in r as ventilation pressure increases
(Protect — p30 — p37.5) also correlates with finite element
models: increasing the induced strain [37] and increasing the
size of an existing region of damage [38] causes increases in
the range of strain propagation.

Interdependence also affects infiltrating neutrophils, with
injurious ventilation (p30) being more heavily influenced by
interdependence compared to protective ventilation (Protect)
(Fig. 10A). This correlates with previous cellular automata
models of the targeted response of immune cells to local-
ized areas of injury [39] and high strain regions [40]. Our
prior quantification of neutrophil distributions did not sug-
gest heterogeneous distributions or differences between p30
and Protect ventilation [31]; the model optimization reveals
novel insights not available from data analysis alone. The
radii of interdependence for these groups are much higher
than that of cellular injury (Table 3). These ranges of inter-
dependence are not readily explainable by tethering forces
or atelectrauma, and are likely due to longer-range signaling
mechanisms [41].

Limitations

This model is a relatively simple, computationally tenable
simulation of a very complicated problem. Increasing the
model complexity dramatically increased the computation
time, so the current version was used as a first pass at defin-
ing the dynamics of VILI propagation. In the future, more
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trophil density are compared to mean (black line) and standard devia-
tion (gray-shaded region) of simulated neutrophil infiltration. No sta-
tistical differences are found between the experimental data and the
corresponding simulated neutrophil densities
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Fig. 11 A Mean and standard error of the neutrophil infiltration best-
fit objective functions at different r values. Protect is significantly
better at r = 5 cells than at any other r value. The best fit for p30 is
found at r = 8 cells; this is significantly better than all other r values
except r = 7 (there is overlap in the standard error for r = 7and r = 8

complex versions of the model (e.g., a dynamic region of
influence) could be implemented to better replicate the
experimental data. For reference, a single iteration of the
deployed model for the best-fit parameters of p30 takes ~ 15
minutes to run on two AMD EPYC 7502 32 core processors
with 512 GB of DDR4 memory. The run time of a single
iteration varies greatly depending on the parameter values
and the simulated ventilation time (increases in Py, P; 00
r, or ventilation time all increase run time). Particle swarm
optimization within refined bounds (as detailed in the Mate-
rials and Methods—Parameter Optimization section) takes
between 3—7 days to converge.
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best fits). B Sensitivity analysis of 5% change in P;,.,; and P, for
infiltrating neutrophils. C Sensitivity analysis of 1 cell change in r for
infiltrating neutrophils. D Sensitivity analysis of 25% change in P, .,
and Py, for infiltrating neutrophils

The limited experimental data used to fit the model also
introduce limitations. The p30 PI+ data are fit to 4 time
points and all other progressions are only fit to 2 time-
points. While parameter optimization shows that a single
region of unique best-fit values exists for each experimental
group (Fig. 5A, B and Supplemental Videos 1&2), adding
additional data points could alter these best-fit parameters
and facilitate more complete physiological interpretations.
Future studies can increase the number of experimental
timepoints sampled for each ventilation pattern.

The experimental data used for parameter optimiza-
tion are that of pure VILI with no pre-existing injury.
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Mechanical ventilation has been shown to induce lung
injury even in initially healthy lungs. However, future
studies may perform this entire study on a model of pre-
existing lung injury, which would provide more relevant
physiological insights into ventilation of predisposed lungs
(e.g., ARDS patients). These studies could be performed
with the existing model, as illustrated by the successful
recapitulation of neutrophil progression which begins with
resident populations of damaging cells.

Also note that the model was designed to recapitulate
the behavior of cellular injury (PI+) progression. The
neutrophil infiltration is fit using the same model for com-
parative purposes, but there are some added limitations in
this application. Namely, there are a set number of cells
available in this model with pre-defined locations, based
on total cell density in the lung. In vivo, more cells could
be added to the lung/grid as neutrophils infiltrate.

Summary

To summarize, our novel stochastic model recapitulates
VILI progression in two markers of damage—cellular injury
and infiltrating neutrophils—during both lung-protective
and injurious ventilations. Model parameter optimization
using experimental data simplifies and explains the find-
ings of complex quantitative analyses and provides addi-
tional insights that are not apparent from data analysis alone.
The range and strength of interdependence between dam-
aged regions are shown to increase as ventilation patterns
become more harmful. In the future, these methods could
be applied to different ventilation patterns, injury models,
or organ systems to determine which conditions minimize
detrimental interdependency.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10439-023-03346-3.
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