
Persistence Over Posets

Woojin Kim and Facundo Mémoli
In topological data analysis (TDA), the shape of a dataset
is often encoded into a system of vector spaces and lin-
ear maps over a partially ordered set (poset). We give an
overview of how summaries of such systems can be con-
structed by using ideas from combinatorics.

Persistent Homology
Datasets are often given as point clouds: finite sets of
points in Euclidean space. Examples include the three-
dimensional coordinates of all atoms in a sample of a
given material, a point cloud produced by a 3D scanner,
and high-dimensional data such as a spreadsheet contain-
ing clinical features of a group of diabetes patients. The
“shape” of a point cloud 𝑋 ⊂ ℝ𝑑 may provide useful infor-
mation about the underlying phenomena that generated
the data. If 𝑋 stands for the dataset of clinical features of
diabetic patients mentioned above, and points in 𝑋 appear
to fall into a number of distinct clusters, then thismay indi-
cate the presence of different subtypes of diabetes amongst
the patients.

In algebraic topology, the shape of a simplicial com-
plex (or of a topological space) can be studied via homology
[Mun84]. Homology provides a way to associate algebraic
structures such as groups or vector spaces to a simplicial
complex𝐾 in order to capture some aspect about the shape
of 𝐾; e.g., is 𝐾 connected? does it have holes?
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Given an integer 𝑘 ≥ 0, the 𝑘-th homology of the sim-
plicial complex 𝐾 with coefficients in a field 𝕜, denoted
H𝑘(𝐾; 𝕜), is a vector space over 𝕜. Its dimension is called
the 𝑖-th Betti number of 𝐾 (with coefficients in 𝕜) which
is a count of the 𝑘-dimensional holes in 𝐾; e.g., the 0th,
1st, and 2nd Betti numbers equal the numbers of connected
components, holes bounded by a closed loop, and cavities
bounded by a closed two-dimensional region in 𝐾, respec-
tively.

Figure 1. The pipeline of persistent homology. Multiscale
clustering features and circular features of the input dataset 𝑋
are encoded into H0 and H1 barcodes respectively. Intervals
[𝑏, 𝑑) in the barcode are in bijection with points (𝑏, 𝑑) in the
persistence diagram.

Given a simplicial map 𝑓 ∶ 𝐾 → 𝐿 between simpli-
cial complexes 𝐾 and 𝐿, homology induces a linear map
H𝑘(𝑓; 𝕜) ∶ H𝑘(𝐾; 𝕜) → H𝑘(𝐿; 𝕜). Thus, homology H𝑘(⋅; 𝕜)
is a functor from the category of simplicial complexes and
simplicial maps to the category of vector spaces and linear
maps over 𝕜.
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Persistent homology. Within TDA, persistent homology
refers to a method for associating multiresolution topo-
logical features to a given dataset. The usual pipeline is
depicted in Figure 1.

In Step 1, one often uses Vietoris–Rips complexes. Given
a dataset, modeled as a finite metric space 𝑋 , e.g., a point
cloud in ℝ𝑑, for a real number 𝑟 ≥ 0, the Vietoris–Rips
complex ℛ(𝑋; 𝑟) is an abstract simplicial complex consist-
ing of all the finite subsets 𝜎 ⊆ 𝑋 in which every pair of
points is within distance 𝑟. The nested family {ℛ(𝑋; 𝑟)}𝑟≥0
is called the Vietoris–Rips filtration of 𝑋 . In Step 2, for each
𝑘 ≥ 0, we apply the homology functor H𝑘(−; 𝕜) to this fil-
tration and obtain a persistence module 𝑀 over ℝ≥0.

As we will see momentarily, persistence modules over
ℝ≥0 are a particular instance of the more general concept
of persistence modules over posets.

Recall that a poset is a nonempty set P equipped with a
relation ≤ on P that is (i) Reflexive: 𝑝 ≤ 𝑝 for all 𝑝 ∈ P.
(ii) Transitive: For 𝑝, 𝑝′, 𝑝″ ∈ P, if 𝑝 ≤ 𝑝′ and 𝑝′ ≤ 𝑝″,
then 𝑝 ≤ 𝑝″. (iii) Anti-symmetric: If 𝑝 ≤ 𝑝′ and 𝑝′ ≤ 𝑝,
then 𝑝 = 𝑝′. Throughout this paper, all posets P will be
assumed to be connected, i.e., for any 𝑝, 𝑞 ∈ P, there is a
sequence 𝑝 = 𝑝1, … , 𝑝𝑛 = 𝑞 in P such that 𝑝𝑖 and 𝑝𝑖+1 are
comparable for each 𝑖 = 1, … , 𝑛 − 1.

Posets are convenient gadgets for “indexing” simplicial
filtrations and persistence modules.

Definition 1. Let P be a poset. A persistence module 𝑀
over P (P-module in short) is a system of finite-dimensional
vector spaces 𝑀(𝑝), 𝑝 ∈ P, and linear maps 𝑀(𝑝, 𝑝′) ∶
𝑀(𝑝) → 𝑀(𝑝′), 𝑝 ≤ 𝑝′ ∈ P such that for each 𝑝 ∈ P,
𝑀(𝑝, 𝑝) is the identity on 𝑀(𝑝), and

for 𝑝 ≤ 𝑝′ ≤ 𝑝″, 𝑀(𝑝, 𝑝″) = 𝑀(𝑝′, 𝑝″) ∘ 𝑀(𝑝, 𝑝′). (1)

The maps 𝑀(𝑝, 𝑝′) are called internal morphisms. Since
any poset can be regarded as a category, 𝑀 is actually a
functor 𝑀 ∶ P → 𝐯𝐞𝐜 from P to the category 𝐯𝐞𝐜 of finite-
dimensional vector spaces and linear maps over the field
𝕜.1 Two P-modules 𝑀 and 𝑁 are isomorphic, denoted by
𝑀 ≅ 𝑁, if there are linear isomorphisms𝑇𝑝 ∶ 𝑀(𝑝) → 𝑁(𝑝)
for all 𝑝 ∈ P, so that for 𝑝 ≤ 𝑝′ ∈ P,

𝑁(𝑝, 𝑝′) ∘ 𝑇𝑝 = 𝑇𝑝′ ∘ 𝑀(𝑝, 𝑝′).

When𝑀 is the result of applying the homology functor
to the Vietoris–Rips filtration of a dataset 𝑋 ⊂ ℝ𝑑, a great
deal of information about the shape of 𝑋 can be absorbed
by the persistence diagram or into the barcode of 𝑀 (cf. Fig-
ure 1). The definitions of these invariants as well as their
relationship will be recalled in later sections.

1In the literature, 𝑀 is often referred to as a pointwise finite-dimensional
persistence module.

Figure 2. (Left) A dataset 𝑋 ⊂ ℝ2 consisting of two circular
clusters together with some outliers (i.e., “noise”). Define the
codensity function of 𝑋 as 𝑓𝑋(𝑥) ≔ min𝑥′∈𝑋\{𝑥}‖𝑥 − 𝑥′‖2 for
𝑥 ∈ 𝑋. Notice that 𝑓𝑋 attains small values only in ‘dense’
regions of 𝑋. (Right) For 𝜀 ∈ ℝ≥0, let 𝑋𝜀 be the subset of points
𝑥 ∈ 𝑋 with 𝑓𝑋(𝑥) ≤ 𝜀. Notice that for 𝜀 > 0 small, 𝑋𝜀 does not
contain any of the outliers. The figure depicts the
Vietoris–Rips complexes ℛ(𝑋𝜀𝑗 ; 𝑟𝑖) for some values 𝑟1 < 𝑟2 < 𝑟3
and 𝜀1 < 𝜀2.

The need for a more general framework. Practical data
analysis scenarios necessitate methods that can cope with
more than one parameter. For instance, a dataset 𝑋 ⊂ ℝ𝑑

might have nonuniform density (see Figure 2), possibly
due to noise produced during the acquisition process or
due to underlying scientific phenomena. In such scenar-
ios, in addition to a geometric scale parameter, one may
wish to incorporate a (co)density parameter and obtain an
increasing family of simplicial complexes indexed by ℝ2

with the product order ≤, i.e., (𝑎1, 𝑎2) ≤ (𝑏1, 𝑏2) iff 𝑎𝑖 ≤ 𝑏𝑖
for 𝑖 = 1, 2. The result of applying the homology func-
tor to such an ℝ2-indexed family, or more generally, to an
analogously definedℝ𝑛-indexed family, is called amultipa-
rameter persistence module [CZ09].

There are scenarios that give rise to persistence modules
indexed by posets other than other than ℝ𝑛. For example,
the time-evolution of the positions of animals during col-
lective motion can lead to considering zigzag posets

ZZ ≔ {1 ↔ 2 ↔ ⋯ ↔ 𝑚},
where, for each 𝑖, 𝑖 ↔ 𝑖 + 1 stands for either 𝑖 < 𝑖 + 1 or
𝑖 > 𝑖 + 1 [CdS10,KM22].

Beyond these scenarios, and with a great deal of fore-
sight, in [BdSS15], Bubenik et al. proposed to consider
the phenomenon of persistence for parameters taken from
general posets.

Remark 1. In this article, we restrict ourselves to persistence
modules over finite connected posets P, which are general
enough indexing sets formodeling the type of datasets that
arise in practice.

For example, for an integer 𝑚 > 0, the linearly ordered
poset

L𝑚 ≔ {1 < 2 < ⋯ < 𝑚} (2)

is often used to succinctly encode ℝ- or ℝ≥0-modules.
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Example 1 (L𝑚-module). Given a finite metric space 𝑋 ,
the Vietoris–Rips filtration of 𝑋 consists of finitely many
distinct simplicial complexes. Hence, for the persistence
module 𝑀 ≔ H𝑘(ℛ(𝑋,−)) ∶ ℝ≥0 → 𝐯𝐞𝐜, there exist 0 =
𝑟1 < ⋯ < 𝑟𝑚 in ℝ≥0 so that𝑀(𝑟, 𝑠) is a linear isomorphism
whenever 𝑟, 𝑠 ∈ [𝑟𝑖, 𝑟𝑖+1) with 𝑟 ≤ 𝑠, for some 𝑖 = 1, … ,𝑚
where 𝑟𝑚+1 ≔ ∞. In such a case, the L𝑚-module

H𝑘(ℛ(𝑋; 𝑟1)) → ⋯ → H𝑘(ℛ(𝑋; 𝑟𝑚))
determines the isomorphism type of 𝑀.

Connections with quiver representations. A quiver is a
finite directed graph. Given a quiver 𝑄, the assignment
of a finite-dimensional vector space to each vertex and a
linear map to each arrow (between the participating vector
spaces) is called a representation of 𝑄; see [DW05].

A finite poset P induces the quiver 𝑄P on the vertex set
P with arrows 𝑝 → 𝑝″ for all pairs 𝑝 < 𝑝″ such that there
is no 𝑝′ ∈ P with 𝑝 < 𝑝′ < 𝑝″. Note that a P-module 𝑀
canonically induces a representation of 𝑄P: To each ver-
tex 𝑝 of 𝑄P, the vector space 𝑀(𝑝) is assigned. To each
arrow 𝑝 → 𝑝″ of 𝑄P, the linear map 𝑀(𝑝, 𝑝″) is assigned.
Note that the resulting representation of 𝑄P satisfies the
following commutativity condition: For every 𝑝, 𝑝″ ∈ P, if
there are multiple directed paths from 𝑝 to 𝑝″ in 𝑄P, then
the compositions of the linear maps along each of those
paths agrees with 𝑀(𝑝, 𝑝″). Conversely, a representation
of 𝑄P satisfying the commutativity condition induces a P-
module in the obvious way.

Example 2. The poset L𝑚 from Equation (2) induces the
quiver

𝑄L𝑚 ∶ 1 → 2 → ⋯ → 𝑚.
Example 3. For integers𝑚, 𝑛 > 0, consider the poset L𝑚 ×
L𝑛 equipped with the product order. Then, for example,
the poset (L2 × L3) induces the quiver

𝑄L2×L3 ∶
(2, 1) (2, 2) (2, 3)

(1, 1) (1, 2) (1, 3).

The poset L𝑚 × L𝑛 is often used to encode ℝ2-modules.

Example 4. The following commutative diagram defines
an (L2×L3)-module which can be obtained by applying the
0-th homology functor H0(−, 𝕜) to the (L2 × L3)-indexed
simplicial filtration depicted next:

k k
2

k

0 k k

0

1 (1 1)

1

0

1

1

.

.

( )

( )

Rank Invariant and Persistence Diagrams
We first recall the classical notions of rank invariant and
persistence diagrams of L𝑚-modules [CSEH07,CZ09], and
then we describe a natural way to extend those notions to
the setting of P-modules.
Rank invariant. For any integer 𝑚 > 0 and any 𝑏 ≤ 𝑑 ∈
L𝑚, we call [𝑏, 𝑑] ≔ {𝑏, … , 𝑑} an interval in L𝑚. Let Int(L𝑚)
be the set of all intervals in L𝑚. The rank invariant of a
given persistence module 𝑀 ∶ L𝑚 → 𝐯𝐞𝐜 is defined to be
the function

rk𝑀 ∶ Int(L𝑚) → ℤ≥0 (3)

[𝑏, 𝑑] ↦ rank(𝑀(𝑏, 𝑑)).
It is important to note that (i) the rank invariant is pre-
served under isomorphism and that (ii) it encodes the di-
mensions of all vector spaces 𝑀(𝑏) for 𝑏 ∈ L𝑚 since we
have rk𝑀([𝑏, 𝑑]) = dim(𝑀(𝑏)) whenever 𝑏 = 𝑑. Note also
that (iii) rk𝑀 is monotone, i.e.,

rk𝑀([𝑏′, 𝑑′]) ≤ rk𝑀([𝑏, 𝑑]) (4)

whenever [𝑏, 𝑑] ⊆ [𝑏′, 𝑑′]; This follows from the fact that
themap𝑀(𝑏′, 𝑑′) factors through themap𝑀(𝑏, 𝑑). By con-
vention, we set 0 = rk𝑀([0, 𝑑]) = rk𝑀([𝑏,𝑚 + 1]) for every
𝑏, 𝑑 ∈ L𝑚. Next, we utilize the rank invariant to compute,
for each [𝑏, 𝑑] ∈ Int(L𝑚), a count of the “persistent fea-
tures” that start at 𝑏 and end at 𝑑, leading to the notion of
persistence diagram of 𝑀.

Figure 3. The rank invariant and the persistence diagram of a
given 𝑀 ∶ L13 → 𝐯𝐞𝐜. At each point (𝑏, 𝑑) with 𝑏 ≤ 𝑑 in the
L13 × L13 grid, nonzero rk𝑀([𝑏, 𝑑]) and dgm𝑀([𝑏, 𝑑]) are
recorded (e.g., rk𝑀([5, 6]) = 2 and dgm𝑀([5, 6]) = 0).2

Persistence diagrams. Fix an integer 𝑚 > 0. Let 𝑝′ ∈ L𝑚
and a vector 𝑣 ∈ 𝑀(𝑝′). We say that 𝑣 is born at the point
𝑏(𝑣) ∈ L𝑚 where

𝑏(𝑣) ≔ min{𝑝 ∈ L𝑚 ∶ 𝑣 ∈ im (𝑀(𝑝, 𝑝′))}. (5)

We say that 𝑣 lives until the point 𝑑(𝑣) ∈ L𝑚 (or dies at
𝑑(𝑣) + 1) where

𝑑(𝑣) ≔ max{𝑝″ ∈ L𝑚 ∶ 𝑣 ∉ ker (𝑀(𝑝′, 𝑝″))}. (6)

2If𝑀 encodes an ℝ or ℝ≥0-module (as in the scenario of Example 1), the visu-
alization of dgm𝑀 may require a scale readjustment [CSEH07, p.106].
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The lifespan of 𝑣 is the interval [𝑏(𝑣), 𝑑(𝑣)]. The persistence
diagram of a given persistence module 𝑀 ∶ L𝑚 → 𝐯𝐞𝐜 is
then defined to be the function

dgm𝑀 ∶ Int(L𝑚) → ℤ≥0
sending each [𝑏, 𝑑] ∈ Int(L𝑚) to the maximal number of
linearly independent vectors in im(𝑀(𝑏, 𝑑)) whose lifes-
pans are exactly [𝑏, 𝑑].
From rk𝑀 to dgm𝑀 . It turns out that dgm𝑀 can be com-
puted in terms of rk𝑀 . Indeed, let 𝑘 ≔ rk𝑀([𝑏, 𝑑]).
This implies that there exist 𝑘 linearly independent vectors
𝑣1, 𝑣2, … , 𝑣𝑘 in im(𝑀(𝑏, 𝑑)) ⊆ 𝑀(𝑑) that are born at 𝑏 or
before 𝑏, and live until 𝑑 or later, i.e., [𝑏(𝑣𝑖), 𝑑(𝑣𝑖)] ⊇ [𝑏, 𝑑].
Hence,

𝑠(𝑏, 𝑑) ≔ rk𝑀([𝑏, 𝑑]) − rk𝑀([𝑏 − 1, 𝑑])
equals the maximal number of independent vectors in
im(𝑀(𝑏, 𝑑)) that were born at precisely 𝑏 and live until 𝑑
or later. Similarly,

𝑠(𝑏, 𝑑 + 1) ≔ rk𝑀([𝑏, 𝑑 + 1]) − rk𝑀([𝑏 − 1, 𝑑 + 1])
equals the maximal number of independent vectors in
im(𝑀(𝑏, 𝑑 + 1)) that were born at precisely 𝑏 and live until
𝑑 + 1 or later. Hence, the difference 𝑠(𝑏, 𝑑) − 𝑠(𝑏, 𝑑 + 1)
equals the maximal number of independent vectors in
im(𝑀(𝑏, 𝑑)) whose lifespans are exactly [𝑏, 𝑑] and thus we
arrive at the following formula:

dgm𝑀([𝑏, 𝑑]) = rk𝑀([𝑏, 𝑑]) − rk𝑀([𝑏 − 1, 𝑑])
− rk𝑀([𝑏, 𝑑 + 1]) + rk𝑀([𝑏 − 1, 𝑑 + 1]) ≥ 0. (7)

In practice, persistence diagrams are represented as
points (with multiplicity) in the two-dimensional grid:
only those intervals [𝑏, 𝑑] for which dgm𝑀([𝑏, 𝑑]) > 0 are
recorded; see Figure 3.

The earliest appearance of formula (7) in the TDA com-
munity that is known to the authors is [LF97]. This expres-
sion appears prominently in the work of Cohen-Steiner et
al. on the stability of persistence diagrams [CSEH07].
From dgm𝑀 to rk𝑀 . Let us consider Int(L𝑚) as a poset
ordered by containment ⊇. The poset Int(L𝑚) consists of
𝑚(𝑚 + 1)/2 elements. By the order-extension principle, we
can index the intervals in Int(L𝑚) as 𝐼1, 𝐼2, … , 𝐼𝑚(𝑚+1)/2 so
that 𝐼𝑖 ⊇ 𝐼𝑗 implies 𝑗 ≥ 𝑖. Belowwe also use the convenient
notation 𝐼𝑖 = [𝑏𝑖, 𝑑𝑖].

Since Int(L𝑚) consists of𝑚(𝑚+1)/2 elements, we iden-
tify rk𝑀 with a vector in ℝ𝑚(𝑚+1)/2 whose 𝑖-th entry is
rk𝑀(𝐼𝑖). Similarly, dgm𝑀 is identified with a vector of the
same dimension. Consider the square matrix 𝜇 of length
𝑚(𝑚 + 1)/2 whose (𝑖, 𝑗)-entry is

𝜇𝑖𝑗 ≔
⎧
⎨
⎩

1 if 𝐼𝑖 = 𝐼𝑗 or 𝐼𝑖 = [𝑏𝑗 − 1, 𝑑𝑗 + 1],
−1 if 𝐼𝑖 = [𝑏𝑗 − 1, 𝑑𝑗] or 𝐼𝑖 = [𝑏𝑗 , 𝑑𝑗 + 1],
0 otherwise.

(8)

The matrix 𝜇 is upper-triangular and all of its diagonal
entries are 1. Therefore, 𝜇 is invertible. Note that Equation
(7) amounts to

rk𝑀 ⋅ 𝜇 = dgm𝑀 , (9)

which implies that dgm𝑀 and rk𝑀 determine each other.
Equation (9) permits computing rk𝑀 in terms of dgm𝑀

as follows. First, one verifies that the inverse of 𝜇 has en-
tries

(𝜇−1)𝑖𝑗 = {1 if 𝐼𝑖 ⊇ 𝐼𝑗
0 otherwise.

Therefore, the equality rk𝑀 = dgm𝑀 ⋅ 𝜇−1 implies that

rk𝑀(𝐼𝑗) = ∑
𝑖∶ 𝐼𝑖⊇𝐼𝑗

dgm𝑀(𝐼𝑖) ∀ 1 ≤ 𝑗 ≤ 𝑚(𝑚 + 1)/2. (10)

Example 5 (An application of Equation (10)). The equal-
ity rk𝑀([5, 6]) = 2 in Figure 3 can be derived from the
fact that there are exactly two points (𝑏, 𝑑) in the upper-left
quadrant with corner point (5, 6) for which dgm𝑀([𝑏, 𝑑]) =
1.

Example 6 (Persistence diagram of an L2-module). Let𝑀
be an L2-module:

𝑀 ∶ 𝑀(1) 𝑀(2).𝑀(1,2)

Let the rank invariant of 𝑀 be given by

rk𝑀 ∶ [1, 2] ↦ 𝑘, [1, 1] ↦ 𝑑1, [2, 2] ↦ 𝑑2, (11)

for integers 0 ≤ 𝑘 ≤ 𝑑1, 𝑑2. Then, the persistence diagram
of 𝑀 is given by

dgm𝑀 ∶ [1, 2] ↦ 𝑘, [1, 1] ↦ 𝑑1 − 𝑘, [2, 2] ↦ 𝑑2 − 𝑘,
(12)

where 𝑑1 − 𝑘 and 𝑑2 − 𝑘 are the dimensions of the kernel
and cokernel of the map𝑀(1, 2). Under the identification

rk𝑀 ↔ (𝑘, 𝑑1, 𝑑2), dgm𝑀 ↔ (𝑘, 𝑑1 − 𝑘, 𝑑2 − 𝑘),

in this case, Equation (9) reads:

rk𝑀 ⋅ [
1 −1 −1
0 1 0
0 0 1

] = dgm𝑀 .

Remark 2. From Equation (11), we infer that there are
bases of the vector spaces𝑀(1) and𝑀(2) in which themap
𝑀(1, 2) is given by the (𝑑2 × 𝑑1)-block matrix

[ 𝐼𝑘 0
0 0 ] ,

where 𝐼𝑘 is the 𝑘 by 𝑘 identity matrix. In other words, there
are linear isomorphisms ℎ1 and ℎ2 such that the diagram
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below commutes:

𝑀(1) 𝑀(2)

𝕜𝑘 ⊕ 𝕜𝑑1−𝑘 𝕜𝑘 ⊕ 𝕜𝑑2−𝑘

𝑀(1,2)

≅ ℎ1 ≅ ℎ2
[

𝐼𝑘 0
0 0

]

(13)

Therefore, we conclude that rk𝑀 (and therefore dgm𝑀) de-
termines the isomorphism type of𝑀. Wewill shortly show
that this is also the case for an arbitrary L𝑚-module𝑀 with
𝑚 > 2.

Indecomposables and Barcodes
There is another interpretation of the persistence diagram
which is tied to the notion of indecomposable decompo-
sitions of quiver representations.
Indecomposable decompositions. Given any two P-
modules𝑀 and𝑁, the direct sum𝑀⊕𝑁 is the P-module de-
fined via pointwise direct sum: (𝑀⊕𝑁)(𝑝) ≔ 𝑀(𝑝)⊕𝑁(𝑝)
for 𝑝 ∈ P and (𝑀 ⊕ 𝑁)(𝑝, 𝑝′) ≔ 𝑀(𝑝, 𝑝′) ⊕ 𝑁(𝑝, 𝑝′) for
𝑝 ≤ 𝑝′ in P, i.e.,

(𝑀 ⊕ 𝑁)(𝑝, 𝑝′) ≔ (𝑀(𝑝, 𝑝′) 0
0 𝑁(𝑝, 𝑝′)) .

A nonzero P-module𝑀 is indecomposable if, whenever𝑀 =
𝑀1 ⊕ 𝑀2 for some P-modules 𝑀1 and 𝑀2, then, either
𝑀1 = 0 or 𝑀2 = 0. We will refer to such modules
as P-indecomposables. Due to the Krull–Schmidt–Remak–
Azumaya principle, any P-module can be decomposed as
a direct sum of P-indecomposables:

Theorem 1. Any P-module 𝑀 admits a decomposition

𝑀 ≅⨁
𝛼∈𝐴

𝑀𝛼, (14)

where each 𝑀𝛼 is P-indecomposable. Such a decomposition is
unique up to isomorphism and to reordering of the summands.

Theorem 1 indicates that understanding the structure
of P-modules reduces to the problem of elucidating the
structure of the P-indecomposables.

Example 7. Diagram (13) shows that the L2-module 𝑀
therein decomposes into a direct sum of 𝑘, 𝑑1 − 𝑘, 𝑑2 − 𝑘
copies of the L2-modules

𝕜 1→ 𝕜, 𝕜 0→ 0, 0 0→ 𝕜,
respectively. It is not hard to verify that all these L2-
modules are indecomposable and thus Diagram (13) is
an example of a decomposition into a direct sum of in-
decomposable modules. Notice that this decomposition
is reflected by the specification of dgm𝑀 in Equation (12).
Since 𝑀 was an arbitrary L2-module, this decomposition
further implies that the three L2-modules shown above
constitute an exhaustive list of all the L2-indecomposables.

Barcode of an L𝑚-module. A classical theorem by Pierre
Gabriel (see [DW05]) establishes a far reaching generaliza-
tion of the previous example and, in particular, implies
that the L𝑚-indecomposables are exactly those 𝑉 [𝑏,𝑑] ∶
L𝑚 → 𝐯𝐞𝐜 that look like:

0 0⟶0⋯0 0⟶𝕜 1⟶𝕜⋯𝕜 1⟶𝕜 0⟶0⋯0 0⟶0, (15)

where (from left to right) the first occurrence of 𝕜 is at
some index 𝑏 ∈ L𝑚 (for “birth”) and the last occurrence is
at an index 𝑑 ∈ L𝑚 (for “death”).3 More precisely, given
any [𝑏, 𝑑] ∈ Int(L𝑚), 𝑉 [𝑏,𝑑] is the persistence module over
L𝑚 where:

(i) 𝑉 [𝑏,𝑑](𝑖) = 𝕜 for 𝑖 ∈ [𝑏, 𝑑] and 𝑉 [𝑏,𝑑](𝑖) = 0 otherwise,
and

(ii) all internal morphisms between adjacent copies of 𝕜
are 1, and all other morphisms are (necessarily) 0.

Any such 𝑉 [𝑏,𝑑] is called an interval (persistence) module.
The considerations above imply that each𝑀𝛼 appearing in
the decomposition in Equation (14) of 𝑀, assuming P =
L𝑚, is isomorphic to 𝑉 [𝑏𝛼,𝑑𝛼] for some [𝑏𝛼, 𝑑𝛼] ∈ Int(L𝑚).
Therefore, to the L𝑚-module𝑀 we can associate the multi-
set barc(𝑀), the barcode of𝑀, consisting of all the intervals
[𝑏𝛼, 𝑑𝛼], 𝛼 ∈ 𝐴 (counted with multiplicity) appearing in
the decomposition of 𝑀 given above. Furthermore, these
considerations imply that barc(𝑀) is a complete invariant of
𝑀, i.e., barc(𝑀) determines the isomorphism type of 𝑀.
Persistence diagrams and barcodes determine each
other. It holds that dgm𝑀([𝑏, 𝑑]) equals the multiplicity
of the interval [𝑏, 𝑑] in barc(𝑀). This claim follows from
Theorem 4 in the present article, a result which is appli-
cable in the context of general posets.4 Since barc(𝑀) is a
complete invariant of 𝑀 ∶ L𝑚 → 𝐯𝐞𝐜, so is dgm𝑀 . This
establishes the previous claim that both dgm𝑀 and rk𝑀 de-
termine the isomorphism type of a given 𝑀 ∶ L𝑚 → 𝐯𝐞𝐜.
Remark 3. Persistence diagrams are known to be stable (i.e.,
Lipschitz continuous under suitable metrics) [CSEH07].

Barcode of a P-module. Given any P-module 𝑀, by The-
orem 1, one could, in principle, consider the multiset
{𝑀𝛼}𝛼∈𝐴 of indecomposable summands as a complete in-
variant of 𝑀. However, other than for a handful of ex-
ceptional posets,5 and even in simple cases such as the
one mentioned in Example 8 below, the collection of all
P-indecomposables can be tremendously complex. One
manifestation of this complexity is the possibility that

3By Equations (5) and (6), for any 𝑝 ∈ [𝑏, 𝑑] and any nonzero 𝑣 ∈ 𝑉 [𝑏,𝑑](𝑝),
we have 𝑏(𝑣) = 𝑏 and 𝑑(𝑣) = 𝑑.
4Interestingly, in the case of L𝑚, this relationship follows from work by Abeasis
et al. dating back to 1981; see [ADFK81, p. 405]. The authors thank Ezra
Miller for pointing this out.
5For example, by Gabriel’s theorem, the indecomposable modules over a zigzag
poset are exactly the interval modules (defined below Definition 2) on that
poset.
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there may exist infinitely many isomorphism types of P-
indecomposables.

Example 8. Consider the 6-point poset P inducing the
quiver

𝑄P ∶
•

• • • • •
An infinite two-parameter family of P-indecomposables
are presented in [DW05, Example 8].

For the reasons above, and due to the analogy with the
case when P = L𝑚, much of the research in the TDA com-
munity has concentrated on understanding (i.e., testing,
computing, etc) decomposability of a given P-module as
a direct sum of indecomposables with “simple” structure.
One such notion of simple indecomposables is obtained
through a generalization of the interval modules over L𝑚
described in Equation (15). This leads to the notion of
interval modules over an arbitrary poset P: these are P-
indecomposable modules having dimension exactly one
on certain nice subsets of P and zero elsewhere, and such
that all internal morphisms between nontrivial spaces are
1.

The nice subsets mentioned above are called intervals of
P and are defined as follows.

Definition 2. An interval 𝐼 of a given poset P is any subset
𝐼 ⊆ P such that:

(i) 𝐼 is nonempty.
(ii) If 𝑝, 𝑝′ ∈ 𝐼 and 𝑝″ ∈ P such that 𝑝 ≤ 𝑝″ ≤ 𝑝′, then

𝑝″ ∈ 𝐼.
(iii) 𝐼 is connected, i.e., for any 𝑝, 𝑝′ ∈ 𝐼, there is a sequence

𝑝 = 𝑝0, 𝑝1,⋯ , 𝑝ℓ = 𝑝′ of elements of 𝐼 with either
𝑝𝑖 ≤ 𝑝𝑖+1 or 𝑝𝑖+1 ≤ 𝑝𝑖 for each 𝑖 ∈ [0, ℓ − 1].

We will henceforth use the notation Int(P) to denote
the collection of all intervals of P.6 Note that when P =
L𝑚, Int(P) reduces to the definition given in the previous
section.

For 𝐼 ∈ Int(P), the interval module 𝑉 𝐼 ∶ P → 𝐯𝐞𝐜 in-
duced by 𝐼 is defined via the conditions

𝑉 𝐼(𝑝) ≔ {𝕜 if 𝑝 ∈ 𝐼
0 otherwise,

and 𝑉 𝐼(𝑝, 𝑝′) ≔ {1 if 𝑝, 𝑝′ ∈ 𝐼 and 𝑝 ≤ 𝑝′
0 otherwise.

In general, it is important to note that if 𝐼 ⊆ P did not
satisfy (ii), then 𝑉 𝐼 would not be well-defined (as it would
not satisfy Equation (1). If 𝐼 did not satisfy (iii), then 𝑉 𝐼
would fail to be indecomposable.

6We warn the reader the definition of intervals that we are using—the most
common in TDA—differs from the one that is traditional in order theory.

The following are simple but important facts: (a) No
matter what P is, every interval module 𝑉 𝐼 ∶ P → 𝐯𝐞𝐜 is
indecomposable. (b) There are posets P for which there ex-
ist P-indecomposables that are not interval modules. For
example, let P ≔ {𝑎, 𝑏, 𝑐, 𝑑} be equipped with the partial
order 𝑏 ≤ 𝑎, 𝑐 ≤ 𝑎 and 𝑑 ≤ 𝑎 and consider the P-module
𝐹 given below:

𝐹(𝑎) ≔ 𝕜2

𝐹(𝑏) ≔ 𝕜 𝐹(𝑐) ≔ 𝕜 𝐹(𝑑) ≔ 𝕜

(
1
0
)

(
0
1
)

(
1
1
)

(16)

It is clear that 𝐹 is neither an interval module nor is it
isomorphic to a direct sum of interval modules. That 𝐹 is
indecomposable is also relatively easy to verify.

A decomposition of a given P-module into a direct sum
of interval modules gives rise to its barcode.

Definition 3. A P-module 𝑀 is interval decomposable if
there exists a multiset barc(𝑀) of intervals of P (called the
barcode of 𝑀) such that

𝑀 ≅ ⨁
𝐼∈barc(𝑀)

𝑉 𝐼 .

Example 9 (Barcode of an L2-module). Recall from Ex-
ample 7 that Diagram (13) describes the indecomposable
decomposition of an arbitrary L2-module 𝑀. The figure
below shows a visualization of the barcode of 𝑀 for two
different values of 𝑘 when 𝑀 is such that 𝑑1 = 𝑑2 = 4:

Even if it may be that a given P-module is not interval
decomposable, it might be useful to understand whether
at least some of its indecomposables are isomorphic to in-
terval modules. This leads to defining the multiplicity func-
tion.

Definition 4 (Multiplicity of intervals). Given any P-
module 𝑀 and any interval 𝐼 of P, let mult(𝐼,𝑀) denote
the number of P-indecomposable direct summands of 𝑀
that are isomorphic to the interval module 𝑉 𝐼 . Further-
more, let

mlt𝑀 ∶ Int(P) → ℤ≥0
denote the multiplicity function defined by 𝐼 ↦ mult(𝐼,𝑀).
It is clear that, whenever𝑀 is interval decomposable,mlt𝑀
determines and is determined by barc(𝑀).
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From a practical point of view, one aims to extract
as much persistence-like information as possible from a
given P-module 𝑀, regardless of whether 𝑀 is interval de-
composable or not, while bypassing the inherent difficul-
ties associated to dealing with the “wild west” of indecom-
posables. This has led toward exploring the notion of gen-
eralized persistence diagrams which is enabled by Möbius in-
version and by a suitable generalization of the notion of
rank invariant.

One key idea arose in 2016 when Patel noticed that the
process being implemented in Equation (7) is the Möbius
inversion (over the poset (Int(L𝑚), ⊇)) of the rank invari-
ant [Pat18]. This crucial observation has led to very rich de-
velopments which, by injecting ideas from combinatorics,
surmount the difficulties inherent to dealing with inde-
composables.

Generalized Rank Invariant
Given a P-module 𝑀, the map

𝑝 ≤ 𝑝′ ↦ rank(𝑀(𝑝, 𝑝′)) (17)

for all 𝑝 ≤ 𝑝′ in P is a direct generalization of the rank in-
variant of L𝑚-modules given in Equation (3).7 However,
beyond the case P = L𝑚, this “standard” rank invariant
is, in general, a weaker invariant than the barcode of inter-
val decomposable P-modules; see e.g., [KM21a, Appendix
C]. Motivated by this, we consider a generalized version of
the rank invariant, which exhibits stronger discriminating
power.

We start by generalizing the notion of rank of a linear
map to the context of P-modules.
Rank of a P-module. Given a P-module 𝑀 with 𝑚 ≔ |P|,
an 𝑚-tuple 𝐯 = (𝑣𝑝) ∈ ⨁𝑝∈P𝑀(𝑝) is called a persistent
vector if all the 𝑣𝑝 are compatible in 𝑀, i.e., 𝑀(𝑝, 𝑝′)(𝑣𝑝) =
𝑣𝑝′ for all 𝑝 ≤ 𝑝′ in P. The set 𝐿𝑀 of persistent vectors is a
linear subspace of ⨁𝑝∈P𝑀(𝑝).

We call 𝐯 ∈ 𝐿𝑀 fully supported if 𝑣𝑝 ≠ 0 for all 𝑝 ∈ P.
Toward defining the rank of 𝑀, we identify 𝐯 ∈ 𝐿𝑀 with
0 ∈ 𝐿𝑀 whenever 𝐯 is not fully supported, i.e., if there
exists 𝑝 ∈ P such that 𝑣𝑝 = 0. In other words, we consider
the quotient space 𝐿𝑀/𝑊𝑀 where𝑊𝑀 is the linear span of
all non-fully-supported vectors in 𝐿𝑀 . We then define the
rank of 𝑀 as

rank(𝑀) ≔ dim(𝐿𝑀/𝑊𝑀). (18)

Example 10 (The case when P = L2). Given any L2-
module 𝑀, we have that 𝐿𝑀 and 𝑊𝑀 are isomorphic to
𝑀(1) and ker(𝑀(1, 2)), respectively. Therefore, rank(𝑀) re-
duces to the rank of the linear map 𝑀(1, 2).

Here is an alternative view on the rank of 𝑀. Let
us call any two persistent vectors 𝐯 and 𝐰 intersecting if

7This notion was introduced in [CZ09].

𝑣𝑝 = 𝑤𝑝 for some 𝑝 ∈ P. This property defines a reflexive
and symmetric, but not necessarily transitive relation on
𝐿𝑀 . Let ∼ be the transitive closure of the resulting relation.
We observe that 𝐿𝑀/𝑊𝑀 is the quotient 𝐿𝑀/ ∼. Indeed:

𝐯 ∼ 𝐰
⇔ there exists a sequence 𝐯 = 𝐯1, 𝐯2, … , 𝐯𝑛 = 𝐰 in 𝐿𝑀 such
that 𝐯𝑖 and 𝐯𝑖+1 are intersecting for every 𝑖
⇔ there exists a sequence 𝐯 = 𝐯1, 𝐯2, … , 𝐯𝑛 = 𝐰 in 𝐿𝑀 such
that 𝐯𝑖 − 𝐯𝑖+1 is non-fully-supported for every 𝑖
⇔ there exists a sequence 𝐯 = 𝐯1, 𝐯2, … , 𝐯𝑛 = 𝐰 in 𝐿𝑀 such
that 𝐯𝑖 − 𝐯𝑖+1 ∈ 𝑊𝑀 for every 𝑖
⇔ 𝐯 −𝐰 ∈ 𝑊𝑀 .

We call 𝐯 ∈ 𝐿𝑀 full if, whenever 𝐯 is written as a sum
of linearly independent vectors 𝐰1, … ,𝐰𝑛 ∈ 𝐿𝑀 , then at
least one of the 𝐰𝑗 is fully supported.

From the observation above, we have:

Theorem 2. rank(𝑀) is the maximal number of linearly inde-
pendent, full, nonintersecting persistent vectors of 𝑀.

Note that if 𝐯 is full, then 𝐯 is fully supported. However,
the converse does not hold in general.

Example 11. When P = L2, every fully supported 𝐯 ∈ 𝐿 is
full.

Example 12. Consider the diagram 𝕜 𝜋1← 𝕜2 𝜋2→ 𝕜 over P =
{𝑎 > 𝑏 < 𝑐}, where 𝜋𝑖 is the projection to the 𝑖-th coordi-
nate. The fully supported persistent vector 1 ↤ (1, 1) ↦ 1
is not full since it is the sum of non-fully-supported persis-
tent vectors

1 ↤ (1, 0) ↦ 0 and 0 ↤ (0, 1) ↦ 1.

The space 𝐿𝑀/𝑊𝑀 from Equation (18) is related to
fundamental notions in category theory [ML98]. The
space 𝐿𝑀 of persistent vectors coincides with the limit
of 𝑀, denoted by lim←−−𝑀. The quotient space 𝐶𝑀 ∶=
(⨁𝑝∈P𝑀(𝑝)) / ≈ coincides with the colimit lim−−→𝑀 of 𝑀,
and is obtained by identifying 𝑣𝑝 ∈ 𝑀(𝑝) with 𝑣𝑝′ ∈ 𝑀(𝑝′)
through the transitive closure ≈ of the relation 𝑅 such that
(𝑣𝑝, 𝑣𝑝′) ∈ 𝑅 whenever 𝑀(𝑝, 𝑝′)(𝑣𝑝) = 𝑣𝑝′ for 𝑝 ≤ 𝑝′ ∈ P.

There is a canonical map 𝜓𝑀 from the limit 𝐿𝑀 to the
colimit 𝐶𝑀 . Indeed, note that, since P is connected, for
any 𝐯 = (𝑣𝑝) ∈ 𝐿𝑀 and for any 𝑝, 𝑝′ ∈ P, the two vectors
𝑣𝑝 ∈ 𝑀(𝑝) and 𝑣𝑝′ ∈ 𝑀(𝑝′) are identified in𝐶𝑀 . Therefore,
we obtain the well-defined canonical linear map8 𝜓𝑀 ∶
𝐿𝑀 → 𝐶𝑀 given by 𝐯 ↦ [𝑣𝑝] for an arbitrary 𝑝 ∈ P. Note
that the vector space 𝐿𝑀/𝑊𝑀 is isomorphic to the image
of 𝜓𝑀 .

8The idea of studying the map from the limit to the colimit of a given diagram of
vector spaces stems from work by Amit Patel and Robert MacPherson circa 2012.
We thank Prof. Harm Derksen for pointing out to us recently that this type of
map was used in the study of quiver representations in [Kin08].
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Figure 4. The notions of limit and colimit of a diagram of
vector spaces are used in a fundamental way to generalize the
notion of rank invariant and persistence diagram.

Proposition 1 ([KM21a, Section 3]). The rank of the P-
module 𝑀 ∶ P → 𝐯𝐞𝐜 agrees with the rank of the canonical
limit-to-colimit map 𝜓𝑀 ∶ lim←−−𝑀 → lim−−→𝑀. See Figure 4.

Remark 4 (Additivity of the rank). If 𝑀 ≅ ⨁𝛼∈𝐴𝑀𝛼 for
some indexing set 𝐴, then

rank(𝑀) = ∑
𝛼∈𝐴

rank(𝑀𝛼).

To prove this, we proceed as follows. Since P is finite and
dim(𝑀(𝑝)) is finite for each 𝑝 ∈ P, the direct sum com-
mutes with limits as well as with colimits:

lim←−−(⨁𝛼∈𝐴
𝑀𝛼) ≅⨁

𝛼∈𝐴
(lim←−−𝑀𝛼) (19)

and

lim−−→(⨁
𝛼∈𝐴

𝑀𝛼) ≅⨁
𝛼∈𝐴

(lim−−→𝑀𝛼) , (20)

which leads to the desired equality.9 The isomorphisms
in Equations (19) and (20) can also be easily verified by
invoking the constructions of limits and colimits given
above.

9The claimed isomorphism in Equation (19) follows from the following argu-
ment. A priori we have lim←−−(∏𝛼∈𝐴𝑀𝛼) ≅ ∏𝛼∈𝐴 (lim←−−𝑀𝛼), whereΠ denotes
a direct product [ML98, Chapter III]. But, one can check that Π agrees with
⨁ on both sides since P is finite and dim(𝑀(𝑝)) is finite for each 𝑝 ∈ P.

Generalized rank invariant. We are now ready to define
the generalized rank invariant.

Definition 5. The generalized rank invariant of a P-module
𝑀 is the function

rk𝑀 ∶ Int(P) → ℤ≥0
𝐼 ↦ rank(𝑀|𝐼),

where 𝑀|𝐼 is the restriction of 𝑀 to the interval 𝐼.
That, as defined above, rk𝑀 indeed generalizes Equa-

tion (3)) is a consequence of the fact that when P = L𝑚, for
any interval 𝐼 = [𝑏, 𝑑] ∈ Int(L𝑚), we have lim←−−𝑀|𝐼 ≅ 𝑀(𝑏),
lim−−→𝑀|𝐼 ≅ 𝑀(𝑑), and 𝜓𝑀|𝐼 ≅ 𝑀(𝑏, 𝑑).

Remark 5 (Monotonicity of rk𝑀). Let 𝐼, 𝐽 ∈ Int(P) with
𝐽 ⊇ 𝐼. Then

rk𝑀(𝐽) ≤ rk𝑀(𝐼),
which is analogous to Equation (4). This is so because the
canonical limit-to-colimit map lim←−−𝑀|𝐼 → lim−−→𝑀|𝐼 for the
interval 𝐼 is a factor of the canonical limit-to-colimit map
lim←−−𝑀|𝐽 → lim−−→𝑀|𝐽 for the larger interval 𝐽.

Remark 6. Let 𝐽 ∈ Int(P) and let 𝑉 𝐽 ∶ P → 𝐯𝐞𝐜 be the in-
terval module induced by 𝐽. By Theorem 2, for 𝐼 ∈ Int(P),
rk𝑉𝐽 (𝐼) = rank(𝑉 𝐽 |𝐼) equals 1 if 𝐽 ⊇ 𝐼, and 0 if 𝐽 ⊋ 𝐼.

When 𝑀 ∶ P → 𝐯𝐞𝐜 is interval decomposable, rk𝑀(𝐼)
equals the multiplicity of those intervals 𝐽 in barc(𝑀) that
contain 𝐼.
Proposition 2. Let 𝑀 ∶ P → 𝐯𝐞𝐜 be interval decomposable.
Then, for any 𝐼 ∈ Int(P),

rk𝑀(𝐼) = ∑
𝐽⊇𝐼

𝐽∈Int(P)

mlt𝑀(𝐽).

Proof. Let 𝐴 be a finite indexing set and let 𝐼𝛼 ∈ Int(P), 𝛼 ∈
𝐴, be intervals such that 𝑀 ≅ ⊕𝛼∈𝐴𝑉 𝐼𝛼 . Then, by Remark
4,

rk𝑀(𝐼) = rank(𝑀|𝐼) = ∑
𝛼∈𝐴

rank(𝑉 𝐼𝛼 |𝐼),

which by Remark 6 above equals the claimed quantity. □

Now that the rank invariant has been generalized from
the case of L𝑚-modules to that of P-modules, the mech-
anism of Möbius inversion will provide the sought-after
generalization of the notion of persistence diagram for
the case of L𝑚-modules (cf. Equation (7)) to that of P-
modules.

Möbius Inversion
The summation of a number-theoretic function 𝑓(𝑛) over
the divisors of 𝑛 and its inversion play an important role in
elementary number theory (the meaning of inversion will
be made clear in Example 13). The classical Möbius in-
version formula, introduced by August Ferdinand Möbius
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in 1832, is a useful tool for performing such inversions.
In the 1960s, Rota [Rot64] noticed the vast combinato-
rial implications of the Möbius inversion formula and es-
tablished connections to coloring problems, flows in net-
works, and to the inclusion-exclusion principle.

Two basic examples of Möbius inversion follow.

Example 13 (Sum over L𝑚). Fix an integer 𝑚 > 0. Con-
sider any two functions 𝑓, 𝑔 ∶ L𝑚 → ℝ such that 𝑔(𝑞) =
∑𝑞

𝑞′=1 𝑓(𝑞′) for all 𝑞 ∈ L𝑚. One can easily invert the sum,
i.e., solve for 𝑓, as

𝑓(1)=𝑔(1) and 𝑓(𝑞)=𝑔(𝑞) − 𝑔(𝑞 − 1) for 2≤𝑞∈L𝑚. (21)

Given a set 𝐷, let 2𝐷 be the set of subsets of 𝐷 ordered
by containment ⊇.

Example 14 (Principle of inclusion-exclusion). Let 𝑆 be a
finite nonempty set of objects. Let 𝐷 = {𝑝1, … , 𝑝𝑛} be a set
of properties such that, for every 𝑖 = 1… , 𝑛, each object in
𝑆 either satisfies the property 𝑝𝑖 or it does not. For 𝐸 ∈ 2𝐷,
let 𝑔(𝐸) the number of objects in 𝑆 satisfying the properties
in 𝐸 (and possibly more), and let 𝑓(𝐸) be the number of
objects in 𝑆 satisfying the properties in 𝐸 and no other prop-
erties. Then, the function 𝑔 ∶ 2𝐷 → ℤ≥0 can be expressed
in terms of the function 𝑓 ∶ 2𝐷 → ℤ≥0 as follows:

𝑔(𝐸) = ∑
𝐹⊇𝐸

𝑓(𝐹), ∀ 𝐸 ∈ 2𝐷. (22)

We will shortly see how one can express 𝑓 in terms of 𝑔.

Whereas inverting the summation in Example 13 above
can be done directly, inverting the summation over the
poset 2𝐷 in Example 14 motivates introducing more so-
phisticated machinery. In general, the Möbius function of a
posetQ plays a fundamental role in inverting a summation
over Q. Let Q be a finite poset.

The Möbius function of Q is the unique function 𝜇Q ∶
Q × Q → ℤ defined by 𝜇Q(𝑞, 𝑞″) = 0 when 𝑞 ≰ 𝑞″ and,
when 𝑞 ≤ 𝑞″, by

∑
𝑞′∶ 𝑞≤𝑞′≤𝑞″

𝜇(𝑞, 𝑞′) = 𝛿(𝑞, 𝑞″),

where 𝛿(𝑞, 𝑞″) = 0 if 𝑞 ≠ 𝑞″ and 𝛿(𝑞, 𝑞″) = 1 if 𝑞 = 𝑞″.
The function 𝜇Q can be computed recursively through the
conditions:

𝜇Q(𝑞, 𝑞″) =
⎧
⎨
⎩

1, 𝑞 = 𝑞″,
−∑𝑞≤𝑞′<𝑞″ 𝜇Q(𝑞, 𝑞′), 𝑞 < 𝑞″,
0, otherwise.

(23)

Theorem 3 (Möbius inversion formula, [Rot64]). Let Q be
a finite poset. Let 𝕜 be a field. Then, for any pair of functions

𝑓, 𝑔 ∶ Q → 𝕜,

𝑔(𝑞) = ∑
𝑞′≤𝑞

𝑓(𝑞′) for all 𝑞 ∈ Q

⟺ 𝑓(𝑞) = ∑
𝑞′≤𝑞

𝑔(𝑞′) ⋅ 𝜇Q(𝑞′, 𝑞) for all 𝑞 ∈ Q. (24)

This theorem also holds under more general assump-
tions guaranteeing that for every 𝑞 the number of terms in
the sum ∑𝑞′≤𝑞 𝑓(𝑞′) is finite, cf. [Rot64].

Note that, in the statement above, the function 𝑔 “looks
like” a certain cumulative version of 𝑓 so that one would
expect 𝑓, customarily called the Möbius inverse of 𝑔, to be
some sort of derivative of 𝑔. Also the theorem, in particular,
implies that, given 𝑔 there exists a unique such inverse.

Example 15. Recall the functions 𝑓 and 𝑔 given in Example
13. By solving the recurrence in Equation (23) when Q =
L𝑚, we find

𝜇L𝑚(𝑞, 𝑞′) =
⎧
⎨
⎩

1, 𝑞 = 𝑞′,
−1, 𝑞 = 𝑞′ − 1,
0, otherwise.

Hence, 𝑓 given in Equation (21) is the Möbius inverse of
𝑔. This 𝑓 captures the rate of change of 𝑔 at each point in
L𝑚.

It is interesting to point out that this intuition about
Möbius inversion being related to the notion of derivative
is consistent with how Equation (7) arose in the work of
Landi and Frosini [LF97] as a way to obtain a compact
representation of their size functionswhich were precursors
to the rank invariants. Indeed, due to practical considera-
tions, rank invariants are expected to be piecewise constant
and it is precisely the points where they change that signal
interesting features. This eventually leads to the notion of
persistence diagram, as depicted in Figure 1 (cf. Remark
8).

Example 16. By solving the recurrence in Equation (23)
when Q = (2𝐷, ⊇), one finds that the Möbius function of
this poset is

𝜇2𝐷 (𝐸, 𝐹) = (−1)|𝐸|−|𝐹|

for 𝐸 ⊇ 𝐹. This, via Theorem 3, permits expressing the
function 𝑓 from Example 14 in terms of 𝑔.

Generalized Persistence Diagrams
By emulating the right-hand side of Equation (7), Möbius
inversion over the poset Q = Int(P) permits defining a no-
tion of persistence diagram that is applicable to P-modules
where P is any finite connected poset. Theorem 3 enables the
following definition.

Definition 6. Let P be a finite connected poset. The gen-
eralized persistence diagram of 𝑀 ∶ P → 𝐯𝐞𝐜 is the unique
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function
dgm𝑀 ∶ Int(P) → ℤ

satisfying

rk𝑀(𝐼) = ∑
𝐽⊇𝐼

𝐽∈Int(P)

dgm𝑀(𝐽) ∀𝐼 ∈ Int(P). (25)

In other words, dgm𝑀 is the Möbius inverse of rk𝑀 over
the poset Q = (Int(P), ⊇), i.e., for 𝐼 ∈ Int(P),10

dgm𝑀(𝐼) = ∑
𝐽⊇𝐼

𝐽∈Int(P)

𝜇Int(P)(𝐽, 𝐼) rk𝑀(𝐽). (26)

Example 17 (The case P = L𝑚). By solving the re-
currence given in Equation (23) for Q = Int(L𝑚), it
can be checked that, for every [𝑏, 𝑑], [𝑏′, 𝑑′] ∈ Int(L𝑚),
𝜇Int(L𝑚)([𝑏, 𝑑], [𝑏′, 𝑑′]) equals 𝜇𝑖𝑗, as given in Equation (8),
where 𝑖 and 𝑗 are such that [𝑏, 𝑑] = 𝐼𝑖 and [𝑏′, 𝑑′] = 𝐼𝑗.
Properties of the generalized persistence diagram. In
what follows, we examine several properties of the gener-
alized persistence diagram.

Remark 7 (dgm𝑀 is well-defined for arbitrary𝑀∶P→𝐯𝐞𝐜).
As opposed to the notion of barcode barc(𝑀), which re-
quires the P-module 𝑀 to be interval decomposable (cf.
Definition 3), generalized persistence diagrams can be de-
fined for any 𝑀. Furthermore, Theorem 4 below implies
that barc(𝑀) and dgm𝑀 determine each other whenever
𝑀 is interval decomposable (cf. Definition 4). Hence, as
barc(∗) is a complete invariant of interval decomposable
modules, dgm∗ is also a complete invariant of such mod-
ules.

Theorem 4. Let 𝑀 ∶ P → 𝐯𝐞𝐜 be interval decomposable.
Then,

dgm𝑀 = mlt𝑀 .
Proof. By Proposition 2, we have that

rk𝑀(𝐼) = ∑
𝐽⊇𝐼

𝐽∈Int(P)

mlt𝑀(𝐼).

The fact that dgm𝑀 is the unique function satisfying Equa-
tion (25) implies the claim. □

At the level of generality in which we have situated
ourselves, it is no longer true that dgm𝑀(𝐼) ≥ 0 for all
𝐼 ∈ Int(P), as it is the case when P = L𝑚 (cf. Equation
(7)). This leads to having to contend with signed persis-
tence diagrams as we will see in the following examples.
In particular, from Theorem 4 above we have:

10In [KM21a], the generalized rank invariant and the generalized persistence
diagram of 𝑀 are defined on the collection of all connected subsets of P, which
is strictly larger than Int(P). In [KM21b], the resulting version of rank invari-
ant and persistence diagram were shown to be more discriminating than the one
described in this article.

Corollary 5. If there exists 𝐼 ∈ Int(P) such that dgm𝑀(𝐼) is
negative, then 𝑀 is not interval decomposable.

It is not difficult to find that the converse of this state-
ment does not hold.

Example 18 (The generalized persistence diagram can be
negative). Consider 𝑀 ∶ P → 𝐯𝐞𝐜 given in Diagram
(16). Note that 𝐼 ≔ {𝑎} is an interval in P. We show that
dgm𝑀(𝐼) = −1. Consider the following collections of in-
tervals of P:

𝐼1 ≔ {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}},
𝐼2 ≔ {{𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}}, and

𝐼3 ≔ {{𝑎, 𝑏, 𝑐, 𝑑}} = {P}.
By solving for the Möbius function of Int(P) (via Equa-

tion (23)), from Equation (26), we have:

dgm𝑀(𝐼) = rk𝑀(𝐼) +
3
∑
𝑡=1

(−1)𝑡 ∑
𝐽∈𝐼𝑡

rk𝑀(𝐽).

One can check that, for 𝐼 = {𝑎}:
• rk𝑀(𝐼) = 2, which is the dimension of 𝐹(𝑎) = 𝕜2.
• rk𝑀(𝐽) = 1 for every 𝐽 ∈ 𝐼1.
• rk𝑀(𝐽) = 0 for every 𝐽 ∈ 𝐼2.
• rk𝑀(P) = 0, which follows from the monotonicity of
rk𝑀 (cf. Remark 5) and the previous item.

Therefore, the formula above gives

dgm𝑀(𝐼) = 2 − (1 + 1 + 1) + (0 + 0 + 0) − 0 = −1.
By following a similar procedure for every 𝐽 ∈ Int(P), we
eventually obtain:

dgm𝑀(𝐽) =
⎧
⎨
⎩

1, 𝐽 ∈ 𝐼1
−1, 𝐽 = 𝐼
0, otherwise,

which can be depicted as follows:

It is noteworthy that𝑀 is not interval decomposable by
Corollary 5.

Example 19. Consider the (L2 × L3)-module 𝑀 given in
Example 4 via a procedure similar to the one used in the
previous example. Its generalized persistence diagram is
depicted as:11

11Details can be found in [KM21b, page 16].
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For any nonempty set Q, the support of a function 𝑓 ∶
Q → 𝕜 is defined to be the set consisting of those points
𝑞 ∈ Q with 𝑓(𝑞) ≠ 0.

For the persistence module 𝑀 from Example 19, the
support of dgm𝑀 is much smaller than the support of rk𝑀 .
Indeed the support of the former consists exactly of the
four intervals depicted above, whereas invoking Equation
(25), one can verify that the support of rk𝑀 consists exactly
of 15 intervals of L2 × L3. We have the following general
remark.

Remark 8 (dgm𝑀 is more parsimonious than rk𝑀). For ar-
bitrary 𝑀 ∶ P → 𝐯𝐞𝐜, the support of dgm𝑀 is a subset of
the support of rk𝑀 . This follows from the fact that, for any
𝐼 ∈ Int(P), if rk𝑀(𝐼) = 0, then dgm𝑀(𝐼) = 0. Indeed, let
𝐼 ∈ Int(P) be such that rk𝑀(𝐼) = 0. By the monotonic-
ity of rk𝑀 , we have that rk𝑀(𝐽) = 0 for all 𝐽 ⊇ 𝐼. Hence,
the right-hand side of Equation (26) equals zero, and thus
dgm𝑀(𝐼) = 0.

Remark 9 (Flexibility in the choice of a target category). Pa-
tel’s notion of persistence diagram [Pat18] encompasses
persistence modules 𝑀 ∶ ℤ → 𝒞 valued in categories 𝒞
more general than 𝐯𝐞𝐜. This feature is also available in
the context of P-modules for arbitrary P that satisfy mild
assumptions [KM21a]. This flexibility, for example, per-
mits encoding clustering features of time-varying networks
into a specialized version of the generalized persistence di-
agram [KM22].

More on generalized persistence diagrams. To conclude
we provide pointers to other aspects and recent develop-
ments regarding generalized persistence diagrams.

In [BBE22], Betthauser et al. study an instance of Patel’s
generalized persistence diagrams exhibiting signed multi-
plicities which they connect to persistence landscapes. Re-
markably, the authors also obtain stability via a version of
the Wasserstein distance for signed measures. In [MP22]
McCleary and Patel describe a pipeline for a certain gener-
alized notion of persistence diagrams over metric lattices.

The stability of the generalized rank invariant from Def-
inition 5 is addressed in [KM21a]. The stability of general-
ized persistence diagrams (as Möbius inverses of the gen-
eralized rank invariants) remains mostly open due to chal-
lenges coming from the fact that generalized persistence
diagrams can attain negative vaules (cf. Example 18).

In [KM21b], Kim and Moore study the relationship of
the generalized persistence diagram with the bigraded Betti
numberswhen P = ℤ2. In [BBH22,AENY23] the authors ex-
plore a connection between relative homological algebra
and the generalized rank invariant.

There is a tension between the informativeness
(strength) of given invariant of persistence modules and
its computability. The generalized rank invariant can be

difficult to compute, even when P ⊆ ℤ2,12 whereas in the
case of this poset the standard rank invariant (cf. Equation
(17)) is readily computable through software implemen-
tations such as RIVET (developed by Lesnick and Wright).
An exciting current thread is finding the right balance be-
tween these two requirements so that efficient algorithms
can be developed for the computation of such invariants.
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