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Abstract

Cryo-Electron Microscopy (cryo-EM) has emerged as a key
technology to determine the structure of proteins, particularly
large protein complexes and assemblies in recent years. A key
challenge in cryo-EM data analysis is to automatically recon-
struct accurate protein structures from cryo-EM density maps.
In this review, we briefly overview various deep learning
methods for building protein structures from cryo-EM density
maps, analyze their impact, and discuss the challenges of
preparing high-quality data sets for training deep learning
models. Looking into the future, more advanced deep learning
models of effectively integrating cryo-EM data with other
sources of complementary data such as protein sequences
and AlphaFold-predicted structures need to be developed to
further advance the field.
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Introduction
Cryo-EM is revolutionizing structural biology due to its
unique capability of determining the structures of large
protein complexes and assemblies. The atomic-
resolution structure determination for proteins enabled
by cryogenic electron microscopy (cryo-EM) [3], allows

us to understand the complex bio-logical processes car-
ried out by proteins as well as to identify potential
therapeutic protein targets for drug discovery. However,
reconstructing de novo protein structures from high-
resolution (w 3e4�A) cryo-EM density maps, which ac-
counts for a large portion of cryo-EM density maps
deposited currently in the EMDB [2], is time-consuming
and challenging when homologous template structures
for target proteins are not available. For instance, as
shown in Figure 1, in the current year 2022, only about
12,500 out of 22,300 density maps of high-resolutions
deposited to EMDB have a complete atomic structure
available in Protein Data Bank (PDB) [40].

Accurately reconstructing protein structures from cryo-
EM maps is a challenging process because the data is
often noisy and incomplete and target protein struc-
tures can be large and complex. Traditional methods
based on energy optimization such as EM-Fold [23],
Gorgon [24], Rosetta [25], Pathwalking [26], MAIN-
MAST [27,28], VESPER [51], and Phenix [29] have
made valuable progress in reconstructing protein
structures from cryo-EM density maps. These methods
rely on extensive physics-based or statistical potential-
based optimization algorithms that require high
computational resources. These methods often need
manual intervention and trials to extract features from
the cryo-EM density maps to obtain accurate recon-
struction of protein structure.

A different strategy to automatically determine protein
structures from cryo-EM density maps is to use the
data-driven machine learning approach [44], a kind of
artificial intelligence (AI) technology, to directly learn a
mapping from cryo-EM density maps to protein struc-
tures from the large amount of known cryo-EM data and
their corresponding protein structures (i.e., labels).
Early AI methods in the field are based on shallow ma-
chine learning techniques such as k-nearest neighbor,
support-vector machines, or k-means clustering tech-
niques. These methods such as RENNSH [30],
SSELearner [31], and Pathwalking [26] are able to
identify only secondary structures or simplified back-
bone structures and often are unable to achieve the
optimal solution.
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To overcome the challenges of the traditional optimi-
zation methods and early machine learning methods,
deep learning methods [45] have been developed to
automatically reconstruct three-dimensional (3D) pro-
tein structures from cryo-EM density maps with sig-
nificant success in recent years (see Figure 2 for a
summary of a general cryo-EM protein structure deter-
mination pipeline powered by deep learning). In this
article, we review the recent development of deep
learning technology in the field, analyze their impacts,
investigate the challenging issues in preparing data to
train deep learning models, and discuss some new
trends to further advance the field.

Deep learning reconstruction of protein
structures from cryo- EM density maps
Deep learning, also called deep neural network, is
currently the most powerful machine learning method
of predicting the properties of an object from the input
data describing the object. It has achieved great success
in many fields including a recent major breakthrough in
predicting protein structure from sequence by Alpha-
Fold [1]. Compared to other machine learning methods,
deep learning has a unique capability of extracting
informative features for pattern recognition from raw
data automatically, making it suitable for reconstructing
protein structures from raw density maps in which only a
large amount of numbers rather than informative fea-
tures are available.

It is worth noting that deep learning has been applied to
almost all the areas of cryo-EM data analysis
[35,32,19e22,38] from sample preparation, particle
picking, density map denoising, and to the final step of
3-D structure determination. Due to the space limit,

this review is focused on the last step of cryo-EM data
analysis - reconstructing protein structures from density
maps. The deep learning architectures designed for this
task and how to prepare data to train them are discussed
in the two subsections below.

Deep learning architectures for reconstructing

protein structures from cryo-EM density maps

Deep learning methods for inferring protein structures
from cryo-EM density maps can be classified into
different categories based on the neural network archi-
tectures, for example, convolutional neural network
(CNN) [33], U-Net [34,43], graph convolutional
network (GCN) [41], and long- and short-term memory
network (LSTM) [42] they use and the output (e.g., 3D
structure and secondary structure) they generate from
density map input. Early deep learning methods aimed
to identity secondary structures from low- and medium-
resolution density maps [11]. As more and more high-
resolution density maps became available [3], recent
deep learning methods targeted at directly reconstruct
3D backbone structures (i.e., locations of carbon and
nitrogen atoms on the protein backbone) and even full-
atom 3D structures (i.e., locations of all/most heavy
atoms and amino acid identity/type) from density maps
[10,7,14e16]. An example of deep learning reconstruc-
tion of protein structure from cryo-EM density map is
showed in Figure 3.

One of the most widely used deep learning architectures
of obtaining protein structural information from density
maps is convolution neural network (CNN). CNNs use a
mathematical operation known as convolution to extract
features from spatially organized data such as a 2D-image
or 3D density map to predict the properties of the data

Figure 1

The growth of cryo-EM density maps and cryo-EM-derived protein structures and the distribution of the resolution of the density maps. The statistics was
obtained from EMDataResource [2], an unified data resource for 3-Dimensional Electron Microscopy (3DEM) on 2022-09-14.
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Figure 2

A summary of a cryo-EM density map generation and protein structure reconstruction pipeline powered by deep learning. The density map (EMD-22898)
illustrated in the figure is for SARS-CoV-2 ORF3a [39]. PDB ID: 7KJR.
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(e.g., classifying voxels in a density map into amino acid
types). Several CNN methods (mostly 3D-CNN
architecture) including Generator [7], Emap2sec [8],
AAnchor [9], CNN Based [11], Cascaded-CNN [10],
and CR-I-TASSER (mostly 3D CNN) [15] have been
developed to determine secondary structures [8,11],
backbone-/full-atom 3D structures [15,7,9] or both from
cryo-EM density maps [10]. Cascaded- CNN is the first
deep learning de novo method of directly reconstructing
3D structures of proteins from cryo-EM density maps,
even though it focuses on building backbone structures.
CR-I-TASSER combines the 3D-CNN prediction from
cryo-EM maps and an advanced protein structure pre-
diction method - I-TASSER [46] to build full-atom
protein structures.

Another widely used convolutional neural network ar-
chitecture in the field is U-Net [34], originally designed
for biomedical image classification and segmentation
tasks. U-Net consists of a series of convolution-based
down-sampling layers to condense the input images
into smaller dimensions and a series of convolution-
based up-sampling counterpart layers to reconstruct
the data of the same dimension as in the down-sampling
process to classify/segment pixels in the input images.
Compared to the standard CNN architectures, U-Nets
can be more effective in extracting multi-level abstract
representations of the data through the down-sampling
and up-sampling processes. The 2D U-Net architec-
ture has been generalized to 3D U-Net architectures in
Haruspex [12] and EMNUSS [17] to detect secondary
structures from cryo-EM density maps (e.g., Figures 4
and 5), and in DeepTracer [13] and EMBuild [16] to
reconstruct 3D protein structures from cryo-EM density

maps. DeepTracer has been successfully applied to
reconstruct the structures of some SARS-CoV proteins
from cryo-EM density maps (e.g., Figure 3).

In addition to CNN and U-Net, other deep learning
architectures such as graph convolutional networks
(GCN) and long- and short-term memory network
(LSTM) have also been used with CNN to recon-
struct protein structures from cryo-EM density maps
[7]. A summary of different deep learning-based
methods, their function (e.g., input and output) and
availability is presented in Table 1.

Inspired by the recent breakthrough in developing deep
learning methods of predicting protein structures from
sequences such as AlphaFold [1] and RoseTTAFold [5],
a new trend is to integrate deep learning methods of
reconstruct protein structures from cryo-EM density
maps with the advanced computational (e.g., deep
learning) methods of predicting protein structures from
sequences to obtain more accurate structural models.
For instance, DeepTracer ID [14] first uses DeepTracer
to build an initial structure from cryo-EM density maps
and then search the structure against a database of
AlphaFold-predicted structures to identify similar
structural hits to enhance the reconstructed structure.
EMBuild [16] combines the structures reconstructed
from cryo-EM maps, AlphaFold-predicted structural
models and other protein structural refinement
methods to construct accurate structures for protein
complexes. ModelAngelo [18] refines the geometry of
protein chains by combining information extracted from
cryo-EM data, prior knowledge of protein geometries,
and amino acid sequence data. DeepProLigand [4]

Figure 3

An example of reconstructing a structure from the cryo-EM density map of SARS-CoV spike gycoprotein by deep learning. (a) Density map of SARS-CoV
spike glycoprotein [48] (EMD-6732) in resolution of 3.8�A at recommended contour level of 0.06 (11.0 s). (b) The structure reconstructed from EMD-6732
by a deep learning method - DeepTracer. The RMSD is 1.023�A with respect to the ground truth structure (PDB ID: 5XLR). (c) The overlay of the density
map and reconstructed structure at 0.5 transparency level by UCSF ChimeraX [49].
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Figure 5

An example of secondary structure annotation in cryo-EM density map of SARS- CoV spike gycoprotein [48] (EMD-6732) by deep learning. PDB ID:
5XLR. (a) Haruspex [12] predicted helices in transparent gray overlapped with deposited PDB structure helices. (b) EMNUSS [17] predicted helices in
transparent gray overlapped with deposited PDB structure helices.

Figure 4

An example of secondary structure annotation in cryo-EM density map of SARS- CoV spike gycoprotein [48] (EMD-6732) by deep learning. PDB ID:
5XLR. (a) Haruspex [12] predicted strands in transparent gray overlapped with deposited PDB structure strands. (b) EMNUSS [17] predicted strands in
transparent gray overlapped with deposited PDB structure strands.
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integrates the protein structural models reconstructed
from cryo-EM density maps by DeepTracer with the
known template structures containing ligands to model
protein-ligand interaction, which was ranked first in the
ligand prediction in 2021 EMDataResource Ligand
Model Challenge.

Data preparation for training deep learning
methods to reconstructing protein
structures from cryo-EM density maps
Cryo-EM density map data collection

Collecting a sufficient amount of high-quality data to
train and test deep learning models is critical for any
deep learning task. The common way to acquire the
experimental cryo-EM density maps is through the Electron
Microscopy Data Bank [2]. An alternative approach
employed by some methods such as Cascaded-CNN
[10] and SSELearner [31] is to simulate the density
map from the PDB protein structure. Cascaded-CNN
applies pdb2mrc from EMAN2 package [50], and
VESPER uses pdb2vol from Situs package [52] to
generate the simulated maps. However, simulated maps

lack complex noise, missing density values, and experi-
mental artifacts which can arise from particle alignment
errors, interaction of electron beam with the atoms, or
movement of atoms during image capture. Therefore,
the deep learning models trained on simulated maps
may not work as expected on very noisy experimental
data. To address the problem, CR-I-TASSER, EMNUSS
and Emap2sec employs a hybrid training approach that
uses both simulated maps and experimental maps in the
training and validation process.

Training data preprocessing

Prior to using the cryo-EM density map to train deep
learning models, it is generally necessary to normalize
and standardize the data to make them suitable for deep
learning as shown by Cascaded-CNN and DeepTracer,
which perform data grid resampling, density value
normalization, and grid division. These preprocessing
steps ensure the uniformity among density maps and
help deep learning models to extract features and
recognize patterns more easily. During the grid division,
the 3D cryo-EM is split into the cubes of a specific size

Table 1

Summary of deep learning based methods for protein structure reconstruction from cryo-EM density maps.

Methods Architecture Function Open source

Structure Generator [7] 3-D CNN, GCN,
Bidirectional LSTM

First use 3-D CNN to identify amino acids and their
rotameric identities in an EM map and then GCN and
LSTM to build protein structures

✓

Emap2sec [8] 3-D CNN Take voxel cubes as input to identify secondary

structures of protein

✓

AAnchor [9] 3-D CNN Take in voxel cubes to identify amino acid types and

locations

✓

A CNN Based Method [11] 3-D CNN Take in voxel cubes to detect secondary structures of

protein from background

×

CascadedCNN [10] Cascaded 3-D CNN Take in voxel cubes to identify Ca atoms of protein

backbone and secondary structures to generate

3D protein structures

✓

Haruspex [12] 3-D U-Net Take in voxel cubes to predict the probabilities of 4
different classes; a-helix, b-sheet, nucleotide, or
unassigned to assign secondary structures

✓

DeepTracer [13] 3-D U-Net Take in voxel cubes to identify the location of

backbone atoms, secondary structures and amino

acid types simulta- neously to build 3D structure

×

DeepTracer ID [14] DeepTracer (3-D U-Net)
and pre-calculated
AlphaFold2 protein library

Use DeepTracer to generate an initial 3D protein
structure to search AlphaFold2DB to identify similar

structural hits for refinement

×

CR-I-TASSER [15] 3-D CNN, I-TASSER Predict Ca using 3-D CNN for selecting structural
templates for I-TASSER to generate 3D protein

structure

✓

EMBuild [16] 3-D U-Net++, AlphaFold Integrate AlphaFold structure prediction, FFT-based
global fitting, domain-based semi-flexible refinement,
and graph-based iterative assembling with main-chain
probability maps predicted by U-Net++ to build 3D

protein structure

✓

EMNUSS [17] 3-D U-Net++ Take in voxel cubes to identify secondary structures

of protein

✓

ModelAngelo [18] Graph Neural Network Refines geometry of protein chains and classifies

amino acid for each nodes

×
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(e.g., 64 � 64 � 64�A3 by Cascaded-CNN and Deep-
Tracer, 50 � 50 � 50�A3 by CR-I-TASSER, 40 � 40 � 40
�A3 by Haruspex, and 11 � 11 � 11�A3 by Emap2sec and
AAnchor). Each of these cubes is then processed by the
deep learning method to classify the voxels into the
targeted classes such as amino acid types (identities)
and secondary structures.

Future directions
Deep learning has made a significant impact on protein
structure reconstruction from cryo-EM density maps.
However, the field is still in the early stage of develop-
ment. The latest deep learning technology such as graph
neural networks [53] and attention mechanisms [47]
have not been extensively used in the field. While CNNs
and U-Nets based on convolution are currently the most
used methods for structure reconstruction, they have
some short-coming for 3D structuralmodeling. CNNs are
translation-equivariant, but not fully rotation invariant
that is desirable for 3D structure analysis. Moreover, the
convolution mechanism propagates message in the
constrained local receptive field, which is not as effective
as the attention mechanism [47] that can leverage all the
input information by automatically weighting the input
features according to their relevance as demonstrated by
the remarkable success of AlphaFold2 in protein struc-
ture prediction.More sophisticated deep learningmodels
like attention-based Transformer models [36], 3D-
equivariant graph neural networks [37], and AlphaFold2-
like deep learning models need to be developed to better
use cryo-EM data to improve reconstruction accuracy.

Another important direction is to use deep learning to
integrate cryo-EM data with multiple other sources of
complementary data such as protein structural models
predicted from sequences, structural templates in the
Protein Data Bank (PDB), and protein sequences to
more accurately reconstruct protein structures from
noisy density maps that often miss the density values of
some atoms. The current integration process is limited
to shallow data combination. For instance, DeepTracer
ID uses AlphaFold models to refine the structural
models predicted from structural models reconstructed
from deep learning. More comprehensive, end-to-end
deep learning models to combine multiple sources of
data to generate accurate final protein structures can be
developed to automatically and accurately reconstruct
protein structures from the data.

Moreover, it is important to integrate cryo-EM based
deep learning methods of reconstructing protein struc-
tures with the advanced methods developed in the field
of protein structure prediction. The structural models
directly reconstructed from cryo-EM data by deep
learning generally have correct overall topology, but the
reconstructed models may not satisfy physico-chemical
restraints such as bond length and bond angles and not

have all themolecular details (e.g., the precise location of
all side chain atoms) [10,4]. Linking the atoms of amino
acids identified from the density maps into full peptide
chains consistent with protein sequences and physical-
chemical restraints is still challenging. However, the
modeling techniques such as protein structure refine-
ment and molecular dynamics to fix these problems have
been established for protein structure prediction [1].
Some methods such as CR-I-TASSER have started to
integrate the two kinds of technologies. More synergistic
integration of the two are needed to generate high-
quality realistic protein structures from cryo-EM data.

The development of high-quality deep learning models
to reconstruct protein structures from cryo-EM density
maps critically depends on the availability of sufficient
high-quality training data. Although experimental cryo-
EM data and its related ground truth structure are freely
accessible through EMDB [2] and RCSB PDB [40],
these datasets still need to be pre-processed and labeled
before they can be used for deep learning training.
Curating a large amount of high-quality training and test
data is challenging and time consuming, but often re-
ceives little attention. Currently, there are few well-
curated experimental cryo-EM data sets publicly avail-
able for training and evaluating deep learning models in
the field. Therefore, more effort needs to be devoted to
creating such data sets and make them to publicly avail-
able for the community to use.

Conclusion
A number of useful deep learning models have been
developed to reconstruct protein structures from cryo-
EM density maps, demonstrating deep learning is a
promising technology to further push the frontier of
applying cryo-EM technology to determine protein
structures. As the deep learning field is evolving very fast,
many more state-of-the-art deep learning architectures
(e.g., AlphaFold2-like models and transformers) have
yet to be applied to further advance the emerging field.
More sophisticated deep learning methods need to be
developed to seemlessly integrate cryo-EM data with
other complementary data such as predicted protein
structures, protein sequences, and template structures
to further improve cryo-EM-based structure determi-
nation. A synergistic integration of cryo-EM based pro-
tein structure determination techniques and latest
protein structure prediction techniques is also important
for generating highly accurate native-like pro-
tein structures

To speed up the development, more effort is need to
create a large amount of high-quality cryo-EM training
and test data for the community to use.
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Data availability
Experimental cryo- EM data and its related ground truth
structure are freely accessible through EMDB and
RCSB PDB.

Acknowledgements
This work was supported in part by Department of Energy grants
(DEeAR0001213, DEeSC0020400, and DEeSC0021303), two NSF
grants (DBI1759934 and IIS1763246), and NIH grants (R01GM093123
and R01GM146340).

References
Papers of particular interest, published within the period of review,
have been highlighted as:

* of special interest
* * of outstanding interest

1
* *
. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ron-

neberger O, Tunyasuvunakool K, Bates R, Z�õdek A,
Potapenko A, et al.: Highly accurate protein structure predic-
tion with AlphaFold. Nature 2021, https://doi.org/10.1038/
s41586-021-03819-2.

Highly accurate deep neural network based system that predicts pro-
tein’s 3D structure form its amino acid sequence.

2. Lawson Catherine L, Patwardhan Ardan, Baker Matthew L,
Corey Hryc, Sanz Garcia Eduardo, Hudson Brian P, Lager-
stedt Ingvar, Ludtke Steven J, Grigore Pintilie, Sala Raul,
Westbrook John D, Berman Helen M, Kleywegt Gerard J,
Chiu Wah: EMDataBank unified data resource for 3DEM.
Nucleic Acids Res Suppl 4 January 2016, 44, https://doi.org/
10.1093/nar/gkv1126. D396–D403.

3. Kühlbrandt Werner: The Resolution Revo- lution. Science 2014,
https://doi.org/10.1126/science.1251652. https://www.science.org/
doi/abs/10.1126/science.1251652.s41586-021-03819-2; 2014.

4. Giri N, Cheng J: Improving Protein–Ligand Interaction
Modeling with cryo-EM Data, Templates, and Deep Learning
in 2021 Ligand Model Challenge. Biomolecules 2023:132.
https://doi.org/10.3390/biom13010132; 2023.

5. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S,
Lee GR, …Baker D: Accurate prediction of protein structures
and interactions using a three-track neural network. Science
2021, 373:871–876.

7. Li Po-Nan, de Oliveira Saulo HP, Wakatsuki Soichi, Henry van
den Bedem: Sequence-guided protein structure determination
using graph convolutional and recurrent networks. In 2020
IEEE 20th international conference on bioinformatics and bioen-
gineering (BIBE); 2020:122–127. IEEE.

8. Venkata Subramaniya Maddhuri, Raghavendra Sai,
Terashi Genki, Kihara Daisuke: Protein secondary structure
detection in intermediate-resolution cryo-EM maps using
deep learning. Nat Methods 2019, 16:911–917.

9. Rozanov Mark, Wolfson Haim J: AAnchor: CNN guided detec-
tion of anchor amino acids in high resolution cryo-EM density
maps. In 2018 IEEE international conference on bioinformatics
and biomedicine (BIBM); 2018:88–91. IEEE.

10
* *
. Si Dong, Moritz Spencer A, Jonas Pfab, Hou Jie, Cao Renzhi,

Wang Liguo, Wu Tianqi, Cheng Jianlin: Deep learning to pre-
dict protein backbone structure from high-resolution cryo-
EM density maps. Sci Rep 2020, 10:1–22.

Among the first deep learning methods that accurately predict Ca po-
sitions along the protein’s backbone from cryo-EM density maps
automatically.

11. Li Rongjian, Dong Si, Zeng Tao, Ji Shuiwang, Jing He: Deep
convolutional neural networks for detecting secondary
structures in protein density maps from cryo-electron mi-
croscopy. In 2016 IEEE international conference on bioinfor-
matics and biomedicine (BIBM); 2016:41–46. IEEE.

12
*
. Mostosi Philipp, Hermann Schindelin, Kollmannsberger Philip,

Thorn Andrea: Haruspex: a neural network for the automatic

identification of oligonucleotides and protein secondary
structure in cryo-electron microscopy maps. Angewandte
Chemie Interna- tional Edition 2020, 59:14788–14795.

Identifies secondary structures and nucleotides with high precision and
recall.

13
* *
. Pfab Jonas, , Nhut Minh Phan, Dong Si: DeepTracer for fast de

novo cryo-EM protein structure modeling and special studies
on CoV-related complexes. Proc Natl Acad Sci USA 2021, 118,
e2017525118.

Builds 3D protein structure automatically and accurately from cryo-EM
and amino acid sequence.

14
*
. Chang Luca, Wang Fengbin, Connolly Kiernan, Meng Hanze,

Su Zhangli, Cvirkaite-Krupovic Virginija, Krupovic Mart,
Egelman Edward H, Dong Si: DeepTracer ID: de novo protein
iden- tification from cryo-EM maps. bioRxiv 2022.

Predicts backbone structures using DeepTracer and searches them
against AlphaFoldDB to refine the models.

15. Zhang Xi, Zhang Biao, Freddolino Peter L, Yang Zhang: CR-I-
TASSER: assemble protein structures from cryo-EM density
maps using deep convolutional neural networks. Nat Methods
2022, 19:195–204.

16. He Jiahua, Lin Peicong, Chen Ji, Cao Hong, Huang Sheng-You:
Model building of protein complexes from intermediate- res-
olution cryo-EM maps with deep learning-guided automatic
as- sembly. Nat Commun 2022, 13:1–16.

17. He Jiahua, Huang Sheng-You: EMNUSS: a deep learning
framework for secondary structure annotation in cryo-EM
maps. Briefings Bioinf 2021, 22:6. bbab156.

18
*
. Jamali Kiarash, Kimanius Dari, Scheres Sjors: Mode- lAngelo:

automated model building in cryo-EM maps. 2022. arXiv preprint
arXiv:2210.00006.

19
*
. Zhong Ellen D, Bepler Tristan, Berger Bonnie, Davis Joseph H:

CryoDRGN: reconstruction of heterogeneous cryo-EM struc-
tures using neural networks. Nat Methods 2021, 18:176–185.

Classifies particle images in cryo-EM using variational autoencoder-
decoder architecture.

20. Chen Muyuan, Steven J: Ludtke. ”Deep learning-based mixed-
dimensional Gaussian mixture model for characterizing
variability in cryo-EM. Nat Methods 2021, 18:930–936.

21. Lei Houchao, Yang Yang: CDAE: a cascade of denoising
autoencoders for noise reduction in the clustering of single-
particle cryo-EM images. Front Genet 2021, 11, 627746.

22. Kimanius Dari, Zickert Gustav, Nakane Takanori, Adler Jonas,
Lunz Se- bastian, Sch€onliebC-B, ktemOzanÖ, Scheres Sjors HW:
Exploiting prior knowledge about biological macromolecules
in cryo-EM structure determination. IUCrJ 2021, 8:60–75.

23. Lindert Steffen, Alexander Nathan, Wötzel Nils, Karakaws Mert,
Phoebe L: Stewart, and Jens Meiler. ”EM-fold: de novo
atomic- detail protein structure determination from medium-
resolution density maps. Structure 2012, 20:464–478.

24. Baker Matthew L, Abeysinghe Sasakthi S, Schuh Stephen,
Coleman Ross A, Abrams Austin, Marsh Michael P, Hryc Corey F,
Ruths Troy, Chiu Wah, Ju Tao: Modeling protein structure at
near atomic resolutions with Gorgon. J Struct Biol 2011, 174:
360–373.

25. DiMaio Frank, Leaver-Fay Andrew, Bradley Phil, Baker David,
Andr�e Ingemar: Modeling symmetric macromolecular struc-
tures in Rosetta3. PLoS One 2011, 6, e20450.

26. Chen Muyuan, Baldwin Philip R, Ludtke Steven J, Baker Matthew
L: De Novo modeling in cryo-EM density maps with Path-
walking. J Struct Biol 2016, 196:289–298.

27. Terashi Genki, Kagaya Yuki, Kihara Daisuke: MAINMAST- seg:
automated map segmentation method for cryo-EM density
maps with symmetry. J Chem Inf Model 2020, 60:2634–2643.

28. Terashi Genki, Kihara Daisuke: De novo main-chain model- ing
for EM maps using MAINMAST. Nat Commun 2018, 9:1–11.

29. Liebschner Dorothee, Afonine Pavel V, Baker Matthew L,
Bunk�oczi G�abor, Chen Vincent B, Croll Tristan I, Bradley Hintze,
et al.: Macromolecular structure determination using X-rays,

8 Methodology in Structural Biology (2023)

Current Opinion in Structural Biology 2023, 79:102536 www.sciencedirect.com



neutrons and electrons: recent developments in Phenix. Acta
Crystallogr D: Struct Biol 2019, 75:861–877.

30. Ma Lingyu, Reisert Marco, Burkhardt Hans: RENNSH: a novela-
helix identification approach for intermediate resolution
electron density maps. IEEE ACM Trans Comput Biol Bioinf
2011, 9:228–239.

31. Si Dong, Ji Shuiwang, Nasr Kamal Al, Jing He: A ma- chine
learning approach for the identification of protein secondary
structure elements from electron cryo-microscopy density
maps. Biopolymers 2012, 97:698–708.

32. Gupta Harshit, Michael T: McCann, Laurene Donati, and
Michael Unser. ”CryoGAN: a new reconstruction paradigm
for single- particle cryo-EM via deep adversarial learning.
IEEE Transactions on Computational Imaging 2021, 7:
759–774.

33. Rawat Waseem, Wang Zenghui: Deep convolutional neural
networks for image classification: a comprehensive review.
Neural Comput 2017, 29:2352–2449.

34
*
. Ronneberger Olaf, Fischer Philipp, Brox Thomas: U-net:

convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and
computer-assisted intervention. Cham: Springer; 2015:234–241.

-Net, a widely used architecture to classify/segment pixels in med- ical
images.

35
*
. Si Dong, Nakamura Andrew, Tang Runbang, Guan Haowen,

Hou Jie, Firozi Ammaar, Cao Renzhi, Hippe Kyle, Zhao Minglei:
Artificial intelligence advances for de novo molecular struc-
ture modeling in cryo-electron microscopy. Wiley Interdiscip
Rev Comput Mol Sci 2022, 12:e1542.

A systematic review for AI methods in cryo-EM, covering imple-
mentation of AI in different stages of cryo-EM workflow.

36
* *
. Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob,

Jones Llion, Gomez Aidan N, Kaiser L- ukasz, Polosukhin Illia:
Attention is all you need. Adv Neural Inf Process Syst 2017, 30.

Deep learning model that uses self-attention module to learn and
identify relationships in data. Originally used in the fields of natu- ral
language processing and computer vision.

37
* *
. Fuchs Fabian, Worrall Daniel, Fischer Volker, Welling Max:

Se (3)-transformers: 3d roto-translation equivariant at-
tention networks. Adv Neural Inf Process Syst 2020, 33:
1970–1981.

SE(3)-Transformer, a variant of the self-attention module for 3D point
clouds, which is equivariant under continuous 3D roto- translations.

38. Al-Azzawi Adil, Ouadou Anes, Max Highsmith, Duan Ye,
Tanner John J, Cheng Jianlin: DeepCryoPicker: fully auto-
mated deep neural network for single protein particle picking
in cryo-EM. BMC Bioinf 2020, 21:1–38.

39. Kern David M, et al.: Cryo-EM structure of SARS-CoV-2 ORF3a
in lipid nanodiscs. Nat Struct Mol Biol 2021, 28:573–582, https://
doi.org/10.1038/s41594-021-00619-0.

40. Burley Stephen K, Bhikadiya Charmi, Bi Chunxiao, et al.: RCSB
Protein Data Bank: powerful new tools for exploring 3D struc-
tures of biological macromolecules for basic and applied re-
search and education in fundamental biology, biomedicine,
biotech- nology, bioengineering and energy sciences. Nucleic
Acids Res Suppl 8 January 2021, 49, https://doi.org/10.1093/nar/
gkaa1038. D437–D451.

41. Kipf Thomas N, Max Welling: Semi-supervised clas- sification with
graph convolutional networks. 2016. arXiv preprint arXiv:
1609.02907.

42. Sherstinsky Alex: Fundamentals of recurrent neural network
(RNN) and long short-term memory (LSTM) network. Phys
Nonlinear Phenom 2020, 404, 132306.

43
*
. Zhou Zongwei, Rahman Siddiquee Md Mahfuzur,

Tajbakhsh Nima, Liang Jianming: Unet++: a nested u-net ar-
chitecture for medical image segmentation. In Deep learning in
medical image analysis and multimodal learning for clinical deci-
sion support. Cham: Springer; 2018:3–11.

Nested U-Net, also known as U-Net ++, architecture that performs
better than vanilla U-Net in segmentation tasks.

44. Greener Joe G, Kandathil Shaun M, Moffat Lewis, Jones David T:
A guide to machine learning for biologists. Nat Rev Mol Cell
Biol 2022, 23:40–55.

45. Esteva Andre, Chou Katherine, Yeung Serena, Naik Nikhil,
Ali Madani, Ali Mottaghi, Liu Yun, Topol Eric, Dean Jeff,
Socher Richard: Deep learning-enabled medical computer
vision. NPJ digital medicine 2021, 4:1–9.

46. Yang Jianyi, Yan Renxiang, Roy Ambrish, Dong Xu,
Poisson Jonathan, Zhang Yang: The I-TASSER Suite: protein
structure and function prediction. Nat Methods 2015, 12:
7–8.

47. Guo Meng-Hao, Xu Tian-Xing, Liu Jiang-Jiang, Liu Zheng-Ning,
Jiang Peng-Tao, Mu Tai-Jiang, Zhang Song-Hai, Ralph R: Mar-
tin, ming-ming Cheng, and shi-min hu. In Attention mecha-
nisms in computer vision: a survey. Computational Visual Media;
2022:1–38.

48. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X: Cryo-
electron microscopy structures of the SARS-CoV spike
glycoprotein reveal a prerequisite conformational state for
receptor binding. Cell Res 2017 Jan, 27:119–129, https://
doi.org/10.1038/cr.2016.152. Epub 2016 Dec 23. PMID:
28008928; PMCID: PMC5223232.

49. Pettersen Eric F, Goddard Thomas D, Huang Conrad C,
Meng Elaine C, Couch Gregory S, Croll Tristan I, Morris John H,
Ferrin Thomas E: UCSF ChimeraX: structure visualization for
researchers, educators, and developers. Protein Sci 2021, 30:
70–82.

50. Bell JM, Chen M, Durmaz T, Fluty AC, Ludtke SJ: New software
tools in EMAN2 inspired by EMDatabank map challenge.
J Struct Biol 2018 Nov, 204:283–290, https://doi.org/10.1016/
j.jsb.2018.09.002. Epub 2018 Sep 4. PMID: 30189321; PMCID:
PMC6163079.

51. Alnabati Eman, Terashi Genki, Kihara Daisuke: Protein
structural modeling for electron microscopy maps using
VES- PER and MAINMAST. Current Protocols 2022, 2:e494.

52. Wriggers Willy: Using Situs for the integration of multi-
resolution structures. Biophysical reviews 2010, 2:21–27.

53
* *
. Bronstein Michael M, Bruna Joan, Cohen Taco, Velickovi�c Petar:

Geometric deep learning: grids, groups, graphs, geodesics, and
gauges. 2021. arXiv preprint arXiv:2104.13478.

A (proto-) book on geometric deep learning about representa-
tional learning architectures and exploiting the symmetries of data
therein.

Deep learning for cryo-EM structure determination Giri et al. 9

www.sciencedirect.com Current Opinion in Structural Biology 2023, 79:102536


	Deep learning for reconstructing protein structures from cryo-EM density maps: Recent advances and future directions
	Introduction
	Deep learning reconstruction of protein structures from cryo- EM density maps
	Deep learning architectures for reconstructing protein structures from cryo-EM density maps

	Data preparation for training deep learning methods to reconstructing protein structures from cryo-EM density maps
	Cryo-EM density map data collection
	Training data preprocessing

	Future directions
	Conclusion
	Conflict of interest statement
	Conflict of interest statement
	Acknowledgements
	References


