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Abstract

Motivation: The state-of-art protein structure prediction methods such as AlphaFold are being widely used to predict structures of uncharacterized
proteins in biomedical research. There is a significant need to further improve the quality and nativeness of the predicted structures to enhance their
usability. In this work, we develop ATOMRefine, a deep learning-based, end-to-end, all-atom protein structural model refinement method. It uses a
SE(3)-equivariant graph transformer network to directly refine protein atomic coordinates in a predicted tertiary structure represented as a molecular
graph.

Results: The method is first trained and tested on the structural models in AlphaFoldDB whose experimental structures are known, and then
blindly tested on 69 CASP14 regular targets and 7 CASP14 refinement targets. ATOMRefine improves the quality of both backbone atoms and
all-atom conformation of the initial structural models generated by AlphaFold. It also performs better than two state-of-the-art refinement
methods in multiple evaluation metrics including an all-atom model quality score—the MolProbity score based on the analysis of all-atom
contacts, bond length, atom clashes, torsion angles, and side-chain rotamers. As ATOMRefine can refine a protein structure quickly, it provides a
viable, fast solution for improving protein geometry and fixing structural errors of predicted structures through direct coordinate refinement.

Availability and implementation: The source code of ATOMRefine is available in the GitHub repository (https:/github.com/BioinfoMachineLearning/

ATOMRefine). All the required data for training and testing are available at https:/doi.org/10.5281/zenodo.6944368.

1 Introduction

Every cell in the human body contains proteins. Protein partici-
pates in most cellular processes, ranging from DNA replica-
tions to immune responses. Protein functions are intimately
connected with their 3D shapes. Therefore, predicting the pro-
tein structure from sequence has been a long-standing grand
challenge in computational biology. Recently, AlphaFold
(Senior et al. 2020; Jumper et al. 2021) is shown to predict
highly accurate tertiary structures for most proteins, which is
considered a big advance in the field. However, there are still
some limitations in the AlphaFold predicted structures. The re-
cent application of AlphaFold2 (Tunyasuvunakool et al. 2021)
to predicting the structures in the human proteome showed
that the conformation of 58% of the total residues was of high
accuracy with the predicted confident score pLDDT (1) >70,
leaving the rest 42% of the total residues with the confidence
score pLDDT 70. Besides, a strong correlation between the
Alphafold model quality and the availability of homologous
templates in the Protein Data Bank (PDB) has been observed in
a few benchmarking studies (Cretin et al. 2021; Pearce and
Zhang 2021; Jones and Thornton 2022), suggesting that there
is still a room to improve the quality of AlphaFold models, par-
ticularly for proteins without homologous templates in the
PDB. Moreover, current protein structure prediction methods
including AlphaFold have been focused on predicting the back-
bone structure of proteins correctly without emphasizing

improving the nativeness and all-atom geometry of predicted
structures, leaving significant room to improve the all-atom
quality of predicted structures (Bhattacharya and Cheng 2013).
Therefore, there is a significant need to further refine the pro-
tein structures predicted by state-of-the-art methods such as
AlphaFold to improve their usability in biomedical research.
Currently, typical model refinement methods apply molecu-
lar dynamics (MD) simulation, energy minimization, or frag-
ment assembly to refine input protein structures. Successful
MD-based methods (Heo et al. 2013; Mirjalili et al. 2014;
Heo and Feig 2018; Lee et al. 2019; Heo et al. 2021) are
physics-based approaches to sampling multiple MD trajecto-
ries following the physical principles regarding atomic
interactions, which are computation-intensive and time-
consuming. Energy minimization-based method (Xu and
Zhang 2011; Bhattacharya and Cheng 2013) focus on
repacking the backbone and side-chain atoms with composite
physics and knowledge-based force fields. Fragment
assembly-based methods are like knowledge-based methods,
taking advantage of template fragment information in the
PDB as well as statistical potentials. A notable method is
Rosetta (Hiranuma et al. 2021), which uses predicted esti-
mated local structural errors to inform the fragment assembly,
followed by side-chain rebuilding and energy minimization in
all-atom representation. Though those methods prove to be
effective in the refinement of some protein structures, they
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require extensive conformation sampling and a lot of comput-
ing resources.

Deep learning has recently been applied to improve the geo-
metric property of the protein 3D structure (Senior et al.
2020; Baek et al. 2021; Hiranuma et al. 2021). Graph neural
networks were used by GNNRefine (Jing and Xu 2021) to re-
fine the backbone atoms of protein structure. It largely relies
on a Rosetta protocol for the full-atom model reconstruction.
In the refinement module of RoseTTAFold (Baek et al. 2021),
a SE(3)-equivariant graph transformer (Fuchs et al. 2020) is
used to refine backbone atoms without directly using machine
learning to leverage and improve side-chain atoms in a pro-
tein structure. However, it produces a refined model with
only backbone atoms and cannot be used as a standalone tool
to refine a third-party model.

Inspired by the application of geometric deep learning to
molecular structure prediction that can avoid the expensive
and extensive conformation sampling, here we present
ATOMRefine, a new SE(3)-equivariant transformer network
based on a novel all-atom representation of atom types,
amino acid types, atom—atom distances, and covalent bonds
for refining protein structures in the full-atom scale, which is
different from RoseTTAFold. Its graph representation of all
the atoms of a protein structure enables the network to lever-
age sequence-based and spatial information from the entire
protein structures to update node and edge features and catch
the global and local structural variation from the initial model
to the native structure iteratively, which is different from
RoseTTAfold’s refinement module that refines backbone
atoms only. The 3D-equivariance makes it possible for
ATOMRefine to learn essential structural properties regard-
less of the rotation and translation of the input structure. The
network outputs the refined coordinates of all the atoms di-
rectly, without using any external protein full-atom recon-
struction protocol. To the best of our knowledge,
ATOMRefine is the first end-to-end all-atom 3D-equivariant
transformer network approach to refine the protein model
prediction on the full atom scale.

Evaluated on both AlphaFold and the 14th Critical
Assessment of Techniques for Protein Structure Prediction
(CASP14) datasets, ATOMRefine improves the quality of
both backbone and all atoms of the initial structural model in
terms of GDT-TS score, GDT-HA score, RMSD, IDDT, and
Molprobity. Noticeably, ATOMRefine can maintain or im-
prove the model quality over the initial models generated by
AlphaFold and other structure prediction methods, and gener-
ate far fewer model degradation cases than the existing refine-
ment methods.

2 Materials and methods

ATOMRefine is an end-to-end protein refinement method
based on a SE(3)-equivariant graph transformer neural net-
work. It directly predicts refined atomic coordinates of all the
atoms as output from the initial coordinates of all the atoms
in an input structure. To avoid the bond geometry violation, a
final relaxation step by Amber (Salomon-Ferrer et al. 2013) is
added in the ATOMRefine pipeline. Its simplified version
based on the same deep learning architecture is also used to
refine the coordinates of backbone atoms only. The overall
framework of ATOMREefine is illustrated in Fig. 1. Details of
the graph representation, network architecture, training and
test data, and evaluation metrics are described as follows.
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2.1 All-atom graph-based representation of protein
structure and SE(3) graph transformer architecture

In this work, a protein structure is considered as a set of nodes
each of which represents an atom in the protein. Each atom i
has a 3D coordinate (x;, yi, z;) that can be used to calculate
the pairwise spatial relations between atoms. A protein struc-
ture is represented as a graph of the nodes in which the edges
describe the relationships between the nodes (i.e. atoms).

Each node has atom features including one-hot encoding of
atom types (a binary vector indicating 37 atom types) and the
types of amino acids that the atom belongs to. Each node also
has x, y, z coordinates as variable features that will be updated.

As illustrated in Fig. la, each node is connected to the k
(k% 128) nearest neighboring nodes selected by the Euclidean
distance between atom 3D coordinates through edges.
ATOMRefine employs a neighborhood aggregation approach
to enhance predictive accuracy by capturing the local environ-
ment of each atom (node) within a neighborhood and refining
local conformation during training. By filtering out less relevant
information and focusing on important local features, the model
can identify and correct local errors. Due to the GPU resource
limitation, we use this K-Nearest Neighbors (KNN) graph rep-
resentation for the atom-level protein structure refinement.
Increasing the value of k allows the model to capture more
structural information for each node but requires more GPU
memory. Therefore, we choose a large k equal to 128 within
the limits of the GPU (NVIDIA V100 32 GB memory) available
to us. Because each residue can only interact with a maximum
of 6-8 other residues (generally less than 100 heavy atoms) due
to steric restrictions, the KNN graph with a sufficiently large k
(e.g. 128) can capture sufficient local information at all-atom
level to predict conformations of atoms and residues under the
restriction of the available hardware. Moreover, because the lo-
cal information is passed from node to node in the graph
through the attention mechanism, ATOMRefine can learn
global structural features to make prediction.

Besides node features, six edge features are generated, in-
cluding one distance-based edge feature, one covalent bond
edge feature, one relative position edge feature, and three
relative orientation edge features. For the distance-based

edge feature, we use the radial basis function to convert
the distance (d) between two nodes as features:

02
£8d% db % exp V“dydo“ , where d is the Euclidean dis-
Iy

tance between two nodes of an edge, d’ and r4 are hyperpara-
meters. We set 14 % 0.57, & % [0, rq, 2rq, ..., 3514]
2 M A; 20AS, following the work of RoseTTAFold. So, for
each edge, there are 36 distance-based edges.

We also use a binary covalent bond edge feature to represent
the local covalent bond connectivity between atoms. An adjacent
bond matrix (M) is calculated from the atom—atom distance ma-
trix (D) to detect if there is a covalent bond between two atoms
according to the work of Graphein (Jamasb et al. 2020). We
parse the atomic Euclidean distance matrix D into the binary co-
valent bond adjacent matrix M as shown in Equation (1),

1, 0:4 < Djj < rO0;
M % otherwise . (1)

’

where i, j are the atom positions (indices), and the threshold-
ing parameter r is a set of covalent radii based on different
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Figure 1. The ATOMRefine framework. (a) ATOMRefine graph representation of a protein structure at all-atom level or backbone atom-level. A node is
used to represent an atom. The 3D protein structure is encoded as the atomic features (node features) and inter-atom features (edge features including
adjacent bond matrix and distance-related matrices). Each node (e.g. a node in red) is connected to the k nearest neighboring nodes (nodes in yellow)
selected by the Euclidean distance calculated from atom 3D coordinates. The covalent bond edge between atoms shown as the solid blue line in the
graph is also an edge feature stored in the adjacent bond matrix. (b) The deep learning architecture of ATOMRefine. Each block in the SE(3) transformer
network consists of one equivariant graph neural network attention block and one SE(3)-equivariant normalization layer.

atom types. 1 indicates there is a bond between two atoms
(see Supplementary Table S1 for details).

Similar to the work of Octavian-Eugen Ganea (Ganea et al.
2021) and trRosetta (Yang et al. 2020), we also use the relative
position and relative orientation features for edges based on the
local coordinate system. We construct the local coordinate sys-
tem based on each amino acid residue position (index) in a pro-
tein model (for atoms of the same amino acid, they share the
same local coordinate basis). As shown in Fig. 2, for each resi-
due i, we define the Ca coordinate as the origin, the unit vector
pointing from Ca atom to C atom as uj, and the unit vector
pointing from Ca atom to N atom as y; (on the y axis). The nor-
mal of the plane C—Ca—N is defined as z; (on the z-axis), where
zi % ﬁT Naturally, we define x; % y;i z (on the x-axis). In
total, xi, yi and z; consist of the basis of residue i’s local coor-
dinate system. As shown in Equation (2), the relative position
edge feature pim; jn denotes the relative position of atom n in the
residue position j to atom m in the residue i. atom;j, denotes the
coordinate of atom n in the residue position j.

h i
Pimjn % Xy 2] Ysatomj,y atomim$: )

As shown in Equation (3), relative orientation features
dim:jn; Kim;jn; tim;jn denote the relative orientation of atom n in
residue position j to atom m in the residue position i.

h i h i
Qim;jn % hxiT yiT ziT i%XjS;kim;jn YA xiT yiT zlT szjS;tim,-jn
T T T &.
%oxoy, oz, VS 3)
With atom and atom-atom relationship features encoded as
node features and edge features above, the protein structure

Figure 2. Representation of a single valine residue and its local coordinate
system. We define the atom Ca as the origin (at the center), The y-axis
points from the atom Ca to the atom N. The x-axis is placed in the plane of
C—Ca-N. Following the right-hand coordinate system, the z-axis is the
normal of the plane.

can be encoded in the graph. Figure 1a shows the scheme of
the graph representation of a protein model at the atom level.
The detailed atomic and residue-based features are presented
in Supplementary Table S1.

The general network architecture of ATOMRefine is illus-
trated in Fig. 1b. We parse the initial protein model as the
node and edge features to build a graph representation. The
graph is then fed into the SE(3)-transformer to refine the given
3D atom coordinates. All features of each node except for 3D
coordinates correspond to SE(3) type O node feature, and the
3D coordinates of each node (atom) correspond to SE(3) type
1 node feature. The embedding size of the input node and
edge features are set to 32. A SE(3) transformer is used to pre-
dict the coordinate shifts between the initial model and the na-
tive structure. The target shift is calculated after the initial
model and the native structure are superimposed. As the
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target shift is invariant to the rotation and translation of ei-
ther the initial model or the native structure, this helps train a
deep learning model invariant/equivariant to the rotation and
translation of input and output. It is worth noting that the fi-
nal refined structure is simply equal to the initial model plus
the predicted shift. The SE(3) transformer consists of two SE3
equivariant attention blocks, including one multi-head atten-
tion block with 16 channels and 4 attention heads, and one
SE3 equivariant normalization layer. For each attention
block, queries are the linear projection of the graph node fea-
tures. Keys and values are from graph edge features computed
by TFN (Thomas et al. 2018) layers. ATOMRefine is imple-
mented on top of the deep learning framework PyTorch
Lightning (Falcon 2019) and Deep Graph Library (Wang
et al. 2019).

2.2 The training dataset and test dataset of
ATOMRefine

Training data: We download the predicted protein models
from AlphaFoldDB (version 1 released before September
2021). We use MMseqs2 (Steinegger and S6ding 2017) to re-
move the sequence duplication first and then match the
remaining protein sequences with the native structures that
exist in Protein Data Bank. A structural model is matched
with a true structure if the following criteria are met: (i) the
model sequence matches with the native sequence; (ii) protein
sequence length 50. In total, 13 121 are selected as the ini-tial
models and their true structures are used as labels.
ATOMREfine is trained and validated on the training data
via 10-fold cross-validation. During training, protein struc-
tures with >1500 residues are cropped to fit the GPU mem-
ory. We set Adam as the optimizer with parameters: b1 % 0.9,
b2%0.999, and weight decay % 0.001. We set the batch size
as 1 and use the mean squared error between predicted coor-
dinate shifts and true coordinate shifts of atoms as the loss
function. We set the number of training epochs to 50 with the
early stopping when there are no improvements in the valida-
tion loss for five consecutive epochs. Ten ATOMRefine deep
learning models have been trained in this way. We choose five
trained deep learning models that have the lowest validation
loss as the final deep learning models to make inference. The
loss is the mean square error between predicted and true coor-
dinates of atoms. The five deep learning models are used by
ATOMRefine to generate five refined protein structural mod-
els for an input structural model.

Test data: We use three test datasets to evaluate the meth-
ods: an AlphaFoldDB test set containing 193 protein targets
retrieved from the AlphaFoldDB, the CASP14 dataset con-
taining 69 regular targets, and the CASP14 refinement dataset
(7 protein targets). The CASP14 refinement targets are a sub-
set of the CASP14 regular targets, selected by CASP organiz-
ers for challenging predictors to make a structural refinement.
Any sequences in the training data that has 30% identity
with any sequences in the three test datasets have been re-
moved in the training data preparation so that there is no
overlap between the training data and the three all three test
sets (e.g. sequence identity < 30%). For each target in the
CASP14 dataset, AlphaFold2 is run to generate start models.
For the CASP14 refinement dataset, we use the initial models
provided by CASP14 organizers as the start models, which
were generated by traditional protein structure prediction
methods other than AlphaFold2. All the true structures for
the targets in the test datasets are obtained from the PDB.
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2.3 Evaluation metrics

To compare the model quality of initial models and refined
models, we follow the same approach describe in Jing and Xu
(2021) that generate five refined model from five trained deep
learning models respectively to compare with the initital mod-
els. We use GDT-TS (Zemla 2003), GDT-HA, RMSD of the
Ca atoms, IDDT (Mariani et al. 2013) and Molprobity score
(Williams et al. 2018) as five main evaluation metrics. GDT-
TS is the global distance score. It ranges from 0 to 100% (or
simply from O to 1), a higher value indicating better model ac-
curacy. GDT-HA is the high—accuracy version of the GDT-TS
score with smaller distance cutoffs. RMSD of the Ca atoms
measures the root mean square deviation of the Ca atoms in a
protein model from its native structure, describing the accu-
racy of the positions of the Ca atoms. A lower RMSD means
better quality. Local Distance Difference Test (IDDT) uses the
distance differences of atom pairs to measure the local confor-
mation quality of each residue (higher, better). IDDT scores
of all the residues can be averaged to measure the quality of a
protein structural model. The MolProbity score assesses the
quality of all the atoms of a model including side-chain atoms.
It considers atom contacts, atom clashes, bond lengths and
angles, and torsion angles. A lower Molprobity score indi-
cates better model quality.

3 Results
3.1 Comparison of ATOMRefine with other
refinement methods in terms of backbone quality

Geometric deep learning-based approaches have been applied
to protein structure refinement, among which GNNRefine
yields some quality improvement from initial models.
However, its machine learning component heavily focuses on
the backbone atom refinement, and largely relies on the
Rosetta refinement protocol for the final full-atom refinement.
In contrast, ATOMRefine applies an all-atom SE(3)-equivar-
iant graph transformer to directly refine all the atoms of a
protein structure. Directly refining all the atoms has the bene-
fit of generating an all-atom refined structure in an end-to-
end fashion, but it requires a much larger molecular graph to
represent all the atoms in a protein structure than that repre-
senting only backbone atoms (or only Ca atom). To investi-
gate the trade-off of using a full-atom representation, we
implement two versions of our method based on the same
SE(3)-equivariant graph transformer architecture: (i)
ATOMRefine—the all-atom refinement method and (ii)
ATOMRefine backbone—the backbone atom refinement
method. Both of them are trained and validated on the same
dataset.

We evaluate ATOMRefine, ATOMRefine backbone,
GNNRefine, and a widely-used energy minimization-based
method—ModRefiner (Xu and Zhang 2011) on the
AlphaFoldDB test set and the structural models of 69
CASP14 targets. For the AlphaFoldDB test set, the structural
models from the AlphaFoldDB are used as the initial models.
For the CASP14 dataset, AlphaFold2 is used to predict the
structures of the CASP14 targets that are used as the initial
models. For each initial model, the best of five refined models
produced by each method is selected for evaluation against
the true experimental structures. The backbone quality of the
initial models and the models refined by these methods is
reported in Table 1.
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Table 1. Performance of ATOMRefine, ATOMRefine backbone, GNN-Refine, and ModRefiner on AlphaFoldDB test set and CASP14 dataset in

comparison with initial models, respectively.®

Test set Method GDT-TS" GDT-HA" RMSD of Catt IDDT" 1P (%)"

AlphaFoldDB test set Initial model 81.42 69.84 4.09 0.7945 -
ATOMRefine 81.59 70.04 4.08 0.7978 58.03
ATOMRefine_backbone 81.69 70.07 3.81 - 61.14
GNNRefine 79.46 67.16 4.38 0.7791 31.09
ModRefiner 81.54 69.72 4.07 0.7764 45.08

CASP14 test set Initial model 77.97 63.91 4.5 0.7826 -
ATOMRefine 78.14 64.42 4.49 0.7674 75.36
ATOMRefine_backbone 78.12 64.4 4.43 - 85.51
GNNRefine 77.54 63.6 4.73 0.773 50.72
ModRefiner 77.94 63.97 4.50 0.7706 49.28

? Bold numbers denote the best results. Improvement percentage (IP) denotes the percentage of the models that have been improved by each method in
terms of the GDT-HA score. Because all-atom IDDT is used, ATOMRefine backbone does not have this score.

On average, both ATOMRefine and ATOMRefine backbone
improve the quality of backbone atoms over the initial models in
terms of the GDT-TS score, GDT-HA score, and RMSD of the
Ca atoms, while the other two methods do not in most situa-
tions. On the AlphaFoldDB test set, ATOMRefine performs gen-
erally better than GNNRefine and ModRefiner and only
ATOMRefine slightly increases IDDT score after refinement. But
on the CASP14 test set, all of the refinement tools decrease
IDDT score a bit after refinement. Even though the overall im-
provement in the backbone quality is small, the results are still
significant because the recent 14th community-wide Critical
Assessment of Techniques of Protein Structure Prediction
(CASP14) (Simpkin et al. 2021) showed that few refinement
methods can improve the quality of the backbone of initial mod-
els on average. Moreover, the t-test shows that the difference be-
tween the initial models and ATOMRefine models in terms
of the average GDT-HA score is statistically significant
(P-value%2.61E-10 on the AlphaFoldDB test set and
P-value % 1.90E-08 on the CASP14 dataset). ATOMRefine and
ATOMRefine backbone achieve similar performance on the
two datastes, indicating that extending the small backbone rep-
resentation to the all-atom representation for refinement still
maintains the effectiveness of refining the backbones of protein
structures despite that ATOMRefine needs to accommodate the
extra side-chain atom refinement.

Both ATOMRefine and ATOMRefine backbone perform
better than GNNRefine and ModRefiner in terms of most
metrics on average. For instance, on the AlphaFoldDB test
set, the average GDT-HA score of ATOMRefine backone is
0.35 point higher than the following best external method
ModRefiner (Table 1). Supplementary Table S2 shows the
target-by-target GDT-HA  scores of ATOMRefine,
ATOMRefine backbone, GNNRefine, and ModRefiner on
the AlphaFoldDB test set. The mean and minimum GDT-HA
score of five refined models generated by the methods are also
shown in Supplementary Table S2. In terms of the mean and
minimum GDT-HA score of the five refined models,
ATOMRefine performs better than ATOMRefine backbone,
GNNRefine and ModRefiner.

On the CASP14 test dataset, the average GDT-HA scores
of ATOMRefine are 0.45 point higher than the following best
external method ModRefiner (Table 1). The detailed GDT-
HA scores of ATOMRefine, ATOMRefine backbone,
GNNRefine and ModRefiner on the CASP14 test set are
shown in Supplementary Table S3 target by target. The mean
and minimum GDT-HA score of five refined models

generated by the methods are also shown Supplementary
Table S3. In terms of mean and minimum GDT-HA score of
five refined models, ATOMRefine also performs better than
ATOMRefine backbone, GNNRefine and ModRefiner.

The RMSD of ATOMRefine refined models for the
AlphaFoldDB test set and CASP14 dataset is 4.08 and 4.49
Angstrom respectively, lower than 4.38 and 4.73 Angstrom
of GNNRefine. On average, out of the four methods, only
ATOMRefine and ATOMRefine backbone improve the
backbone atom quality of the initial models in terms of most
metrics. Figure 3 illustrates the change in the GDT-HA score
of the refined model with respect to the initial model of these
methods. ATOMRefine and ATOMRefine backbone im-
prove the quality of the majority of the initial models (58.03—
85.51% of the models) to in terms of GDT-HA score.
Furthermore, we show the histograms of the difference in
GDT-HA scores between the refined models generated from
ATOMRefine, ATOMRefine backbone, GNNRefine, and
ModRefiner and the initial models in Supplementary Fig. S1.
A positive change in GDT-HA indicates an improvement after
the refinment. It clearly shows that our methods are more ef-
fective in improving the quality of backbone structures than
GNNRefine and ModRefiner.

3.2 Comparison of ATOMRefine with existing
methods in terms of all-atom quality

To further investigate the performance of ATOMRefine as an
all-atom model refinement method, we compare
ATOMRefine and ModRefiner in terms of MolProbity score
based on the analysis of all-atom contacts, bond length, atom
clashes, torsion angles, and side-chain rotamers. A lower
MolProbity score indicates better all-atom quality and higher
nativeness of the protein structure. The MolProbity score has
been widely used to assess the geometric correctness and na-
tiveness of experimentally determined protein structures be-
fore they are deposited into the PDB. The strength parameter
for ModRefiner is set at 80, 85, 90, 95, and 100 respectively
to generate five refined models. The strength value is in the
range [0,100]. A larger value makes the final model closer to
the reference model. The model with the lowest MolProbity
score is chosen for comparison. We also include GNNRefine
in the full-atom level comparison. Though GNNRefine
mainly focuses on refining the predicted distances of the back-
bone atoms, it constructs the final full-atom protein model by
using the Rosetta module FastRelax (Chaudhury et al. 2010).
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Figure 3. The distribution of quality change (DGDT-HA score) of refined
models of ATOMRefine, GNNRefine, ModRefiner, and
ATOMRefine_backbone with respect to the initial models. The positive
value means the model quality after refinement improves from the
starting model and the negative value means the model quality
decreases. (a) Results on the AlphaFoldDB test set. (b) Results on the
CASP14 dataset.
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Figure 4. The average all-atom MolProbity score and the MolProbity score
distribution of initial models and refined models of ATOMRefine,
ModRefiner, and GNNRefine on (a) AlphaFoldDB test set and (b) CASP14
dataset.

The average MolProbity scores of the initial models and the
refined models of the three methods on the AlphaFoldDB test
set and CASP14 dataset are reported in Fig. 4. The average
MolProbity score of the AlphaFoldDB test set and CASP14
dataset is 1.31 and 1.49, much lower than 2.08 and 3.29 of
the initial models, indicating a large improvement in the pro-
tein geometry and nativeness of the structures predicted by
AlphaFold. From the results shown on Fig. 4, ATOMRefine
also substantially outperforms GNNRefine and ModRefiner
which are also able to improve all-atom quality of
AlphaFold2 models in the two datasets to some degree. The
larger improvement in all-atom model quality made by
ATOMRefine than in backbone model quality is consistent
with the previous research (Bhattacharya and Cheng 2013).
One possible reason is that ATOMRefine may substantially
improve the geometry of the sidechain atoms, such as bond
lengths and angles, hydrogen bonding patterns, and the posi-
tioning of the atoms.

3.3 Performance of ATOMRefine on different kinds
of initial models

The outcome of model refinement is related to the quality of
initial models. CASP14 official refinement targets were
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carefully selected by CASP organizers to assess the refinement
methods considering the quality of initial models and refine-
ment potential. In order to test the room for improvement for
different targets, CASP14 selected seven targets each with an
initial structure predicted by AF2 (AlphaFold2 group during
CASP14 experiment) and a typical structure predicted by one
of the other CASP14 groups. Therefore, each target has two
different versions (v1/v2: AF2 initial model or other initial
model), resulting in 14 models for refinement. In addition,
those targets were classified into categories based on their
modeling difficulty [FM: free modeling that does not have ho-
mologous templates in PDB, hardest targets; FM/TBM: tar-
gets in between FM and template-based modeling (TBM),
second hardest; and TBM-hard: difficult TBM targets whose
homologous templates exist in PDB, but are hard to find,
third hardest]. The name, length, classification, and initial
model type can be found in Supplementary Table S4. For each
target, the GDT-HA scores of the initial models,
ATOMRefine, GNNRefine, and ModRefiner are reported in
Supplementary Table S4, respectively. Supplementary Table
S5 presents the results of Supplementary Table S4 according
to the types of the initial models in terms of the GDT-HA
score.

Overall, in terms of the average GDT-HA score or the
GDT-HA score variation shown in Fig. 5, ATOMRefine out-
performs GNNRefine and ModRefiner on most or all targets,
respectively. With AF2 models as the initial models shown in
Fig. Sa, the average GDT-HA score of ATOMRefine is 70.22,
better than the performance of GNNRefine (67.66) and
ModRefiner (69.62). ATOMRefine improves the quality of
the start AF2 models whose average GDT-HA score is 69.91,
but GNNRefine and ModRefiner’'s GDT-HA score is lower
than the GDT-HA score of the start models by 3.22% and
0.41%, respectively. With other CASP14 group models as the
initial models shown in Fig. 5b, the average GDT-HA score of
ATOMRefine is 40.54, slightly higher than 40.32 of the start
models, better than 40.47 of ModRefiner, but slightly lower
than GNNRefine 40.75.

In Fig. 5¢ and d, we also list the per-target GDT-HA score
variations by applying the three refinement methods, com-
pared to the initial models starting from either AF2 or other
CASP14 groups (the specific variation values for three meth-
ods are listed in the figure). For the initial models starting
from AF2, ATOMRefine produces much fewer degraded
models than the other two methods. Six out of seven
ATOMRefine models achieve equal or better model quality,
while GNNRefine and ModRefiner show model degradation
in most cases. Though GNNRefine performs better than
ATOMRefine in terms of the average GDT-HA score on the
initial model starting from other non-AlphaFold CASP14
groups, the number of cases achieving equal or better model
quality from the two methods are the same. In general,
ATOMRefine is able to maintain the model quality or im-
prove the model quality in most cases, regardless of the types
of start models.

3.4 Comparison of the speed of ATOMRefine with
other methods

In addition to maintaining or improving the model quality,
ATOMRefine is also significantly faster than GNNRefine and
ModRefiner. We tested the runtime of ATOMRefine,
GNNRefine, and ModRefiner on the CASP14 targets with se-
quence length < 300. Table 2 reports the average runtime for
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Figure 5. Performance of ATOMRefine, GNNRefine, and ModRefiner on
seven CASP14 refinement targets by using two types of initial models as
input evaluated by the GDT-HA score. (a) The average performance of the
three methods compared with the initial models of AF2. (b) The average
performance of the three methods compared with the initial models of
other CASP14 groups. (c) GDT-HA score variation of three methods with
respect to the initial models of AF2. (d). GDT-HA score variation of three
methods with respect to the initial models of other CASP14 groups. (GDT-
HA score variation values for each method are listed on (c) and (d);
positive values stand for model improvement and negative values stand
for model degradation.)

Table 2. Runtime on CASP14 test set.

Method Average runtime(s)
ATOMRefine 90
GNNRefine 335
ModRefiner 974

each CASP14 target. For a protein with an average length of
156, ATOMREefine typically requires 90 s to complete the en-
tire refinement process on a single Tesla V100 GPU, which is
about three times faster than GNNRefine, ten times faster
than ModRefiner.

4 Conclusion and future work

In this work, we introduce ATOMRefine, a novel full-atom
3D-equivariant graph transformer method for protein struc-
ture refinement. It uses a new full-atom graph to represent
atoms, bonds, and coordinates as the node and edge features,
which is processed by the equivariant and invariant layers of
the SE(3) graph transformer to refine the coordinates of all
the atoms. We rigorously evaluate ATOMRefine on three test
datasets. Compared to the refinement methods focusing on re-
fining backbone atoms, it has the advantage of directly gener-
ating an all-atom refined structure. Moreover, ATOMRefines
can improve the quality of both backbones and all atoms in-
cluding side-chain atoms over the initial input models and
outperforms the state-of-the-art deep learning and energy
minimization-based methods. The improvement on the back-
bone of initial models is small but significant, while the im-
provement on the all-atom conformations is substantial.
Finally, once it is trained, ATOMRefine can refine protein
structure quickly, making it applicable to proteome-wide pro-
tein structure refinement.

We plan to further improve ATOMRefine by training it on
a larger dataset consisting of AlphaFold models of more di-
verse quality, particularly including more low-quality models.

In the current training dataset, 92% of structural models are
high-accuracy models, which may limit the amount of im-
provement that can be made by the deep learning method.
Adding more low-quality models into training may make
ATOMRefine learn to make larger improvements to the back-
bone structure on less accurate input.

Supplementary data

Supplementary data are available at Bioinformatics online.
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