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Residue-residue distance information is useful for predicting tertiary struc-
tures of protein monomers or quaternary structures of protein complexes.
Many deep learning methods have been developed to predict intra-chain

residue-residue distances of monomers accurately, but few methods can

accurately predict inter-chain residue-residue distances of complexes. We

develop a deep learning method CDPred (i.e., Complex Distance Prediction)

based on the 2D attention-powered residual network to address the gap.
Tested on two homodimer datasets, CDPred achieves the precision of 60.94%
and 42.93% for top L/5 inter-chain contact predictions (L: length of the

monomer in homodimer), respectively, substantially higher than DeepHomo’s
37.40% and 23.08% and GLINTER’s 48.09% and 36.74%. Tested on the two
heterodimer datasets, the top Ls/5 inter-chain contact prediction precision (Ls:
length of the shorter monomer in heterodimer) of CDPred is 47.59% and
22.87% respectively, surpassing GLINTER'’s 23.24% and 13.49%. Moreover, the
prediction of CDPred is complementary with that of AlphaFold2-multimer.

Proteins are a key building block of life. The function of a protein is
largely determined by its three-dimensional structure'. Sometimes
single-chain proteins (monomers) can perform certain functions, while
the structures of most individual proteins interact to form multi-chain
complex structures (multimers) to carry out their biological function?.
Therefore, modeling the three-dimensional structure of both mono-
mers and protein complexes is crucial for studying protein function.
Deep learning has been applied to advance the prediction of the
tertiary structures of monomers since 2012°. Over a decade, many
deep learning methods were developed to predict intra-chain residue-
residue contact maps or distance maps of monomers*®, which were
used by contact/distance-based modeling methods such as CONFOLD”
and Rosetta'’ to build their tertiary structures. Extensive studies”!'™"?
have shown that if a sufficiently accurate intra-chain distance map is
predicted, then the protein’s tertiary structure can be accurately
constructed. Most recently, AlphaFold2'* uses an end-to-end deep
learning method to predict both tertiary structures and residue-
residue distances of monomers, achieved a very high average accuracy
(~90 Global Distance Test (GDT-TS) score” in the 14th Critical

Assessment of Techniques for Protein Structure Prediction (CASP14) in
2020. Recently, AlphaFold2 was extended to AlphaFold-multimer'®
and AF2Complex'’ to improve the prediction of quaternary structures
of multimers.

Following the deep learning revolution in the prediction of intra-
chain residue-residue distances and tertiary structures, recently some
deep learning methods were developed to predict the inter-chain
residue-residue contact map of homodimers and/or heterodimers,
such as ComplexContact'®, DeepHomo'?, DRcon?’, and GLINTER?' that
predicts the contact map for both homodimers and heterodimers
using as input a graph representation of protein monomer structure
and the row attention maps generated from multiple sequence align-
ments (MSAs) by the MSA transformer??. The attention map calculated
by the MSA transformer is a kind of residue-residue co-evolutionary
feature extracted from MSAs. It has been automatically trained on
millions of MSAs to capture the co-evolutionary information across
many diverse protein families during its unsupervised pretraining.
Despite the significant progress, the accuracy of inter-chain contact
prediction is still much lower than that of intra-chain contact/distance
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prediction, which calls for the development of more methods to tackle
this problem.

In this work, we develop a protein complex distance prediction
method (CDPred) based on a deep learning architecture combining
the strengths of the deep residual network®’, a channel-wise attention
mechanism, and a spatial-wise attention mechanism to predict the
inter-chain distance maps of both homodimers and heterodimers. As
in GLINTER, the attention map of the MSA generated by the MSA
transformer is used as one input for CDPred. The predicted distance
map for monomers in dimers is used as another input feature. Differ-
ent from the existing deep learning methods, CDPred predicts inter-
chain distances rather than binary inter-chain contacts (contact or no
contact) that the current methods, such as DeepHomo and GLINTER
predict. We test the CDPred rigorously on two homodimer test data-
sets and two heterodimer test datasets. For these datasets, CDPred
yields much higher accuracy than DeepHomo and GLINTER.

Results
Evaluation of inter-chain contact prediction for homodimers
We compare CDPred with DNCON2 inter’*, DeepComplex”’, Dee-
pHomo, and GLINTER on the HomoTestl homodimer test dataset with
the results shown in Table I. The input tertiary structures for all three
methods are predicted structures corresponding to the unbound
monomer structures. The DNCONZ2 _inter is run with the recommended
parameters. The DeepComplex web server isused to get its prediction
results. The results of DeepHomo are obtained from its publication.
Three versions of CDPred are tested. The first version (CDPred_BFD)
uses the MSAs generated from the BFD database as input. The second
version (CDPred_Uniclust) uses the MSAs generated from the Uni-
clust30 database as input. The third version (CDPred) uses the average
of the distance maps predicted by CDPred BFD and CDPred_Uniclust
as the prediction. Because DeepHomo and GLINTER predict binary
inter-chain contacts at an 8 A threshold instead of distances, we con-
vert the inter-chain distance predictions of CDPred, CDPred BFD, and
CDPred_Uniclust into binary contact predictions for comparison. The
definition of inter-chain contact is the same as GLINTER and Dee-
pHomo, i.e., a pair of inter-chain residues is considered to be in contact
if the distance between their two closest heavy atoms is less than 8 A.
This definition is used to evaluate all the inter-chain contact predic-
tions in this work.

CDPred achieves the highest contact prediction precision across
the board among all the methods. For instance, CDPred has a top L/5
contact prediction precision of 60.94%, which is 50.34% percentage
points higher than DNCON2_inter, 9.64% percentage points higher
than DeepComplex, 23.54% percentage points higher than DeepHomo,
and 12.85% percentage points higher than GLINTER. CDPred performs
better than DNCON2 _inter, DeepComplex, DeepHomo, and GLINTER
also interms of Accuracy Rate and AUC score and second best in terms
of Accuracy Order. According to almost all the evaluation metrics,

CDPred performs better than both CDPred BFD and CDPred Uniclust,
indicating that averaging the distance predictions made from the two
kinds of MSAs can improve the prediction accuracy.

We also compared the methods above on the HomoTest2
homodimer test dataset (Table 2). CDPred performs best in terms of all
the evaluation metrics. Combining the predictions of CDPred from two
kinds of MSAs improves the prediction accuracy.

The impact of MSA depth on the accuracy of inter-chain contact
prediction for homodimers

Section 2.1 shows that two different MSAs (BFD and Uniclust) lead to
different prediction accuracy for CDPred BFD and CDPred Uniclust,
and CDPred that averages the two contact maps predicted from the
two MSAs yields the best result. Here, we investigate how the depth of
MSAs and a direct combination of the two MSAs may affect prediction
accuracy. Supplementary Tables 1, 2 reports the number of sequences
and the number of effective sequences (Neff)*® for each dimer in
HomoTestl and HomoTest2 as well as the top L/2 contact prediction
precision of CDPred BFD, CDPred Uniclust, CDPred, and CDPred -
ComMSA that uses the simple combination of the BFD MSA and Uni-
clust MSA as input. Neff weights similar sequences in MSA less in
counting the number of sequences and is widely used to measure the
depth of MSA.

The Neff and contact prediction precision for CDPred BFD and
CDPred_Uniclust vary from target to target. The Pearson correlation
coefficient between the difference of Neff and the difference of the top
L/2 precision for CDPred BFD and CDPred Uniclustis 0.31 and 0.67 on
HomoTestl and HomoTest2, respectively, indicating that the depth of
MSA has some positive impact on the contact prediction precision.
CDPred_ComMSA, which combines the two MSAs to generate a deeper
MSA as input, performs better than both CDPred BFD and CDPre-
d_Uniclust on HomoTestl and better than CDPred BFD on HomoTest2,
suggesting that directly combining two MSAs can be beneficial.

CDPred still performs slightly better than CDPred ComMSA in
terms of top L/2 prediction precision on both datasets (55.19 versus
55.13% on HomoTestl and 38.14 versus 36.14% on HomoTest2), indi-
cating that averaging the distance maps predicted from the two MSAs
is more effective than simply combining the two MSAs as input.

Evaluation of inter-chain contact prediction for heterodimers

We compare CDPred and a state-of-the-art heterodimer contact pre-
dictor GLINTER on both HeteroTestl and HeteroTest2 heterodimer
test datasets (see results in Tables 3, 4, respectively). The input tertiary
structures of monomers used by both methods are predicted by
AlphaFold2. We use two different orders of monomer A and monomer
B (AB and BA) in each heterodimer to generate input features for
CDPred to make predictions. The average of the outputs of the two
orders isused as the final prediction. The process of averaging the two
outputs is shown in Supplementary Figure 1. The inter-chain part of the

Table 1 |The precision of top 5, top 10, top L/10, top L/5, and top L contact predictions, accuracy order (AccOrder), accuracy
rate (AccRate), and AUC (area under receiver operating characteristic curve) score on the HomoTestl test dataset for
DNCONZ2_inter, DeepComplex, DeepHomo, GLINTER, and three versions of CDPred

Predictors top 5 top 10 top L/10 top L/5 top L/2 top L AccOrder (%o) AccRate (%) AUC
DNCONZ2_inter 10.71 10.00 11.39 10.60 7.04 3.84 642.92 14.29 0.51
DeepComplex 57.86 56.07 54.81 51.30 41.29 34.88 40.29 71.43 0.84
DeepHomo - 52.50 43.20 37.40 28.20 - 2.10 67.90 -

GLINTER 54.81 54.07 50.54 48.09 41.90 34.91 -8.61 = 0.88
CDPred_BFD 63.57 62.50 61.24 58.26 52.78 47.08 1112 75.00 0.90
CDPred_Uniclust 65.71 61.79 60.53 58.18 54.14 47.91 7.76 75.00 0.89
CDPred 66.43 65.71 63.14 60.94 55.19 49.01 75.00 0.89

L: sequence length of a monomer in a homodimer. Bold numbers denote the best results. AccOrder is the rank of the first correct contact prediction divided by the number of residues of a dimer. The
smaller is AccOrder, the better is the performance. AccRate is the percentage of dimers for which at least one of the top 10 inter-chain contact predictions is correct.
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Table 2 | The precision of top 5, top 10, top L/10, top L/5, and top L contact predictions, accuracy order, accuracy rate, and AUC
score on the HomoTest2 test dataset for DeepHomo, GLINTER, and CDPred predictors

Predictor top 5 top 10 top L/10 top L/5 top L/2 top L AccOrder (%o) AccRate (%) AUC
DNCONZ2_inter 11.30 9.57 1138 6.91 3.74 3.16 609.17 17.39 0.50
DeepComplex 38.26 35.65 32.47 29.13 23.49 19.12 5.40 52.17 0.72
DeepHomo - 30.43 27.32 23.08 - - - - -

GLINTER = 43.04 40.18 36.74 = - - = =

CDPred_BFD 43.48 41.74 42.24 40.01 35.92 33.80 3.41 60.87 0.89
CDPred_Uniclust 48.70 45.22 43.32 39.64 37.46 32.32 1.32 65.22 0.86
CDPred 48.70 48.26 47.11 42.93 38.14 34.52 1.25 66.96 0.89

Bold numbers denote the highest precision.

Table 3 |The evaluation of contact predictions on the HeteroTest1 test dataset for the DeepComplex, GLINTER, and CDPred

Predictor top 5 top 10 top Ls/10 top Ls/5 top Ls/2 top Ls AccOrder(%eo) AccRate (%) AUC
DeepComplex 13.33 7.78 9.86 7.40 4.79 3.73 1.43 33.33 0.58
GLINTER - 24.44 29.70 23.24 - - - - -

CDPred 55.56 54.44 51.47 47.59 38.64 32.73 16.90 77.78 0.81

Ls: the sequence length of the shorter monomer in a heterodimer. Bold numbers denote the best result.

Table 4 |The evaluation of contact predictions on the HeteroTest2 test dataset for the DeepComplex, GLINTER, and CDPred

Predictor top 5 top 10 top Ls/10 top Ls/5 top Ls/2 top Ls AccOrder(%o) AccRate (%) AUC
DeepComplex 7.00 7.00 5.44 5.63 5.01 4.34 191.38 10.00 0.57
GLINTER 14.55 13.27 13.73 13.49 12.27 10.40 - - -

CDPred 23.27 23.82 23.93 22.87 20.17 17.51 62.14 32.73 0.77

Ls: the sequence length of the shorter monomer in a heterodimer. Bold numbers denote the best result.

BA prediction map is taken out and transposed to the same shape as its
counterpart in the AB prediction map before they are averaged.

On the HeteroTestl dataset (Table 3), CDPred achieves much
better performance than GLINTER in terms of all the metrics. It is also
substantially better than DeepComplex in terms of all the metrics but
Accuracy Order. For instance, the top Ls/5 contact prediction precision
of CDPred, 47.59% is more than twice 23.24% that of GLINTER, and
40.19% percentage points higher than DeepComplex. On the Het-
eroTest2 dataset (Table 4), CDPred also substantially outperforms
DeepComplex and GLINTER in terms of all the metrics (contact pre-
cisions, Accuracy Order, Accurate Rate, and/or AUC).

Supplementary Tables 3, 4 compare the performance of using the
two different orders of monomers as input (CDPred(A B) and
CDPred(B_A)) and averaging the outputs of the two different orders
(CDPred) on the HeteroTestl and HeteroTest2 datasets, respectively.
The accuracy of CDPred(A_B) and CDPred(B_A) varies from target to
target and from dataset to dataset. Sometimes the precision of the two
orders can be substantially different (see Supplementary Fig. 2 for a
target-by-target comparison of the precision on HeteroTestl and
HeteroTest2). However, a two-sided pairwise t-test shows that there is
no significant difference between the two on average. Even though
averaging the contact maps predicted in two different orders does not
always yield the best accuracy, it makes the performance more stable
by reducing the variance and smoothing the prediction. For instance,
CDPred often delivers either the best or medium prediction accuracy
in comparison with CDPred(A_B) and CDPred(B_A).

Furthermore, we divide the top L/10 contact prediction precisions
for the heterodimers in the more challenging HeteroTest2 dataset into
four equal intervals and plot the number of heterodimers in each
interval (Fig. 1). The precision of the predictions in the four internals is
bifurcated, mainly centered on a low precision interval [0—25%] and a
high precision interval [75—100%]. Forty heterodimers have low

contact prediction precision in the range of 0-25%, indicating
there is still a large room for improvement. One reason for the
low precision is that most of the 40 heterodimers have shallow MSAs.
The Pearson correlation coefficient between the logarithm of
the number of effective sequences (Neff) of MSA and the top L/10
complex contact precision is 0.46, indicating a modest correlation
between the two.

Itis also observed that the inter-chain contact prediction accuracy
for heterodimers is lower than for homodimers on average. One rea-
son is that the MSA generation for a homodimer only needs to gen-
erate an MSA for a monomer in the homodimer, which is usually much
deeper than the MSA generated for a heterodimer that requires the
pairing of the related sequences in the MSAs of two different mono-
mers in the heterodimer. Another reason is that homodimers tend to
have a larger interaction interface than heterodimers on average,
making the prediction easier.

Comparison of the co-evolutionary features generated by the
statistical optimization method and deep learning method

To compare the performance of the co-evolutionary feature generated
by the statistical optimization tool —CCMPred and the deep learning
tool—-MSA transformer, we trained two different models on the two
different kinds of co-evolutionary features of the same training dataset
using the same network architecture. One network
(CDPred_PLM) is trained on the PLM co-evolutionary features gener-
ated by CCMPred. Another one (CDPred ESM) is trained on the row
attention map features generated by the MSA transformer. The pre-
cision of the top L/10 contact predictions of the two models on the
four different test datasets are plotted in Fig. 2. CDPred_ESM has better
performance than CDPred PLM on all four test datasets, indicating that
the co-evolutionary feature extracted automatically by the deep
learning method is more informative than by the statistical
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optimization method of maximizing direct co-evolutionary signals.
However, combining the two kinds of co-evolutionary features yields
even better results (see the results in Tables 1, 2, 3, and 4). Supple-
mentary Figure 3 plots the top L/10 precision of CDPred_ESM against
the top L/10 precision of CDPred PLM for the homodimers in the two
homodimer test datasets and the heterodimers in the two hetero-
dimers test datasets, respectively. For 42 out of 5] homodimers and 55
out of 64 heterodimers, CDPred ESM has higher precision than
CDPred PLM. Both CDPred_ESM and CDPred PLM can perform better
on some targets, indicate the co-evolutionary features used by the two
methods have some complementarity.

The impact of the quality of predicted tertiary structures of
monomers on inter-chain distance prediction of dimers

The quaternary structure of a protein complex depends on the tertiary
structure of its monomer units. As Alphafold can predict the tertiary

structure of monomers very well, we investigated how effectively
AlphaFold-predicted tertiary structures can be applied to predict inter-
chain distance maps for protein complexes. The TM-scores of the
predicted tertiary structure for each monomer unit of each dimer and
the contact prediction precision of CDPred on the four datasets
(HomoTestl, HomoTest2, HeteroTesstl, and HeteroTest2) are shown
in Supplementary Tables 5, 6, 7, 8, respectively. The average TM-
scores of the predicted tertiary structures for HomoTestl and
HomoTest2 are 0.95 and 0.90, for Chain A of heterodimers in Het-
eroTestl and HeteroTest2 are 0.90 and 0.89, and for Chain B of het-
erodimers in HeteroTestl and HeteroTest2 are 0.95 and 0.88,
respectively, indicating the AlphaFold-predicted tertiary structures
have high quality. The Pearson’s correlation between the TM-score of
the predicted tertiary structures and top L/2 contact prediction pre-
cision is 0.19. The weak correlation may be partly due to that the
quality of predicted tertiary structures is high enough in general for
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CDPred to leverage most tertiary structure information to predict
inter-chain distances.

Moreover, we compared the top L/2 inter-chain contact predic-
tion precision of using AlphaFold-predicted tertiary structures of
monomers as input and using true tertiary structures of monomers in
the bound state as input on the four datasets (Fig. 3). Using the true
tertiary structures yields slightly better performance than using the
AlphaFold-predicted structures on three out of four datasets
(HomoTestl, HomoTest2, and HeteroTest2), but slightly worse per-
formance on HeteroTestl. The p value of the pairwise t-test of the
difference on the four datasets is 0.6802, 0.8892, 0.9083, and 0.9963,
respectively, indicating that the difference is not significant. The
results show that the AlphaFold-predicted tertiary structures are suf-
ficiently accurate for CDPred to make inter-chain distance prediction,
even though using true tertiary structures as input can slightly improve
the prediction accuracy overall. This is different from GLINTER whose
accuracy of using true tertiary structures as input is substantially
higher than using AlphaFold-predicted tertiary structures as input?'.

High correlation between the precision of inter-chain contact
predictions and predicted probability scores

The previous work on the intra-chain distance prediction®’ shows that
the intra-chain distance prediction accuracy and predicted probability
scores have a strong correlation, which can be used to select predicted
intra-chain distance maps. Here, we investigate if a similar correlation
exists in the inter-chain distance prediction. Figure 4 is a plot of the
precision of top L/5 inter-chain contact predictions and the average of
their probability scores for each target in the four test datasets. The
correlation between the top L/5 inter-chain contact precision and the
average predicted probability score is 0.7345. The high correlation
suggests that the probability of inter-chain contacts predicted by
CDPred can be used to estimate the confidence of the inter-chain
prediction.

The comparison between CDPred and AlphaFold2-multimer

AlphaFold2-multimer is currently the state-of-the-art method for pre-
dicting quaternary structures of multimers. To investigate if CDPred is
complementary with AlphaFold2-multimer, we compare their inter-
chain contact prediction accuracy on the four datasets. The compar-
ison is not completely fair because the redundancy between the test
datasets and AlphaFold2-multimer’s training dataset is not removed.

We ran the latest version (Version 2) of AlphaFold2-multimer without
templates to predict the quaternary structures for the dimers in the
four test datasets. The inter-chain distance maps are extracted from
the predicted quaternary structures. Each distance in the map is
inverted to generate a contact probability map to be compared with
the inter-chain contact map predicted by CDPred. Supplementary
Figure 4 presents a target-by-target comparison of the top L/2 inter-
chain contact prediction precision of CDPred and AlphaFold2-
multimer for each target in the four test datasets. AlphaFold2-
multimer has higher top L/2 precision than CDPred on the majority
of the targets. However, for the very hard 44 targets on which the top
L/2 precision of AlphaFold2-multimer is less than 10%, CDPred per-
forms better than AlphaFold2-multimer on 15 targets, equally on 25
targets, and worse on 4 targets. On the 19 hard targets that the two
methods perform differently, the average precision of CDpred is 14.8%,
much higher than 1.79% of AlphaFold2-multimer. The p value of the
two-sided pairwise t-test of the difference is 0.0068, indicating it is
significant. For instance, for target 7LB6, the top L/2 precision of
CDPred is 44.62%, much higher than 0% of AlphaFold2-multimer. The
Neff of the MSA of the target is 16.6. The results show that CDPred is
complementary with AlphaFold2-multimer and can be particularly
useful when the target is very hard and AlphFold2-multimer prediction
has very low confidence. One possible application of CDPred is to use
its predicted distance map to rank and select diverse quaternary
structural models of hard targets predicted by AlphaFold2-multimer.

An interesting inter-chain distance prediction example

Typically, when the MSA is shallow, the precision of inter-chain dis-
tance prediction is low due to the lack of information. However,
CDPred still can accurately predict inter-chain distance for some tar-
gets with shallow MSAs. Figure 5 shows such a CASP13 homodimer
target T0991, the distance map is visualized by matplotlib’®. Its MSA
has only one sequence. The TM-score” of the tertiary structure of the
monomer of T0991 predicted by AlphaFold2 is 0.3104, indicating the
predicted tertiary structure fold isnot correct. However, the precision
of top L/10, top L/5, and top L/2 inter-chain contacts derived from the
distance map predicted by CDPred is 72.73, 68.18, and 56.36%,
respectively, which is high. Figures 5a, b show the intra-chain distance
maps of the AlphaFold-predicted tertiary structure and the true ter-
tiary structure of the monomer, Fig. 5¢ shows the inter-chain contact
map predicted by CDPred, and Fig. 5d the true inter-chain contact
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Fig. 5| The prediction for homodimer T0991 with a shallow MSA. a The intra-chain distance map of the monomer predicted by AlphaFold. b The true intra-chain
distance map of the monomer. ¢ The inter-chain contact map predicted by CDPred. d the true inter-chain contact map.

Nature Communications | (2022) 13:6963 6



Article

https://doi.org/10.1038/s541467-022-34600-2

sequence

Multiple sequence alignment

Monomer structure

CCmpred

Attention maps 4

Fig. 6 | Overview of the CDPred architecture. CDPred simultaneously uses the
tertiary structural information (i.e., intra-chain distance map of monomers),
sequential information (PSSM), and residue-residue co-evolutionary information
(i.e., co-evolutionary scores calculated by CCMpred and attention maps by MSA
transformer) as input to predict inter-chain distance maps. The dimension of the
input for the homomer dimer is L X L x 186 (L is the length of the monomer
sequence), while the dimension of the input for the heterodimer is (L1 +L2) x

Conv2D (1*7)

'
'

'

c '

@ o) @ S 5 -1

= = = c = 2 3.
a £ ol B £ o g 5 =l
£ © x q T x T o 2% £ 5 8 il
J—a8— 2z —87 Conv2D (7*1) Be 12— <5 —<8 L
15 o = Q © = @ = Q T m o= x
3 E S g EE 8 &% =2 g |
m <] ] S I y o '
2 2 Conv2D (3*3) z 5 1%} '

'

LN =
x
]
- aQ 5 o [a]
5 N o o N
2 g % kot z
c o
= Q z Q
o = @ o
(o]
4

(L1+L2)x 186 (LI and L2 are the length of the two different monomers in the
heterodimer). Each of the two output matrices has the same dimension as the input
except for the number of output channels. The number of the output channels of
the output layer is 42, storing the predicted probability of the distance in 42 dis-
tance bins. Two output matrices are generated, representing the two kinds of
predicted inter-chain distance maps.

map. The predicted inter-chain contact map accurately recalls a large
portion of the true inter-chain contacts.

Methods

Attention-based neural network architecture

Figure 6 illustrates the overall architecture of CDPred based on the
channel-wise and spatial-wise attention mechanisms. CDPred takes the
tertiary structures of monomers of a dimer as input and extracts the
monomer sequences and intra-chain distance maps. For homodimers,
since the sequences of the two monomers of a homodimer are the
same, only one monomer tertiary structure is used as input. The
monomer sequences are used to search the protein sequence data-
bases to generate MSAs of dimers, which are used to generate residue-
residue co-evolutionary scores, row attention maps, and position-
specific scoring matrix (PSSM) as input features (see Features Sub-
section 4.2 for details). The complete input for CDPred is the con-
catenation of all the input features.

The input features stored in 2D tensors of multiple channels are
first transformed by a 2D convolutional layer, followed by a Maxout
layer’’ to reduce the dimensionality. The output of the Maxout layer is
used as input for a series of deep residual network blocks empowered
by the attention mechanism. The residual network has been widely
used in computer vision and protein intra-chain distance and contact
prediction®’3!. Here, we combine the residual connection with other
useful components to construct a residual block, which includes the
normalization block (called RCIN) consisting of a row normalization
layer (RN), column normalization layer (IN)*, and instance normal-
ization (IN)** for normalizing the feature maps, a channel attention
squeeze-and-excitation (SE) block’* for capturing the important
information of different feature channels, and a spatial attention
block’® that captures signals between residues right after the channel
attention block. Following the residual blocks, a 2D convolutional
layer with the softmax function is used to classify the distance between
any two residues from two monomers in a dimer into 42 distance bins
(i.e., 40 bins from 2 to 22 A with a bin size of 0.5 A, plus a 0—2 A bin and
a >22 A bin). Two kinds of inter-chain residue-residue distance are
predicted at the same time: (1) the distance between the two
closest heavy atoms from two residues used by most existing
works in the field and (2) the C-Cy distance between two residues used

by some recent works®®

predicted.

, resulting in two kinds of distance maps

Features

The input features of CDPred contain (1) the tertiary structure infor-
mation of monomers in the form of an intra-chain distance map, (2)
pairwise co-evolutionary features, and (3) sequential amino acid con-
servation features, which are stored in an LxLxN tensor (L is the
length of the sequence of a monomer for a homodimer or the sum of
the length of two monomers (L1+L2) for a heterodimer). N is the
number of feature channels for each pair of residues.

Tertiary structure information of monomers. The protein tertiary
structure information of a monomer in a dimer is represented as an
intra-chain distance map storing the distance between C;, atoms of two
residues in the monomer. For a homodimer, an intra-chain distance
map (LXLx1) computed from the tertiary structure of only one
monomer is used. For a heterodimer, two intra-chain distance maps
(L1 xL1x1andL2 x L2 x 1) ofthe two monomers in the heterodimer are
computed from their tertiary structures and added as the top left
submatrix and the bottom right submatrix of the input distance map of
the dimer of (L1+L2) x (L1+L2) % 1 dimension. The values of the other
area of the input distance map of the heterodimer are set to 0. In the
training phase, the true tertiary structures of monomers in the dimers
are used to compute the intra-chain distance maps above. During the
test/prediction phase, the tertiary structures of monomers predicted
by AlphaFold are used to generate the intra-chain distance maps as
input. Using predicted tertiary structures as input is more challenging
but can more objectively evaluate the performance of inter-chain
distance prediction because, in most situations, the true tertiary
structures of the monomers are not known. A predicted tertiary
structure also corresponds to an unbound tertiary structure, a term
commonly used in the protein docking field.

Co-evolutionary features. MSAs are generated for homodimers or
heterodimers as input for the calculation of their co-evolutionary
features. To challenge the deep learning method to effectively predict
inter-chain distance maps from noisy inputs, in the training phase, we
use less sensitive tools or smaller sequence databases to generate
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MSAs, but in the test phase, we use state-of-the-art tools and larger
databases to generate the requisite MSAs. Specifically, in the training
phase, for a homodimer, we use PSI-BLAST?” to search the sequence of
amonomer against Uniref90 (2018-04)** to generate the MSAs, and for
a heterodimer, we follow the procedure in FoldDock®’ using the
HHblits*’ to search against Uniclust30 (2017-10) to generate the MSA
for each of the two monomers and then pair the two MSAs to produce
an MSA for the heterodimer according to the organism taxonomy ID of
the sequences.

In the test stage, for a homodimer, we use HHblits to search the
sequence of a monomer against the Big Fantastic Database (BFD)*' and
Uniclust30 (2017-10), respectively, to generate two MSAs for a single
chain of the homodimers, which are used to generate input features
separately to make two predictions that are averaged as the final
predicted distance map; for a heterodimer, an MSA is generated by the
same procedure used in EvComplex2*, which applies the jackhammer
to search against Uniref90 (2018-04) to generate one MSA for each of
the two monomers and then pairs the sequences from the two MSAs to
produce an MSA for the heterodimer according to the highest
sequence identity with the monomer sequences in each species. The
MSA for a homodimer or a heterodimer is used by a statistical opti-
mization tool CCMpred*® to generate a residue-residue co-evolu-
tionary score matrix (L xL x 1) as features and by a deep learning tool
MSA transformer®” to generate residue-residue relationship (attention)
matrices (L x L x 144) as features. L is the number of columns in MSA.

Sequential features. The sequence profile (i.e., position-specific
scoring matrix (PSSM)) of the protein generated by the PSI-BLAST
search above contains the residue conservation information. The
PSSM of a monomer in a homodimer or the vertical concatenation of
two PSSMs of two monomers in a heterodimer in the shape of L x 20 is
tiled (i.e., cross-concatenated element by element) to generate
sequential features of dimensionality L x L x 40.

Training procedure and hyperparameters

The deep neural network uses the input features above to predict a
heavy atom distance map and a C,, distance map of shape L xL x42.
The 42 channels store the probability of a distance between two resi-
dues in 42 distance bins. The predicted inter-chain distance maps are
compared with their true counterparts to calculate the cross-entropy
loss to adjust the weights during training. For a heterodimer (L=L1+
L2), an output distance map of dimension (L1+L2)x(L1+L2)x42
contains both inter-chain distance predictions and intra-chain distance
predictions. Only inter-chain distance predictions are used to calculate
the cross-entropy loss to train the networks, while the intra-chain
distance predictions are ignored. The number of convolutional layers
of CDPred is set to 156, and the number of filters of each convolutional
layer is set to 64. The batch size in training is set to | due to the
limitation of GPU memory. We used the Adam optimizer with a le-3
learning rate to train the model for the first 30 epochs to achieve fast
convergence and used stochastic gradient descent with the le-4
starting learning rate and 10-time reduction every 20 epochs for the
remaining 50 epochs to further reduce the training loss.

Datasets and evaluation metrics

We use the DeepHomo training dataset'” to train the homodimer inter-
chain distance predictor. The whole dataset includes 4,132 homo-
dimeric proteins with C2 symmetry. And after removing proteins that
have >=30% sequence identity with the blind test datasets (HomoTestl
and HomoTest2) consisting of the targets of the CASP/CAPRI experi-
ments using MMseq2*, 4129 homodimers are left as training, valida-
tion, and internal test data. The same as DeepHomo, we select 300 of
them as the validation data and 300 as the internal test data and use
the rest as the training data. The test dataset used by DeepHomo

contains 28 targets collected from the CASP10-13 experiments is used
as one blind homodimer test dataset (HomoTestl). Another test
dataset used by GLINTER?, which includes 23 homodimer targets
collected from the CASPI3 and 14, is used as the other blind homo-
dimer test dataset (HomoTest2). The two blind test datasets have six
common targets.

For heterodimers, we use the heterodimers in Apoc*’ to create the
training, validation, and internal test datasets. After filtering out similar
sequences at the 40% sequence identity threshold and removing the
sequences with 230% sequence identity with the blind test datasets
(HeteroTestl and HeteroTest2), 3955 heterodimers are left. We ran-
domly select 3576 of them as the training data, 198 as the validation
data, and 181 as the internal test data. The test dataset used by GLINTER
which contains nine heterodimer targets from the CASP13 and CASP14
experiments in conjunction with the CAPRI experiments is used as a
blind test dataset (HeteroTestl). To create a larger blind test dataset,
we collect the heterodimer released between 09-2021 and 11-2021 in
the PDB. After filtering out similar sequences at a 40% sequence
identity threshold and excluding sequences with >1000 residues tar-
gets, 55 heterodimers are left to create another blind test dataset
(HeteroTest2).

Since the external methods, GLINTER and DeepHomo predict
inter-chain contacts instead of inter-chain distances, to fairly compare
CDPred with them, we use the precision of contact prediction as the
evaluation metric. Specifically, the precision of top 5, 10, L/10 (or Ls/
10), L/5 (or Ls/5), L/2 (or Ls/2), and L (or Ls) contact predictions (L:
length of a monomer in homodimers, Ls: length of the shorter
monomer in heterodimers) is computed and compared. A similar
metric is also widely used in evaluating intra-chain contact prediction.
Because DeepHomo and GLINTER predict inter-chain contacts at an
8 A threshold, we use the same threshold to convert the distance maps
predicted by CDPred into the binary contact map. A predicted inter-
chain contact is correct if the minimal distance between the heavy
atoms of the two residues is less than 8 A. The accuracy order, accuracy
rate*®, and AUC score are also used to evaluate the inter-chain distance
prediction of CDPred. The accuracy order is the rank of the first correct
contact prediction divided by the total number of residues of a dimer.
AccRate is the percentage of dimers for which at least one of the top 10
inter-chain contact predictions is correct.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The test data generated in this study have been deposited in the
Zenodo database under Creative Commons Attribution 4.0 Interna-
tional Public License at https://zenodo.org/record/6647564. The raw
protein dimer data used in this study are available under the CCO
1.0 Universal (CCO0 1.0) Public Domain Dedication at https://www.
rcsb.org/. The source data generated in this study are provided in
the Source Data file. The Uniclust30(2017-10) database used in
this study is available under the Creative Commons Attribution-
ShareAlike 4.0 International License at https://wwwuser.gwdg.
de/~compbiol/uniclust/2017 10/. The Uniref90(2018-10) data-
base used in this study is available under the Creative Commons
Attribution 4.0 International (CC BY 4.0) License at https:/www.
uniprot.org/help/uniref. And the Big Fantastic Database (BFD)
database used in this study is available at https://bfd.mmseqs.
com/. Source data are provided with this paper.

Code availability
The code of CDPred” is
BioinfoMachineLearning/CDPred.

available at: https://github.com/
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