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Residue-residue distance information is useful for predicting tertiary struc-
tures of protein monomers or quaternary structures of protein complexes.

Check for updates Many deep learning methods have been developed to predict intra-chain

residue-residue distances of monomers accurately, but few methods can
accurately predict inter-chain residue-residue distances of complexes. We
develop a deep learning method CDPred (i.e., Complex Distance Prediction)
based on the 2D attention-powered residual network to  address the gap.
Tested on two homodimer datasets, CDPred achieves the precision of 60.94%
and 42.93% for top L/5 inter-chain contact predictions (L: length of the

monomer in homodimer), respectively, substantially higher than DeepHomo’s
37.40% and 23.08% and GLINTER’s 48.09% and 36.74%. Tested on the two

heterodimer datasets, the top Ls/5 inter-chain contact prediction precision (Ls:
length of the shorter monomer in heterodimer) of CDPred is 47.59% and

22.87% respectively, surpassing GLINTER’s 23.24% and 13.49%. Moreover, the

prediction of CDPred is complementary with that of AlphaFold2-multimer.

Proteins are a key building block of life. The function of a protein is
largely determined by its three-dimensional structure1. Sometimes
single-chain proteins (monomers) can perform certain functions, while
the  structures of most individual proteins interact to  form multi-chain
complex structures (multimers) to  carry out  their biological function2.
Therefore, modeling the three-dimensional structure of both  mono-
mers and protein complexes is crucial for studying protein function.

Deep learning has been applied to  advance the  prediction of the
tertiary structures of monomers since 20123. Over a decade, many
deep  learning methods were developed to  predict intra-chain residue-
residue contact maps or  distance maps of monomers4–8, which were
used by contact/distance-based modeling methods such as CONFOLD9

and Rosetta10 to  build their tertiary structures. Extensive studies9,11–13

have shown that if a sufficiently accurate intra-chain distance map is
predicted, then the  protein’s tertiary structure can be  accurately
constructed. Most recently, AlphaFold214 uses an end-to-end deep
learning method to  predict both  tertiary structures and residue-
residue distances of monomers, achieved a very high average accuracy
(~90 Global Distance Test (GDT-TS) score15     in the 14th Critical

Assessment of Techniques for Protein Structure Prediction (CASP14) in
2020. Recently, AlphaFold2 was extended to  AlphaFold-multimer16

and AF2Complex17 to  improve the  prediction of quaternary structures
of multimers.

Following the  deep  learning revolution in the prediction of intra-
chain residue-residue distances and tertiary structures, recently some
deep  learning methods were developed to  predict the  inter-chain
residue-residue contact map of homodimers and/or heterodimers,
such as ComplexContact18, DeepHomo19, DRcon20, and GLINTER21 that
predicts the  contact map for both  homodimers and heterodimers
using as input a graph representation of protein monomer structure
and the  row attention maps generated from multiple sequence align-
ments (MSAs) by the MSA transformer22. The attention map calculated
by the  MSA transformer is a kind of residue-residue co-evolutionary
feature extracted from MSAs. It has been automatically trained on
millions of MSAs to  capture the co-evolutionary information across
many diverse protein families during its unsupervised pretraining.
Despite the  significant progress, the  accuracy of inter-chain contact

prediction is still much lower than that of intra-chain contact/distance
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prediction, which calls for the development of more methods to tackle
this problem.

In this work, we develop a protein complex distance prediction
method (CDPred) based on  a deep learning architecture combining
the  strengths of the deep residual network23, a channel-wise attention
mechanism, and a spatial-wise attention mechanism to  predict the
inter-chain distance maps of both  homodimers and heterodimers. As
in GLINTER, the attention map of the  MSA generated by the  MSA
transformer is used as one  input for CDPred. The predicted distance
map for monomers in dimers is used as another input feature. Differ-
ent from the  existing deep  learning methods, CDPred predicts inter-
chain distances rather than binary inter-chain contacts (contact or  no
contact) that the  current methods, such as DeepHomo and GLINTER
predict. We test the  CDPred rigorously on  two homodimer test data-
sets and two heterodimer test datasets. For these datasets, CDPred
yields much higher accuracy than DeepHomo and GLINTER.

Results
Evaluation of inter-chain contact  prediction for homodimers
We compare CDPred with DNCON2_inter24, DeepComplex25, Dee-
pHomo, and GLINTER on  the  HomoTest1 homodimer test dataset with
the results shown in Table 1. The input tertiary structures for all three
methods are predicted structures corresponding to  the  unbound
monomer structures. The DNCON2_inter is run with the recommended
parameters. The DeepComplex web server is used to  get its prediction
results. The results of DeepHomo are obtained from its publication.
Three versions of CDPred are tested. The first version (CDPred_BFD)
uses the  MSAs generated from the  BFD database as input. The second
version (CDPred_Uniclust) uses the  MSAs generated from the  Uni-
clust30 database as input. The third version (CDPred) uses the  average
of the distance maps predicted by CDPred_BFD and CDPred_Uniclust
as the prediction. Because DeepHomo and GLINTER predict binary
inter-chain contacts at an 8 Å threshold instead of distances, we con-
vert the  inter-chain distance predictions of CDPred, CDPred_BFD, and
CDPred_Uniclust into binary contact predictions for comparison. The
definition of inter-chain contact is the same as GLINTER and Dee-
pHomo, i.e., a pair of inter-chain residues is considered to be in contact
if the distance between their two closest heavy atoms is less than 8 Å.
This definition is used to  evaluate all the inter-chain contact predic-
tions in this work.

CDPred achieves the  highest contact prediction precision across
the  board among all the methods. For instance, CDPred has a top  L/5
contact prediction precision of 60.94%, which is 50.34% percentage
points higher than DNCON2_inter, 9.64% percentage points higher
than DeepComplex, 23.54% percentage points higher than DeepHomo,
and 12.85% percentage points higher than GLINTER. CDPred performs
better  than DNCON2_inter, DeepComplex, DeepHomo, and GLINTER
also in terms of Accuracy Rate and AUC score and second best in terms
of Accuracy Order. According to  almost all the  evaluation metrics,

https://doi.org/10.1038/s41467-022-34600-2

CDPred performs better  than both  CDPred_BFD and CDPred_Uniclust,
indicating that averaging the  distance predictions made from the  two
kinds of MSAs can improve the  prediction accuracy.

We also compared the  methods above on  the  HomoTest2
homodimer test dataset (Table 2). CDPred performs best in terms of all
the evaluation metrics. Combining the predictions of CDPred from two
kinds of MSAs improves the prediction accuracy.

The impact  of MSA dep th  on  the  accuracy of inter-chain contact
prediction for homodimers
Section 2.1 shows that two different MSAs (BFD and Uniclust) lead to
different prediction accuracy for CDPred_BFD and CDPred_Uniclust,
and CDPred that averages the  two contact maps predicted from the
two MSAs yields the  best result. Here, we investigate how the  depth  of
MSAs and a direct combination of the  two MSAs may affect prediction
accuracy. Supplementary Tables 1, 2 reports the  number of sequences
and the  number of effective sequences (Neff)26 for each dimer in
HomoTest1 and HomoTest2 as well as the  top  L/2 contact prediction
precision of CDPred_BFD, CDPred_Uniclust, CDPred, and CDPred_-
ComMSA that uses the simple combination of the  BFD MSA and Uni-
clust MSA as input. Neff weights similar sequences in MSA less in
counting the  number of sequences and is widely used to  measure the
depth  of MSA.

The Neff and contact prediction precision for CDPred_BFD and
CDPred_Uniclust vary from target to  target. The Pearson correlation
coefficient between the difference of Neff and the difference of the top

L/2 precision for CDPred_BFD and CDPred_Uniclust is 0.31 and 0.67 on
HomoTest1 and HomoTest2, respectively, indicating that the  depth  of
MSA has some positive impact on  the contact prediction precision.
CDPred_ComMSA, which combines the two MSAs to generate a deeper
MSA as input, performs better  than both  CDPred_BFD and CDPre-
d_Uniclust on HomoTest1 and better than CDPred_BFD on HomoTest2,
suggesting that directly combining two MSAs can be  beneficial.

CDPred still performs slightly better  than CDPred_ComMSA in
terms of top  L/2 prediction precision on  both  datasets (55.19 versus
55.13% on  HomoTest1 and 38.14 versus 36.14% on  HomoTest2), indi-
cating that averaging the  distance maps predicted from the  two MSAs
is more effective than simply combining the  two MSAs as input.

Evaluation of inter-chain contact  prediction for heterodimers
We compare CDPred and a state-of-the-art heterodimer contact pre-
dictor GLINTER on  both  HeteroTest1 and HeteroTest2 heterodimer
test datasets (see results in Tables 3, 4, respectively). The input tertiary
structures of monomers used by both  methods are predicted by
AlphaFold2. We use two different orders of monomer A and monomer
B (AB and BA) in each heterodimer to  generate input features for
CDPred to  make predictions. The average of the outputs of the  two
orders is used as the  final prediction. The process of averaging the  two

outputs is shown in Supplementary Figure 1. The inter-chain part of the

Table 1 | The precision of top 5, top 10, top L/10, top L/5, and top L  contact predictions, accuracy order (AccOrder), accuracy
rate (AccRate), and AUC (area under receiver operating characteristic curve) score on the HomoTest1 test dataset for
DNCON2_inter, DeepComplex, DeepHomo, GLINTER, and three versions of CDPred

Predictors

DNCON2_inter

DeepComplex

DeepHomo

GLINTER

CDPred_BFD

CDPred_Uniclust

CDPred

top 5 top 10

10.71 10.00

57.86 56.07

- 52.50

54.81 54.07

63.57 62.50

65.71 61.79

66.43 65.71

top L/10 top L/5 top L/2 top L

11.39 10.60 7.04 3.84

54.81 51.30 41.29 34.88

43.20 37.40 28.20 -

50.54 48.09 41.90 34.91

61.24 58.26 52.78 47.08

60.53 58.18 54.14 47.91

63.14 60 .9 4 55.19 49.01

AccOrder (‰)

642.92

40.29

2.10

-8.61

11.12

7.76

AccRate (%) AUC

14.29 0.51

71.43 0.84

67.90 -

- 0.88

75.00 0. 9 0

75.00 0.89

75.00 0.89

L: sequence length of a monomer in a homodimer. Bold numbers denote the best results. AccOrder is the rank of thefirst correct contact prediction divided by the number of residues of a dimer. The
smaller is AccOrder, the better is the performance. AccRate is the percentage of dimers for which at least one of the top 10 inter-chain contact predictions is correct.
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Table 2 | The precision of top 5, top 10, top L/10, top L/5, and top L contact predictions, accuracy order, accuracy rate, and AUC
score on the HomoTest2 test dataset for DeepHomo, GLINTER, and CDPred predictors

Predictor top 5 top 10

DNCON2_inter 11.30 9.57

DeepComplex 38.26 35.65

DeepHomo - 30.43

GLINTER - 43.04

CDPred_BFD 43.48 41.74

CDPred_Uniclust 48.70 45.22

CDPred 48.70 48.26

top L/10

11.38

32.47

27.32

40.18

42.24

43.32

47.11

top L/5 top L/2

6.91 3.74

29.13 23.49

23.08 -

36.74 -

40.01 35.92

39.64 37.46

42.93 38.14

top L AccOrder (‰)

3.16 609.17

19.12 5.40

- -

- -

33.80 3.41

32.32 1.32

34.52 1.25

AccRate (%) AUC

17.39 0.50

52.17 0.72

- -

- -

60.87 0.89

65.22 0.86

66.96 0.89

Bold numbers denote the highest precision.

Table 3  | The evaluation of contact predictions on the HeteroTest1 test dataset for the DeepComplex, GLINTER, and CDPred

Predictor

DeepComplex

GLINTER

CDPred

top 5 top 10

13.33 7.78

- 24.44

55.56 54.44

top Ls/10

9.86

29.70

51.47

top Ls/5

7.40

23.24

47.59

top Ls/2 top L s

4.79 3.73

- -

38.64 32.73

AccOrder(‰)

1.43

-

16.90

AccRate (%) AUC

33.33 0.58

- -

77.78 0.81

Ls: the sequence length of the shorter monomer in a heterodimer. Bold numbers denote the best result.

Table 4  | The evaluation of contact predictions on the HeteroTest2 test dataset for the DeepComplex, GLINTER, and CDPred

Predictor                          top 5

DeepComplex                 7.00

GLINTER                            14.55

CDPred 23.27

top 10 top Ls/10

7.00 5.44

13.27 13.73

23.82 23.93

top Ls/5

5.63

13.49

22.87

top Ls/2 top L s

5.01 4.34

12.27 10.40

20.17 17.51

AccOrder(‰)

191.38

-

62.14

AccRate (%) AUC

10.00 0.57

- -

32.73 0.77

Ls: the sequence length of the shorter monomer in a heterodimer. Bold numbers denote the best result.

BA prediction map is taken out and transposed to the same shape as its
counterpart in the AB prediction map before they are averaged.

On the  HeteroTest1 dataset (Table 3), CDPred achieves much
better  performance than GLINTER in terms of all the  metrics. It is also
substantially better  than DeepComplex in terms of all the  metrics but
Accuracy Order. For instance, the top Ls/5 contact prediction precision
of CDPred, 47.59% is more than twice 23.24% that of GLINTER, and
40.19% percentage points higher than DeepComplex. On the  Het-
eroTest2 dataset (Table 4), CDPred also substantially outperforms
DeepComplex and GLINTER in terms of all the  metrics (contact pre-
cisions, Accuracy Order, Accurate Rate, and/or AUC).

Supplementary Tables 3, 4 compare the performance of using the
two different orders of monomers as input (CDPred(A_B) and
CDPred(B_A)) and averaging the  outputs of the  two different orders
(CDPred) on  the  HeteroTest1 and HeteroTest2 datasets, respectively.
The accuracy of CDPred(A_B) and CDPred(B_A) varies from target to
target and from dataset to dataset. Sometimes the precision of the two
orders can be  substantially different (see Supplementary Fig. 2 for a
target-by-target comparison of the  precision on  HeteroTest1 and
HeteroTest2). However, a two-sided pairwise t-test shows that there is
no  significant difference between the two on  average. Even though

averaging the  contact maps predicted in two different orders does no t
always yield the  best accuracy, it makes the  performance more stable

contact prediction precision in the  range of 0–25%, indicating
there is still a large room for improvement. One reason for the
low precision is that most of the  40 heterodimers have shallow MSAs.
The Pearson correlation coefficient between the logarithm of
the number of effective sequences (Neff) of MSA and the  top  L/10
complex contact precision is 0.46, indicating a modest correlation
between the  two.

It is also observed that the inter-chain contact prediction accuracy
for heterodimers is lower than for homodimers on  average. One rea-
son is that the  MSA generation for a homodimer only needs to  gen-
erate an MSA for a monomer in the  homodimer, which is usually much
deeper  than the  MSA generated for a heterodimer that requires the
pairing of the related sequences in the MSAs of two different mono-
mers in the  heterodimer. Another reason is that homodimers tend  to
have a larger interaction interface than heterodimers on  average,
making the  prediction easier.

Comparison of the  co-evolutionary features generated  by the
statistical optimization me th od  and  deep  learning me th od
To compare the performance of the co-evolutionary feature generated
by the  statistical optimization tool —CCMPred and the deep  learning
tool—MSA transformer, we trained two different models on  the  two
different kinds of co-evolutionary features of the same training dataset

by reducing the  variance and smoothing the  prediction. For instance, using     the      same     neural     network     architecture.     One     network
CDPred often delivers either the  best or  medium prediction accuracy
in comparison with CDPred(A_B) and CDPred(B_A).

Furthermore, we divide the top L/10 contact prediction precisions
for the  heterodimers in the  more challenging HeteroTest2 dataset into
four equal intervals and plot the  number of heterodimers in each
interval (Fig. 1). The precision of the  predictions in the  four internals is
bifurcated, mainly centered on  a low precision interval [0–25%] and a

high precision interval [75–100%]. Forty heterodimers have low

(CDPred_PLM) is trained on  the  PLM co-evolutionary features gener-
ated by CCMPred. Another one  (CDPred_ESM) is trained on  the row
attention map features generated by the  MSA transformer. The pre-
cision of the  top  L/10 contact predictions of the  two models on  the
four different test datasets are plotted in Fig. 2. CDPred_ESM has better
performance than CDPred_PLM on all four test datasets, indicating that
the  co-evolutionary feature extracted automatically by the  deep
learning method is more informative than by the  statistical
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Fig. 1 | The h is togra m of t h e  precision of t h e  t o p  L/10 contact predictions

for t h e  he te rod ime rs in t h e  HeteroTest2 da tase t .  The X-axis is the four

precision intervals from 0  to  100%. The Y-axis is the number of heterodimers
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whose contact precision falls in each interval. Each interval has 40, 2, 1, and 12

heterodimers, respectively.

60.00
54.42

50.00
45.07

42.41

40.00 38.41

34.22

30.00 28.68

22.03

20.00
15.22

10.00

0.00
HomoTest1 HomoTest2 HeteroTest1 HeteroTest2

Test Datasets

CDPred_PLM CDPred_ESM

Fig. 2 | Comparison between CDPred_PLM (blue) and CDPred_ESM (orange) on four different test datasets. The y-axis is the top L/10 contact prediction precision, and

the x-axis is the four different test datasets.

optimization method of maximizing direct co-evolutionary signals.
However, combining the  two kinds of co-evolutionary features yields
even better  results (see the  results in Tables 1, 2, 3, and 4). Supple-
mentary Figure 3 plots the  top  L/10 precision of CDPred_ESM against
the top  L/10 precision of CDPred_PLM for the homodimers in the two
homodimer test datasets and the heterodimers in the two hetero-
dimers test datasets, respectively. For 42 out  of 51 homodimers and 55
out  of 64 heterodimers, CDPred_ESM has higher precision than
CDPred_PLM. Both CDPred_ESM and CDPred_PLM can perform better
on  some targets, indicate the  co-evolutionary features used by the  two
methods have some complementarity.

The impact  of the  quality of predicted  tertiary structures  of
monomers  on  inter-chain distance prediction of dimers
The quaternary structure of a protein complex depends on the tertiary
structure of its monomer units. As Alphafold can predict the  tertiary

structure of monomers very well, we investigated how effectively
AlphaFold-predicted tertiary structures can be applied to predict inter-
chain distance maps for protein complexes. The TM-scores of the
predicted tertiary structure for each monomer unit of each dimer and
the contact prediction precision of CDPred on  the  four datasets
(HomoTest1, HomoTest2, HeteroTesst1, and HeteroTest2) are shown
in Supplementary Tables 5, 6, 7, 8, respectively. The average TM-
scores of the  predicted tertiary structures for HomoTest1 and
HomoTest2 are 0.95 and 0.90, for Chain A of heterodimers in Het-
eroTest1 and HeteroTest2 are 0.90  and 0.89, and for Chain B of het-
erodimers in HeteroTest1 and HeteroTest2 are 0.95 and 0.88,
respectively, indicating the  AlphaFold-predicted tertiary structures
have high quality. The Pearson’s correlation between the TM-score of

the  predicted tertiary structures and top  L/2 contact prediction pre-
cision is 0.19. The weak correlation may be  partly due  to  that the
quality of predicted tertiary structures is high enough in general for

Nature Communications | (2022) 13:6963 4



T
o

p
 L

/2
 c

o
n

ta
ct

 p
re

ci
si

o
n

(%
)

Article https://doi.org/10.1038/s41467-022-34600-2
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60.00
59.73

55.19

50.00

40.00 38.14
39.57 38.64

36.74

30.00

20.17 20.20
20.00

10.00
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PRED TRUE PRED TRUE PRED TRUE PRED TRUE

HomoTest1 HomoTest2 HeteroTest1 HeteroTest2

Fig. 3 | Comparison of using AlphaFold-predicted tert iary structure (blue) and  t rue  tertiary structure (yellow) t o  genera te  intra-chain distance maps as input  for

predicting inter-chain distance maps on  th e  four datasets. Top L/2 contact prediction precision on the datasets is reported.

CDPred to  leverage most tertiary structure information to  predict
inter-chain distances.

Moreover, we compared the  top  L/2 inter-chain contact predic-
tion precision of using AlphaFold-predicted tertiary structures of
monomers as input and using true tertiary structures of monomers in
the  bound  state as input on  the four datasets (Fig. 3). Using the  true
tertiary structures yields slightly better  performance than using the
AlphaFold-predicted structures on  three out  of four datasets
(HomoTest1, HomoTest2, and HeteroTest2), but  slightly worse per-
formance on  HeteroTest1. The p value of the  pairwise t-test of the
difference on  the  four datasets is 0.6802, 0.8892, 0.9083, and 0.9963,
respectively, indicating that the difference is not  significant. The
results show that the  AlphaFold-predicted tertiary structures are suf-
ficiently accurate for CDPred to  make inter-chain distance prediction,
even though using true tertiary structures as input can slightly improve
the  prediction accuracy overall. This is different from GLINTER whose
accuracy of using true tertiary structures as input is substantially
higher than using AlphaFold-predicted tertiary structures as input21.

High correlation between the  precision of inter-chain contact
predictions and  predicted  probability scores
The previous work on  the  intra-chain distance prediction27 shows that
the  intra-chain distance prediction accuracy and predicted probability
scores have a strong correlation, which can be used to select predicted
intra-chain distance maps. Here, we investigate if a similar correlation
exists in the  inter-chain distance prediction. Figure 4 is a plot of the
precision of top  L/5 inter-chain contact predictions and the  average of
their probability scores for each target in the  four test datasets. The
correlation between the  top  L/5 inter-chain contact precision and the
average predicted probability score is 0.7345. The high correlation
suggests that the probability of inter-chain contacts predicted by
CDPred can be  used to  estimate the  confidence of the  inter-chain

prediction.

The comparison between CDPred and  AlphaFold2-multimer
AlphaFold2-multimer is currently the  state-of-the-art method for pre-
dicting quaternary structures of multimers. To investigate if CDPred is
complementary with AlphaFold2-multimer, we compare their inter-
chain contact prediction accuracy on  the  four datasets. The compar-
ison is no t  completely fair because the redundancy between the test
datasets and AlphaFold2-multimer’s training dataset is not  removed.

We ran the latest version (Version 2) of AlphaFold2-multimer without
templates to  predict the quaternary structures for the dimers in the
four test datasets. The inter-chain distance maps are extracted from
the predicted quaternary structures. Each distance in the map is
inverted to  generate a contact probability map to  be  compared with
the  inter-chain contact map predicted by CDPred. Supplementary
Figure 4 presents a target-by-target comparison of the  top  L/2 inter-
chain contact prediction precision of CDPred and AlphaFold2-
multimer for each target in the  four test datasets. AlphaFold2-
multimer has higher top  L/2 precision than CDPred on  the  majority
of the targets. However, for the very hard 44 targets on  which the  top
L/2 precision of AlphaFold2-multimer is less than 10%, CDPred per-
forms better  than AlphaFold2-multimer on  15 targets, equally on  25
targets, and worse on  4 targets. On the 19 hard targets that the  two
methods perform differently, the average precision of CDpred is 14.8%,
much higher than 1.79% of AlphaFold2-multimer. The p value of the

two-sided pairwise t-test of the  difference is 0.0068, indicating it is
significant. For instance, for target 7LB6, the top  L/2 precision of

CDPred is 44.62%, much higher than 0% of AlphaFold2-multimer. The
Neff of the  MSA of the  target is 16.6. The results show that CDPred is
complementary with AlphaFold2-multimer and can be  particularly
useful when the target is very hard and AlphFold2-multimer prediction
has very low confidence. One possible application of CDPred is to  use

its predicted distance map to  rank and select diverse quaternary
structural models of hard targets predicted by AlphaFold2-multimer.

An interesting inter-chain distance prediction example
Typically, when the  MSA is shallow, the precision of inter-chain dis-
tance prediction is low due  to  the lack of information. However,
CDPred still can accurately predict inter-chain distance for some tar-
gets with shallow MSAs. Figure 5 shows such a CASP13 homodimer
target T0991, the  distance map is visualized by matplotlib28. Its MSA
has only one  sequence. The TM-score29 of the tertiary structure of the
monomer of T0991 predicted by AlphaFold2 is 0.3104, indicating the
predicted tertiary structure fold is not  correct. However, the  precision
of top  L/10, top  L/5, and top  L/2 inter-chain contacts derived from the
distance map predicted by CDPred is 72.73, 68.18, and 56.36%,
respectively, which is high. Figures 5a, b  show the  intra-chain distance
maps of the  AlphaFold-predicted tertiary structure and the  true ter-
tiary structure of the  monomer, Fig. 5c shows the  inter-chain contact
map predicted by CDPred, and Fig. 5d the  true inter-chain contact
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Fig. 4  | The plot  of inter-chain contact prediction precision against average

contact probability. The y-axis is the precision of top L/5 inter-chain contact

predictions made by CDPred for a target, and the x-axis is the average probability

(a)

(c)

of the top L/5 contact predictions for the target. Each point represents a dimer

target in the four test datasets (HomoTest1, HomoTest2, HeteroTest1 and

HeteroTest2).

(b)

(d)

Fig. 5 | The prediction for homodimer  T0991 with a  shallow MSA. a  The intra-chain distance map of the monomer predicted by AlphaFold. b  The true intra-chain

distance map of the monomer. c The inter-chain contact map predicted by CDPred. d  the true inter-chain contact map.
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Fig. 6  | Overview of t he  CDPred architecture. CDPred simultaneously uses the

tertiary structural information (i.e., intra-chain distance map of monomers),

sequential information (PSSM), and residue-residue co-evolutionary information

(i.e., co-evolutionary scores calculated by CCMpred and attention maps by MSA

transformer) as input to  predict inter-chain distance maps. The dimension of the

input for the homomer dimer is L × L × 186 (L is the length of the monomer

sequence), while the dimension of the input for the heterodimer is (L1 + L2) x

map. The predicted inter-chain contact map accurately recalls a large
portion of the  true inter-chain contacts.

Methods
Attention-based neural  network architecture
Figure 6  illustrates the overall architecture of CDPred based on  the
channel-wise and spatial-wise attention mechanisms. CDPred takes the
tertiary structures of monomers of a dimer as input and extracts the
monomer sequences and intra-chain distance maps. For homodimers,
since the  sequences of the  two monomers of a homodimer are the
same, only one  monomer tertiary structure is used as input. The
monomer sequences are used to  search the  protein sequence data-
bases to  generate MSAs of dimers, which are used to  generate residue-
residue co-evolutionary scores, row attention maps, and position-
specific scoring matrix (PSSM) as input features (see Features Sub-

section 4.2 for details). The complete input for CDPred is the con-
catenation of all the input features.

The input features stored in 2D tensors of multiple channels are
first transformed by a 2D convolutional layer, followed by a Maxout

layer30 to  reduce the dimensionality. The output  of the  Maxout layer is
used as input for a series of deep  residual network blocks empowered
by the  attention mechanism. The residual network has been widely
used in computer vision and protein intra-chain distance and contact
prediction5,7,31. Here, we combine the  residual connection with other
useful components to  construct a residual block, which includes the
normalization block (called RCIN) consisting of a row normalization
layer (RN), column normalization layer (IN)32, and instance normal-
ization (IN)33 for normalizing the  feature maps, a channel attention
squeeze-and-excitation (SE) block34     for capturing the  important
information of different feature channels, and a spatial attention
block35 that captures signals between residues right after the  channel
attention block. Following the  residual blocks, a 2D convolutional
layer with the softmax function is used to classify the distance between
any two residues from two monomers in a dimer into 42 distance bins
(i.e., 40 bins from 2 to 22 Å with a bin size of 0.5 Å, plus a 0–2 Å bin and
a >22 Å bin). Two kinds of inter-chain residue-residue distance are
predicted at the  same time: (1) the distance between the  two
closest heavy atoms from two residues used by most existing
works in the field and (2) the Cb-Cb distance between two residues used

SoftMax

(L1 + L2) × 186 (L1 and L2 are the length of the two different monomers in the

heterodimer). Each of the two output matrices has the same dimension as the input

except for the number of output channels. The number of the output channels of

the output layer is 42, storing the predicted probability of the distance in 42 dis-

tance bins. Two output matrices are generated, representing the two kinds of

predicted inter-chain distance maps.

by some recent works36, resulting in two kinds of distance maps
predicted.

Features
The input features of CDPred contain (1) the  tertiary structure infor-
mation of monomers in the  form of an intra-chain distance map, (2)
pairwise co-evolutionary features, and (3) sequential amino acid con-
servation features, which are stored in an L × L × N tensor (L is the
length of the sequence of a monomer for a homodimer or  the  sum of
the length of two monomers (L1 + L2) for a heterodimer). N is the
number of feature channels for each pair of residues.

Tertiary structure information of monomers. The protein tertiary

structure information of a monomer in a dimer is represented as an
intra-chain distance map storing the distance between Cb atoms of two

residues in the  monomer. For a homodimer, an intra-chain distance
map (L × L × 1) computed from the  tertiary structure of only one
monomer is used. For a heterodimer, two intra-chain distance maps
(L1 × L1 × 1 and L2 × L2 × 1) of the two monomers in the heterodimer are
computed from their tertiary structures and added as the  top  left
submatrix and the bottom right submatrix of the input distance map of
the dimer of (L1 + L2) × (L1 + L2) × 1 dimension. The values of the  other
area of the  input distance map of the  heterodimer are set to  0. In the
training phase, the  true tertiary structures of monomers in the  dimers
are used to  compute the  intra-chain distance maps above. During the
test/prediction phase, the tertiary structures of monomers predicted
by AlphaFold are used to  generate the intra-chain distance maps as
input. Using predicted tertiary structures as input is more challenging
but  can more objectively evaluate the performance of inter-chain
distance prediction because, in most situations, the  true tertiary
structures of the  monomers are not  known. A predicted tertiary
structure also corresponds to  an unbound tertiary structure, a term
commonly used in the  protein docking field.

Co-evolutionary features. MSAs are generated for homodimers or
heterodimers as input for the  calculation of their co-evolutionary
features. To challenge the  deep  learning method to  effectively predict
inter-chain distance maps from noisy inputs, in the  training phase, we
use less sensitive tools or  smaller sequence databases to  generate
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MSAs, but  in the  test phase, we use state-of-the-art tools and larger
databases to  generate the  requisite MSAs. Specifically, in the  training
phase, for a homodimer, we use PSI-BLAST37 to  search the sequence of
a monomer against Uniref90 (2018-04)38 to generate the MSAs, and for
a heterodimer, we follow the  procedure in FoldDock39 using the
HHblits40 to  search against Uniclust30 (2017-10) to  generate the  MSA
for each of the  two monomers and then pair the  two MSAs to  produce
an MSA for the heterodimer according to the organism taxonomy ID of
the  sequences.

In the test stage, for a homodimer, we use HHblits to  search the
sequence of a monomer against the Big Fantastic Database (BFD)41 and
Uniclust30 (2017-10), respectively, to  generate two MSAs for a single
chain of the homodimers, which are used to  generate input features
separately to  make two predictions that are averaged as the final
predicted distance map; for a heterodimer, an MSA is generated by the
same procedure used in EvComplex242, which applies the  jackhammer
to  search against Uniref90 (2018-04) to  generate one  MSA for each of
the two monomers and then pairs the sequences from the two MSAs to
produce an MSA for the  heterodimer according to  the highest
sequence identity with the  monomer sequences in each species. The
MSA for a homodimer or  a heterodimer is used by a statistical opti-
mization tool CCMpred43 to  generate a residue-residue co-evolu-
tionary score matrix (L × L × 1) as features and by a deep learning tool
MSA transformer22 to generate residue-residue relationship (attention)
matrices (L × L × 144) as features. L is the number of columns in MSA.

Sequential features. The sequence profile (i.e., position-specific

scoring matrix (PSSM)) of the  protein generated by the PSI-BLAST
search above contains the residue conservation information. The
PSSM of a monomer in a homodimer or  the  vertical concatenation of
two PSSMs of two monomers in a heterodimer in the shape of L × 20 is
tiled (i.e., cross-concatenated element by element) to  generate
sequential features of dimensionality L × L × 40.

Training procedure  and  hyperparameters
The deep  neural network uses the input features above to  predict a
heavy atom distance map and a Cb distance map of shape L × L × 42.
The 42 channels store the  probability of a distance between two resi-
dues in 42 distance bins. The predicted inter-chain distance maps are
compared with their true counterparts to  calculate the cross-entropy
loss to  adjust the  weights during training. For a heterodimer (L = L1 +
L2), an output  distance map of dimension (L1 + L2) × (L1 + L2) × 42
contains both inter-chain distance predictions and intra-chain distance
predictions. Only inter-chain distance predictions are used to calculate
the  cross-entropy loss to  train the  networks, while the  intra-chain
distance predictions are ignored. The number of convolutional layers
of CDPred is set to  156, and the  number of filters of each convolutional

layer is set to  64. The batch size in training is set to  1 due  to  the
limitation of GPU memory. We used the  Adam optimizer with a 1e-3
learning rate to  train the  model for the first 30 epochs to  achieve fast

convergence and used stochastic gradient descent with the 1e-4
starting learning rate and 10-time reduction every 20 epochs for the
remaining 50 epochs to  further reduce the training loss.

Datasets and  evaluation metrics
We use the DeepHomo training dataset19 to train the homodimer inter-
chain distance predictor. The whole dataset includes 4,132 homo-
dimeric proteins with C2 symmetry. And after removing proteins that
have > =30% sequence identity with the blind test datasets (HomoTest1
and HomoTest2) consisting of the targets of the  CASP/CAPRI experi-
ments using MMseq244, 4129 homodimers are left as training, valida-
tion, and internal test data. The same as DeepHomo, we select 300  of
them as the  validation data and 300  as the  internal test data and use
the rest as the  training data. The test dataset used by DeepHomo

https://doi.org/10.1038/s41467-022-34600-2

contains 28 targets collected from the  CASP10-13 experiments is used
as one  blind homodimer test dataset (HomoTest1). Another test
dataset used by GLINTER21, which includes 23 homodimer targets
collected from the CASP13 and 14, is used as the  other  blind homo-
dimer test dataset (HomoTest2). The two blind test datasets have six
common targets.

For heterodimers, we use the heterodimers in Apoc45 to create the
training, validation, and internal test datasets. After filtering out similar
sequences at the  40% sequence identity threshold and removing the
sequences with ≥30% sequence identity with the  blind test datasets
(HeteroTest1 and HeteroTest2), 3955 heterodimers are left. We ran-
domly select 3576 of them as the  training data, 198 as the validation
data, and 181 as the internal test data. The test dataset used by GLINTER
which contains nine heterodimer targets from the  CASP13 and CASP14
experiments in conjunction with the CAPRI experiments is used as a
blind test dataset (HeteroTest1). To create a larger blind test dataset,
we collect the  heterodimer released between 09-2021 and 11-2021 in
the  PDB. After filtering out  similar sequences at a 40% sequence
identity threshold and excluding sequences with >1000 residues tar-
gets, 55 heterodimers are left to  create another blind test dataset
(HeteroTest2).

Since the external methods, GLINTER and DeepHomo predict
inter-chain contacts instead of inter-chain distances, to  fairly compare
CDPred with them, we use the  precision of contact prediction as the
evaluation metric. Specifically, the precision of top  5, 10, L/10 (or Ls/

10), L/5 (or Ls/5), L/2 (or Ls/2), and L (or Ls) contact predictions (L:
length of a monomer in homodimers, Ls: length of the  shorter
monomer in heterodimers) is computed and compared. A similar
metric is also widely used in evaluating intra-chain contact prediction.
Because DeepHomo and GLINTER predict inter-chain contacts at an
8 Å threshold, we use the same threshold to convert the distance maps
predicted by CDPred into the binary contact map. A predicted inter-
chain contact is correct if the  minimal distance between the heavy
atoms of the two residues is less than 8 Å. The accuracy order, accuracy
rate46, and AUC score are also used to evaluate the  inter-chain distance
prediction of CDPred. The accuracy order is the rank of the first correct

contact prediction divided by the  total number of residues of a dimer.
AccRate is the percentage of dimers for which at least one of the top 10
inter-chain contact predictions is correct.

Reporting summary
Further information on  research design is available in the Nature
Portfolio Reporting Summary linked to  this article.

Data availability
The test data generated in this study have been deposited in the
Zenodo database under  Creative Commons Attribution 4.0 Interna-
tional Public License at https://zenodo.org/record/6647564. The raw
protein dimer data used in this study are available u n d e r  t h e  CC0
1.0 Universal (CC0 1.0) Public Domain Dedication at https://www.
rcsb.org/. The source data generated in this study are provided in
t h e  Source Data file. The Uniclust30(2017-10) database used in

this study is available u n d e r  t h e  Creative Commons Attribution-
ShareAlike 4.0 International License at https://wwwuser.gwdg.
de/~compbiol/uniclust/2017_10/. The Uniref90(2018-10) data-
base used in this study is available u n d e r  t h e  Creative Commons
At t ribut ion 4.0 International (CC BY 4.0) License at https://www.
uniprot .org/he lp/uniref . And t h e  Big Fantastic Database (BFD)
database used in this study is available at https://bfd.mmseqs.
com/. Source data are provided with this paper .

Code availability
The     code     of     CDPred47        is     available     at:     https://github.com/
BioinfoMachineLearning/CDPred.
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