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U-Nets (called DistDom) to predict protein domain boundaries utilizing 1D sequence
features and predicted 2D inter-residue distance map as input. The 1D features contain
the evolutionary and physicochemical information of protein sequences, whereas the
2D distance map includes the structural information of proteins that was rarely used

in domain boundary prediction before. The 1D and 2D features are processed by the
1D and 2D U-Nets respectively to generate hidden features. The hidden features are
then used by the multi-head attention to predict the probability of each residue of a
protein being in a domain boundary, leveraging both local and global information in
the features. The residue-level domain boundary predictions can be used to classify
proteins as single-domain or multi-domain proteins. It classifies the CASP14 single-
domain and multi-domain targets at the accuracy of 75.9%, 13.28% more accurate than
the state-of-the-art method. Tested on the CASP14 multi-domain protein targets with
expert annotated domain boundaries, the average per-target F1 measure score of the
domain boundary prediction by DistDom is 0.263, 29.56% higher than the state-of-the-
art method.
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Introduction

Protein domains are cohesive structural regions of a protein chain, which usually
assume a compact structure. Domains are the structural, functional or evolutionary
units of proteins [1]. They also act as the building blocks of larger proteins [2]. The
information about the location of domains is useful for improving protein structure
prediction [3] and analyzing protein function. Thus, identification of protein domain
boundaries is important for addressing the challenge in protein structure and func-
tion annotations [4] as well as exploring the protein structure and function space [5].
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As a large amount of protein sequences is being produced on a daily basis, there is a
significant need of automated methods for predicting domain boundaries in protein
sequences [6].

There are two types of approaches for predicting protein domain boundaries from
sequences without known experimental structures, i.e., template-based and ab ini-tio
prediction. In the case of template-based prediction, the goal is to find homolo-gous
template sequences that have known domain information for a target protein. These
alignments between the templates and a target are used to transfer the domain
boundary information from the homologous sequences to the target protein. Some
template-based methods are CHOP [7], DomPred [8], SSEP-Domain [9], ThreaDom
[10], CLADE [11], MetaCLADE [12] and SnapDRAGON [13]. These methods can be
effective and accurate when close templates are found. However, if no highly similar
templates with known domain information are found, the performance of these mod-
els declines sharply [1]. The ab initio prediction can be broadly applied to any protein as
it does not require a homologous template with known domain information. The ab
initio methods are mostly based on statistical and machine learning models, which are
trained to predict domain boundaries from sequences and sequence-derived fea-tures.
Some ab initio methods are CHOPnet [7], PPRODO [14], DOMpro [15], Kema-Dom
[16], DomainDiscovery [17], IGRN [18], DomSVR [19], DoBo [6], DROP [20],
DomHR [21], PDP-CON [22], ConDo [23], DNN-Dom [24], DeepDom [1], FUPred
[25]. As ab initio methods do not have similar templates as a guidance for domain
boundary prediction, their performance tends to be less accurate than the template-
based methods for targets having templates available. This is partly because extracting
useful information from sequences for boundary prediction is still an open, challeng-
ing problem [1]. The expert-curated features through a manual, laborious process
used by the existing methods are not suficiently informative for accurate domain
prediction. Deep learning is a powerful technique to automatically generate features
from raw input to improve prediction accuracy [26, 27]. In this work, we develop U-
Net deep learning architectures [28] that achieved success in image segmentation to
automatically extract the features from 1D and 2D input information generated from
protein sequences to predict domain boundaries. 1D sequential information such as
sequence profiles used in secondary structure prediction [29] as well as 2D residue-
residue distance map predicted from sequences [30] is used as input. Because domain
boundaries are global properties of a protein that may depend on residues far away, we
integrate a multi-head attention mechanism approach [31] with U-Nets to extract
long-range information from the 1D and 2D inputs to predict whether a resi-due falls
into a domain boundary or not. The attention mechanism can capture sig-nals related
to domain boundaries occurring anywhere in the input more effectively than
traditional recurrent neural networks [32] or more advanced long- and short-term
memory (LSTM) networks [33]. Because the predicted 2D distance map is a rather
unique feature of our method that was rarely used by the existing methods, our method
is called DistDom. In addition to the novel multi-head attention based 1D and 2D U-
Net architectures to integrate 2D distance maps with 1D sequence infor-mation to
predict domain boundaries, DistDom substantially improves the prediction accuracy

over the existing methods.
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Methods

Training, validation and test datasets

We use 4072 protein targets from the Topdomain dataset [34] to create the training and
validation data. These proteins were split 80% for training and 20% for validation. We
also collected the targets with domain information curated by CASP organizers from
the archive of CASP7-14 experiments [35] as independent test data. 619 proteins (193
multi domain targets, 426 single domain targets) from the CASP7-13 are used as one
test data and 55 proteins (20 multi domain targets, 35 single domain) from CASP14 are
used as another test dataset. The domains of the CASP14 proteins have been manually
annotated by CASP14 organizers and assessors and therefore are of high quality. To
rigorously evaluate the prediction performance, we remove the proteins in the valida-
tion test data sets that have more than 30% sequence identity with the training dataset
according to PSI-BLAST [36] alignments. The final Topdomain validation set has 793
protein targets, the final CASP7-13 test dataset has 610 targets, and the CASP14 dataset
has 55 targets. Because a domain boundary region usually spans a number of residues
between two domains, 10 residues within an expert-annotated boundary position on
the sequence of a target are considered boundary residues (i.e., positive examples). All
other residues are considered non-boundary ones (i.e., negative examples). Specifically,
along the sequence of a target, we consider 10 residues in the neighborhood of an expert
annotated boundary position (5 residues to the left of the boundary position, the residue at
the boundary position and 4 residues to the right of the boundary position) as in a
domain boundary. This definition is used to label boundary residues for multi-domain
proteins to train the deep learning method. In addition, a region separated by a domain
boundary must have at least 40 residues to be considered a separate domain. After labe-
ling the residues, the domain boundary prediction problem is to predict if a residue is a

boundary residue or not.

Input feature generation

We generate two kinds of input features including two-dimensional (2D) residue-residue
distance maps and one-dimensional (1D) sequential information for each protein, which
are described below.

2D distance map

Residue-residue distance map is a concise representation for protein conformation,
which can be used to reconstruct 3D protein structure. The distance map can be rather
accurately predicted for many proteins from sequences [37, 38]. Therefore, predicted
distance maps contain relevant information that can be used to predict protein domain
boundaries. However, even though true residue-residue contact maps (i.e., binary dis-
tance maps) have been used to delineate protein domain boundaries, predicted distance
maps have not been well used as input for deep learning methods to predict domain
boundaries. In this work, we use DeepDist [30], an ab initio deep learning method for
predicting residue-residue distance maps as input. For a protein sequence of length L, a
distance map of L x L matrix contains the predicted Euclidean distance (d) between any

two residues (i, j) in terms of angstrom. Because generally only distances smaller
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than a threshold contain useful information regarding protein structure, we use a dis-
tance threshold (e.g., 8,12,16 A) to select all the predicted distances equal to or less than
the threshold as input, while replacing all other distances with a special value (- 1).
The entire input matrix is then normalized by the min-max normalization to facilitate
the training of deep learning models. Because the maximum value in the matrix is the
threshold (t) and the minimum value is - 1, a distance (d) in the matrix is normalized by
the formula: (d - min)/ (max - min) = (d+ 1)/ (t+ 1). Three commonly used distance
thresholds (i.e., 8, 12, 16 A) are tested to select the best threshold. The shape of the 2D
input is L x L. Figure 1 compares an original distance map and its normalized counter-
part, demonstrating that the signals in the normalized map are more clearer than in the
original one.

1D sequential information

The domain boundary prediction is a 1D prediction problem that has some similarity
with other 1D structural feature prediction problems such as secondary structure pre-
diction, in which sequence profile and residue conservation information are useful.
Therefore, we use the input generation module of an accurate secondary structure pre-
dictor - DNSS2 [29] to generate 1D sequential input for the domain boundary predic-
tion. For each position in a protein sequence of length L, the inputs include 21 numbers
from the position specific scoring matrix (PSSM) generated by using PSI-BLAST to
search the sequence against the UniRef90 sequence database, 20 emission probabilities
and 7 transition probabilities extracted from the Hidden Markov Model (HMM) profile
generated by using HHblits tool to search the uniclust30 database, 20 probabilities of 20
standard amino acids at the position calculated from the multiple sequence alignments
(MSA) generated by using HHblits tool to search uniclust30 database, and 5 numbers
derived from Atchley’s factor that describe physiochemical property of the residue at the
position [29]. In total, there are 73 input numbers for each residue in a protein sequence.
Therefore, the shape of the 1D inputis L x 73, where L is the length of the sequence.

Multi-head attention-based U-Nets for domain boundary prediction
The overall workflow of DistDom is depicted in Fig. 2. The 2D input of shape L x L x 1
and 1D input of shape L x 73 are processed by 2D U-Net and 1D U-Net simultaneously

Distance map Distance map scaled with 12
Angstrom threshold

Distance

Normalization

0 50 100 150 200 250 300 0 50 100
Fig. 1 An example of distance map normalization for target T1101 from CASP14 dataset
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L x L x 1 size distance map inputs L x 73 size 1D feature

1D Adaptive Max
Pooling

L x 1 output Concatenation L x 1 output

Multi-Head
Attention

L x 2 prediction boundary

Fig. 2 The overall architecture of DistDom. The 2D distance maps and 1D features are processed by a 2D
U-Net and 1D U-Net respectively. The 2D U-Net output is converted by the 1D adaptive max pooling to the
output of Lx 1. TheL x 10utputs from the 1D U-Net and 2D-U-Net are combined together as the hidden
features for the multi-head attention layer to predict the probability of being in a domain boundary or not

and respectively. The 2D output of the 2D U-Net is put through an adaptive max pooling to
reduce the dimension to L x 1. The output of the 1D U-Net has the shape of L x 1. The
two outputs are concatenated together as the hidden features of shape of L x 2, which
are used as the input for the multi-head attention layer to predict the probability that each
residue is in a domain boundary or not. The shape of the final output is L x 2, containing

the probability of being in a domain boundary and not in a boundary.

2D U-Net

A customized 2D U-Net architecture [28] (Fig. 3) is used to process the 2D distance map
input. One difference between the customized 2D U-Net and the canonical 2D U-Net is
that the former is designed to handle the distance map of variable dimension, but the
latter is applied to the image of fixed dimension. It consists of three main compo-nents:
downsampling component, upsampling component, and direct connections from the
blocks in the downsampling component to their counterparts in the upsampling
component. In the downsampling component, two consecutive convolutional layers
form a block. Each 2D convolution layer consists of 2D convolution with a 3 x 3 ker-nel,
2D batch normalization layer and a ReLu activation function. The filter size of the initial
convolutional layer is 64, whereas subsequent layers have filter size of 128, 256,512 and
1024 respectively. The first block converts the 2D input (i.e., the normalized distance
map) into a hidden feature map of L x L x 64. The dimension of the feature map is
reduced by half to L/2 x L/2 x 64 by the max pooling, which is processed by the next

block to generate the hidden feature of the same dimension but doubled depth
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Lx L x 1 Distance map

Lx Lx 64 LxLx192 LxLx64 LxLx 1 Feature
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1
L/2xL/2x128 L/2x /2 x 384 L/2xL/2x128
Feature Map Feature Map Feature Map
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L/4 x L/4 x 256 L/4x L/4 x 768 L/4 x L/4 x 256
Feature Map Feature Map Feature Map

t

L/8x L/8 x512 L/8 xL/8 x 1536 L/8 xL/8 x512
Feature Map Feature Map Feature Map

——> Downsampling

= Concatenation

L/16 x L/16 x 1024
Feature Map

= Upsampling

— Convolution
Fig. 3 The 2D U-Net of processing 2D inputs. Adapted from the original U-Net paper [28]

(ie.,, L/2 x L/2 x 128). This process is repeated until a feature map with the shape of
L/16 x L/16 x 1024 is generated. This reduced map is the latent embedded representa-
tion of the original distance map input. The upsampling process is a reverse process of
the downsampling process by gradually reconstructing an output of the same dimension
as that of the initial input from the final embedded hidden feature map generated by
the downsampling process. Firstly, that embedded feature map is converted by a two-
layer convolutional block to a L/16 x L/16 x 1024 feature map, which is then upsam-
pled using bilinear interpolation to a feature map of L/8 x L/8 x 1024. This map is then
concatenated by depth with its counterpart of the same dimension (L/8 x L/8 x 512) in
the downsampling process through a direct connection [28] to produce a feature map of
size L/8 x L/8 x 1536. This direct connection can account for some lost information in
the downsampling process and also speed up learning like the widely used residual con-
nection. Afterwards, the L/8 x L/8 x 1536 feature map goes through convolutional lay-
ers to produce a feature map of size L/8 x L/8 x 512. This process is repeated until the
dimension of the feature map is returned to L x L x 64, which is used to generate a final

feature map of L x L x 1lusingl x 1convolution.

1D U-Net

We generalize the U-Net typically applied to 2D input to a customized 1D U-Net archi-
tecture for processing the 1D input. The key difference between 1D U-Net and 2D U-Net is
that it uses 1D convolution instead of the 2D convolution, and for upsampling, it uses 1D
transposed convolution. The detailed structure of the 1D U-Net is depicted in Fig. 4. It
takes the 1D input of shape L x 73 to generate a L x 1 hidden feature map.

Multi-head attention
The output feature map of the 2D U-Net branch and 1D U-Net branch above are con-
catenated to generate a feature map of L x 2 size, which is used as the input for the fol-

lowing self-attention layer [31, 39] to predict if a position i is in a domain boundary. The
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L x 73 sequence features

L x 64 Feature
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L x 192 Feature L x 64 Feature Lx 1 Feature
Map Map Map
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L/4 x 256 L/4 x 768 L/4 x 256
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L/8 x 512
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Fig. 4 1D U-Net. The input of shape L x 73 is processed by the downsampling and upsampling process to
generate a final hidden feature map of shape Lx 1

attention mechanism uses a scaled dot product involving three quantities: query Q, key
K, and value V for each input node to calculate the attention weight according to Eq. 1.

QKT)
Attention(Q, K, V) = softmax | ¥~—— |V 1
@K, v) ( M

Here, dX is the dimension of the K matrix for each attention head. In our case it is 1 for
each attention head. In the self-attention process, the Q, K and 7 values are the same as
the values of the concatenated hidden feature map from the two U-Nets. That is, the
concatenated output of the 2D U-Net branch and 1D U-Net branch are each used as the
query, key and value for each of their attention heads. The multi-head attention is
applied to the concatenated L x 2 feature map, which is split into two L x 1 sub feature
maps. One head is applied to the L x 1 sub-feature map generated from the 1D input
features and another to the L x 1 sub-feature map generated from the 2D input features.
The outputs of the two attention heads are concatenated as input of L x 2, which is used by
a linear layer to generate an output of size L x 2 by multiplying the input by a weight
matrix of size 2 x 2. Here 2 is the number of heads in the multi-head attention. Each
row (i) in L x 2 output from the linear layer is used by the softmax function to predict if
residue i is in a domain boundary or not. There are two predicted probabilities (in a
boundary and not in a boundary) for each residue whose sum is equal to 1. The Fig. 5
shows the visualization of the process. The multi-head attentive U-Nets can handle pro-
tein sequences of variable length because the same convolution and attention operations
can be applied to protein sequences of any length. Therefore, no reshaping of the input
data to a fixed length is needed, avoiding any potential pitfalls and biases posed by it.

Training and validation
We use the GPU computing resource on the Summit supercomputer provided by Oak
Ridge National Laboratory (ORNL) to train the deep learning network above. The
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Lx2input
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Dot Product Attention
Head
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- Lx1Query
Linear Layer
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Fig. 5 The multi-head attention mechanism. Here the L x 2 input is splitinto two L x 1 inputs. Each of these
Lx 1inputs are fed into a scaled dot product attention head as the query, key and values. There are two
attention heads, each of those yielding an output of L x 1 size. The attention head outputs are concatenated
to form a tensor of the size of L x 2, which is passed through a linear layer. The matrix multiplication with a
weight matrix is applied to the input in the linear layer to generate the activation for the softmax function to
predict the probability of two classes (in a domain boundary or not). The final output isL x 2, where L is the
sequence length

Summit cluster [40, 41] provides many compute nodes each having 6 GPUs and 16 GB of
memory, which enables the distributed deep learning training. We train 2D U-Net, 1D
U-Net, and the multi-head attention layer on three separate GPU nodes. The train-ing is
done with Adam optimizer [42] with a learning rate of 0.0001. The loss function is the
cross-entropy [43]. Because only a small portion of residues are boundary residues
(positive examples), we also test the weighted entropy loss. The weights for the positive
and negative examples are 10 and 1, respectively. The early stopping is used to stop the
training when the average per-target F1 measure score (2 x precision x recall / (precision +
recall)) on the validation data does not increase. The best-performing model on the

validation data is saved for testing.

Results and discussion

DistDom is trained on Topdomain [34] training dataset and validated on Topdomain
validation dataset. After the training and validation, it is tested on CASP7-13 and
CASP14 [44] test datasets.

Impact of distance thresholds on the prediction performance

DistDom is trained with three different distance threshold values (8, 12 and 16 A) com-
monly used to reconstruct tertiary structures from distance maps to select predicted res-
idue-residue distances as input for domain prediction. The average per target F1 scores
on the validation and test datasets on multi-domain targets for the three thresholds are
shown in Table 1. On all three datasets, 12 A threshold leads the way in terms of the
performance based on the average per target F1 score. Considering the results on all the
datasets, 12 angstrom is chosen as the final distance threshold for all the experiments. It is
worth noting that the average per target F1 score reported in Table 1 is the average of
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Table 1 The average per target F1 score of using different distance thresholds (8, 12 and 16 A) for
domain boundary prediction on the multi-domain proteins in the three datasets: (1) Topdomain
validation data; (2) CASP7-13 test data; and (3) CASP14 test data. Bold font denotes the best result

o

Dataset 8A 12A 16A
Topdomain Validation 0.457 0.470 0.268
CASP7-13 0.244 0.291 0.134
CASP14 0.232 0.263 0.201
1.01 —— pistbom 1.0 —— DistDom —— DistDom
& = 0.4
208 gos8 T
%—'0_5 %0_5 >%"'0.3
;o.a %0-“ ?:,’:.0'2
g - §o.z Soa
2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Threshold Threshold Threshold
(A) (B) Q)

Fig. 6 Comparison of average per target precision, recall and F1 scores on the Topdomain validation dataset.
The subfigures A, B and C show the average per target precision, recall and F1 scores respectively along
different threshold values ranging from O to 1

F1 scores calculated for each target. The average per target F1 score is not a geometric
mean of the average per target precision and average per target recall. Instead, the preci-
sion, recall and F1 score for each target is calculated individually, and the F1 scores of all
the targets are averaged to produce the average per target F1 score.

An interesting observation is that the performance of our method is substantially
lower on CASP7-13 and CASP14 dataset than the Topdomain validation dataset. A
main reason of the difference is because the distribution of the CASP7-13 and CASP14
datasets is different from that of the Topdomain training and validation data. The targets in
the CASP datasets were hand picked by the experts and tend to be more challenging than
those in the Topdomain dataset.

Selection of cut-off decision threshold for domain boundary prediction

To decide a cut-off probability threshold needed to convert the predicted domain bound-
ary probabilities to binary predictions (in a domain boundary or not), we test different
cut-off thresholds between 0 and 1, with an interval of 0.01 on the Topdomain validation
dataset to find the threshold yielding the highest F1 score. We plot the average per target
precision, recall and F1 scores against the cut off values to choose a cut-off threshold
(Fig. 6). Based on the plots, we selected 0.03 as the cut-off probability threshold.

Impact of distance normalization on the prediction performance

To study the impact of the distance normalization, we compare the performance of Dist-
Dom trained with the distance normalization at 12 A distance threshold and without
distance normalization. The results on the validation dataset are reported in Table 2.

The DistDom with the distance normalization outperforms the model without distance
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Table 2 Comparison of average per target F1 scores on the Topdomain validation dataset with and
without the distance normalization for multi domain targets

No Normalization Normalization

0.377 0.470

normalization in every aspect. For instance, the average per-target F1-score of using the

normalization on all the multi domain targets is 0.470, higher than 0.377 without it.

Impact of 1D and 2D inputs on the prediction performance

We perform an ablation study to measure the effectiveness of 1D and 2D inputs. We
conduct three experiments: one with 1D input only, one with only the 2D input, and
one combining both inputs together. The results of the three experiments on the multi-
domain proteins in the Topdomain validation dataset, CASP7-13 test dataset, and
CASP14 test dataset are reported in Table 3. The results in Table 3 show that the combi-
nation of 1D and 2D inputs together consistently performs better than using either the
1D or 2D input only. The average per target F1 scores reported for 1D and 2D combined
(0.470 on Topdomain validation, 0.291 on CASP7-13 and 0.263 on CASP14 dataset) are
all higher than the average per target F1 scores for using 1D or 2D input alone.

Comparison of weighted and unweighted loss functions

Because there are many more negative examples than positive examples, we test a
weighted cross-entropy loss function. The 1:10 weight ratio is applied to negative (non-
boundary) class and positive (boundary) class, respectively. Table 4 compares the F1
score of using the weighted loss function and the unweighted one on the multi-domain
proteins in the Topdomian validation dataset. The unweighted loss function works bet-
ter than the weighted loss function overall. Therefore, the unweighted loss function is
used to train the final DistDom model.

Table 3 Comparison of the average per target F1 scores of using 1D input only, 2D input only and
both 1D and 2D

Dataset 1D input only 2D input only 1D and 2D
combined
(DistDom)
Topdomain validation 0.291 0.383 0.470
CASP7-13 0.153 0.285 0.291
CASP14 0.112 0.203 0.263

Table 4 Results of the unweighted and weighted loss functions on Topdomain validation dataset

Model Average per target F1
score on multi-domain
proteins

DistDom (unweighted) 0.470

DistDom (weighted) 0.402
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Comparison with existing methods on the CASP14 test dataset

We compare DistDom with two other most recent methods—DeepDom and FUPred
on the multi-domain targets in the CASP14 dataset. DeepDom [1] is based on a bidi-
rectional LSTM network. FUPred [25] is a method that utilizes FUScore in an ad-hoc
manner with deep learning-predicted contact maps to predict the location of domain
boundaries. As the DeepDom predicts the probability of each residue belonging to the
boundary or non-boundary, we use its default decision threshold (0.42) to convert the
predicted probabilities into binary predictions. The same evaluation procedure used in
DeepDom is used to evaluate it here. Table 5 reports the average per-target F1 scores of
domain boundary prediction on the CASP14 multi-domain targets. The results show that
DistDom performs better than DeepDom and FUPred on multi-domain targets. For
instance, the average per-target F1 score on all the CASP14 multi-domain targets is 0.263,
which is higher than 0.203 of FUPred and 0.134 of DeepDom.

Domain boundary prediction on easy and hard targets

In this section, we analyzed the domain boundary prediction performance on easy and
hard multi-domain targets in the CASP14 dataset. The easy and hard targets are defined as
follows: if the average TM-score of the first models of a target predicted by the best

Table 5 Results of DistDom, DeepDom, and FUPred on the multi-domain targets in the CASP14
dataset in terms of average per target F1, specificity, sensitivity and Matthew’s Correlation
Coeficient with their confidence intervals at 95% confidence

Method F1 score Specificity Sensitivity mcc

DistDom 0.263 (0.147,0.378) 0.936 (0.913,0.959) 0.403 (0.220,0.586) 0.249 (0.123,0.376)
DeepDom 0.134 (0.040,0.227) 0.853 (0.792,0.913) 0.123 (0.031,0.215) - 0.033 (- 0.14,0.07)
FUPred 0.203 (0.080,0.318) 0.960 (0.941,0.978) 0.266 (0.122,0.410) 0.186 (0.070,0.301)

Table 6 Results of DistDom, DeepDom, and FUPred on the easy multi-domain targets in the
CASP14 dataset in terms of average per target F1, specificity, sensitivity and Matthew’s Correlation

Coeficient

Method F1 Specificity Sensitivity mcc
DistDom 0.286 0.961 0.383 0.269
DeepDom 0.072 0.855 0.050 - 0.117
FUPred 0.377 0.949 0.425 0.341

Table 7 Results of DistDom, DeepDom, and FUPred on the hard multi-domain targets in the
CASP14 dataset in terms of average per target F1, specificity, sensitivity and Matthew’s Correlation

Coeficient

Method F1 Specificity Sensitivity mcc
DistDom 0.256 0.930 0.408 0.244
DeepDom 0.149 0.852 0.141 - 0.012

FUPred 0.159 0.963 0.227 0.147
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50% of CASP14 servers is higher than 0.65 then the target is considered an easy target,
otherwise a hard one. The CASP14 dataset contains 4 easy targets and 16 hard targets.
Tables 6 and 7 shows the comparison of results on the easy and hard targets, respec-
tively. For the hard targets, DistDom outperforms FUPred and DeepDom, as the average
per target F1 score and the average per target Matthew’s Correlation Coeficient (MCC)
score is 0.256 and 0.244 respectively, which are higher than 0.159 and 0.147 of FUPred
and 0.149 and -0.012 of DeepDom. For easy targets, DistDom’s performance is better
than DeepDom, but worse than FUPred. The average per target F1 and MCC score of
DistDom is 0.286 and 0.269 respectively, compared to FUPred’s 0.377 and 0.341. Both
DistDom and FUPred work better on the easy targets than the hard targets. However, it
is worth noting that the performance of DistDom is pretty close on easy and hard tar-gets,
while the performance of FUPred on the hard targets is much lower than on the easy
targets. Because the number of easy targets (i.e., 4) is pretty small, more easy targets need
to be used to make a reliable estimate.

Applying domain boundary prediction to distinguish multi-domain proteins
from single-domain ones
A classification problem related to the protein domain boundary prediction is to clas-
sify if a protein is a multi-domain protein or a single-domain one. To classify the pro-
tein, DistDom is applied to predict the boundary residues of the protein. If there are >
10 residues predicted as boundary residues, the protein is classified as multi-domain,
otherwise single-domain. The classification accuracy and MCC (Matthew’s Correlation
Coeficient) are used to evaluate the classification results as in [25], which are defined as
follows.

TM + TS

Accuracy =
Y =M+ Ts+ FM + Fs @

Mcc < (TM x TS) - (FM x FS)
" (TM + FM) x (TM + FS)x (FM + TS) x (TS + FS) G

TM, TS, FM, and FS are the number of correct multi-domain prediction, number of cor-
rect single-domain predictions, number of false multi-domain predictions, and number
of false single-domain predictions. The range of the Matthew’s Correlation Coeficient
(MCC) is from - 1to 1.

Table 8 The accuracy and Matthew’s correlation coeficient of DistDom, FUPred, and DeepDom of
classifying single-domain and multi-domain proteins in the CASP14 dataset with the confidence
interval reported with 95% confidence

Model Accuracy McC
DistDom 0.759 (0.729, 0.788) 0.499 (0.434, 0.565)
FUPred 0.670 (0.654, 0.686) 0.328 (0.295, 0.363)

DeepDom 0.393 (0.376, 0.410) 0.052 (- 0.001, 0.106)
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Fig. 7 Domain boundary prediction for a protein target (PDB code 5BNC, chain A). The sub-figure on the
left (A) visualizes the true structure and the labeled true boundary (residues 158—167) in red color. The
sub-figure on the right (B) shows a plot of the predicted domain boundary probabilities against the residue
positions. A red horizontal line shows the cut-off threshold (0.03). Residues 159-169 whose predicted
probabilities are above 0.03 are the predicted boundary residues. The predicted boundary overlaps with the
true boundary well

The results of DistDom, FUPred, and DeepDom are reported in Table 8. We employed
bootstrapping to estimate the accuracy and confidence interval. We randomly sampled
80% of the CASP14 targets 10 times to get the average accuracy and MCC score and
their confidence intervals. DistDom performs best in terms of both the accuracy and
MCC. The accuracy and MCC of DistDom are 0.759 and 0.499, which are 13.28% and
52.13% higher than FUPred.

A good prediction example
Figure 7 illustrates a prediction example (PDB ID 5BNC (chain A) from Topdomain
validation dataset). The predicted domain boundary overlaps well with the true
domain boundary of his target. The precision of the prediction is 0.667, the recall is 1.0
and the F1 score is 0.800.

Conclusion

We develop an end-to-end deep learning based method based on the U-Nets and
multi-head attention to improve the domain boundary prediction. It is the first
method of combining traditional 1D sequence features and new 2D distance maps to
predict protein domain boundaries. The 1D and 2D input features are processed by a
customized 1D and 2D U-Net simultaneously to generate hidden features for the
multi-head attention to predict the domain boundary. The experiment shows that,
with the appropriate preprocessing (thresholding and normalization), the 2D distance
map can be effectively used to predict protein domain boundaries. Combining 1D and
2D features via the multi-head attention can further improve the prediction accuracy.
Moreover, the domain boundary predictions can be effectively used to classify if a
protein is a single-domain protein or multi-domain one.
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