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ABSTRACT: Complex coacervation is a phase separation
phenomenon driven by the electrostatic attraction between
oppositely charged macromolecular species. A recent surge of
interest in coacervation between polyelectrolytes has been driven
by both fundamental advances in experimental characterization of
these systems and recognition of their relevance for both biological
systems such as biomolecular condensates as well as industrially
relevant consumer products. Concomitantly, there have been
several theories capable of predicting complex coacervation that are
used to explain these experimental observations. While there has
been a general conceptual consensus on the underlying physics of
coacervation, these theoretical approaches have so far remained distinct. Polymer field theory, liquid state theory, ion pairing
theories, and scaling theories all provide useful insights, but how the assumptions of each candidate theory are interrelated remains
largely unexplored. In this paper, we attempt to show how two such classes of models can be derived from a single starting point
using cluster expansions as the basis for discussing which interactions are included in both field theory and ion pairing theory. This
allows us to compare and contrast these approaches, evaluate conditions where each model should be relevant, and suggest ways in
which existing models can be improved or parameterized.

■ INTRODUCTION
Oppositely charged macromolecules can undergo an associate
phase separation in a process known as complex coacerva-
tion.1−3 In this process, any combination of macromolecular
species, including colloidal particles,4 proteins,5−7 surfactants,8,9
and polymers,1 can form a dense “coacervate” phase that
maximizes favorable electrostatic interactions and a dilute
“supernatant” phase that is composed mostly of solvent and
small-molecule salt ions.2 This macroscopic phase separation
was first identified in 1929 by Bungenberg de Jong and Kruyt,10
and since then, there has been sustained progress in our
understanding of these materials. This has been spurred in large
part by their relevance to food science and personal care
products11−13 in which coacervates are used as viscosity
modifiers and encapsulants and can be made using biopolymers.
Recently, however, there has been a surge of interest in
coacervation1 driven by their promise as a biomaterial for
protein encapsulation14−17 and as an analogue to help
understand liquid−liquid phase separation phenomena in
cells.18−22 This has led to a large number of fundamental
experimental studies23−35 probing the thermodynamics and
structure of coacervates, with a particular focus on coacervates
formed between oppositely charged polyelectrolytes. These
experiments have established some of the first comprehensive
phase diagrams mapping out a rather large parameter
space,23,28,30,36−38 seeking to understand the role of chain

length,23,28,30 salt concentration, polymer concentration, polar-
ity,36 stoichiometry,39 chain flexibility,40 valency,29 temper-
ature,41 monomer sequence,42,43 crowding,44 and pH.35,37,45 A
systematic study of this wide variety of parameters has facilitated
the use of coacervates in self-assembly,46−55 drug delivery,17,56
and other materials applications.57−64 A wide range of
characterization methods have been used in pursuit of
understanding phase behavior, including turbidity measure-
ments,29,34 thermogravimetric analysis,28,37,38 and fluores-
cence.23,36 This has been coupled with isothermal titration
calorimetry34,42 to understand coacervation thermodynamics
and scattering to understand polymer structure.27,53
Concomitant with experimental e"orts to understand

complex coacervates, theory and simulation have been used to
provide molecular interpretation and insight into the physical
origins of phase separation.65 The earliest example, which
remains a commonly used model for coacervation, is the
Voorn−Overbeekmodel.66,67 This original model combined the
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Flory−Huggins theory of polymer solutions68 with the Debye−
Hückel theory of dilute electrolytes69 to establish a free energy
expression that can predict coacervation. We will discuss this
model in more detail later, but it informed a lot of early work on
coacervation;23,66,67 phase separation is observed at low salt and
polymer concentrations wherein electrostatic interactions are
weakly screened, while the system is miscible at high salt and
polymer concentrations. Unphysical choices of model param-
eters lead to superficial agreement between Voorn−Overbeek
and some aspects of coacervate phase diagrams.23 This model
has also been used in predictions for interfacial tension,70 ion
partitioning,70 and as a way to explain time-salt superposition in
rheological measurements.26
It is now accepted that Voorn−Overbeek neglects several

important physical features.30 This is unsurprising as the
Debye−Hückel model does not account for the connected
nature of the polyelectrolytes, is limited to dilute electrolyte
concentrations,71 and neglects the finite volume of the polymer
and salt species.30,72 This means that the parameters used to
match Voorn−Overbeek to experimental phase diagrams
generally lack physical meaning. Subsequent theoretical
modeling has sought to develop a more sophisticated physical
picture of coacervation,1 with most theories addressing some or
all of these issues. In this e"ort, there has been a proliferation of
possible coacervate models, building on the various theoretical
approaches common in the field of polymer physics. Most
connected to Voorn−Overbeek, polymer field theory has been
widely used to include the e"ects of connectivity and the e"ects
of fluctuating charge.73−83 Simplified representations of the
excluded volume are considered in several of these models,75,76
though typically relying on (for example) Gaussian-smeared
distributions of charged species.21,79−86 Relatedly, scaling theory
is also used to capture key length scales associated with
electrostatic interactions and polymer conformations,87−94

including connectivity but requiring ad hoc modifications to
describe highly correlated electrolytes.95 Liquid state theory is a
traditional way to addressing these strong correlations in
charged systems and has been used to predict coacervate
phase behavior;72,96,97 however, the use of complicated closure
relationships limits the practical application of these models
beyond simple homopolyelectrolyte coacervates. Finally, ion
pairing theory is a broad class of models that uses simplified
arguments to account for these same correlations,36,43,98−109 but
it has to this point been largely accounted for in an ad hoc
fashion. This includes both “e"ective” ion pairing or binding
reactions36,99−101,109 and the transfer matrix (TM) model
developed by the authors.43,102−107

Taken as a whole, these theoretical approaches all provide a
coherent picture of coacervation, though each method has its
own limits of applicability. A key variable in this regard is the
linear charge density,30,43,72,85,95,110,111 which a"ects the
strength of charge correlations (e.g., such as those related to
counterion condensation),72,112,113 indirectly sets the overall
density of charged species,30,43 and governs the putative
mechanism of coacervation.110 Generally speaking, polymer
field theory and scaling theory exhibit fluctuation-driven
coacervation, where attractions are governed by Gaussian
chain statistics between widely spaced charged monomers.1
Conversely, liquid state and ion pairing theories rely on
interactions governed by strong correlations between tightly
connected charged monomers.1 Evidence in both experiments
and simulations support this distinction43,95,111,114 and has
prompted e"orts to either include correlations into field/scaling

theories92,95 or to include fluctuating chain statistics into ion
pairing theories.100,109 Despite progress, however, the formal
di"erences between these various approaches frustrates
attempts at comparison or consolidation. This is exacerbated
by another major factor; experiment is not always discerning, as
most coacervate theories at least provide plausible phase
diagrams and correct trends,23,28,30,36,37,70,108,111 with di"er-
ences easily (and often correctly) attributed to the specific
chemistries used in a given experiment. This means that most
theoretical approaches have some successful experimental
comparison to support their method. This is positive in that
theorists in the field are working in close concert with
experimental collaborators, but they can muddle the advantages
and disadvantages of the various approaches. There is thus a
need to establish a shared theoretical basis that can clarify the
approximations inherent to each approach.
In this paper, we show that a cluster expansion approach

provides a common starting approach for several key classes of
coacervate theory currently in the literature. We build o" the
standard approaches taken by Mayer to derive Debye−Hückel
theory using cluster expansions115 and thus re-derive Voorn−
Overbeek;66,67 however, we show that variations of this
approach can be used to justify several other models spanning
polymer field theory and ion pairing theories. We show how
di"erent choices of approximation, presented in the context of
cluster expansions, give rise to the di"erent models and
particularly why linear charge density is such an important
variable for model selection. We can then develop a metric to
quantify the boundary between high charge-density and low
charge-density approaches. Finally, we propose a modified
version of the TM theory, which combines several of the new
insights gained by considering what is accounted for in other
models.

■ CLUSTER EXPANSION AS A COMMON STARTING
POINT

The coacervation models we discuss can all be derived from the
expression for the grand canonical partition function of a system
with nP+ polycation chains, nP− polyanion chains, n+ cations, and
n− anions

=
! ! ! !
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We are using a shorthand here to simplify this expression. The
products over α and γ are over the species (P+, P−, +, and −)
that interact via electrostatics. The product over indices i and j
represents products over all particles (or monomers) in each
species, of which there are nαNα particles for each. Nα is the
degree of polymerization of α, with Nα=± = 1 for non-polymeric
species. There are integrals over the positions of salt or
monomer particles, with the path integral denoting the
integration over all monomer positions for a given chain.116
The intra-chain structure is imposed by the weighting factor

{ }+P r( )P P
nP that can account for chain connectivity, flexibility,

and so forth.116,117 For this notation, we start by assuming that
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all monomers are disconnected (PP± = 1), justifying the integral
over (for example) nP+NP+ individual particles. The quantity
zα*(i) = exp[β(μα − ϕα(ri))] is the activity of the i-th particle of
species α in a spatially varying field ϕα(r) and with a chemical
potential μα, with the asterisk distinguishing between activity
and charge valency. The Boltzmann factor associated with the
pair potential between a pair of particles i and j of species α and γ
is given as eα,γ(i,j) = exp[−βuα,γ(ri,rj)]. In this implicit solvent
formalism, the pairwise interaction uα,γ(ri, rj) is the potential of
mean force between particles of type α and γ due to the classical
McMillan−Mayer theory.118
It is possible to write this partition function in a more concise

way via the well-known “cluster expansion”119

Here, the circles are “z-circles” that indicate a contribution from
factors zα*(i) for each circle in the diagram, and the connecting
gray lines are “e-bonds” that represent the Boltzmann factors
eα,γ(i, j) for each pair of particles.119 Note that in this four-
component model, each circle implies a summation over all
possible species α, which in this case includes all of the charged
(i.e., non-water) particles. Therefore, we also consider all
combinations of eα,γ(i, j) between each pair of factors zα*(i) and
zγ*(j). For example, the fourth (i.e., three z-circle) term in this
expansion can be written as

[ ] = * * *z i z j z k

e i j e j k e i k

r r rfourth diagram 1
6

d d d ( ) ( ) ( )

( , ) ( , ) ( , )

i j k
, ,

, , , (2)

Standard diagrammatic techniques lead to the classical result
that the excess Helmholtz free energy density βfexc = βf − βf id
beyond the ideal contribution f id can be written in the
diagrammatic form119

This set includes all irreducible diagrams (see definition in
Section 3.7 of ref 119)119 consisting of at least two circles and
now uses ρ-circles that contribute factors ρα(i) and black “f-
bonds”, which are related to e-bonds by eα,γ(i, j) = fα,γ(i, j) +
1.71,119 We note that the summation over species index α is
implied by each ρα-circle and that at most, one f-bond is
permitted between two ρ-circles. As an example, the second
term on the right side is given as

[ ] =

=
V V

i j k
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V

f i j f j k f i k

r r r

r r r

second diagram 1
6
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Here, 1/6 is a combinatoric factor that is determined from the
symmetry of an unlabeled diagram, accounting for the number
of ways in which the diagram can be rearranged yet retain the
same topology. In the second version of the above expression,
we use the assumption that we will make in the rest of this paper,
in that we will assume a homogeneous phase where the density
ρα(r) = ⟨ρα⟩ = ρα is given by its average value. This diagrammatic
representation of the excess free energy density will be the
starting point of most coacervate models as it isolates the
theoretically challenging aspect of the model. The ideal mixing

entropy common to essentially all coacervation models is given
as

= + + +

+

+

+
+ + +f

N
ln
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ln ln ln

ln

P

P
P
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P
Pid 0

W W (4)

Consistent with our previous notation, this equation
constitutes the Flory−Huggins entropy of mixing of all the
species,68 including the polycation (P+), polyanion (P−), cation
(+), anion (−), and water solvent (W), with the parenthesis
indicating the corresponding subscript. The values ϕα and Nα
are the volume fraction and molecular weight, respectively, of
component α, assuming a reference volume ν0 that is the molar
volume of the salt, monomer, and water species.
In this paper, we will consider a variety of di"erent

approximations of the cluster expansion of the excess free
energy, which will be added on to the ideal free energy
expression given in eq 4. The total free energy density βfν0 =
βf idν0 + βfexcν0 can then be compared against previous models in
the literature, such that we can establish relationships between
these models via their inclusion or neglect of various terms in the
cluster expansion.

■ VOORN−OVERBEEK THEORY
The Voorn−Overbeek model is a simple combination of the
results of two classical theories, Flory−Huggins68 and Debye−
Hückel,69 to yield a free energy density βf VOν066,67

= + + +

+

+

+
+ + +f

N N
ln ln ln ln

ln
12

P

P
P

P

P
PVO 0

W W

3

0

(5)

The final term is the excess free energy contribution, which
comes from Debye−Hückel theory.69,71 The quantity

= z(4 )B
2 1/2 is the inverse Debye screening length

of an electrolyte with species α with number concentration ρα
and valency zα.71 λB = e2/(4πϵ0ϵrkBT) is the Bjerrum length,71
where e is the elementary charge, ϵ0 is the permittivity of free
space, ϵr is the relative dielectric constant, and T is the
temperature. The classical derivation of Debye−Hückel theory
is found in most statistical mechanics textbooks,71 but yet it is
instructive to demonstrate how this expression emerges from the
cluster expansion approach that was originally used byMayer.115
Mayer’s approach considered the Coulomb interaction βuc,α,γ

= λBzαzγ/|ri,α − rj,γ| and derived a series of so-called “ring”
diagrams that are the dominant and non-zero terms in the excess
free energy expansion69,115

In this approach, the connecting lines are now Ψ-bonds such
that Ψα,γ(ri, rj) = −βuc,α,γ(ri, rj). The circles are still ρ-circles.
These diagrams are typically evaluated in k-space, with each Ψ-
bond between species α and β contributing a factor of
4πλBzαzβψ(k) (with the Fourier transform of the 1/r potential
being 4πψ(k) = 4π/k2) and each ρ-circle contributing a ρα.
Correctly accounting for combinatoric factors associated with
the rings,71,119 we can evaluate this diagrammatic expression to
yield the Debye−Hückel result
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Including the reference volume ν0 of the monomer/salt/
solvent species, we can thus write the Voorn−Overbeek
expression as follows66,67
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A more complete derivation of both the ring diagrams and
their evaluation for a coacervate system are given in Appendix A.
This classical derivation is a long-established result in statistical
mechanics.71,115 However, we will find that this version of the
derivation (i.e., using the cluster expansion) was useful to (1)
establish its connection to other theories and (2) to illustrate
how we will be using the diagrammatic representation of the
excess free energy.

■ RPA FROM A CLUSTER EXPANSION APPROACH
The primary way to account for connectivity in polymer melts
and solutions, beyond mean-field models such as the Flory−
Huggins theory,68 is to use the random phase approximation
(RPA) that accounts for harmonic fluctuations in the density
fields. Indeed, a large amount of work has used the RPA to study
coacervate or polyelectrolyte complex phase behavior,73−77 with
several modifications to account for excluded volume and non-
Gaussian conformations.75−77 We can show that this cluster
expansion approach is capable of reproducing the fundamental
result, given by Kudlay and Olvera de la Cruz75,76 and later
generalized by Qin and de Pablo.77Ä
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To derive this using the cluster expansion approach, we must
re-define what we mean by zα*(i) and eα,γ(i, j) (or similarly fα,γ(i,
j)); instead of considering all of the monomers as independent
particles, we now use the reference interaction site model
(RISM) formalism that treats the monomers as “sites” on
polymers that are instead considered the particle units.120 This
requires essentially no change to eq 1, except for several re-
definitions; first, the products over particles go to, for example,
nα rather than nαNα, because the entire polymer chain (and not
the monomer) is represented by a single “particle”. Second, the
quantity * = [ ]=z i sr( ) exp ( ( ( )))s

N
1 for polymeric

species now sums over the Boltzmann factors of each monomer
of species α in the external fieldϕα. Finally, the quantity fα,γ(1, 2)
is now dependent on contributions of all the sites s on the
polymer chain(s). For two polymer chains of length Nα, we can
write120
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This product is over all pairs of monomers s and s′ and leads to
all possible combinations of monomer pairs in the sum. The only
exception is the part of the sum that is the product of the “ones”
and cancels out with the −1 in the overall f-bond expression. Of
particular interest to the RPA calculation are the terms that
consist of only (1) a single factor fα,γ(ri,α(s), rj,γ(s′)) that goes
between any pair s and s′ on chains α and γ and (2) products of
two factors fα,γ(ri,α(s), rj,γ(s′))fα,γ(ri,α(s(2)), rj,γ(s(3))) that are on
di"erent pairs {s, s′} ≠ {s(2), s(3)}. For this section, we thus make
the following assumption
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An important constraint we leave implicit is that the pair s, s′
cannot be the same as s(2), s(3), which we will include explicitly in
a more compact notation. This notation will leave implicit the
spatial dependence of the functions f so that we only need to
specify the species α and γ and the monomer indices s, s′; so for
the rest of the manuscript we will replace fα,γ(ri,α(s), rj,γ(s′)) →
fα,γ|s,s′ so that the assumption in eq 10 is written as

+| | |f i j f f f( , )
s s

N

s s
s s s s

N

s s s s, ,tot
,

, ,
, ,

, , , ,
(2) (3)

(2) (3)

(11)

We show in Appendix B that this expansion, when
incorporated into the diagrams for the excess free energy,
leads to a modified ring diagram

Here, the orange lines correspond to ω-bonds that indicate
correlations between spatially distinct sites. These diagrams
have an interpretation similar to that of the analogous ring
diagrams for molecular electrolytes, with each dashed Ψ-bond
contributing a factor of 4πλBzαzβψ(k) and each ρ-circle
contributing ραNα. Now, however, the orange lines contribute
an additional factor Sα(k). For a polymeric species modeled by a
Gaussian chain, this factor is Sα(k) = NαgD,α(k), where

= [ + ]g k e x( ) 1
x

x
D

2
2 is the Debye function where x =

Rg
2k2.116,121 However, it is possible in principle to use other

single-molecule structure factors such as those for wormlike or
rigid rod chains.77 Similar to the Debye−Hückel case, we can
write out the excess free energy as follows
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The details of this derivation are provided in Appendix B. The
second half of this integral is the same result described in Qin

and de Pablo,77 which is that =f
bexc 0 3

0
3/2

1/4 3/2 . The first term of
the integral is divergent and di"ers from the result derived by
Qin and de Pablo. This term is linear in density (via the κ2
contribution) so it is thermodynamically irrelevant and can be
interpreted as the “self-energy” of a polymer chain. A similar
expression can be obtained upon extending this calculation to
include salt, leading to the following expression
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D S
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This is, once more, essentially identical to classical results for
RPA in polyelectrolyte coacervates.75−77 We can specifically
compare this to the result given by Kudlay and Olvera de la
Cruz,76 which is identical to this expression. This result is also
consistent with the more general expression derived by Qin and
de Pablo.77 More generally, the connection between the RISM
formalism and RPA in field theory is well-established in the
literature, to the extent that it is possible to further extend this
approach to systematically account for higher-order fluctuations
in the polymer field theory.122

■ EXCLUDED VOLUME IN RPA-BASED MODELS
The models considered so far rely on an expansion of the f-bond
that separates out short-range interactions into the f 0-bond
while leaving the long-range contribution in the Ψ-bond, as
shown in eq 49

= + +
!=

f f f
u
i

( 1)
( )

i

i

, 0, , 0, ,
1

c, ,

(14)

We then neglected any f 0 terms due to the long-range nature
of the Coulomb potential uc,α,γ. However, the excluded volume
contribution may be desirable for several reasons; most
importantly, it can address the issue that the interaction energy
diverges for completely overlapping particles (i.e., separated
with zero distance).76,123 In addition, the excluded volume
interactions between charged particles can become significant at
high concentrations, in particular the densities seen in practice in
coacervates.23,28,30,104
One possible way to address the e"ect of excluded volume,

from Kudlay and Olvera de la Cruz, is to change the e"ective
potential considered in the Ψ-bonds such that uc,α,γ(r) →
uc,α,γ(r) (1 − e−b/r).75,76 Here, b is a new length scale intended to
represent the finite size of the salt and monomer charges in the
solution. This has the desirable property that the energy of
overlap does not diverge and instead goes to a constant value.
This is e"ectively a soft excluded volume e"ect. The other

desirable aspect of this form of the potential is that it can be
written in Fourier space75,76

= =
+

u z z
z z

k b k
k k( ) 4 ( )

4
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cO, , B O

B

2 2 2 (15)

The quantity ψO can be simply substituted into the expression
in eq 13, a modification that is explored at length in Kudlay et al.
At reasonable concentrations, this result has significant
implications on phase behavior, in particular, leading to a
partitioning of salt out of the coacervate phase.75,76
We note that this approach does not modify the diagrams

considered by the cluster expansion and still considers only the
ring diagrams. This is a general feature of the RPA
approximation, even outside the context of electrostatics. For
example, using ψ(k) = v represents an interaction of uc,α,γ(r) =
vδ(r), which then leads immediately to the Edwards result for
the polymer solution free energy.117 This approach is still an
improvement, of course, since it no longer neglects the e"ect of
excluded volume that would otherwise be in the f 0-bonds, yet
there are other possible approaches.
An alternative to the above approach would be to explicitly

include the non-Coulomb portion of the interaction potential,
βus, as sums over some or all of the remaining non-ring diagrams.
Perhaps the most trivial class of these diagrams are the diagrams
without any Ψ-bonds and are the diagrams formed only from f 0-
bonds. This is schematically identical to the diagram expansion
for the excess free energy using f-bonds, though neglecting any
contribution due to the long-range electrostatics. If these f-
bonds are single-site (i.e., each monomer is considered
unconnected) and us is the hard-core potential then this
contribution would be approximated by the well-known
Carnahan−Starling result119,124

=f (4 3 )
(1 )ex 0

2

2 (16)

A linear combination of the f 0-bond diagrams and the RPA
diagrams would be

We note that there is no overlap of these diagrams, so they can
be additively combined. However, there is overlap between
these diagrams and the Olvera de la Cruz approach.76 There,
contributions from the self-site interactions would lead to ring
diagrams that include some character of the excluded volume
portion by its inclusion in the potential uc,α,γ. This means that
there is some overlap with ring-like diagrams in the f 0 part of the
expansion in the current case. Thus, these two approaches
(including in the RPA vs adding on the Carnahan−Starling
result) give rise to two di"erent sets of slightly overlapping
diagrams.
One aspect missing in the Carnahan−Starling result is the

e"ect of connectivity between monomers. There are ways of
accounting for the e"ect of excluded volume due to chains of
connected beads, such as the Werthheim approach125−127 used
in models developed by Wang, et al.97 We will not explore this
modification here but will instead account for the connectivity-
based correlations by assuming a tunable factor in front of the
excluded volume contribution to the free energy that we will
discuss later.
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■ ION PAIRING THEORY
Larson, Qin, and co-workers modified the RPA model of
polyelectrolyte coacervation by accounting for e"ective
chem i c a l r e a c t i on s be tween the cha r g ed spe -
cies36,39,99−101,109,128 that form ion pairs between polycation/
polyanion monomers, cation/polyanion monomers, and anion/
polycation monomers. While all pair combinations are typically
explicitly included,36,99,128 we start with the simpler case that
does not include polycation/polyanion pairs100
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This model builds on the RPA result by including a fraction of
bound pairs, given by ζ±,36,99−101,109 between polyelectrolytes
and the oppositely charged salt ions. These pairs contribute a
free energy of binding ΔGP±,∓ to the overall free energy, which
serves as an empirical parameter in the third line of the above
equation as well as a combinatoric entropy on the second
line.99−101,109 It is straightforward to extend this version of the
model to account for the polycation−polyanion pairing.36,99,128
This approach was originally developed to account for

chemical bonding between the polyelectrolytes and their
counterions such that the free energy of binding ΔGP±,∓ is
interpreted as a free energy of reaction and careful accounting of
the number of counterions is included in the mixing entropy
terms.100 However, this model could alternatively be interpreted
as reflecting concepts such as ion pairing and counterion
condensation that are expected to emerge for polymers with
high linear charge density112,129,130 and are challenging to
include explicitly in polymer field theory calculations. This is
probably the simplest of the class of models that we will call “ion
pairing” models (the other being the TMmodel discussed in the
next section)102 and has had success in reproducing several
experimental phase diagrams due to the flexibility in defining the
e"ective binding free energies.36,39 However, this also poses a
challenge; there is no prescriptive way of choosing what is or is
not included in this binding free energyΔGP±,± in the absence of
an actual chemical reaction. To this end, we will show that
systematic consideration of the cluster expansion provides a way
to predict how this free energy emerges in high linear charge-
density polyelectrolyte coacervates, specifically in the absence of
an actual ion binding reaction.
We recall the expression for the f-bond in eq 9
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(18)

In the development of RPA, we used expansions of the first two
terms (single and double factors of f) without considering the
higher-order terms. In polymer field theory, it is possible to
proceed beyond this approximation by expanding to higher-
order field fluctuations using either diagrammatic expansion122
or field theoretic simulations;79−83 however, we instead choose
to focus on the contribution of local particle-based correlations
associated with the higher-order terms in eq 18, which cannot be
readily treated via perturbative analyses. These higher-order
terms are only non-zero when three interaction pairs are
simultaneously occurring. For interaction sites on a polymer,
however, this may be a possibility. To show how this may arise,
we consider the interactions relevant toQin and Larson,36,99−101

where they specifically model polyelectrolyte/salt binding. We
first consider only the interaction between a polycation and the
surrounding salt species. If the polycation has a high linear
charge density then it is relatively common to observe the
following physical arrangement

Here, the charges flanking the closest interacting polycation−
anion pair (at monomer s) also participate via a product
f P+,−|s−1 f P+,−|s f P+,−|s+1. Here, we use the notation that the
“nearest” monomer is s and omit the index for the monomeric
anion. If we assume no other participants then we can write this
product diagrammatically

Here, there are f-bonds between the orange (P+) and purple
(−) species, denoted on the schematic explicitly. The
summation is over all possible “center” monomers s, with the
function θs,− = 1 only when the salt ion is closest to s and θs,− = 0
otherwise. We will discuss this function in more detail when we
describe the practical choices in calculating these terms, but for
now, we will contend that it is this function that specifies if a salt
ion is “paired” with a polyelectrolyte monomer s. The area
contained within the three orange ρ-circles alludes to the
emergence of a three-density distribution function associated
with all threemonomers once the integrals over polymer degrees
of freedom in the overall cluster expansion is performed. The
diagram in this notation only accounts for the specific product of
f-bonds and not the integration over the particle degrees of
freedom, which we will explicitly indicate. This will help us work
with this formalism going forward. Finally, the superscript (3)
indicates this is only the three f-bond contribution, omitting the
one- and two-f-bond terms that contribute primarily to the ring
diagrams in the RPA calculation. We use this diagrammatic
representation to calculate the polyelectrolyte−ion interactions
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This expression accounts for the interaction between the
polycation and both the anion and cations. Of course, it is
possible to switch the sign of the polycation terms to obtain the
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corresponding polyanion terms. Finally, we use, for example,
+P , to denote the cluster diagram associated with a set of

three adjacent polycation monomers with an anion

We rewrite this term, rearranging the summations and
integrals and invoking symmetry in the salt species ρ± = ρ− = ρ+

[ ]
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Here, we have made the replacements ρP+ → ϕP+/(NP+ν0) and
ρ± → ϕ±/ν0 to convert the number densities to volume
fractions. We remove the density in the denominator by
removing the translational degree of freedom in the first integral
over polycation conformations, denoted with a *. If we assume
that this integral is numerically small, we can approximate this
with
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In this last step, we assumed that all of the monomers were
equivalent. The form of the expression in the natural log can be
thought of as the single-site partition function where the ion can
be in two “states”; the near-chain state is described by the
integral term, while the away-from-chain state is given by the
one. This is reinforced by the θs,± factor, which enforces locality
in the second, integral term. We then use the binomial theorem
to rewrite as
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In this last step, we assume that there is a value of NB* that
dominates the summation. This, along with the term related to

the polyanion, allows us to write the excess free energy
associated with ion pairing
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This expression, with a few minor di"erences, recovers eq 17.
The first two terms account for the combinatoric entropy of
counterion “binding”, defining the fraction ξP+ = NB*/NP+. The
subsequent terms account for the decrease in translational
entropy for the bound states, which is related to the terms in eq
17 that account for the charge fraction-dependent terms in the
mixing entropy. The final terms are the e"ective change in free
energy of binding, ΔGP±,±, that are given byÄ
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The expression in the natural log can thus be interpreted as a

bound state partition function, coming from the local electro-
static correlations beyond the electrostatic interactions included
in the RPA formalism.
There are several primary di"erences with this result versus

the original theory by Larson and Qin100 but which we attribute
to the di"erences in the original interpretation of the model as
due to actual chemical binding versus the charge localization
that we consider here. The first di"erence is that we do not
explicitly include the fraction of un-paired charges into the RPA
portion of the free energy. This is expected in the original theory
because they are explicitly removing charges upon reacting, so
the fraction reacted would both changeand be a"ected by
the RPA fluctuations.100 In our case, however, the charges
remain present and contributing to the RPA. The second
di"erence is similarly due to this di"erence in interpretation,
which is that there is a subtle di"erence in how the translational
entropy of the ions is treated. In the original theory, their mixing
entropy is based on the number of “free” ions due to the binding
reactions.100 In this version, there is a similar correction, but this
only a"ects the prefactor of the natural log term and not the
quantity in the natural log. Third, and critically for this paper, we
now have an expression for the binding free energy ΔGP±,± that
is in principle able to be evaluated. In the original theory, this
would instead be related to the reaction itself and would include
both bond formation and changes in the electrostatic self-energy
of the charges.100 Finally, we note that the distinction between a
true chemical bond versus charge localization has physical
ramifications that are not expressed in either theory. For
example, the presence of defined, chemical bonds would lead to
gelation at high concentrations and frequent binding between
polyelectrolytes as discussed in the next section.131 While early
models attempted to include some gelation-driven correla-
tions,75 ion pairing theories by Larson or Qin do not model this
gelation explicitly100 and consequently do not make predictions
about topology or changes in structure. In contrast, gelation is
not necessarily expected in the absence of defined chemical
bonds. Physical gelation is possible if local electrostatic
interactions lead to long-lived ion pairs. In principle,
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enumerating the number of ion pairs allows for an estimate of
the gelation line.75 However, in the current model, such an
estimate does not account for the coupling between network
connectivity and locations of ion pairs, nor does it make
predictions for the lifetime of the ion pairs. Further elaborating
and resolving these issues is not the focus of this work. In our
charge localization interpretation, we use merely uses “clusters”
as a way to book-keep the local electrostatic interactions.

■ POLYMER−POLYMER BINDING

We can make a prediction for a similar ΔGP+,P− between the
polymeric species. We write a similar expression for the two-
particle diagram, only now considering both particles to be
polymeric (and in the absence of salt). As a reminder, we are
interested in products of three factors of f

= | | |f i j f f f( , )
s s s s s s

s s s s s s, ,tot
(3)

, , ,
, , , , , ,

(2) (3) (4) (5)
(2) (3) (4) (5)

(25)

We can write this in diagrammatic form in a similar fashion as
for the polyelectrolyte/ion interactions

We consider all possible combinations of the three f-bonds
between the three ρ-circles on each chain (purple circles for the
polyanion monomers and orange circles for the polycation
monomers).We also note that the double sum over all monomer
indices indicates that we consider these local correlations on the
entire set of monomers rather than just limiting local
interactions to a single location along a given pair of polymer
molecules. The θs,s′ factor is similar to the earlier notation in that
it considers the two monomers if each monomer is closest to the
other. Because of these criteria, we also neglect the f-bonds that
do not include either s or s′ (i.e., no f-bonds between s − 1 and s′
− 1). We introduce a short-hand for this extended series of
diagrams

This shorthand can be either symbolic, using +P P,
(1) to

denote that the interactions are between the oppositely charged
polyelectrolytes and consider only a single point of ion pairing
(i.e., between s and s′). We will generalize this later but now
focus on only this set of diagrams. We can write the
polyelectrolyte−polyelectrolyte interactions with the following
expressions
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In the last step, we have simplified slightly by takingNP+ =NP− =

N and ϕP± = ϕP+ = ϕP−. This expression is similar to the one

given in eq 20, and indeed in a system with all interactions

between the polyelectrolytes and salts, these results can be

combined to yield an overall expression for the third-order

contributions to the two-particle connected diagrams
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Using the same procedures as for eqs 20−23, we can now

write a version of the Larson−Qin excess free energy that

accounts for polymer−polymer binding
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The quantities for ΔGP+,± and ΔGP−,± are as defined in eq 24,
and now, we can write a similar expression for, for example,
ΔGP+,P± Ä
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In the formalism given in eq 28, there is thus a combinatoric
entropy of binding for both polymers with respect to the
polymer−ion and polymer−polymer binding sites on both
chains on the first two terms. The subsequent two terms account
for the change in translational entropy upon undergoing a
“binding” event, and finally the last two terms account for the
free energies of binding that result from the local correlations.
We can thus interpret the first three lines in eq 28 as pertaining
to the random binding of the polyelectrolyte monomers to the
oppositely charged salt and polyelectrolyte species, which could
be to the same or di"erent chains. The last line in eq 28 accounts
for the free energy of these binding events, which are associated
with the third-order cluster diagrams. Finally, as a reminder,
these terms are in addition to both the mixing entropy and RPA
terms that were also included in the Qin−Larson formalism100

but can be formed from the standard ring diagrams that emerge
from the first- and second-order products of f-bonds. Thus, these
“ion binding” terms are an additional contribution to coacervate
models, beyond the mixing entropy and RPA free energy
contributions.

■ TM MODEL
Lytle and Sing developed a more elaborate ion-pairing theory
that they dubbed the “transfer matrix model” of complex
coacervation, which models the electrostatic interactions of a
polyelectrolyte with its surroundings by mapping to a one-
dimensional adsorption model.43,102,104,106 This mapping
considered a test polyelectrolyte as a substrate, onto which the
oppositely charged species (i.e., salt and polymer) was
adsorbed.102−104 This was able to be solved, in some cases
analytically, by the TM method that is commonly used to solve
(for example) the one-dimensional Ising model or the Zimm−
Bragg model of coil−helix transitions.132 They proposed the
following free energy
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The first four terms on the left-hand side are simply themixing
entropy contribution, and the last term is a phenomenological
term to account for charge packing.102 The interactions are
accounted for in the fifth and sixth terms, which are the free
energies of a test polyelectrolyte interacting with its surrounding,
oppositely charged species. These oppositely charged species are
modeled as “adsorbing” to monomer “sites” along the one-
dimensional polyelectrolyte chain such that each monomer can
be in one of four states: paired with a salt ion (S), paired with a
polymer charge (P′ or P), or unpaired (0). The di"erence
between states P′ and P account for whether the polymer charge
is the first in a run of interacting monomers (P′) or one of the
subsequent pairs in this run (P). With these states defined, we
write a grand canonical partition function =± ±P i ij j, that

accounts for these interactions using a “TM” ±ij , that includes
the Boltzmann factors associated with pairs of monomers in
di"erent adsorption states102Ä
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(31)

Removing the possibility of the “P” state leads to the Qin and
Larson result,100 where there is a single ion pair formed between
the polyelectrolytes. However, it is very possible that “runs”
form, where two chains remain aligned for several adjacent
monomers on both chains. In this case, the model has
monomer−monomer neighboring interactions that allow us to
include increasing numbers of correlated charges. We can thus
account for situations such as the following

The leftmost situation is what is accounted for in the Larson−
Qin model, with the center and right configurations being
conditionally probable on the likelihood of forming the left
configuration. These diagrams represent along-the-chain
“interactions”, with the presence of the oppositely charged
monomer being nearby being related to the state of the adjacent
monomers.

■ CLUSTER DERIVATION OF TM MODEL
To derive this model, we first focus on the polycation−
polyanion interactions and start from the expression used to
derive the Qin−Larson model
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In the previous case, we narrowed down the set of three f-bond
diagrams by considering only the monomers local to a site there
the two polymer species are spatially close (using the θs,s′
function). However, we will now consider the possibility that
the flanking monomers are also nearby to their counterparts on
the opposing chain. We then will need to consider a less local set
of correlations extending further down the two chains for at least
another monomer pair. We will distinguish these scenarios by
the number of sequential paired charges, writing this with the
following
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We have extended the notations for the cluster diagrams

+P P
i
,

( ) , beyond the series +P P,
(1) that is associated with a single

point of ion pairing. The upper index (i) relates to the number of
ion pairs. For example, we can write the following

These are the summation of all diagrams consisting of three f-
bonds between monomers on nearby polyelectrolytes, consid-
ering two points of contact for +P P,

(2) and three points of
contact for +P P,

(3) . In eq 33, the relevant diagram depends on
the physical arrangement of the particles through the factors Θi;
these factors establish the criteria for each diagram such that, for
example,Θ1 = (1− θs−1,s′−1)θs,s′(1− θs+1,s′+1) indicates that there
is only a single paired set of charges, locally. The index indicates
the number of paired set of charges in a run, such that

= + + + +(1 ) (1 )s s s s s s s s2 1, 1 , 1, 1 2, 2 (34)

= + + + + + +(1 ) (1 )s s s s s s s s s s3 1, 1 , 1, 1 2, 2 3, 3
(35)

The criteria are selected so that the relevant geometries are
mutually exclusive, that is, that the summation in eq 33 reflects a
choice of cluster diagrams based on the length of the run of
paired charges for a specific set of conformations visited by the
path integrals. Finally, we note that there is an asterisk on the
chain length NP±* in the summation over indices s and s′. This
acknowledges that this summation limit will be decremented by

one depending on the cluster diagram, as clusters with >1 paired
contact will have fewer available sets of indices (e.g. NP − 1 for
BP+,P−
(2) , and NP − 2 for BP+,P−

(3) ).
With these additional terms in the cluster expansion, we can

write out the entire two-particle connected diagram consisting of
3 f-bonds. Including the clusters associated with the polymer−
ion correlations
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We can combine terms associated with the polycation and
polyanion and also terms associated with the various conditions
Θi
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To simplify this expression, we use the following definitions,
written in this case for the polycation
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This allows us to rewrite eq 37 more succinctly as
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Here we make the assumption that once we get to the factor E+
or E−, then the ratios of the 3-pair to 2-pair integrals is the same
as if we calculated 4-pair to 3-pair integrals, and so on. We justify
this by noting that this is interpreted as “extending” a run of
paired charged on neighboring polyelectrolytes and that this
extension reflects a criteria for the local bond directions that
should become independent of the length of the run.
The resulting form for the excess free energy due to the third-

order f-bond contributions in eq 42 is similar to the terms seen in
eq 21 and can be interpreted as a series of independent “states”
that can exist along the chain of NP+* sites. The first term in the
parenthesis (for each natural log term) is analogous to the vacant
monomer site, the second term is related to pairing with the
small molecule ions, and then the subsequent terms are related
to polymer−polymer correlations between chains that are singly,
doubly, triply, and quadruply bound in a manner analogous to
the above schematic. However, this picture is complicated by the
di"erent number of monomer sites involved in the multiply-
bound states, and fewer of these can “fit” on a chain with NP+
monomer sites. There is, thus, a longer chain of NP+* states that
is described by keeping the assumption of independence. We
would prefer to, instead, choose only the number of states
needed to accumulate NP+ monomer sites along the chain
backbone.
The resolution to this issue is implied by our notation and

leads to the TM formation.102 If we step along a chain, we could
come across a monomer that is paired to a monomer on the
oppositely charged chain. At this moment, it could be a run
characterized by a single set of paired monomers, and we start by
assuming that option (B0±ϕP±). This does not require any
special considerations forNP+ since it is at this stage only a single

binding site. However, if the next monomer along the chain is
similarly paired then now this is at least a doubly paired state.
This requires the ratio F± to essentially “replace” the integral by
the one associated with ± ±P P,

(2) . The relevant NP+* = NP − 1 is
decremented for this cluster because this doubly paired cluster
takes up two monomer sites. However, in a TM formalism, we
would obtain this cluster integral in two steps (B0±ϕP± × F±),
automatically accounting for this additional “space” along the
chain. If the subsequent monomer along the chain is also paired
then we can obtain the cluster integral in three steps (B0±ϕP± ×
F± × E±), and so on. The two-particle connected diagrams can
thus be written using the TM formalism described in eqs 30 and
31. We merely use the definitions already given and A = A0,±ϕ±,
B = B0,±ϕP±, and D = 1.

■ SIMULATION CALCULATION OF THE CLUSTER
DIAGRAM VALUES

While the cluster diagrams allow us to connect molecular
interactions to model parameters in both the TM and Qin−
Larson theory, we do not expect it to be possible to determine
these quantities analytically. We resort to using simple Monte
Carlo (MC) simulations to obtain values for these parameters133
and show that they can provide reasonable estimations of the
parameters used in both TM theory and Q−L theory. See
schematic in Figure 1a,b for the simulation setups to account for

the polymer−ion and polymer−polymer interactions, respec-
tively. We use a bead-spring MCmodel to obtain configurations
of polymer segments with Nsim = 9 monomers at positions ri,
which feel a potential that only includes bonding and bending
potentials

= | | ++ + +U rr
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(43)
We have indicated a summation over all species α included in

the simulation, and in this paper, we consider only two cases: (1)
polyelectrolyte/ion and (2) polyelectrolyte/polyelectrolyte.
Since our MC simulation is merely a scheme to perform the
integrations described above, these calculations can simulta-

Figure 1. Simulation schemes for calculating cluster diagram values for
(a) polymer−ion and (b) polymer−polymer interactions. Interactions
between particles (e.g., βuP+,−(r) shown in a) are a combination of hard
sphere repulsions βuHS(r) and electrostatic interactions∼λB/r. Polymer
chains are modeled with a harmonic bonding potential that keeps
connected monomers at a distance req and with a bending potential that
is associated with the bond angle θ. Ion pairing criteria are given by the
cuto" radius rc, which is larger than the bead radius a. All parameters
associated with these cuto"s and potentials are chosen to be the same as
in our previous work, Lytle and Sing.102
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neously consider like and opposite charges by simply changing
the charge and separately calculating the respective cluster
terms. More combinations could be considered if, for example,
we were considering polyelectrolytes or electrolytes with
asymmetric potentials. Multicomponent systems may also
require more combinations of species. We consider parameters
consistent with our prior work,30,102−104,134 with a spring
constant κ = 200kBT/a2 that is su#ciently large to make the
bonds rod-like, and a bending constant κθkBT = 3.3 that makes
these chains semiflexible.102 The length scale a is the radius of
the beads and is also related to the equilibrium bond distance req.
Finally, we use periodic boundary conditions to limit the region
of space over which we perform the cluster integrals using a value
of L/a = 25 that is far longer range than the cluster integral
interactions due to the criteria defined by θs,s′ and/or θs,±.
To calculate the cluster diagrams, we must integrate over the

possible conformations of the polymer chains and particles and
account for the interactions. For the polycation/anion system, as
an example, we numerically perform the integral
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Here, the summation is over τMC steps indicated by the index i.
As defined before, =f r e( ) 1u r

,
( ), . We choose a form of

the potential, βuP+,−(r) = βuHS(r) − λB/r, that includes a hard-
sphere part βuHS(r) = 0 for r > 2a and βuHS(r) = ∞ for r ≤ 2a,
and an unscreened Coulomb part with a magnitude of
βuP+,−(2a) = λB/(2a) at contact. This calculation depends on
several choices, including the simulated chain structure via the
values of κ, κθ, and req and the choice of θs,±. For this case, θs,± = 1
only if s is the monomer closest to the ion. We also apply a cuto"
rc, consistent with the criteria for pairing used in our prior
work,102,103 such that θs,± = 1 only if rs,± < rc.
An analogous numerical calculation is performed for the other

quantities (B0,P±, F±, and E±) using a similar procedure, with the
only di"erence being that for θs,s′ we require that monomer s′ is
the closest to s and that the monomer s is closest to s′ (i.e., they
are the closest pair), in addition to that distance being <rc.

We can also consider chains with a charge fraction fc < 1 to
understand the connection between these third order
contributions, the contributions of the RPA terms, and how
they relate to linear charge density. To account for fc < 1, the
evaluation of the integral given numerically in eq 44 (or the
analogous calculations for the other quantities) can be
performed over randomly chosen sequences of charged versus
uncharged monomers.
We obtain the TM parameters for a wide variety of charge

fractions for both the polycation and polyanion species and list
them in Table 1. We have considered a series of di"erent charge
fractions and categorize them by (1) the fully charged
polyelectrolytes, (2) symmetric polyelectrolytes with equal
charge fractions fc,P+ = fc,P−, and (3) only varying one of the
polyelectrolyte charge fractions (in this case, fc,P+). We will
explore the ramifications of these di"erent charge fractions on
the phase diagram in the subsequent section but now note that
the quantitative values were similar to those determined in our
prior work for fc,P+ = fc,P− = 1. This includes both the absolute
values of A0 and B0 as well as the approximate relationship F =
2E, with the latter being originally proposed through
combinatoric arguments.102 We also plot in Figure 2 the
parameters A0 and B0, with the latter calculated for both the

Table 1. TM Parameters

fc,P+ fc,P− A0,+ A0,− B0,+ B0,− E+ E− F+ F−

1.0 1.0 19.4 19.4 23.7 23.7 0.42 0.42 0.87 0.87
0.9 0.9 13.5 13.5 14.7 14.7 0.35 0.35 0.82 0.82
0.8 0.8 9.23 9.23 7.15 7.15 0.29 0.29 0.66 0.66
0.7 0.7 5.62 5.62 3.52 3.52 0.22 0.22 0.66 0.66
0.6 0.6 3.14 3.14 1.37 1.37 −0.13 −0.13 0.51 0.51
0.5 0.5 1.85 1.85 0.35 0.35 −2.75 −2.75 0.24 0.24
0.9 1.0 13.5 19.4 18.33 23.7 0.36 0.42 0.80 0.87
0.8 1.0 9.23 19.4 13.58 23.7 0.36 0.42 0.81 0.87
0.7 1.0 5.62 19.4 9.92 23.7 0.33 0.42 0.75 0.87
0.6 1.0 3.14 19.4 6.64 23.7 0.36 0.42 0.72 0.87
0.5 1.0 1.85 19.4 4.86 23.7 0.16 0.42 0.57 0.87

Figure 2. TM parameters A0 and B0 as a function of charge fraction f C
calculated by numerically evaluating expressions in eqs 38 and 39. For
the polycation−polyanion parameter B0, we consider both the
symmetric case B0,s where both chains have the same charge fraction
fc < 1 and the asymmetric case where one chain is fully charged while the
other chain has a charge fraction fc < 1. In all cases, the value of the
parameter A0 or B0 decreases with decreasing charge fraction in a
monotonic fashion, coinciding with a decrease in the importance of
three-monomer interactions when charges become more spaced apart
on average. Lines are included to guide the eye.
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symmetric ( fc,P+ = fc,P− = fc, B0,s) and asymmetric ( fc,P+ = fc, fc,P− =
1, B0,a) cases. With decreasing fc, all of these parameters
monotonically decrease due to the diminishing importance of
correlated clusters at lower charge fractions. Understandably,
the symmetric case exhibits a more pronounced decrease in B0 as
both interacting chains have fewer charges.

■ COMBINING CLUSTER DIAGRAMS TO MODEL
COMPLEX COACERVATION

The benefit of using cluster diagrams as the foundation of these
multiple coacervation models is that it is possible to systemati-
cally combine di"erent theories that are complementary. To
illustrate how this can be done, we point out that there are three
types of contributions that can be combined without any overlap
in meaning to develop a complex coacervate model. This
includes (1) the RPA result for the excess free energy, which
includes all ring diagrams, (2) the TM theory, which accounts
for third-order multi-site interactions only between pairs of
molecules, and (3) the hard core liquid contributions at the
beyond-second order level, which are otherwise included in (1)
and (2). We can diagramatically write a combined free energy
that reflects these contributions

The first series of diagrams, underlined in red, are those
involved with the TM theory. For brevity, we now implicitly
include the integrations over the molecular degrees of freedom
and the proximity constraints, and we explicitly include only the
diagrams for the polycation species with the polyanion species
remaining implied. These diagrams include both the polymer−
salt diagrams as well as the series of “ladder diagrams’ that reflect
the multi-site pairing between adjacent chains. These are third-
order terms because the corresponding second- and first-order
terms are included in the RPA portion of the free energy, which
is given by the ring diagrams that are underlined in dark blue. For
this work, we will use the Olvera de la Cruz model76 since like
the TM calculation, this incorporates some elements of the finite
particle size in a pairwise fashion. Finally, the third contribution,
underlined in light blue, is the third and higher-order diagrams
associated with the hard core repulsions of all the species. We
deliberately neglect the second-order contribution as it is already
included in the RPA and TM portions of the calculation. We can
use the models discussed in the previous section to write a free
energy expression for coacervation using all of these diagrams
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The ordering of the terms in the excess free energy, after the
mixing entropy terms, reflects the order of terms in the diagrams.
First, the TM contributions are defined as above, with

=± ±
±( )P i P

N
ij j

P and the cluster diagram-derived parame-
ters. The subsequent RPA term is numerically evaluated, so we
use a version where the thermodynamically irrelevant term
linear in species densities ϕi is removed for convenience. The
function = +k( )

k b k
1

(1 )2 2 2 is the version from Olvera de la
Cruz76 that modifies the interaction potential to account for the
finite size of the ion (related to the length scale b). Similarly, we
can choose what we consider for gD(k), and for this work, we
choose an approximate form for the wormlike chain that
interpolates between the rigid rod and random walk
limits128,135,136
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This expression is used to be consistent with the semiflexible
chain used in the simulations performed in this and previous
works. Finally, the last two terms are associated with the
Carnahan−Starling expression for the free energy of hard
spheres;124 the second of these terms simply removes the
quadratic contributions that would arise from the pairwise
interactions already included in the TM and RPA terms. This is
almost certainly an underestimation of this free energy due to
the correlations associated with the connected polymer chains.
We thus introduce the quantity α that is a tunable parameter that
can correct for this approximation; this quantity is expected to
be larger than the hard sphere fluid limit of α = 1 but not
significantly deviating from this limit.
In Figure 3a we plot the resulting phase diagram, determined

from the free energy in eq 45 including all terms (TM, RPA, and
C−S, black binodal) for fc,P+ = fc,P− = 1.0. We first note that the
phase diagram captures the key features of coacervation, as seen
in similar simulations and experiments from the literature. This
is unsurprising since the parameters we determined for this
example are quantitatively close to those obtained from fitting to
simulation data in the original TM theory.102 The main
di"erence is that we are slightly over-predicting the binodal at
the high-ϕS limit; this extends the critical point to higher salt
concentrations, and we will suggest an explanation for this
feature during our discussion of the limitations of this model
later in this paper.
Because the TM, RPA, and C−S terms are all additive in the

free energy, we can systematically turn on or o" these
contributions. To show how these expressions manifest, we
plot in Figure 3a the predictions for phase separation using only
the RPA and C−S terms, which is plotted with the blue curve
and is a relatively small region of phase separation at low
concentrations of ϕP and ϕS. While coacervation is predicted, it
nevertheless exhibits a relatively weak phase separation that is
quite di"erent from the full phase diagram. Alternatively, we also
show the phase diagram prediction using only the TM and C−S
terms, which is plotted in red in Figure 3a and is far closer to the
full phase diagram. Nevertheless, it still noticeably falls short of
the full coacervate coexistence region. The TM theory thus
dominates coacervate behavior, though the RPA-based
attraction still plays a non-negligible role. Finally, we also plot
in Figure 3a simulation data for the coacervate phase diagram
from Lytle and Sing102 that exhibits reasonable agreement with
the theoretical predictions.
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The other feature that all variations of this theory exhibit is the
negative slope of the tie lines, with salt typically partitioning
preferentially into the supernatant phase. We demonstrate this
by plotting the partitioning coe#cient λ = ϕS,c/ϕS,s versus ϕS,c in
Figure 3b, where ϕS,c is the salt concentration in the coacervate
phase and ϕS,s is the salt concentration in the supernatant phase.
However, the strength of this partitioning varies, with the lowest
λ as the concentration of the coacervate increases. This is
conceptually consistent with prior work, which suggests that
preferential partitioning to the supernatant is driven primarily by
the excluded volume of the components in the dense coacervate
phase.28,30,72 However, there is also a low-ϕS,c increase in λ that is
a feature of the RPA theory,76,96 which is driven by fluctuation-
induced attraction between the dense polyelectrolyte phase and
the salt ions and is seen in RPA predictions in the absence of
excluded volume.76,96 Once more, we plot the simulation

predictions for λ from Lytle, et al.102 to demonstrate consistency
with the theoretical results.

■ FLUCTUATION-DRIVEN VERSUS ION
PAIRING-DRIVEN COACERVATION

The emerging consensus in the coacervate field is that di"erent
theoretical approaches are relevant in di"erent physical
situations, with the linear charge density of the polyelectrolytes
being particularly important.1 Field theoretic and scaling
approaches are thought to best describe low-linear-charge-
density polymers, while charge correlations inherent to the TM
and other ion pairing approaches are thought to best describe
high-linear-charge-density polymers.65 By deriving these two
approaches from a consistent starting point, we can systemati-
cally consider the role of linear charge density on the balance
between ion pairing and fluctuation-driven attraction. Indeed, in
our formalism, these two concepts are separable because they
constitute summations over two distinct sets of diagrams. By
comparing these contributions, we can evaluate where these
various approximations are more or less dominant.
To account for linear charge fraction in our calculations, we

modify both the RPA and the TM terms in the theory. For the
RPA calculation, we use the classical modification that explicitly
includes the linear charge fraction f C77

= [ + + ]f k N f g k k
4

d ln 1 4 ( ( ) ) ( )P Sexc,RPA, 0
0
2 B

2
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2

D

(47)

We also consider changes to the TM terms, as described in the
previous section, where the parameters A0,±, B0,±, E±, and F± are
calculated by randomly selecting monomers to be charged or
uncharged to match with a given f C. This changes the factors fα,γ
by removing the Coulomb portion of the interaction energy
βuα,γ.
We plot in Figure 4a coacervate phase diagrams for a variety of

charge fractions f C,+ = f C,− = f C that are the same on both
polyelectrolytes. As this charge fraction is decreased from the
fully charged limit f C = 1.0, the coexistence regime becomes
considerably smaller. This is the expected result, which is that
the electrostatic driving force for coacervation becomes weaker;
this is true for both the RPA and the TM terms and is consistent
with the prior literature.30,43,72,95,111 As the two-phase region
shrinks, the partitioning of the salt also begins to invert such that
at the lowest phase-separating case ( f C = 0.5), the tie line slopes
are predominantly positive such that there is more salt in the
coacervate than in the supernatant. This is seen in Figure 4b as
conditions where λ > 1. These same trends become weaker when
one of the polyelectrolytes remains fully charged, and we plot
phase diagram predictions in Figure 5a for a series where f C,+ =
1.0 and f C,− < 1.0; here, the trends are essentially the same except
the two-phase region shrinks less and the tie lines (plotted in
terms of λ in Figure 5b) exhibit only subtle changes away from
the fully charged limit.
The change in tie lines from negatively to positively sloped

with decreasing f C can be attributed to the shift from where the
TM contributions are dominant to where the RPA contributions
are dominant as the RPA is known to exhibit preferential salt
partitioning to the coacervate phase. To quantify this, we define
ametric to compare the relative strength of coacervate formation
due to the RPA versus the TM contributions to the theory. We
choose to not compare the absolute magnitudes of their free
energies as an arbitrary reference free energy could be added
rendering any comparison moot. Instead, we choose to compare

Figure 3. (a) Phase diagrams for a symmetric, fully charged
polyelectrolyte coacervate using di"erent approximations. The full
phase diagram (black) uses the free energy expression given by eq 45
and includes terms associated with the TM theory, the RPA theory, and
the Carnahan−Starling expression for the excluded volume. Also
plotted are versions where the RPA portion is removed (red) and the
TM portion is removed (blue) to show the relative contributions of
both terms to the phase behavior. Also included are points from prior
simulations that exhibit reasonable agreement with our model.102 The
only tunable parameter that we use is the quantity α that changes the
magnitude of the excluded volume contribution to reflect the chain
structure rather than the hard-sphere prediction given by Carnahan−
Starling. (b) The salt partitioning coe#cient λ that relates the
concentration of salt in the coacervate versus the supernatant. If λ >
1, then salt partitions preferentially to the coacervate, while if λ < 1, salt
partitions preferentially to the supernatant. Quantities demonstrated
for the same set of models as in (a), with the full coacervate model again
exhibiting reasonable agreement with molecular simulation. Simulation
points reproduced from ref 102, copyright 2017, with permission from
the Royal Society of Chemistry.
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the thermodynamically relevant second derivative quantities of
the free energy contributions, which describes the strength of
the driving force for phase separation due to each term in the free
energy. We can write the comparison asikjjj y{zzzikjjj y{zzz
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For simplicity’s sake, we specifically choose to consider the
zero-salt case for this paper as the driving force for phase
separation becomes slightly more complicated for several
components. We plot this comparison as a function of polymer
concentration ϕP for several values of f C in Figure 6.
We note several key observations about ϱ that provide insights

into the various contributions to the coacervation free energy.
First, the relative importance of the TM versus RPA portions of
the free energy depends on the polymer concentration ϕP, with
the latter being dominant only at the low-ϕP limit. This may be
somewhat dubious as the RPA contribution to the excess free
energy is known to overpredict phase separation in the dilute
limit. Furthermore, the TM theory itself is known to be
inaccurate in this limit. However, it is nevertheless physically

sensible that higher-order local correlations described by the
TM theory become weaker when the concentration ϕP
decreases, especially compared with the long-range contribu-
tions included in the RPA. At high charge density ( f C > 0.7),
however, most of the ϕP regime is instead dominated by the TM
theory, typically being 5−10× the strength of the RPA
contribution at typical coacervate densities. This is apparent in
Figure 3a, where the TM-only phase diagram is much closer to
the “full” result than the RPA-only phase diagram, and justifies
the neglect of the RPA contribution to the theory in this limit.
At lower charge densities ( f C ≤ 0.7), however, the region

where the RPA dominates grows significantly. At f C = 0.5, RPA
dominates to relatively large values of ϕP, with ϱ < 1 until
roughly ϕP ≈ 0.07. Notably, this is beyond the phase boundary
for f C = 0.5 in Figure 4b such that coacervate is primarily driven
by RPA. This transition to fluctuation-driven phase separation is
also apparent in the salt partitioning, with f C = 0.6 being the
point at which the value of λ starts to become consistently >1 in
our model. This observation is broadly consistent with
experimental data, wherein such a transition in behavior occurs
around f C = 0.5; however, we also expect that these predictions

Figure 4. (a) Phase diagrams for symmetric polyelectrolyte coacervates
with di"erent linear charge densities, expressed in terms of the
monomer charge fraction fc. The fully charged case fc = 1.0 is the same as
in Figure 3 and represents the largest extent of the two-phase region
when compared with smaller values of fc = 0.5−0.9 indicated on the
figure. As fc decreases, the two-phase region shrinks considerably. Tie
lines are shown for fc = 1.0 and fc = 0.5, which express the partitioning of
salt between the phases. This is also shown in (b) in terms of the salt
partitioning coe#cient λ, which shows the transition from preferentially
partitioning to the supernatant at large values of fc to preferentially
partitioning to the coacervate at small values of fc < 0.7.

Figure 5. (a) Phase diagrams for polyelectrolyte coacervates where one
of the polyelectrolytes has di"erent linear charge densities, expressed in
terms of the monomer charge fraction fc of one of the polyelectrolyte
species (the other polyelectrolyte has fc = 1). The fully charged case fc =
1.0 is the same as in Figures 3 and 4 and represents the largest extent of
the two-phase region when compared with smaller values of fc = 0.5−0.9
indicated on the figure. As fc decreases, the two-phase region shrinks
modestly compared to when both polyelectrolytes have varying charge
densities. Tie lines are shown for fc = 1.0, which express the partitioning
of salt between the phases. This is also shown in (b) in terms of the salt
partitioning coe#cient λ, which shows only modest changes in salt
partitioning upon varying fc.
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are sensitive to specific model parameters and that any
prediction for the transition from RPA-dominated to TM-
dominated behavior will be situation-dependent.

■ DISCUSSION AND CONCLUSIONS
In this paper, we have used a common starting pointa cluster
expansion representation of the excess free energyto show the
relationships between several theoretical approaches to
coacervation. The focus has been on two essentially orthogonal
sets of cluster diagrams; the first is the set of “ring” diagrams
taken from the Mayer theory of ionic solutions115 and can be
related to the RPA excess free energy for coacervation,75−77 and
the second is a set of ladder-like diagrams to account for higher-
order interactions and leads to the TM theory of coacerva-
tion.102 A third set of diagrams is added to account for non-
pairwise hard sphere packing correlations, an important
component that is responsible for setting the location of the
binodal and the salt partitioning. This yields several insights that
we think provide important context for the wide range of
coacervate theories in the community:

• This represents the first derivation of the TM theory from
a partition function, providing a more fundamental
statistical mechanical justification for the setup of this
model. Quantities such as A0,± and B0,± that were
previously parameterized from simulations102,103 are
now related to cluster integrals that directly consider the
molecular interactions. We can now be clearer about the
approximations made in this approach and systematically
account for these approximations diagrammatically.

• The diagrammatic representation allows us to write
theories with non-overlapping contributions to the free
energy, combining both fluctuations, strong charge
correlations, and hard-sphere packing terms without
redundancy. This has led to a new theory of coacervation,

given in eq 45, that limits to both ion pairing and RPA-
based models.

• We now have a quantity ϱ that can be evaluated to
determine the relevant importance of the RPA versus TM
terms. While our new theory of coacervation includes
both terms, we can show that for standard simulation
models (i.e., the fully charged restricted primitive model),
the TM term is dominant. However, as the linear charge
density is decreased, the RPA term eventually becomes
dominant.

• Salt partitioning is shown to be dependent on the
molecular parameters, exhibiting preferential partitioning
to the supernatant phase in the high-fc limit but
preferential partitioning to the coacervate phase in the
low-fc limit. This coincides with the transition from TM-
dominated to RPA-dominated coacervate behavior.
However, this is likely due to the specific interactions
andmolecular parameters involved as the RPA-only result
for fc = 1.0 shows preferential partitioning to the
supernatant in contrast to the lower-fc case.

• The cluster diagram approach may provide a useful
starting point for systematically incorporating sequence
e"ects, multicomponent coacervates, and non-electro-
static interactions. For this last point, it is notable that this
only requires incorporating short-ranged potentials
directly into the cluster diagram calculations.

We think that this is a useful starting point for developing
more sophisticated models of polyelectrolyte solutions. At a
fundamental level, the model developed here su"ers from the
same issues as the limiting theories and will require further
development. So, despite the extensive formalism considered
here, we can identify several areas where these models could be
refined further:

• The RPA result for coacervation is known to be
qualitatively inaccurate for polyelectrolyte complexes at
low concentrations,81,131,136 overpredicting phase separa-
tion in this limit. Comparison of RPA to the full
fluctuating field theory, for example, shows dramatic
di"erences,81 and this will also a"ect ϱ in this limit. In this
situation, plots versus log ϕP instead of ϕP are needed to
resolve the subtle di"erences that will arise at the low-ϕP
limit.

• The TM result for coacervation is also known to be
qualitatively inaccurate for polyelectrolyte complexes at
low concentrations because it neglects longer along-the-
chain correlations between pairs of oppositely charged
polyelectrolytes. A more complicated set of diagrams may
be able to account for these correlations, connecting non-
adjacent correlated clusters.

• The cluster diagrams for the TM result only account for
interactions between the flanking monomers of the ion
pairs. This was an arbitrary choice made for convenience,
which could be relaxed to account for longer along-the-
chain interactions.

• Relatedly, these cluster diagrams considered triple
products of f-bonds, and it is possible that quadruple
(or higher-order) products are also non-negligible. This
choice was similarly done for the sake of simplicity, but a
more systematic study may refine our theoretical
predictions and will likely be important for sequence-
defined polymers where we have previously shown that

Figure 6. Dimensionless quantity ϱ describing the relative importance
of the RPA vs TM contributions to the overall propensity for phase
separation, plotted as a function of polymer concentrationϕP for several
values of linear charge density f C. For all cases, the RPA contribution
dominates at very low ϕP (ϱ < 1) though for highly charged
polyelectrolytes (i.e., large fc), the TM dominates in most situations
(ϱ > 1). The value of ϱ decreases considerably as fc > 0.7, which also
coincides with the binodals for coacervation themselves shifting to
lower values of ϕS. This quantifies the transition from ion pairing-
dominated to fluctuation-dominated coacervation.
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the along-the-chain e"ects can extend beyond neighbor-
ing interactions.

• The approximation invoked going from eqs 20 and 21, in
which we assume that the cluster integral is ≪1 so that we
can replace it with a natural log, is useful to connect to ion
pairing theories by Qin and Larson99,100,128 and
eventually to the TM theory.43,102−107 This is not
necessary, however, and it would be possible to instead
numerically evaluate the summation in eq 20.

• While we consider many of the models developed in the
literature, the relationship of this cluster approach to (for
example) liquid-state theory models72,96,97 would be a
useful direction for future study.

• Our free energy expressions do not provide straightfor-
ward predictions for molecular correlations or structures
that could be tested in simulation or experiment. Further
development of this formalism to predict these structures,
for example, using the tools of liquid state theory and
PRISM,119 would be an important advance.

• We incorporate the dielectric e"ects implicitly by
inserting the aqueous phase dielectric constant to the
expression for the Coulomb interaction. Recent work has
shown that the temperature dependence of dielectric
permittivity adds important entropic contributions to the
complexation of polyelectrolytes.137 This has important
ramifications for the temperature dependence of coac-
ervate phase behavior,41,137−139 which we do not consider
in this paper.

Finally, in addition to these areas for further model
development, we expect that this approach will allow us to
consider di"erent molecular models beyond the coarse-grained
linear chains we consider here. In particular, we anticipate that it
would be straightforward to adapt this formalism to polymers
with non-linear architectures or models with more chemical
detail.

■ APPENDIX A
Ring Diagrams and the Derivation of the Debye−Hückel
Free Energy
In the main paper, we introduced a series of ring diagrams that
utilizeΨ-bonds that lead to the Debye−Hückel free energy, βfexc
= −κ3/(12π), showing only a brief outline of the derivation. We
present it in more detail here.
To show how to perform this derivation, we re-write the f-

bond by splitting up the energy into a hard-sphere portion and a
Coulomb portion, βuα,γ = βus + βuc,α,γ140
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Here, the Coulomb contribution is βuc,α,γ(ri,α, rj,γ) = λBzαzγ/|

ri,α − rj,γ| and the hard sphere potential is βuhs(ri, rj) = 0 if |ri − rj|
≥ σ and otherwise βuhs(ri, rj) = ∞. This allows us to replace a
given f-bond with one or zero f 0-bonds, and any number of
interaction bonds (which we will callΨ-bonds by writingΨα,γ(ri,
rj) = −βuc,α,γ); however, at least one bond must be present in a
given diagram. For the pairwise diagram, this means that the
diagrams are now

Here, we have denoted the f 0 bonds with solid lines and the
Ψ-bonds with dashed lines. To write out some of these diagrams,
the first diagram on the right is simply
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This is related to the first virial coe#cient for a hard-core gas71
and becomes small at extreme dilution. We note that the
negative sign is due to the identification of the cluster expansion
with −βfexc such that this ultimately contributes to the overall
free energy as a penalty. The second diagram isÄ
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The second version of the expression combines the densities
and valencies into a single sum, which becomes zero in an
electroneutral system. This is true of many diagrams in this
expansion because any odd factor of the valency zα will sum to
zero. The lowest-order set of terms where this is not the case are
the so-called ring diagrams.115 The third diagram involves both
types of bonds. Its expression is the same as the second diagram,
but the inter-particle separation is restricted by the f 0-bond.
Such a restriction does not a"ect charge neutrality argument, so
the third diagram vanishes. To generalize, we expect a diagram
to vanish if any ρ-circle in the diagram is joined by only one Ψ-
bond. The fourth diagram above is the first in this seriesÄ
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This term does not cancel out, and indeed this is true for all
ring diagrams because there are an even number of bonds going
into each circle. There is also an additional factor of 1/2
compared to the previous diagrams that is due to the
combinatoric factor associated with the two Ψ-bonds.
Mayer ionic solution theory obtains the Debye−Hückel

theory result by considering an infinite series of these
diagrams69,115

To help evaluate this series, we use the well-known result that
the Fourier transform of 1/r is 4π/k2 to re-write the diagrams.
We start with the first ring diagram
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In the last step, we made the definition that ψ(k) = ψ(−k) = k−2.
The second ring diagram is similar
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We use the definition from earlier that = z(4 )i i iB
2 1/2

to write out the excess free energy density
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Considering that ln(1 + x) = x− x2/2 + x3/3− x4/4 + , we can
write Ä

Ç
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If we define a quantity k̃ = k/κ; then we can re-write the final
integral as

= [ [ + ]] =f kk k k
4

d ln 1
12exc

3

2 0

2 2 2
3

(57)

The final integral that can be evaluated is π/3 and leads
directly to the Debye−Hückel expression for the excess free
energy.

■ APPENDIX B

Cluster Diagram Derivation of the RPA
To explicitly show how the expansion in eq 10 is incorporated
into diagrams for the excess free energy, let us consider a simple
pairwise diagram for a system with only polyelectrolytes of
length NP+ = NP− = N
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As mentioned in the main text, the second summation now
explicitly includes the constraint that the pairs of s, s′ and s(2), s(3)
cannot be the same and reintroduces the factors Pα that account
for intramolecular connectivity. This calculation is not
considerably di"erent from previous versions of this 2-particle
diagram, though now there are path integrals over all possible
conformations of the two polyelectrolytes. This can be analyzed
in the same way as for the small molecule electrolytes, in that we
can consider the ring diagrams with Ψ-bonds between ρ-circles;
however, now that monomers can be connected on the same
polymers, these “rings” can include polymer segments. One
interaction can be between monomers s and s′, while the other
interaction can be between a di"erent pair of monomers s(2) and
s(3); this comes from the term consisting of products of two f-
bonds. Conversely, it is also possible that s = s″ and s(2) = s(3),
which comes from the single f-bond factors. We indicate the
possibility of having connections between dissimilar monomer
sites in diagrams by including ω-bonds that indicate correlations
between spatially distinct sites, which we denote with orange
lines. For the ring expansion, we represent this as

Note that, if there are only individual sites per chain, the
orange lines disappear and we revert to the Debye−Hückel ring
diagrams. To show how these diagrams work, we can write out
the first integral as the following, considering at first the no-salt
case with chains of equal length N
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(59)

For a polymer chain α, the probability that any given
conformational path that has monomers s and s(2) separated by a
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distance of r3 is given by the site−site correlation function
| |r( )s s, , 3(2) . The path integrals over chain conformations give

rise to an averaged quantity

[ ] = | |P s sr r r r r( ( ) ( )) ( )s s3
(2)

, , 3(2) (60)

This is simply the Green’s function for a segment of length Δs
= s− s(2) spanning a vector r3. This can be further combined with
the sums over the values s and s(2)
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We note that the Fourier transform of this sum over the site−
site correlation functions ΩP+ is the structure factor

= = =S e N gk k r r k( ) ( ) d ( ) ( )i
ikr

3 3 D,
3

(62)

The last equivalence assumes a Gaussian chain and invokes

the Debye function = [ + ]g e xk( ) 1
x

x
D

2
2 ,116,121 where x =

Rg
2k2. Using this expression, we can write the first ring diagram as
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At the last step, we make the assumption that both chains are
identical in length N, except that they have opposite charge
valency. This result is a straightforwardmodification of the result
from the Debye−Hückel expression in eq 53 and justifies the
diagrams we indicated earliereach Ψ-bond contributes a
factor ψ, and each orange ω-bond contributes a factor NgD. We
note that the factors ofNα in the prefactor are important as they
convert the number density of chains, ρi, to number densities of
monomers. The factors NgD account for connectivity of ideal,
Gaussian coils, and simplify to factors of unity as N → 1. The
next ring diagram is again similar
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We can thus write down, in a similar fashion to the Debye−
Hückel case, the expression for the excess free energy
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This is the result given in eq 12.
We can extend this calculation to include salt bymodifying the

various ring diagrams to include more than just the polycation
and polyanion species. We write out more explicitly the
summation in the first ring diagram
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Subsequent ring diagrams will maintain similar patterns to the
no-salt and Debye−Hückel cases, so we can write

= [ +
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This is the expression given in eq 13.
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