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Convergence acceleration of flow simulations to their steady states at lower Mach numbers can be achieved
via preconditioning the lattice Boltzmann (LB) schemes that alleviate the associated numerical stiffness, which
have so far been constructed on square lattices. We present a new central moment LB method on rectangular
lattice grids for efficient computations of inhomogeneous and anisotropic flows by solving the preconditioned
Navier-Stokes (PNS) equations. Moment equilibria corrections are derived via a Chapman-Enskog analysis for
eliminating the truncation errors due to grid-anisotropy arising from the use of the rectangular lattice and the
non-Galilean invariant cubic velocity errors resulting from an aliasing effect on the standard D2Q9 lattice for
consistently recovering the PNS equations. Such corrections depend on the diagonal components of the velocity
gradients, which are locally obtained from the second order non-equilibrium moments and parameterized by
an associated grid aspect ratio r and a preconditioning parameter y, and the speed of sound in the collision
model is naturally adapted to r via a physically consistent strategy. We develop our approach by using a robust
non-orthogonal moment basis and the central moment equilibria are based on a matching principle, leading
to simpler expressions for the corrections for using the rectangular grids and for representing the viscosities as
functions of the relaxation parameters, r and y, and its implementation is modular allowing a ready extension of
the existing LB schemes based on the square lattice. Numerical simulations of inhomogeneous and anisotropic
shear-driven bounded flows using the preconditioned rectangular central moment LB method demonstrate the
accuracy and significant reductions in the numbers of steps to reach the steady states for various sets of
characteristic parameters.

1. Introduction of the particle populations due to collisions and advection along the
characteristic discrete velocity directions referred to as a lattice. The
collision step is often represented by a model involving the relaxation

to certain equilibria, either directly involving the distribution func-

With the rapid development in the computational fluid dynamics
(CFD) techniques and their engineering and scientific applications, the
need for accurate and efficient simulations of fluid flows has become
vitally important. The lattice Boltzmann (LB) method has proved es-
pecially advantageous in simulating a variety of fluid flows, including
complex flows such as multiphase and multicomponent systems, porous
media flows, and turbulence [1-3]. Its firm basis resulting from certain
a discretization of the Boltzmann equation and its ability to accommo-
date considerations beyond hydrodynamics, such as the higher order

tions [4] or their raw moment [5], central moment [6] or cumulant [7]
representations, performed with using a single relaxation time [4] or
multiple relaxation times [5], or by a model that is compliant with
certain notions of entropy [8]. The asymptotic continuum limit of such
collide-and-stream steps on a lattice satisfying the necessary symmetry
and isotropy considerations correspond to the dynamics of the fluid

kinetic moments, contributed to many refinements of this approach.
The LB method is naturally parallelizable, flexible in adopting models
from kinetic theory, and it facilitates boundary condition implemen-
tations on Cartesian grids with relative ease, which have paved the
way for its growing number of applications. Briefly, the method in-
volves tracking the spatial and temporal evolution of the distribution
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flow represented by the Navier-Stokes (NS) equations.

The LB method typically uses uniform Cartesian grids, resulting,
for example, from the choice of a square lattice in two-dimensions
(2D). Real world problems are often dominated by inhomogeneous and
anisotropic flows, including wall-bounded shear flows. For example,
in turbulent boundary layers or flow through channels or ducts, the
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eddy sizes are markedly different in different coordinate directions,
and which progressively increase in the direction normal to the wall.
Similar situations arise in simulating flows within enclosures with high
geometric skewness characterized by large disparities in the length
scales or the aspect ratios. Thus, the use of square/cubic grids are to
solve such problems of practical interest are associated with high com-
putational costs both in terms of time and memory, which can be orders
of magnitude more than efficient algorithms based on nonuniform,
stretched grids. Hence, it becomes highly important to develop more
efficient approaches that use grids which naturally accommodate the
spatial variations in the flow features. As a result, much attention has
been paid to extend the LB schemes involving non-uniform grids. While
unstructured grids or schemes involving interpolations for considering
stretched grids can be used in this regard (see e.g., the monograph [9]
for a survey of such methods), it can result in complicated imple-
mentations or introduce additional numerical dissipation [10]. On the
other hand, one of the hallmarks of the LB methods is that the perfect
lock-step advection or streaming used in their standard formulations
incurs minimal overall dissipation while maintaining the simplicity of
its implementation. For more efficiently simulating anisotropic flows
while preserving this important feature, it becomes natural to utilize
rectangular lattices rather than square lattices in 2D.

Thus, significant focus has been shown towards developing LB
methods using rectangular lattice grids during the last decade fol-
lowing the initial investigation in this direction by Koelman [11].
For example, Hegele et al. [12], Peng et al. [13], Wang et al. [14]
presented rectangular LB algorithms based on a single relaxation time
(SRT) model via an extended lattice set, corrections to equilibrium
distribution functions, and counteracting source terms, respectively, to
recover the NS equations. Moreover, rectangular LB schemes based on
raw moments using multiple relaxation times (MRT) were developed
by Bouzidi et al. [15] and Zhou et al. [16], which were analyzed
and an improved LB scheme on a rectangular grid with the neces-
sary correction terms that is consistent with the NS equations was
constructed by Peng et al. [17]. However, many of these methods
involved cumbersome implementations, complicated expressions for
the corrections, and numerical stability issues when the grid aspect
ratio of the rectangular lattice (defined later) is significantly far off
from unity (i.e., characterizing strong grid stretching in one of the di-
rections relative to the other) or for simulating flows with relatively low
viscosities or high Reynolds numbers. On the other hand, recognizing
that the use of central moments, which naturally preserves the Galilean
invariance of those moments independently supported by the lattice,
can significantly improve the stability and accuracy when compared
to the use of raw moments [6,18-33], we recently constructed a rect-
angular central moment LB method (RC-LBM) [34], which was then
further extended to three-dimensions with an improved implementa-
tion strategy [35]. While the original central moment LB scheme was
constructed using an orthogonal moment basis [6], Geier et al. [7] in
2015 provided a detailed discussion on the role of the moment basis
in their development of a cumulant LB method and also constructed
a variety of collision models, including those based on raw moments,
central moments and cumulants using non-orthogonal moment basis
and presented them in the various appendices of [7]. Moreover, the
numerical stability advantages of using such non-orthogonal moment
basis relative to the orthogonal moment basis were demonstrated via
a linear stability analysis in [36]. Besides, earlier studies on cascaded
LB schemes performed mathematical analysis and demonstrated consis-
tency to the Navier-Stokes equations using such simpler basis [18,19].
The use of non-orthogonal central moments in algorithmic implemen-
tations in LB schemes was later adopted in Refs. [22,23]. Hence, in
contrast to the prior rectangular LB schemes, the RC-LBM used a natural
non-orthogonal moment basis, a matching principle to construct the
equilibria involving higher order velocity terms resulting in a simpler
and significantly more robust implementation. Also, in Ref. [35], we
also explicitly demonstrated the computational advantages of using a
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rectangular lattice in lieu of a square lattice in solving inhomogeneous
and anisotropic flows. Moreover, the central moment LB method on a
cuboid lattice presented in Ref. [35] is modular in construction thereby
allowing ready extension of the existing algorithms on a cubic lattice to
cuboid lattices, and provides a unified formulation with corrections that
are applicable for a wide variety of all the standard collision models.

Since the LB methods, which are time-marching and weakly com-
pressible flow solvers, represent the fluid motion in the incompressible
limit asymptotically, the smaller the Mach number is used simula-
tions, the better is their accuracy, which also enhances their numerical
stability. However, a general issue in CFD, including those for the
LB methods, for computing flows via reducing the Mach number to
relatively small values is the associated increase in the stiffness that
causes slower convergence to the steady state. This is due to the large
condition number of evolution equations resulting from wide contrasts
in the flow speeds and the acoustic speeds in such cases. One approach
to reduce the number of steps taken for convergence is to precondition
the system of flow equations, wherein such disparities between the
characteristic speeds are reduced at the cost of sacrificing the temporal
accuracy. As shown by Turkel (see e.g., [37,38]), this has been accom-
plished in the context of classical CFD methods by solving the so-called
preconditioned NS equations which involve an adjustable precondition-
ing parameter. Guo et al. [39] introduced the first preconditioned LB
scheme using an SRT model, which was then extended to a MRT model
involving raw moments and forcing terms by Premnath et al. [40].
Izquierdo and Fueyo [41] demonstrated optimal preconditioning of a
MRT-LB scheme, while Meng et al. [42] introduced a preconditioned
MRT-LB algorithm for simulations of steady two-phase flows in porous
media. More recently, Hajabdollahi and Premnath [43] developed a
cascaded central moment LB scheme for simulation of preconditioned
NS equations, which was then further improved by eliminating the
non-Galilean invariant cubic velocity errors that are dependent on
the preconditioning parameter and demonstrating significant reduc-
tions in the number of steps for convergence of a variety of flows in
Ref. [26]. Moreover, we note that, recently, a preconditioned SRT-LB
approach based on a finite-volume discretization on unstructured grids
was developed and studied by Walsh and Boyle [44]. However, gen-
erally, prior investigations constructed preconditioned LB algorithms
on square lattices, and rectangular LB schemes for the solution of
preconditioned NS equations while maintaining the collide-and-stream
steps with perfect lock-step advection have not yet been discussed in
the literature. Development and analysis of such preconditioned LB
schemes on rectangular lattices could enable convergence acceleration
of inhomogeneous and anisotropic flows thereby further improving the
computational efficiency achieved with the use of rectangular lattice
grids, which is the focus of this paper.

In this work, we aim to construct a new preconditioned rectangular
central moment lattice Boltzmann method (referred to as the PRC-LBM
in what follows). In this regard, we employ a simpler non-orthogonal
moment basis and the central moment equilibria are constructed by
matching with those of the continuous Maxwell distribution with ap-
propriate modifications in order to consistently recover the precondi-
tioned NS equations. By performing a Chapman-Enskog analysis, we
will derive corrections to the equilibria that eliminate the truncation
errors due to grid anisotropy and the non-Galilean invariant cubic
velocity terms arising due to aliasing effects on the standard D2Q9
lattice appearing in the emergent equations under the asymptotic limit
when compared to the preconditioned NS equations. The resulting
corrections will be shown to depend on the preconditioning parameter,
grid aspect ratio, and the normal components of the velocity gradient
tensor, where the latter will be expressed in terms of second-order
non-equilibrium moments which will allow their computations locally
without using finite difference approximations. It may be noted that
in our previous 2D rectangular LBM [34], the transformation matrices
for mappings between the distribution functions and raw moments,
which depend on the grid aspect ratio, are constructed to separate
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the trace of the second order moments from its other components
that allows independent specification of the bulk viscosity and shear
viscosity, respectively. By contrast, in this paper, following our recent
work in Ref. [35], the PRC-LBM will segregate the bulk viscosity from
the shear viscosity only within the step involving relaxation of moments
to preconditioned equilibria under collision, and the pre- and post-
collision mapping matrices involve a simpler moment basis and account
for the grid aspect ratios only via certain diagonal scaling matrices. This
results in a modular implementation of the PRC-LBM, and its formula-
tion involves simpler expressions for the necessary corrections and the
transport coefficients. Moreover, we note while all the prior rectangular
LB schemes (e.g., [17,34]) indicated that the speed of sound should be
adjusted to accommodate for its variations with the grid aspect ratio
when compared to the speed sound for the square lattice, they did not
provide any rationale or explicit formulas to accomplish this other than
providing some tabulated data. In this work, we provide some physical
arguments to consistently obtain the speed of sound for the rectangular
lattice, with its explicit parametrization by the grid aspect ratio. Finally,
we will perform some numerical studies to demonstrate the accuracy of
the PRC-LBM and reductions in the number of steps for convergence to
the steady state for simulations of selected cases of inhomogeneous and
anisotropic flows for different choices of the preconditioning parameter
and the grid aspect ratio.

This paper is organized as follows. The following section (Section 2)
discusses a consistent approach for the selection of the speed of sound
for lattice schemes based on rectangular lattice grids. Next, in Section 3,
we present a Chapman-Enskog analysis of the preconditioned non-
orthogonal moment LB formulation on a rectangular D2Q9 lattice and
derive the correction terms necessary to eliminate the truncation errors
due to grid anisotropy and non-Galilean invariant velocity terms arising
from aliasing effects. Such corrections are shown to be parameterized
by the grid aspect ratio, preconditioning parameter and the velocity
gradients, where the latter are obtained locally from non-equilibrium
moments. The construction of the preconditioned rectangular central
moment LBM for an efficient implementation is discussed in Section 4,
with the attendant algorithmic details of the PRC-LBM provided in Ap-
pendix. Then, in Section 5, we present numerical results for some
case studies involving anisotropic and inhomogeneous shear flows,
validating the PRC-LBM for accuracy and demonstrating convergence
acceleration via preconditioning on rectangular lattice grids for various
characteristic parameters. Moreover, comparisons between the precon-
ditioned rectangular central moment LBM (PRC-LBM) another formu-
lation involving the preconditioned rectangular raw moment LBM are
made in Section 6. The conclusions of this work are highlighted in
Section 7.

2. Selection of speed of sound on rectangular lattice grid for
physical consistency

Before discussing the preconditioned rectangular central moment
LB scheme and its analysis, we will now present a general physical
consideration on the selection of the speed of sound for rectangular
lattice grids and its relation to the sound speed of the usual square
lattice. For the D2Q9 square lattice shown in Fig. 1(a), with a lattice
spacing Ax and a time step 47 resulting in the particle speed ¢ = Ax/At,
based on considerations of isotropy and Galilean invariance, it is well
known that its optimal value of the speed of sound c,, is given by

Lo ax_ 1 D

Coy = —C= — —

YRRV
Thus, ¢, = 1/ /3 in the usual lattice units (i.e., when Ax = At =
1.0). For the two possible arrangements of the D2Q9 rectangular lattice
shown in Fig. 1(b) and (c), we can generally define a grid aspect ratio r
representing the ratio of the grid spacing in the y direction with respect
to that in the x direction, i.e., r = Ay/Ax.
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Denoting the particle speeds in the x and y directions, respectively,
as ¢, = Ax/At = ¢ and ¢, = Ay/At, it then follows that ¢, = ¢ and ¢, =
r c. From these two particle speeds, one may introduce two possible
values of the speed of sound ¢, and c;, in the two coordinate directions:
¢ = ¢, and ¢y, = r c;,. However, it can be readily established from
a Chapman-Enskog analysis that the pressure field is related to the
local density times the square of the speed of sound, which reflects
the equation of state of a weakly compressible athermal fluid motion
represented by the LB method. Since the pressure field is an isotropic
and a scalar quantity, the rectangular LB schemes need to use only one
among the possible values of the speed of sound to satisfy physical
consistency. Moreover, given that the speed of sound is a fraction of
the particle speed, and in order to be consistent with the Courant—
Friedrichs-Lewy condition, we prescribe that the effective speed of
sound on the rectangular lattice be chosen as the one that provides
the minimum value among the two possibilities, i.e., ¢, = min(c,,, ¢;,),
so that it picks the more limiting case. In other words, our selection
procedure for the speed of sound on the rectangular lattice ¢, relative
to that for the corresponding square lattice c,, can be written as

g = min(l, r). 2

Cs =g Cgy»

Thus, if r < 1, ¢, = rc,, (see Fig. 1(b)) and when r > 1, ¢, = ¢,
(see Fig. 1(c)). Moreover, when r = 1, it naturally recovers the optimal
value of 1 /\/5 used for the square lattice. Thus, Eq. (2) automatically
adapts the sound speed according to the grid aspect ratio, r, unlike
previous LB schemes based on the rectangular lattice (e.g., [17,341]),
where no such expressions are provided. Also, noting that a Chapman—
Enskog analysis relates the kinematic viscosity of the fluid v, to a
relaxation parameter and the square of the speed of sound cf (see
the next section), it follows that v is then parameterized by 42, which
facilitates maintaining numerical stability self consistently as the grid
aspect ratio r is varied with the use of rectangular lattice grids. Finally,
we mention here that the specification of the Mach number Ma for the
rectangular LB simulations should be based on Eq. (2), i.e., for any
characteristic flow speed U, Ma = U/c¢; = U/(gc,,) = Ma,/q, where
Ma, is the Mach number used for the square lattice.

We will formulate our central moment LB scheme on a D2Q9
rectangular lattice grid, where the particle velocity components e, and
e, in the directions x and y (see Fig. 1) following the definition of the

grid aspect ratio r can be written as
le) = (0,1,0,-1,0,1,=1,—1, ), (32)
le,) = (0,0,r,0,—r,r,r,—r,—r)", (3b)

where |-) denotes a column vector based on the standard ‘ket’ notation
and T refers to taking the transpose. We will also need the following
9-dimensional vector in defining the moment basis in the next section:

1y =(1,1,1,1,1,1,1, 1, 1), 4

3. Chapman-Enskog analysis of preconditioned LBE a rectangular
lattice grid: Isotropy corrections, macroscopic flow equations, and
local expressions for velocity gradients

In the following, we will construct a preconditioned rectangular
central moment LBM on the D2Q9 rectangular lattice with grid aspect
ratio-adapted speed of sound to solve the following preconditioned NS
equations:

0,p+ V- (pu)=0, (5a)

6,(pu)+V-<ﬂ>:—le+£V~1'+£, (5b)
14 14 14 14

where y is the preconditioned parameter used to achieve convergence
acceleration to the steady state, u and p are the fluid velocity and
density, respectively, p = yc2p is the pressure field and 7 is the viscous
stress tensor T = pv(Vu + (Vu)'), and F is the body force.
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(a) Square lattice (b)Rectangular lattice, r = é <1 (c) Rectangular lattice, r = i—i >1

Fig. 1. Two-dimensional, nine velocities (D2Q9) lattice with different possible arrangements based on the grid aspect ratio r.

3.1. Moment basis, and definitions of central moments and raw moments

In this regard, as in our previous work [34,35], we employ a
linearly independent set of non-orthogonal basis vectors for moments,
by noting that they are chosen to especially allow for the separation
of the isotropic parts from the non-isotropic parts of the second order
moments for independent specification of the transport coefficients
(i.e., the shear and bulk viscosities). For the D2Q9 lattice, such basis
vectors are defined using a combination of the monomials of the type
leYer), where m and n are integer exponents, as follows:

= [ 1m0, 17 i) ©®
where
Ty =11 T =le),  [T=le) Ty =1 +é),
IT) = 12 - é2),
ITs) = leye,),  ITe) =leley), Ty =lewe)),  |Ty) =lere}). (7)

Then, defining the sets of discrete distribution functions f, their equi-
libria £¢4, and the source terms S, which represent the effect of the body

force F = (F,, F,) on the fluid motion, respectively, as
+ +

= (for f1:faneon f3) s f“q=(f(§"’,f feq,...,feq) ,
S= (S0 51,5, 55) ", (8a)
we can then express their raw moments of order (m + n), kmn, kf,?n’ , and

o),.» respectively,

2 ffl ax ay (93)
kfnq, = Z feq ax ay (9b)
= Z S, eaxeay (90)

Similarly, we can write the corresponding central moments k,,,, kyi, and
o,.> TESPEctively, by subtracting the particle velocities (e, ¢,,) by the
fluid velocity (uy,u,) as follows:

kmn = fa (en(x - ux)m(e(ty - uy)n’ (10a)
a=0
8
kiﬂqﬂ = Z fofq (eax - ux)m(eay - uy)n (10b)
a=0
8
Omn = Z Sy (eqx = ux)m(eay - uy)n' (10c)
a=0

For convenience, we collect the various raw moments supported by the
lattice set in view of the moment basis given in Eq. (7) in the form of

the following 9-dimensional vectors as

’ ’ !/ ’ ’ ’ ’ !/
n = (Kog» ko> Koy Kag + ks Koo = Kogs Ky Ky Ko Ky ) ’ (11a)
eq _ (1eq! peq) peql jeq! eql jeql _ jeql jeql jeql jeq jeq\T
0 = (kg Kig - kop kg + ko ks = Koy - ki kT Ky k5Y) s (11b)
f
— ! ! ’ ! ’ ! ! / !
v= (‘700’610"’01"720 + 00303 ~ ‘702"711"’21"712"’22> ; (110

Then, the mappings between the various raw moments and the dis-
tribution functions can be compactly expressed via the matrix T as

n=Tf, n9=Tf49, ®¥=TS 12)

Here, it should be mentioned that we use the combinations of the
second order moment basis |e2 + ¢2) and e — ei) to retain the flexi-
bility of an independent specification of the bulk viscosity and shear
viscosity, and the matrix T as formulated above then facilitates in the
demonstration of the consistency of our approach with the precondi-
tioned NS equations and in the derivation of the required attendant
corrections in the reminder of this section. However, in the actual
implementation of the algorithm in the next section (see Section 4),
we introduce the effects equivalent to the independent evolution of
the moments related to |e + ei) and |e? - ei) only within the sub-step
involving the relaxations under collision and not for performing the
mappings between the distribution functions and moments.

3.2. Preconditioned lattice Boltzmann equation

Next, it is important to note that the use of the rectangular lattice
would result in an anisotropic form of the viscous stress tensor de-
pendent on the grid aspect ratio r. Such spurious effects along with
the truncation errors arising from the non-Galilean invariant aliasing
effects on the D2Q9 lattice dependent on the cubic velocity terms
and the preconditioning parameter need to be eliminated via certain
counteracting corrections, which appear in the evolution of the non-
equilibrium part of the second order moments (see Ref. [34]). Since
by construction, the non-equilibrium second order central moments are
identical to those of raw moments, it suffices to perform a consistency
analysis and derive the necessary correction terms based on the simpler
preconditioned rectangular raw moment MRT formulation of the lattice
Boltzmann equation (MRT-LBE) written in a compact matrix-vector
form given by

f(x + et 1 + At) — f(x,1) = T~ [A (n% —n)+ (1 - 4) ‘IlAt] (13)

where I is an identity matrix of dimension 9 x 9 and A is a diagonal
matrix holding the relaxation parameters given by

A = diag (0, 0,0, a)3,a)4,a)5,a)6,w7,a)8). 14)

The solution of this LBE (Eq. (13)) yields the distribution functions
fo = fu(x,t + At), whose leading order moments then provide the
hydrodynamic fields as
3
p= Z Jar
a=0

8
F
pu= Z folo + 2—At p= ycszp. (5)
a=0
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The key issue here is the specification of the moment equilibria com-
ponents appearing in n® in Eq. (13) so that the preconditioned NS
equations (Eq. (5)) can be recovered consistently on a rectangular
lattice grid.

3.3. Preconditioned equilibria and sources: Raw moments and central mo-
ments

In this regard, our starting point is the matching of the components
of the discrete raw moment equilibria supported by the D2Q9 lattice
with those following from the continuous Maxwell distribution, where
the speed of sound is based on Eq. (2). Then, we account for the
modifications needed for recovering the preconditioned NS equations,
which was obtained in an earlier analysis performed in Ref. [26] in the
case of the square lattice. Using these as our initial formulation, we can
then write the leading terms of the raw moment equilibria as

eql __ eql __ eql __
kog = ps Ko = puy ko = puy,
pu? 2 puu
eq)/ _ 22 X eqf _ 22 y eql _ X7y
k20 =qc,p+t—, k02 =qc,p+ —, k11 = —,
Y Y 14
K — R K — 22 ui
2 =P qcs*+_2 Uy =7 qcs*+_2 Ues
14 14
'
k;g = pq4c?* + pqch* (ui + Mi) + puiui. (16)

The expressions in Eq. (16) need to be corrected further to consistently
recover the preconditioned NS equations on rectangular lattice grids,
which will be accomplished later in this section. Moreover, the raw mo-
ment equilibria of the source terms also need to be scaled appropriately
by the preconditioning parameter y as follows [26,40]:

O'/ = 0 O', = E O'/ = ﬂ O'l = _ZFXMX O', = _2Fyuy
00 10 v 01 Y 20 2 02 72
Fu,+ Fu
O_il — ( X7y Yy X) , (17)

¥2
and 8/, =0, if (m+n) > 3.

Then, the countable set of preconditioned discrete central moment
equilibria on the D2Q9 lattice can be obtained from the correspond-
ing the raw moment equilibria given in Eq. (16) via the binomial
transformations as

eq __
koo = ps

eq _ 22 1 2 eq _ 22 1 2
kzo_q copt <;—1> U, koz_q copt <y —1) puy,s

1
eq _
k” = (; - 1) puyly,

1 3 1 3
eq _2 2 eq _ = 2
k21 = <_y2 p + 2) puly, k12 = <_y2 ; + 2) pu Uy,

k3 =q'cs,p. a8

eq _ eq _
kig=0, kg =0,

Note that since the fourth order component of the equilibrium central
moment k;g does not appear at the leading order in Chapman-Enskog
analysis of the preconditioned NS equations, for simplicity, we set it
as ki = q*c?,p following our previous work [34]. Moreover, similarly
the central moment components of the source terms follow from the
corresponding raw moments Eq. (17) using binomial expansions as

F,
X y
o0 =0, op= 7 001 = —»
1 1 1 1
= (e t)orm e (3o
1 1
oy = <y_2 - ;) (quy+Fyux), 19

and o,,, = 0, if (m + n) > 3. An alternative approach to implementing
body forces in central moment LB schemes has been proposed by Fei
and Luo [24,25]. It has been used for various applications, including
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thermal flows and multiphase flows, and involves including the effect
of the body force on the higher order central moments. By contrast,
the forcing scheme given above and others such as in [7,45] involve
the effect of body forces up to the second order moments, and are
constructed to recover the hydrodynamics (Navier-Stokes equations)
as prescribed by the Chapman-Enskog analysis.

3.4. Chapman-Enskog analysis: Identification of truncation errors due to
grid anisotropy, preconditioning and non-Galilean invariance from aliasing
effects on the D2Q9 rectangular lattice

Next, we will perform a Chapman-Enskog (C-E) analysis [46] in
order to determine the truncation errors arising from grid anisotropy
with the use of the rectangular lattice and the non-Galilean invariant
(GI) cubic velocity terms due to the aliasing effects manifesting as a
result of the discreteness of the D2Q9 lattice. This would be carried out
following the approach taken in our previous works [19,26,34]. First,
expanding the moments about their equilibria and the time derivative
by means of a multiple time expansion, we write

n= Zsjn(j), 9, = zgjd,J, (20)
Jj=0 j=0

where ¢ = Ar represents the perturbation parameter serving in what
follows to delineating the terms of different orders. Substituting the
above equation in Eq. (13) and rewriting its left side via a Taylor series
expansion and converting the resulting expression in terms of moments
using f = T~'n, we obtain the evolution equations of the moments of
different orders of ¢, i.e., O(e¥), where k = 0,1, and 2 as

0(c% : n©® =n*, (21a)
(") : (9, + E0,)n® = -An® + @, (21b)
0 : 0, n® + (0, + E,0,) [1 - %] n® = —An®, (21¢)

where E;, = T (¢; DT™! and ¢; = le;), i € (x,y). Then, substituting
the raw moments and the source terms shown in Egs. (16) and (17),
respectively, into Eq. (21b), the relevant moment system O(e) which
are relevant in recovering the preconditioned hydrodynamics can be
written as

0P + Oxputy + 0, pu,, =0, (22a)
Oy, Pl + 0y (pg*c?, + pii[v) + 0 (puu, [y) = F [, (22b)
Oy ptty + O (puit, [7) +0,(pg*cl, + pu /1) = F, /7, (22¢)
%, [ZMZCf* +p, + uf.)/y] +9, [(1 +q7c] )puy + /mxui/yz]
+0, [(r2 + q2C52*)puy + puiuy/yz] =
-3 n(;) +2 (qux + Fyuy) /yz, (22d)
0 [0 = /] + 0, [ = P )pu, = puil /]
+9, [(—r2 + qQCf*)puy + puiuy/yz] =
—wy nil) +2 (qux - Fyuy) /yz, (22e)
6,0(puxuy/y) +0, [qch*puy + puiuy/yz] +9, [qch*pux + puxui/ﬂ] =
—ws ngl) + (quy + Fyux) /72 (22f)

Similarly, the O(¢?) evolution equations for the conserved moments at
the slower time scale ¢, reads from Eq. (21c) as

011/—7=0,

1 w3\ 1y, 1 @Dg\ (1)
0 () +0. |5 (1= )+ 5 (1-5)

(23a)
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+0, [(1 - %)ngl)] =0, (23b)
o +a (1= 2] o0 313
-% (1 - %) nil)] —0. (230)

The above Egs. (23a)-(23c) depend on the components of the non-
equilibrium moments ngl), nil) and n(sl), which can be obtained from
Egs. (22d)-(22f). Hence, rewriting Egs. (22d)—(22f) to express the
non-equilibrium moments as

1 1
n(3 ) = w—3{—0,0 [2q2cs2*p + pui/y + pui/y] — 0, [(1 + q2c52*)pux]

- 0X(puxui/y2) -0, [(r2 + qch*)puy]

- 0y(pu)2(uy/y2) +2(Fu, + Fyuy)/y2 }, (24a)
1
) = o { =010 = ) /11= 0, [(1 = P )pu] + 0 (puai /1)
+0, (07 = gl )pu,
—0y(pu§uy/y2)+2(qux - Fyuy)/yz}, (24b)

1
n) = o { =0y, (puyiy [7) = 0.(q° ¢}, puy) — O (puu, /v*) — 0,(q% ¢}, puy)
2.2 2
— dy(puxuy/y )+ (Fyuy, + Feu))/y } (24c¢)

Clearly, the second order non-equilibrium moments ngl), n(41) and ngl)
involve terms related to the non-GI cubic velocity errors, whose pref-
actors are dependent on the preconditioning parameter y and the
grid-anisotropy error terms dependent on the grid aspect ratio r, in
addition to those are related to the physically consistent terms that
contribute towards the viscous stress tensor. Denoting the truncation
errors related to the grid anisotropy as E;; and the non-GI cubic
velocity terms as E;, for j = 3,4 and 5, and after replacing the
time derivatives appearing in Egs. (24a)—(24c) in terms of the spatial
derivatives of the conserved moments via Egs. (22a)—(22c), we can then
simplify the resulting equations by retaining terms up to O(u?) (see
Refs. [26] and [34] for details). Then, the final expressions for the
second order non-equilibrium moment components on the rectangular
lattice resulting for our LB formulation can be written as follows:

24%c?

o

) = - w;* pV - u+ E, + Es,, (25a)
2q202

M

n,’ = —w—4”p (0yuy = Oyuy) + Eyg + Ey, (25b)
2.2

W dCup

ng’ = —w—SS* (0yuy + 01, ) + Esg, (25¢)

where the expressions for the truncation errors due to grid anisotropy
E;, and E,,, and the non-GI cubic velocity aliasing errors Es,, E,,, and

Es, read as
1 1
E; = —(3q2c§* — Dpo,u, + —(3q2c§* - rz)payuy, (26a)
@3 @3
1 1
E; = —@q*c, — Dpou, — —(Bq*c?, — rP)pd,u,, (26b)
@y @y

1 1
Es, = o [@/y + Da*e2, — 1 u 0.0+ o [@/r + D*c?, = r*] u,0,p
M. M,
oy xlx s yUy»

1 1
Ey = w_4 [(2/;/ + l)qzc?* - l] u0,p— w_4 [(2/}/ + 1)(]263* - r2] u,0,p

(27a)
4 4
+w—46XMx + w—46yuy, (27b)

1
Es, = w—s(l/y - l)qzcsz* (uxayp + uyaxp)

1
4—6(7(1/3/2 = 1/7)puu, (dxu)C + ayuy) , (27¢)
5
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where the prefactors M;, N3, M, and N, appearing in Egs. (27a) and
(27b) can be expressed as

M = p @/ =1/ + (/7 = 1/rnd]. (282)
Ny = o [@/7 =1+ (/7 = 1 (28b)
My = p @/ =1/ = (/7 = 1/nd] (280)
No = p[-@/r> = Uy + (/7 = 1/ (28d)

Recognizing ¢ = min{r, 1}, it is evident that the various truncation
errors given above are dependent on the preconditioning parameter y
and the grid aspect ratio r, which need to be eliminated.

3.5. Corrections via extended moment equilibria for elimination of trunca-
tion errors due to grid anisotropy, preconditioning, and aliasing effects

In this regard, we propose an extended moment equilibria n¢¢-¢//
n¢4¢// = n¢d 4 AmeD, (29)

where n®() are the corrections made to the base moment equilibria n®¢
introduced in Egs. (11b) and (16). As shown in Egs. (25), (26), and (27),
the truncation errors exist in the evolution of the second order moments
ny, ny and ns, and involve spatial derivatives of the velocity field and
the density field. Recognizing this fact, for the purpose of consistently
recovering the preconditioned NS equations in a rectangular lattice
grid, we thus write the following expressions for the corrections to
the moment equilibria, where it suffices to introduce them to only the
second order components:

03,0 uy + 03,0 uy, + 3,0, p + 43,0,p j=3
eah) _ 0405ty — 04,0 Uy, + 4,05 p + A43,0,p j=4

J . (30)
Os5.0.uy, +05,0,u, + A5,0,.p + 45,0,p Jj=5
0 otherwise,

Here, 0,, 0;,, 4,5, 4;,, where j = 3,4, and 5, are the unknown

coefficients, which will be determined by carrying out a modified C-
E expansion that includes the extended moment equilibria given in
Eq. (29). Thus, replacing the expansions appearing in Eq. (20) with

n = 0/ fen® 4 e2n@ 4. = 0@ 4 en®D 4 en® 4 2n@ 4 ..

9, = 0, +e€d, +€0, + -, (31)
and performing the same steps that follow Eq. (20) with using Eq. (31),
then the evolution of the moment systems at various orders of € in

Eq. (21) modify to the following by accounting for the presence of the
corrections n°?():

0% : n© =n,

O+ (9, +E,0,)n® = -A [n® — ] + @,

0@ : 9, n® + (a,o + E,.a,.) [(1 - %) n<‘>] + (0, + E,.a,.> [%neq(“]

(32a)
(32b)

=—An®. (32¢)

In view of the derivation given in the previous section and the changes
appearing in Eq. (32b) relative to Eq. (21b), the second order non-
equilibrium moments for the rectangular lattice with preconditioning
in Eq. (25) modify to

(1) 2‘12632* eq(1)
n3 = __a)3 pV U+ E3g + E3s + n3q N (333)
2¢3c2
nil) = - w;* p(0guy —0yu,) + Eyg + Eyg + niq(l), (33b)
2.2
q=Cco.p
n(s1> = — w;- (axuy + 6yux) + Es, + n§q<1)7 (330)

where the error terms Es,, Ej,, E, E4, and Es, are given in the
previous section in Egs. (26) and (27).
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Now, in order to derive explicit formulas for the corrections ngq(l),

ni"(l) and ne"(“ we need certain constraint relationships between them
and the error terms. These follow from combining Eq. (32b) and e times
Eq. (32c) and using the expressions for the non-equilibrium moments
in Eq. (33) along with J, = 9, + €d, to obtain the effective evolution
equations for the conserved moments, which would include both the
truncation error terms identified earlier and the unknown corrections
whose combined effects are set to zero so that the evolution equations
correspond to the preconditioned NS equations. See e.g., Refs. [26,
34,35] for details of these steps. Writing the truncation error terms
compactly in the form a vector =

E= (0o 0102005 05) 34

where

Esg + Es, j=3
E,, + E j=4
(pj — E4s 4g s (35)
5g J =

0 otherwise,

then the necessary constraint equation between the vector of mo-
ment corrections n®") identified whose functional forms with unknown
coefficients are given in Eq. (30) and the above vector holding the
truncation errors = (see Egs. (34) and (35)) reads as

neah 4 (1 _ %) = =0, (36)
which, in component form, becomes

eq(1)
n; + <1

Evaluating Eq. (37) and using Egs. (30), (34) and (35) for j = 3,4 and
5, respectively, we get

 ;
- 7’>(Ejs+Ejg)=o, j=3.4,5. 37)

w3 w3
O30t + 03,01, + A0y p+ 43,0,p = — (1 - 7) (1 - —) Es,

1 1 20 1 1
=—|—-=||M - Dp|ou, — | — - =
<w3 2>[ e, )p] Xt <w3 2>
X [N3 + (qch* - r2)p] oyu,,
1 1 2 22 1 1
Y 241 dp—| ——=
(-2 [Gor)#t o= (5-3)
X [(z + 1> qzci - r2] u,0,p
y s%

Wy on
04,01, — 94ya + Agx0cp + l4yayp = ( - 7) (1 - 7) Eys
1 - 11
=—(—-=2) M+ -1 -
(5 =3) vt~ (3 3)
X [My + (g%, — P)p] dyu,
11 2 - 11
—(—-2)|(=+1 ~1uop+(—-=
(3= 2)[G e (5 -3)

X [(2 + 1> qzcsz* - rz] u,0,p,
14

O5,Oxtty + 05,0,u, + As,0p + As,0,p = — (1 - 7) Es,

1 1 1 1 1 1
(5 73) (=)o v o= (3 -3)
1
X (; - 1) qzci (ux()xp + uydyp) ,

Comparing the terms involving the spatial gradients of the same type
of quantity in each side of the above three equations, we finally get
the coefficients for the correction terms in the second order moment

equilibria as
,,] <_ - _> (38a)

03, = [M3+ 3¢ c
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1 1
03, = —[N + (3422, —rz)ﬂ] <073 - 5) (38b)
- (2 22 _q| (L1
e[ (3
2 1 1
R
6, = _[M4+(3qzcz —l)p] 11 (39a)
X K o, 2 ’
0, = +[N - (34%¢2 —rz)P] L1 (39b)
4y 4 K& w, 2’
h = _[<Z+1>qzc3*_1] <l_l>ux, (390)
y w; 2
2 1 1
o= |(Fer)ed -] (5 -3)w @50
1 1 1 1
0, =—(=--)(—-3
> <72 7><w5 2>puxuy ’ 40
1 1 1 1
—_(L_2 - _ = b
O <y2 7> <co5 2>puxuy’ “ow
1 1 1 22
=—(=-1)(=-2
o= =(3-1) (3, -3) e 0o
1 1 2.2
=—(-=-1)(—-=
(1) (-

These expressions (Egs. (38)-(40)) together with Egs. (29) and (30)
are among the main results of this work that contribute towards for-
mulating a new preconditioned LB approach on a rectangular lattice
grid. The above choices for the moment equilibria corrections, which
depend on both the grid aspect ratio r and the preconditioning param-
eter y, ensures that the resulting algorithm using a rectangular lattice
represents the preconditioned NS equations with the shear viscosity v
and bulk viscosity ¢ satisfying the following relationships among the
various model parameters:

20 (1 1 . 22 (1
= ¢ — — =) A, =4,5, = —- _
v=yqc, <wj 2) J E=rqc, <w3

%) A (4D

where the optimal value of ¢2, is 1/3, and the emergent pressure field p
is given by p = yqch* p. We emphasize here that the simple expressions
given in Eq. (41) self-consistently parameterize the transport coeffi-
cients in terms of g which is given in Eq. (2) and maintains desired
numerical stability in LB simulations using rectangular lattice grids.
Unlike in previous works (see e.g., [13,17,47]), there is no need to
rely on trial and error to adjust the speed of sound when a rectangular
lattice is used and the grid aspect ratio is varied to any desired value.

3.6. Strain rate tensor components based on non-equilibrium moments

We will now show the diagonal components of the strain rate tensor
d.u, and d,u,, which appear in the moment equilibria corrections
given in Egs. (29), (30) and Egs. (38)—(40) can be computed locally
via second-order non-equilibrium moments. First, using Egs. (33a) and

(33b), and simplifying via Eq. (37), we obtain

2q %) 13

(1) 3 3
ny,’ = ou, + 6 u, )+ —E,, + —E;,
3 ;5 ( ) 2 3g 2 3s

2¢%c? , ,

ay _ s 4 4
ngs == @y p (0xux - ()ylly) + 7E4g + 7E45

Then, substituting for Es,, E4, E3,, and E,, using Egs. (26) and (27)
in the last two equations and rearranging them leads to

2.2
|:_2q Cf*p+%

2(]2 C.g* N 3
— + —_—
w; 2

1 2202
+ E(Sq Cop ™ l)p] o.u, + [— o )
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1
+ E(qucsz* - rz)p] Oyu,,

_wm_1](2 22 L](2 22 _ 2
= n, —§[<;+l>qcs*—l]uxdxp—§ ;+1 qc,, —r

Xu,0,p. 42)

2¢%%, M, | 2¢%%, N,
S s = B¢ — Dp| o, + [+ =2
[ o Pt 2( qc,, — Dp| dcuy o p

1
- 5(3q2c3* - rz)p] Oyu,,

_.m_1](2 20 L[f2 22 _ 2
=n, —§[<;+l>qcs*—l]uxdxp+§ ;+1 qcg, —r

Xu,0,p. (43)

Based on Egs. (42) and (43), the required local expressions for the
diagonal components of the strain rate tensor d,u, and d,u, can be
obtained. In this regard, we first introduce the following intermediate

variables
1 2 1 2
A:§[<;+l> qch*—l] uy, B:§[<;+l> qch*—rz] Uy,
(44a)

e3, = —Ad,p — Bop, ey, =—Ad.p+ Bo,p, (44b)

where the density gradients d,p and J,p may be obtained via an
isotropic finite-difference scheme. The non-equilibrium moments ngl)
i” appearing in Egs. (42) and (43) can be computed using either
raw moments or central moments as

and n

) = (kg + ki) = (K5 + KG3) = (Koo + ko) = (k3 + K3)

1
= (kyg +kop) —2¢%¢2p - (; - 1) W+ ui)p,
) _ ’ ’ eq! eql\ _ eq eq
my) = (kyy = koy) = (k3 — kg3 ) = (kag — koa) — (K55 — kgh )

1
Koy — kgp) — <; - 1> W —ui)p.

Based on these considerations, we can then identify the right sides and
the left sides of Egs. (42) and (43), respectively, conveniently by further
introducing the following additional intermediate variables

1 1
Ry = n) +e5, = kg + kop — 24°¢2,p — <; - 1) 5 +u)p+e, (452)

Ry = "511) +ey, = koo — kop — (% - 1) W - Mi)ﬂ + ey, (45b)
and

G, = _2qa2);;§* p+ % + %(34265* - l)p] .

Qf—;%éé +%1+§M%i—ﬁm  (462)
Cyy = —%zﬁ % + %(34293* - l)p] ,

Cyy = _+%p + % - %(3426f* - rz)p_ . (46b)

where M;, N3, M, and N, are given in Eq. (28). Then, Egs. (42) and
(43) can be more compactly written as

C3, 05ty + C30,u, = Ry, (47a)

Cy 0yt +Cyy0yu, = Ry. (47b)
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Solving the last two equations, we finally get the required local expres-
sions for the diagonal parts of the strain rate tensor as follows:
[CayRs — C5,Ry] 1

ou, =

2] = =
u T,

TGy — GGy [Ry = Cs 0] (48)
xay x 3y

For completeness, we note that a similar relation for the off-diagonal
component (0x”y + 0yux) follows from combining Egs. (33c) and (37)
and then simplifying via Eq. (27).

4. Preconditioned Rectangular Central Moment Lattice Boltzmann
Method (PRC-LBM)

In this section, we will present a robust and efficient implementation
of a LB algorithm on rectangular lattice grids for solving preconditioned
NS equations using and extending the results of the C-E analysis
performed in the last section. In this regard, we note that the effect of
the moment basis T as defined in Egs. (6) and (7) will be equivalently
utilized in our implementation in a more modular fashion so the
LB schemes based on the square lattice can be readily extended for
utilizing rectangular lattice grids along with preconditioning and the
necessary corrections. This involves using a simpler re-defined moment
basis in conjunction with diagonal scaling matrices based on the grid
aspect ratio for performing the pre- and post-collision transformations
between the raw moments and distribution functions, and segregate
the evolution of the trace of the diagonal parts of the second order
moments from the others for achieving independent variations of bulk
and shear viscosities [7], along with accounting for the corrections to
eliminate the grid-anisotropy and non-GI truncation errors, only within
the collision step under moment relaxations (see Ref. [35]). In other
words, the linear combinations of moments as required are considered
only for performing the collision step and not for any mappings. This
represents an improvement over the implementation discussed over all
the previous 2D rectangular LB schemes for the solution of the NS equa-
tions, including our recent work [34], and is consistent with our more
recent 3D formulation [35], but extended here with a preconditioning
strategy for convergence acceleration. Similar approach based on a
natural independent moment set without involving the mixed moments
has also been used in previous work [48,49] by using a block diagonal
relaxation matrix [18] in the context of LB formulations using a square
lattice.

4.1. Reformulation of the preconditioned rectangular raw moment LBE

Thus, we first introduce a moment basis Q, which unlike T in
Egs. (6) and (7), does not contain any combinations of the basis vectors,
but only a set of bare basis vectors for the D2Q9 lattice:

+
B

Q=[ 1D lexhley) €2 D) lese,), 3¢, ), lexel) Ie2e?) | 49)

where |e, ), le,) and |1) are given in Egs. (3a)-(3b) and (4), respectively.
Hence, Q depends on the grid aspect ratio r. We can relate this moment
basis for a rectangular lattice Q to an equivalent moment basis for a
square lattice P given by

¥

P=[ 10160, 18,), 180,12, 16,2,). 1822,). 16,22). 182 | (50)

where the particle velocity components of the square lattice |¢,) and
le,) are given as

le,) = (0,1,0,—1,0,1,-1,-1, ),
lg,) = (0,0,1,0,—1,1,1,-1,=1)",

Evidently, the two moment basis matrices Q and P can be readily
related via a diagonal scaling matrix S

Q=SP, (51)
where S reads as

S=diag[1 1 r 1 P2 r r i r2]. (52)
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Importantly, from Eq. (51), the matrix inverse of Q follows directly
from the inverse of P for the square lattice, which is quite straight-
forward to perform, and the inverse of the scaling matrix S using

Ql=pIls!, (53)

where S~! is obtained from Eq. (52), which being a diagonal matrix,
by simply taking the reciprocal of each of its elements, i.e.,

S_l:diag[l [ B e e r’z]. (54)

In other words, Q! for the rectangular lattice is easy to perform
knowing the corresponding P~! by appropriate scalings of the latter’s
elements based on the grid aspect ratio r. By contrast, since T is de-
fined using combinations of the basis vectors, its inverse T~!, involves
cumbersome expressions with parameterizations based on r. This fact
confers a significant advantage of using Q (and its inverse) rather than
T in performing mappings between moments and distribution func-
tions [35] and is thus adopted in designing our LB algorithm in what
follows. However, as mentioned earlier, the effect of such combinations
should still be accounted for in the evolution of the moments, which we
accomplish by formally introducing a matrix B in

T=BQ (59

Thus, B expresses the combinations of the moments (for the second or-
der components |e)2( + ef}) and |e)2c - ei) in the case of the D2Q9 lattice),
which will be effectively introduced in the LB scheme in the evolution
of the corresponding combinations of moments under collision and not
for mappings. For this purpose, using the moment basis defined by
Q, we can then define a set of bare moments m from the distribution
functions f (and vice versa) using

m=Qf. f=Q'm, (56)
where m is given by

Y ’ ' ’ ’ ’ ’ ’ 1\
m = (kOO’klO’kOI’k20’k02’k11’k21’k12’k22) ’ (€Y

and similarly for the sets of raw moment equilibria and the source
terms, respectively, via m*? = Qf*? and ® = QS as

eq _ eql jeql jeql jeql jeql peq) jeql jeql peq\T
me = (koo ki Kot kag Koy - KGT Ko1K k5 ) s (582)
I R R S S S A A AR
® = (000019 01 Oh0: Op- 0112021 013: 0y ) - (58b)

These represent the simpler bare moments versions of those given
in Eq. (11) for the combined moments of various quantities (which
followed from Eq. (12)).

From the above developments by exploiting the properties of the
various matrices introduced and rearranging, the preconditioned raw
moment based MRT-LBE in Eq. (13) can be rewritten in the following
equivalent form (see Ref. [35] for details):

fx +edt,r+ 40 = P77 [ m+B7'A (Bm® - Bm)
(A
+B7I (1 > )Bear ] . (59)

This equation (Eq. (59)) can be more conveniently represented by
splitting them in the form of the following sequence of sub-steps that
are amenable for implementation:

m = SPf,
_ o . A
fl = m+B {A(Bm"—Bm)+(I—E)B<I>At},

fx,n) = P71s7!m,
f(x + edr, 1 + A1) = f(x,1). (60)

Here, we emphasize that P and P~! perform transformations between
the distribution functions and raw moments in a way as done for the
usual square lattice using the non-orthogonal moment basis, S and S~!
reflect the simple scalings of the raw moments by factors based on grid
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aspect ratio and the order of the moment before and after collision,
respectively, and B and B~! represent combining moments prior to
their relaxations under collision with the addition of the source terms,
and their subsequent segregation, respectively. Eq. (60) expresses the
preconditioned rectangular LBM based on raw moments. As such, this
scheme, by including both the numerical enhancement features, viz.,
preconditioning and rectangular lattice grids together, even in the
context of raw moments, is new and suitable for implementation.
Nevertheless, a number of prior studies (see e.g., [21,28,29,31-33,50]),
including those involving rectangular/cuboid lattices [34,35], have
demonstrated that constructing LB schemes involving the relaxations
of central moments under collision offer significant improvements in
numerical stability over those based on raw moments. Hence, in this
work we will only implement and perform a numerical study on the
generalization of the above developments to central moments, viz.,
the preconditioned rectangular central moment LBE, which will be
discussed next and followed by a summary of its algorithmic steps.

4.2. Formulation of the preconditioned rectangular central moment LBE
For this purpose, we will utilize the independently supported bare

central moments defined in Eq. (10) for the D2Q9 lattice and collect
them in the form of the following vectors:

;
m‘ = (kOOskIO!kOI’k20’k027k11’k21’k125k22) ; (61a)
ceq _ (104 pe4 ped ped peq peq peq peq peq\t

m - (koo’klo’km’kzo’koz’kn’kzrklz’kzz) ’ (61b)

s
¢ = (000,‘710»‘701’520"702»011’521"712»022) > (61c)

Now, the raw moments defined in Eq. (9) can be related to the central
moments in Eq. (10) via straightforward binomial expansions involving
the former in combinations with monomials of the fluid velocity com-
ponents at different order (of the form wuju]). Thus, the mappings from
the raw moments to central moments (and vice versa) can be formally
expressed as

m° = Fm, m=F'm¢, (62)

where F is referred to as the frame transformation matrix reflecting
the binomial transforms of moments at different orders supported by
the D2Q9 lattice. Such a formulation to represent the transformations
between the raw moments and central moments for the complete
set supported by the lattice in the form of a shift matrix was first
introduced by Fei and Luo in [24,25]. It is given by

1 0 0 0 0 0 0 0o o]
—u, 1 0 0 0 0 0 0 0
—u, 0 1 0 0 0 0 0 0

W’ + ui —2u, 72u), 1 0 0 0 0 0

Fe u)z( - ui —2u, 2u, 0 1 0 0 0 0
uu, —u, —u, 0 0 1 0 0 0

2 2 1 1
—uu, 2uu, uy -3y —suy —2u, 1 0 0
2 2 1 1 —
—uuy u 2uu, =3l 3l 2u, 0 1 0
2 2 2 1 2 Loz 2
urui 72uxu)_ 72uxuy 5(u§ + u}_) 3 (uy —uy) 4uxuy 72u), —2u, 1
(63)

Also, as noted in Ref. [34], its inverse F~! can be read off directly from
the elements of F = F(u,,u,) with minor changes by exploiting the
following property that exists for such transforms: F~! = F(-u,, —uy).
Thus, and thus naturally both of them are lower triangular matrices.
Then, by an analogy with Eq. (59), we can write the following pre-
conditioned rectangular central moment LBE by involving relaxations
of central moments m¢ under collision (rather than raw moments m)
and including the additional transforms between them and the raw
moments (via F and F~!) [35]:

f(x + edt, 1 + Ar) = P~'S~F! [mf +B~'A (Bm® — Bm¢ )
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Fig. 2. The components of the velocity profiles u(y) and v(x) along the vertical and horizontal centerlines of a square cavity, i.e., x = H/2 and y = H /2 respectively, computed
using the PRC-LBM on a rectangular lattice grid of aspect ratio of r = 0.5 with the preconditioning parameter y = 0.1 at Ma = 0.05 for Reynolds numbers of (a) Re =100, (b) Re
= 1000, (c) Re =3200 and compared with the benchmark numerical solutions of Ref. [51] (symbols).

A

+B! (1 - 5) B<I>“At] . (64)

It may be noted that this Eq. (64) has some similarities with those
presented by Luo and collaborators [24,25], where they presented the
cascaded central moment LB method in a generalized MRT framework
on a square lattice. Our notations follow from those presented in an
earlier work of the second author [19] for the frame transformation
matrix F. This matrix as shown in Eq. (63) is identical to the shift matrix
used in [24,25]. Nevertheless, there are some key differences: Eq. (64)
also involves the forward and inverse scaling transformations (via
diagonal matrices) related to the grid aspect ratio r to accommodate
the use of a rectangular lattice in a modular fashion. Moreover, for
the collision step, Refs. [24,25] combine the relaxation parameters of
the second order moments similar to that in [18]. By contrast, here,
to execute the collision step, the second order moments are combined
prior to collision, which are then relaxed at independent rates to their
equilibria (with appropriate corrections based on r and y) and then
segregated post collision. Such a strategy for performing collision was
presented by Geier et al. [7], and present work can be considered as
an extension of such an approach for performing flow simulations on
rectangular lattices with preconditioning. Also, it should be noted that
not all collision models admit interpretations based on matrices. For
example, the highly sophisticated and nonlinear cumulant LB scheme
cannot be represented in the form of matrices. Hence, the algorithms
(including the special cases for raw moments and central moments)
presented in [7] are given only as series of substeps and no matrices are
utilized in this regard. Thus, to maintain generality of our approach, in
what follows, we will represent our PRC-LBM in the form of a sequence
of operations that conveys the essence of Eq. (64). This last equation
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(Eq. (64)) can then be more conveniently split up into various sub-
steps, which then results into the following preconditioned rectangular
central moment LBM or PRC-LBM:

m‘ = FSPf,
@ = m¢ + B! {A (Bm® — Bm® ) + (1 - %) B@cAt},
fx,t) = PTISTIF e,

f(x + edr, 1 + A1) = f(x,1). (65)

This PRC-LBM is a numerically more robust formulation than its raw
moment counterpart given earlier in Eq. (60). The algorithmic de-
tails of the PRC-LBM to facilitate its implementation are discussed
in Appendix.

5. Results and discussion

We will now discuss some case studies based on the PRC-LB algo-
rithm for simulations of shear flows at various characteristic parameters
that show its numerical validation against certain benchmark problems
and the significant advantages of combining the rectangular lattice
grid and preconditioning over the LB scheme based on the square
lattice and without preconditioning. In this regard, as noted at the end
of Appendix, in what follows, the no-slip boundary condition for the
moving walls, which generate shear flows, are accounted for via the
momentum augmented half-way bounce back approach and including
the parametrization for the grid aspect ratio for the rectangular lattice
given in our recent work [34].
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(a) Shallow cavity (AR < 1)

(b) Deep cavity (AR > 1)

Fig. 3. Schematic arrangements of the flows inside a 2D (a) shallow and (b) deep cavities of dimensions L x H.

5.1. 2D shear flows in lid-driven square cavity using PRC-LBM: Validation

First, we will assess the accuracy of the PRC-LBM for the simulation
of the classical flow within a square cavity of side H, whose top surface
moves at a constant velocity U setting up flow patterns that depend on
the Reynolds number given by Re = U H /v. We performed simulations
at Reynolds numbers of Re = 100,1000 and 3200 at a fixed Mach
number Ma = 0.05. A rectangular lattice with grid aspect ratio of r = 0.5
using a grid resolution of N, X N,, = 200x400 is employed by setting the
preconditioning parameter y = 0.1 in our algorithm given in Appendix.
The numerical results of the horizontal and vertical components of the
velocity profiles along the centerlines of the cavity predicted by the
PRC-LBM at the above three choices of Re are compared against the
benchmark numerical solutions given by Ghia et al. [51] in Fig. 2. It is
evident that the PRC-LBM results are in very good agreement with the
benchmark data.

5.2. 2D shear flows in lid-driven shallow and deep cavities using PRC-LBM:
Validation and convergence acceleration

Next, we will demonstrate the accuracy and computational advan-
tages of using the PRC-LBM for computing anisotropic and inhomoge-
neous shear flows inside rectangular cavities of length L and height H,
and characterized by the geometric aspect ratio AR = H /L. As shown
in Fig. 3, we consider two cases: (a) shallow cavity with aspect ratio
AR < 1 and (b) deep cavity with aspect ratio AR > 1. In each case,
the flow is set up by the motion of the upper lid with a velocity U in
the positive x direction which generates vortices that are different in
size and shape based on the Reynolds number specified by Re = U H /v.
The confinement effect characterized by the aspect ratio AR results in
the characteristic flow scales or the spatial gradients in velocities that
can be different in different coordinate directions, which can be more
naturally and efficiently resolved by using a rectangular lattice grid. In
our previous work, we illustrated the benefits of using the rectangular
lattice over that based on the square lattice for simulating such flows
within shallow cavities with the use of fewer grid nodes for the former
when compared to the latter [34]. In the current study, we aim to show
further improvements of utilizing preconditioning with rectangular
lattice grids for convergence acceleration of flows to their steady states,
resulting in dramatic cumulative advantages of simulating such flows
using the square lattice and without preconditioning.

In this regard, first, simulations of flow inside a shallow rectangular
cavity of aspect ratio AR = 0.25 at a Reynolds number Re = 100 and
Mach number Ma = 0.06 are performed using rectangular lattice with
grid aspect ratio r = Ay/Ax = 0.2. If N, and N, are the number of grid
nodes resolving the cavity in x and y directions, respectively, the grid
spacings in the respective directions satisfy Ax = L/N, and Ay = H/N,
or r = ARN,/N,. Thus, N, = (r/AR)N,, in the case of the rectangular
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lattice and N, = (1/AR)N, for the square lattice, where r = 1. Choosing
N,, = 125, this results in 100 x 125 as the total number of grid nodes
for the rectangular lattice, while taking even somewhat smaller value
of N, = 100, however, requires a total 400 x 100 grid nodes for the
square lattice case, which is significantly more when compared to the
former. Thus, if the computed results in each case are in agreement
with one another, this, by itself, is a saving in the memory storage
and computational cost by a factor of over 3 in using the rectangular
lattice. Then, the effect of different levels of preconditioning in PRC-
LBM is studied by considering y = 1.0,0.5,0.1 and 0.05. Figs. 4(a) and
4(b) show comparisons of the centerline velocity components « and v
computed using PRC-LBM with r = 0.2 and 100 x 125 for different y
with the results obtained using the square lattice (r = 1) with 400 x 100
and without preconditioning (y = 1). It can be seen the PRC-LBM results
are in remarkably good agreement for the entire range of the choice of
7, when compared to the corresponding velocity profiles for the square
lattice case.

Then, in order to verify the benefits of utilizing the precondition-
ing procedure with the rectangular lattice, we study the convergence
histories to the steady state in using the PRC-LBM at r = 0.2 for two
values of the Mach number and different y in each case. Fig. 5(a)
shows the convergence histories at Ma = 0.06 with y = 1,0.5,0.1,
and 0.08 and Fig. 5(b) shows that at smaller Mach number Ma =
0.01 with y = 1,0.5,0.1, and 0.05, where the residual global error
of the u velocity component is estimated under the second norm as
llu(z + 20) — u(®)|l,. At Ma = 0.06, it takes about 610,000 steps to
reach the steady state without preconditioning (y = 1), while the PRC-
LBM with y = 0.08 requires only about 24,000 steps to reach similar
residual error as the previous case, leading to a dramatic reduction in
the number of steps for convergence by a factor of about 25 in this
case. On the other hand, at a lower Ma = 0.01, the PRC-LBM takes
about 5, 000, 000 without preconditioning, while only about 97,000 with
preconditioning (using y = 0.05), with an even larger improvement
corresponding to a reduction factor of about 51. Clearly, at lower Mach
numbers, the disparities between the flow speed and the sound speed
are larger, and the associated higher stiffness is respectively alleviated
to a greater degree with preconditioning, which is consistent with pre-
vious investigations on square lattice grids (see e.g., [39,43]). Noting
that we have already reduced the computational costs by involving
the rectangular lattice grids when compared to that using the square
lattice, preconditioning the rectangular central moment LBM provides
a further, i.e., cumulative improvement in solving steady state flow
problems more efficiently. However, it should be noted that while using
smaller values of y does favor faster convergence speed, its smallest
possible value is limited by the numerical stability considerations (see
e.g., [39-41]). The optimal value of the level of preconditioning is
a compromise between convergence rate and stability. Typically, the
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Fig. 4. The velocity profiles along the centerlines of a shallow rectangular cavity of aspect ratio AR = 0.25 at a Reynolds number Re = 100 and Mach number Ma = 0.06 computed
using the PRC-LBM with a grid resolution 100 x 125 using the rectangular lattice of grid aspect ratio r = 0.2 with different levels of preconditioning, i.e., y = 1.0,0.5,0.1 and 0.05,
and compared with the results obtained using a square lattice (r = 1.0) with a grid resolution of 400 x 100 at y = 1.0. (a) u component of the velocity along the vertical centerline,

and (b) v component of the velocity along the vertical centerline.
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Fig. 5. Convergence histories to the steady state for simulations of flows within a shallow rectangular cavity of aspect ratio AR = 0.25 at a Reynolds number Re = 100 using the
PRC-LBM with a grid resolution of 100 x 125 using a rectangular lattice of grid aspect ratio r = 0.2 with different values of the preconditioned parameter y at (a) Mach number Ma

=0.06, and (b) Mach number Ma = 0.01.

minimum possible y is found to be proportional to the Mach number
used in simulations.

Next, we simulate the flow inside a deep cavity (H > L) as shown
in Fig. 3(b) by considering AR = 2 at Re = 100 and Ma = 0.06 computed
using the PRC-LBM using r = 1.6. Choosing N, = 100 for r = 1.6, this
leads to N, = 125 for the rectangular lattice case, while for the square
lattice case, with N, = 100, we need N y = 200, i.e., more number of grid
nodes in the y direction. Results shown in Fig. 6 present comparisons
of the centerline profiles of the components of the velocity across the
deep cavity computed using the PRC-LBM with y = 1.0,0.5,0.1 and 0.05
using 100 x 125 rectangular grids with r = 1.6 against those based on
the square lattice (r = 1) with 100 x 200 grid nodes and y = 1.0. As in
the shallow cavity case, it can be seen that the preconditioned central
moment LBM for all possible choice of y and with fewer number of grid
nodes delivers solutions that are in very good agreement with those
based on the square lattice.

Moreover, the convergence histories presented in Fig. 7 for deep
cavity flow simulations at AR = 2 and Re = 100 using the PRC-LBM with
r = 1.6 with various levels of preconditioning again show a significant
reduction in the number of steps for convergence — for example, by
a factor of 14 with y = 0.08 for Ma = 0.06, and a factor of 23 with
y = 0.05 for Ma = 0.02 when compared to the corresponding cases
without preconditioning. For the latter case with Ma = 0.02, it may
be noted that the choice y = 0.05 is almost at the threshold of its
smallest possible value dictated by stability considerations. As a result,
it may be leading to a transient effect with the convergence history
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temporarily crossing over that for the case y = 0.1 when the residual
error is O(10~12). Nevertheless, when the residual error drops further
down to O(10713) or smaller, as expected, the convergence histories
show that the case y = 0.05 result in faster convergence to the steady
state when compared to y = 0.1.

As a last case study, we perform an investigation on the efficacy of
the PRC-LBM for simulations of flows inside a deep cavity (AR = 2)
at a higher Reynolds number of Re = 1000 at Ma = 0.06 using a grid
resolution of N, x N, = 100 X 150 corresponding to the grid aspect
ratio of r = 1.33. The results of the centerline velocity component
profiles obtained using the PRC-LBM at y = 1.0,0.75,0.5 and 0.1 are
reported in Fig. 8 and compared against the square lattice results using
100 x 200 grid nodes at y = 1.0. Evidently, the rectangular LB scheme
with all possible choices of y yields solutions that are again in very
good agreement with those based on the square lattice. Moreover, these
results are further corroborated by the plots of the streamline contours
at two Reynolds numbers Re = 100 and Re = 1000 simulated using the
square lattice (r = 1) and the rectangular lattice (r = 1.6 for Re = 100
and r = 1.33 for Re = 1000) and presented in Fig. 9, which show the
ability of the PRC-LBM to compute the flow patterns accurately.

Finally, the convergence histories presented in Fig. 10 for deep
cavity flow simulations using a rectangular lattice grid (r = 2) at Re =
1000 and Ma = 0.06 show that it takes about 11, 154,000 steps to reach
the steady state without preconditioning, while the PRC-LBM with
preconditioning (y = 0.1) requires significantly fewer steps of about
583,000 to reach similar residual errors, delivering an improvement by
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Fig. 6. The velocity profiles along the centerlines of a deep rectangular cavity of aspect ratio AR =2 at a Reynolds number Re = 100 and Mach number Ma = 0.06 computed using
the PRC-LBM with a grid resolution 100 x 125 using the rectangular lattice of grid aspect ratio r = 1.6 with different levels of preconditioning, i.e., y = 1.0,0.5,0.1 and 0.05, and
compared with the results obtained using a square lattice (r = 1.0) with a grid resolution of 100 x 200 at y = 1.0. (a) u component of the velocity along the vertical centerline,

and (b) v component of the velocity along the vertical centerline.
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Fig. 9. Streamline contours of the flow field in a 2D rectangular deep cavity of aspect ratio AR =2 computed using the PRC-LBM with y = 0.1 on a rectangular lattice at (a) Re
= 100 using r = 1.6, and (b) Re = 1000 using r = 1.33 and, in each case, compared with the results of the non-preconditioned LBM using the square lattice (y = 1.0 and r = 1).
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Fig. 10. Convergence histories to the steady states for simulations of flows within a
deep rectangular cavity of aspect ratio AR =2 at a Reynolds number Re = 1000 using
the PRC-LBM with a grid resolution of 100 x 150 using a rectangular lattice of grid
aspect ratio r = 1.33 with different values of the preconditioned parameter y at Mach
number Ma = 0.06.

a factor of about 19. In general, the higher Re = 1000 case takes longer
to ready steady state when compared to the case at lower Re = 100
(shown in Fig. 7) since the former is set up by reducing the fluid
viscosity when compared to the latter, resulting in a slower diffusion of
momentum and its convergence. However, thanks to preconditioning,
even at higher Re, the rectangular central moment LBM is able to
achieve substantial savings in the overall computational effort.

6. Comparisons between preconditioned rectangular LB formula-
tions based on raw moments and central moments

As noted in the introduction, no other formulation other than the
current work that combines both preconditioning and rectangular lat-
tice grids are available in the literature. Nevertheless, it should be noted
that the derivation presented in Section 3 can be utilized to construct a
preconditioned rectangular raw moment LBM (referred to as the PRNR-
LBM in what follows) by performing the collision step in terms of
relaxations involving the raw moments using the corrections to the
equilibria based on y and r given in Section 3.5. The implementation of
this strategy is summarized in Eq. (60). As such this PRNR-LBM can be
regarded as a special case of the PRC-LBM based on central moments.
Here, we note that the single-relaxation-time (SRT) formulations are
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Fig. 11. Convergence histories to the steady states for simulations of flows within a
shallow rectangular cavity of aspect ratio AR = 0.25 at a Reynolds number Re = 100
using the PRC-LBM and PRNR-LBM with a grid resolution of 100 X 50 using a
rectangular lattice of grid aspect ratio r = 0.5 with two different values of the
preconditioned parameter y at Mach number Ma = 0.06.

well-known to have serious deficiencies when compared other collision
models. For example, they are significantly less stable in simulating
flows at relatively low viscosities or large Reynolds numbers, even
when compared to the approaches based on raw moments, and it is
quite cumbersome to combine the use of both preconditioning and
rectangular lattice grids. Given these issues, they are not given further
considerations in this work, and we will focus on attention making
comparisons between the PRC-LBM and PRNR-LBM in what follows.

First, we point out that provided a given collision model yields
numerically stable flow simulations, the convergence rate to the steady
state is primarily influenced by the choice of the preconditioning pa-
rameter, and the use of two different collision models under otherwise
similar conditions, such as the same choice of model parameters, is
expected to result in a similar convergence speed. Fig. 11 presents con-
vergence histories for the PRC-LBM and PRNR-LBM for the simulations
of flow with a shallow cavity with aspect ratio AR = 0.25, r = 0.5,
Re = 100, and Ma = 0.06 for two different values of y (equal to 0.1
and 0.5). For these choices, both the collision models result in the
same convergence rate to the steady state for a fixed preconditioning
parameter.

On the other hand, we will now demonstrate the advantage of
performing the collision step in a frame of reference based on the local
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aspect ratio AR = 0.25 with a fixed lid-velocity of 0.02 at different mesh resolutions with a grid aspect ratio of r = 0.25 for three different choices of the preconditioning parameter

(y = 1.0, 0.5 and 0.2).

fluid velocity in the PRC-LBM when compared to using the PRNR-
LBM involving the rest or the lattice frame of reference is related
to improving robustness or numerical stability of computations. In
this regard, we investigate the maximum Reynolds number achieved
by PRC-LBM and PRNR-LBM for simulating flows within a shallow
cavity with an aspect ratio of AR = 0.25 with a rectangular grid
using r 0.25 by maintaining the lid velocity at a relative small
constant value of U = 0.02 and reducing the shear viscosity of the
fluid to the smallest possible value for which the computations re-
main numerically stable. The shear viscosity is varied by changing
the relaxation parameters associated with the second order moments
and the relaxation parameters for the higher order moments are set to
unity for simplicity for both the collision models. Two different grid
resolutions of 100 x 100, 200 x 200 are considered, and in each case,
three different choices of the preconditioning parameter y = 1.0, 0.5
and 0.2 are used. The results of these stability tests are presented in
Fig. 12. Clearly, even for the relatively low lid velocity considered, the
preconditioned rectangular LBM using central moments is consistently
more stable when compared to the preconditioned rectangular LBM
using raw moments, especially at smaller y. These results extend those
presented in Ref. [34] by including preconditioning effects. Further
improvements in numerical stability are possible when simulating shear
flows with larger characteristic velocities. Moreover, as emphasized by
various studies involving central moments in LBM (see e.g., [29,31]),
the additional computational overhead of using central moments when
compared to that of using raw moments is relatively small, by about
15%, but with the benefit of stable simulations at significantly higher
Reynolds numbers using the former when compared to the latter.

7. Summary and conclusions

In this paper, we have developed a new LB algorithm based on
central moments and using involving a preconditioning strategy and
a rectangular lattice grid, viz., the PRC-LBM, for efficient simulations
of inhomogeneous and anisotropic flows. By including a precondition-
ing parameter y in its moment equilibria and augmenting its second
order components via corrections that eliminate the anisotropy ef-
fects associated with the rectangular lattice characterized by the grid
aspect ratio r and the non-Galilean invariant velocity terms due to
the aliasing effects on the D2Q9 lattice, it can consistently represent
the preconditioned Navier-Stokes equations. Such corrections to the
equilibria, obtained via a Chapman-Enskog analysis, are related to
the diagonal components of the velocity gradient tensor, which are
expressed in terms of the non-equilibrium moments to facilitate local
computations and their coefficients simultaneously depend on both y
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and r. In the construction of the PRC-LBM, unlike the prior rectangular
LB formulations, we have used the natural, non-orthogonal moment
basis with a physically consistent parametrization of the speed of
sound based on r, and with a y-adjusted equilibria obtained through
a matching principle based on the continuous Maxwell distribution.
These result in simpler correction terms for using rectangular lattice
grids in conjunction with preconditioning, and which, while used here
in terms of central moments for robustness, have general applicability
for other collision models. Moreover, our algorithmic implementation
is modular in nature with a clear interpretation based on special ma-
trices, which also naturally extends to three dimensions using a cuboid
lattice in solving the preconditioned Navier—Stokes equations. The PRC-
LBM simulations of benchmark shear-driven flows within shallow and
deep cavities with significant geometric anisotropy at various Reynolds
numbers and Mach numbers and with different values of r and y,
validate the method for accuracy and show improvements in stability
when compared to another implementation based on raw moments.
Furthermore, we demonstrate significant reductions in the computa-
tional cost with the use of PRC-LBM via convergence acceleration to
the steady states and reduced memory storage when compared to the
corresponding LB scheme using the square lattice and without involving
preconditioning.

As final concluding remarks, we note the following. Given the
ubiquity of inhomogeneous and anisotropic flows, classical schemes
for CFD invariably use stretched grids that adapt to the local flow
conditions and rarely utilize uniform square or cubic grids. Thus, the
use of square/cubic lattices in LB algorithms is far from optimal in
the use of overall computational resources in performing such flow
simulations efficiently. Previous efforts in developing LB schemes based
on rectangular lattices (e.g., [13,15-17,47]), which were generally
based on orthogonal moment basis and non-optimal equilibria, were
significantly restrictive in terms of complexity of implementation, lim-
ited stability ranges and cumbersome approach involved in choosing
the various model parameters. All these issues have been circumvented
in our present rectangular LB formulation involving a non-orthogonal
moment basis and the construction of equilibria based on a matching
principle. It is modular in construction in the sense that an LB code
for the square lattice can be readily extended to the rectangular lattice
with some minor efforts based on the former by making few simple
changes. As shown in the appendix on the algorithmic implementa-
tion, such changes include the use of pre-collision and post-collision
grid aspect ratio-based scalings of the raw moments and the use of
extended second order moment equilibria adjusted suitably based on
the grid aspect ratio to recover the Navier-Stokes equations. These
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simple additional changes to the existing square lattice-based LB codes
to accommodate the rectangular grids have been numerically demon-
strated to result in savings by an order of magnitude or more in terms
of computational cost and memory when compared to that based on
the square lattice (consistent with Refs. [34,35]). Furthermore, the use
of preconditioning with rectangular lattice grids resulted in signifi-
cant convergence acceleration to the steady states leading to further
reduction in the overall computational efforts. Hence, the PRC-LBM
represents an efficient approach for flow simulations.
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Appendix. Algorithmic details of the PRC-LBM

The PRC-LB algorithm consists of the following sub-steps during a
time step Ar, where the distribution function f,(x,t + 4r) is updated
from f,(x,1) for a =0,1,2,...,8 on a rectangular lattice grid according
to Eq. (65) to simulate the preconditioned NS equations:

+ Compute pre-collision raw moments
We perform

m = Pf

on the components of f(x,t), so that the pre-collision raw moment
components k! ~of m for the usual square lattice are obtained,
where the mapping P follows from Eq. (50). In other words,

Kyy = fo+ fi+ fat fs+ fa+ fs+ fo+ f1+ f,

kllo =fi—-fi+fs—fe—f1+ T
ké)l =hHh-fatSs+fe—S1—Ts
Kyg = fi+ fs+ s+ o+ fr+ fys
Koy = fa+ fa+ fs+ fo+ fr+ fys
k/u =fs—Je+S1-Ts
k;l =fs+tfoe—Sf1—Ts
kr12 =fs—fo—JS1+ S
k/zz =fs+fo+f1+ S5

Scale pre-collision raw moments for rectangular lattice
Using Eq. (52) for the scaling matrix S, implement

m < Sm,
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which yields the pre-collision raw moments for the rectangular
lattice k/ ~from those computed for the square lattice above.
Thus,

! ! ’ ! ! !

koo = koor  Kig = kyge Koy = ks
K=k, k. =rk,, kK =rk, Kk, =rk
20 = Kopr Kop =T K Kyp TSIy Ky SR
K, =rk,, k, =rk,

12 =R Kpp =Ky,

which involve a scale factor of " for the moment &/, .

Compute pre-collision central moments

Transform the pre-collision raw moments k;nn in m into pre-
collision central moments k,,, in m¢ via

m‘ = Fm,
where F is provided in Eq. (63). Thus, we get
koo = K

00”
kg = Ko = uckgy,
ko = Ky = uykg,
kyg = Koy = 2u k) + ulkl.
koy = kiy = 2u kg, +wky,
ey = Ky — kg = ko + uuykoo,
kyy = Ky = 2u i+l kl —u kb + 2uu k) — wtu k.
kiy = Ky = 2u k] + ok — uky + 2ucu k) — w ki
kyy = k;z - 2uxk'12 + uikf)z - 2uyk'21 + 414xuyk'11 - Zuiuyké)l + uikéo
—2uxuik'10 + uiuikgo.

Compute post-collision central moments: Relaxation under
collision using preconditioned extended equilibria and source
terms, and corrections

Perform the relaxations of central moments to their precondi-
tioned equilibria, including the source terms for the body force,
using the different relaxation rates given in A, and with cor-
rections to eliminate the grid-anisotropy and non-GI truncation
errors parameterized by the grid aspect ratio r and the precondi-
tioning parameter y reflecting the sub-step

e =me +B7 {A (Bmet —Bm® )+ (1- 2 ) B&ear},

where combining certain moments for their independent evolu-
tions under collision and their subsequent segregation follow-
ing collision are formally shown via the operators B and B!,
respectively.

Thus, for the D2Q9 lattice, applying the operator B implies com-
bining the second order diagonal components of moments as

kog = (koo +koa) »  kag = (koo = koa) »

which will relax to their equilibria at their own relaxation rates in
what follows rather than with using individual components in this
regard. From Section 2, the preconditioned central moment equi-
libria for the rectangular D2Q9 lattice, including the necessary
correction terms, can be written as

k9 =0

eq _
kog = ps o1

eq _
00 ki =0,

eq _ jeq | peq _ 202 1 2,
kyo = koo + kg, =2qc;,p+ <; —l)p(ux+uy)
+ (04Ot + 0,0 1, + Ay 0, p + Ayy0,p) At

()l

+ Agx0yp + A, 0,p) At,

eq _ gpeq _ peq _
kzd_kzo koz_

+ (05,0, — 05,0,

1 ~ ~ ~ ~
K = <; - 1) puit, + (0, 00u, +0,,0,u,+ A, 0.p+ A,0,p) At,

1 3 1 3
eq _2 2 eq — 2
k21 = (_y2 ; +2> puly, k12 = <_y2 ; +2> pu
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eq _ 44
k22 = q7cg,p.

Here, and in the following, for better clarity, we use subscript
‘D’ for the coefficients associated with the corrections for the
trace of the diagonal components of the second order moments
(for bulk viscosity &), and the subscript ‘s’ for the corrections
for those other moments related to the shear viscosity v, rather
than the numerical subscripts used in Section 2. Then, rewriting
Egs. (38), (39), and (40), respectively, the coefficients appearing
the above extended moment equilibria related to the corrections
can be written as

Oy = —[Pyu’z( +Qyui + (qucf* - 1)]/) <— - E) R

By = —[Pyui + Qyui + (3q2c3* - rz)]
1 1

Apx = = [U},q2cs2* - 1] <_ - 5) o

1 1
A3 =—[Uq2c? —rz] <———>u,
y Y S% w; 2 y

>
/~
d§|_.‘
|
N =
~——

1 1
o= =[P =02 + (3%~ 1)] o (— - 5>7

wV
1 1
b, = +[—Pyui + Qyu)z( - (3q2c§* - rz)]p <_co - 5) s
v
1 1
=— quczk—l <———>u,
=l -1 (£ - 1)

1 1
/13y =+ [Uyqzci - rz] <— - 5) uy,

A

a)\/
and
6o (L_1y(L_1
w=m ) a e
G- (L_1 11
p= Gy ) e
- 1 1 1\ 5,
Asx == <; - 1) <(‘)_v - E) q Cg Uy,
- 1 1 1\ 20
o==(5-1) (5 -3) et
where
PR S L N R )

4 14 Y 14

and the relaxation parameters o, and o, determine the bulk and
shear viscosities, respectively, which are shown at the end of
this sub-step. The spatial derivatives of the density d,p and dp
appearing in the above moment correction terms are obtained
from an isotropic second order finite difference scheme, while
the spatial derivatives of the velocity field d,u, and d,u, in such
terms are computed locally using non-equilibrium moments, by
rewriting Egs. (44), (45), (46), and (48), as follows. First, writing
A= % (Urqch* —1)u,, B= % (Urqch* - "2) Uy

ey, = —Adyp — Bo,p, es, = —Adyp+ Bo,p,
and subsequently defining the following intermediate quantities

Ry, = (kyg + kop) — 2420+ € Roy = (kyg — kgp) — e,

and
c - [ 2q2c§* . Pyu)zc + Qyuf, N (qucf,* -1 ,
bx — |7 g
| @ 2 2
r 2 2
o - _ZqchZ* Puy +Quy N (3q2c§* -2
L 2 2 P
o _ [ 242, Bui-0Quu . Gg*2, - 1)
S sy 2 2 r
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2 2
ZqZCf* —Pu; + O uy ~ (3q2c§* -r?)
2 2

sy —

P,

),

the required local expressions for the derivatives of the velocity
field are then given by
(CsyRZS - beRZd) 1
ax"’x = ayuy = C_ (RZS - Cbxaxux) .
(Cbxcsy - Csxcby) by
With the above specifications, the post-collision central moments
resulting from the relaxations of the various central moments to
their central moment equilibria under collision and augmented by
the effect of the source terms can now be written as follows:

koo = koo»

kio = kg + oy (K{§ — ko) + (1 — w; /2)0pAt,
koi = kot + @ kgt = kop) + (1 — @, /)0y, At
kyy = lkys + @z (k5! = kyy) + (1 — wg /2)0,, 4t

kg = kyg + @, (k5 = kyg) + (1 — @, /2)0 At,
ki = kyy + o, — k) + (1 - @, /2)0y, 41,
Ky = kyy + @y (k51 = kyy),

kip = kip + w1p(k5 = kpp)s

kyy = kyy + (k) — kp)s

where o, = 65)+0, and o,; = 6,9— 0, and the central moments
of the source terms relevant for recovering the preconditioned NS
equations with a body force, o), 64, 049, 602, and o, are given
in Eq. (19). Here, the relaxation parameters w, and w, are related
to the shear viscosity v and bulk viscosity &, respectively, through
the following expressions:

V=74, <w% - %) A, E=ygdd (wé - %) At

Notice that these transport coefficients are functions of the pre-
conditioning parameter y and the grid aspect ratio r (via ¢). In
this work, we set the relaxation parameter associated with the
bulk viscosity as well as those for the other, especially the higher
order, moments to unity, i.e., ®; = ®; = @, = @1, = @y, = 1.0. To
complete this sub-step for collision, we now segregate the post-
collision combined central moments k,, and k,, into the bare
central moments k,, and ky, (reflecting the application of the
inverse operator B~!) via

= 1 - ~ -~ 1 ~ -
kyg = E(kzs + kag)s koy = E(kzo — koo).

As a result, all the post-collision bare central moments supported
by the rectangular D2Q9 lattice is now computed.

Compute post-collision raw moments

Evaluating

i =F'm°,

the post-collision raw moments k/ ~can be obtained from the
corresponding central moments k,,, computed in the previous
sub-step, where F~! = F(—u,, —u,), with (see Eq. (63) for F). Thus,
we have

koo = 7‘60’

ki =Ko +u K,

Koy = ko, +u kg,

1}20 = INC/ZO + 2uxl~c;0 + “)2(7‘(,)0’

Koy = kg, + 2u kg + uil%o,

k= 7(’11 +u ko +ucky, + uxuylzéo,

ky = 7('21 +2u K+ ”;2(7‘(’)1 +u,ky + 2uxuy1~c'10 + ”i”y%gs

7 _ g 7’ 271 7 7’ 251
kiy = ki +2uyky) +upkio +ucky, +2uu kg +uukeg,

73 7! 271 7! 7! 2.5 271
kop = ko +2u ki +upky, +2uks) +4uu k) + 2uiuy ke, + ks,
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277 2271
+ 2uuky k.
» Apply inverse scaling of post-collision raw moments for rect-
angular lattice
Perform

m < S~'m

using Eq. (54) for the inverse scaling S~!, which involves applying
an inverse scale factor r~" for the raw moment l}inn computed in
the previous sub-step so that we have

- - - - - 1-
1 _ 3! r 3! r _ !’

koo =koo»  Kio =kige ko = ;kov

o= o= i%/ Vo= l]}/ o= l]}/
20 = 200 Foz2 T 2o = e 21 =
7 _ 1 7 _ 1

ki, = r_2k12’ ky = r_zkzz'

This enables a more efficient transformation of the raw moments
to distribution functions involving the inverse of simpler moment
basis P (see Eq. (50)) for the square lattice, i.e., P! in the next
sub-step.

Compute post-collision distribution functions

Invoking the inverse mapping

f=pP'm,

we then obtain the post-collision distribution functions on the
rectangular D2Q9 lattice as follows:

Fo_ (7! 7! 7! 7!
fo = (koo_kzo_koz"'kzz)’

Fi = 5 (R + Ry = Ky = Rhy).
Fo = 5 (g + ki = Ry, — 3y)

Fo = 3 (g + Ky + Ky = K3y).
Fo= 3 (< + iy + Ry = K3y).
Js = 5 (4R, + Ry, + Ry +Ry).
Jo = 5 (R + Ry, =Ry +3y).
f7 = i(k/1 _7‘;1 _k’]2+7¢;2)

fs = %(_7‘31 _7‘/21 +7‘§2+7‘l22)'

Stream distribution functions along particle characteristics
Performing perfect shift advection on the neighboring lattice
nodes via

Fa(,t+ An) = o (x — e, At, 1),

we obtain the updated distribution functions f, at the end of time
step 7 + Ar.

Update hydrodynamic fields

From the distribution functions obtained in the previous sub-step,
update the fluid density and velocities, as well as the pressure
field via

8 8
1 22
p=z:,)fa, pu=26faea+ZFAt, pP=rq-c,,p
- o

It may be noted that for implementing moving wall no-slip boundary
conditions for simulating shear flows on rectangular grids, the exten-
sion of the momentum-augmented half-way bounce back scheme with
parametrization by the grid aspect ratio r presented in our previous
work [34] can be used in the present LB formulation by noting that
the speed of sound ¢, should be specified consistently using ¢, = gc,,
where ¢ = min(r, 1).
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