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ABSTRACT

Complex materials science problems such as glass formation must consider large system sizes that are
many orders of magnitude too large to be solved by first-principles calculations. The successful applica-
tion of machine learning (ML) in various other fields suggests that ML could be useful to address complex
problems in materials science. To test its efficacy, we attempt to predict bulk metallic glass formation
using ML. Surprisingly, we find that a recently developed ML model based on 201 alloy features con-
structed using simple combinations of 31 elemental features is indistinguishable from models that are
based on unphysical features. The 201ML-model performs better than the unphysical model only when
significant separation of training and testing data is achieved. However, it performs significantly worse
than a human-learning based three-feature model. The limited performance of the 201ML-model origi-
nates from the inability to accurately represent alloy features through elemental features, showing that

Glass-forming ability

physical insights about mixing behavior are required to develop predictable ML models.

© 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The transformative success of machine learning (ML) strategies
in a wide range of fields, including facial recognition, speech recog-
nition, consumer behavior, and drug discovery, has triggered the
consideration of such strategies in materials science. Even though
much scarcer than in other fields, its application is rapidly increas-
ing. Materials science problems that have been addressed using ML
can be categorized very generally into two categories. The first cat-
egory includes problems that can be reduced to a small number of
atoms. Such problems can be, to a large extent, addressed through
ab initio approaches and include formation energies [1,2], band
gaps [3-5], elastic moduli [3,4,6], and crystal structures [7,8]. Even
though there are still limitations in the representation, synthesiz-
ability, and accuracy of ab initio approaches [9,10], combining these
with ML models has revealed numerous examples of accurate pre-
dictions at low cost, and further led to the discovery of materials
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at unconventional chemical compositions at an accelerated speed
[11-15]. The other category is complex materials science problems
in which properties and mechanisms originate from a large num-
ber of atoms. Examples of complex materials science problems in-
clude predicting the liquidus temperature of an alloy, the viscosity
of a liquid [16], the plastic region of the stress-strain curve, the
microstructure and resulting properties [17], and the glass forming
ability [16,18,19] of an alloy. In this case, property-based features
can no longer be calculated using ab initio approaches. As the data
space is generally vast for complex problems and features are only
approximated, a large number of training data is required for a suf-
ficient representation and training of ML models.

A canonical example of a complex materials science problem is
the prediction of the glass forming ability of an alloy. This ability
is quantified in the critical cooling rate R, which is the minimum
cooling rate required to avoid crystallization during solidification,
resulting in the formation of a glass with an amorphous atomic
structure [20]. A particular focus has been on bulk metallic glass
(BMG) formation, which takes place in alloys with R < 1000 K/s
[18,19,21]. Technologically exciting due to their superb properties
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[22,23] and unique processability [24-27], these BMGs can be vit-
rified into geometries exceeding at least one millimeter and often
centimeters even in their smallest dimension because of their low
critical cooling rate [18,21,28-30].

Motivated by their technological potential, significant research
has been carried out to understand metallic glass formation [31-
35] and to develop models, rules, and indicators [19,32,36,37] that
guide the development of such alloys. Such models are based on
thermodynamics, kinetics, rheology, and atomic/electronic struc-
ture. For example, based on the suppression of nucleation as a
means to avoid crystallization, Turnbull proposed Ty = Tj/Tg (Ti:
liquidus temperature and Tg: glass transition temperature) as an
indicator for GFA [31]. Extensions to Turnbull’s seminal work have
been suggested to also consider additional aspects controlling GFA
[32,34,38,39]. Further, theoretical concepts such as the “confusion
principle” [35] have provided insights into mechanisms of GFA,
revealing the number of constituting elements [19], atomic size
variation [19,40,41], atomic packing density [36], atomic/short-to-
medium range topological ordering [42,43] as important contribu-
tions to GFA. However, even though such approaches have signif-
icantly contributed to the understanding of metallic glass forma-
tion, their use in the discovery of BMGs has been limited. The main
reason for this is that they rely on the knowledge of properties
that are not a priori known, and their measurements are often as
involved as determining the GFA through R. directly. Such prop-
erties include viscosity, fragility, atomic packing, Tg, and structure
and density of states of competing crystalline phases [44].

To accommodate for the limited predictive power of the above
approaches, the slow sequential trial-and-error sample fabrication
and characterization has been replaced by fast combinatorial syn-
thesis paired with high-throughput characterization strategies [45-
51]. However, even with these techniques, the potential composi-
tion space of BMG formation is by many orders of magnitude too
large that a reasonable fraction can be determined [44].

An effective model that allows predicting BMGs would have to
rely on a priori known properties. This approach has been pursued
by data-driven ML strategies, pioneered by Wolverton et al. [52,53]
where (i.) data on metallic glass formation were collected from the
literature, (ii.) a large number of elemental features were consid-
ered that possibly affect GFA, (iii.) alloy features were derived by
simple statistical functions, and (iv.) a random forest ML model
was developed and evaluated by 10-fold cross-validation (CV). De-
spite the high accuracy achieved by the ML model, novel BMG al-
loys and new insights into glass formation have not been devel-
oped.

Surprised by the limited success of such ML strategies in devel-
oping novel scientific insights or materials for complex materials
science problems, in this work we compared the previously devel-
oped ML model by Wolverton et al. [52] with (i.) a model we gen-
erate based on random and unphysical features, (ii.) a model only
considering the chemical composition, and (iii.) a model where we
consider human learning insights. For this purpose, we first recon-
struct the previous ML model [52]. Specifically, we use literature
data on GFA, and construct 201 alloy features through 6 simple sta-
tistical functions from 31 elemental features to build an ML model.
A 10-fold CV test yields a similar high accuracy to the previously
reported results [52]. To benchmark this model and its high ac-
curacy determined through the CV test, we create another model
where we choose random features that are unphysical. Surpris-
ingly, we found that the unphysical model’s 10-fold CV accuracy
is as high as the previous model. In fact, even when leaving all
features out and only considering the chemical composition infor-
mation as input data to build an ML model, the same high accuracy
is achieved. In other words, models with unphysical features or no
features perform as well as the reconstructed ML model with 201
features. The only information model (i.) and (ii.) are built on is the
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chemical composition. Prediction through these models is based on
the approach to predict a new BMG in the close chemical proxim-
ity to an existing BMG. This trivial knowledge of composition is
sufficient for the commonly used 10-fold CV where “predictions
are made” only by interpolation but not by extrapolation. Only if
training and testing data are distinct and extrapolation instead of
interpolation is required, differences in the 201-feature and un-
physical models are revealed. However, all the models described
above perform significantly worse than a simple, 3-(alloy)feature
model based on physical insights.

2. Methods

The ML method for predicting the GFA can be broken down
into four steps (Fig. 1). First, alloy data indicating chemical com-
positions and corresponding GFA are collected. In the second step,
relevant features are determined. Here, elemental properties are
first determined that need to be considered for the problem. From
the elemental features, alloy features are constructed using ei-
ther simple statistical functions (mean, range, standard deviation,
etc.) or physics-based models, approximating the mixing process
of the elements. Construction and even identification of features
requires some degree of physical insights into the complex prob-
lem. Data and features are then used to build and train an ML
model, for example, a random forest classification model. Finally,
the ML model predicts BMGs in the unknown composition space.
The details of these steps are described in detail in the following
sections.

2.1. Data collection and processing

Our database is compiled by collecting all experimentally re-
ported data from the Landolt-Bornstein Handbook on “Nonequilib-
rium Phase Diagrams of Ternary Amorphous Alloys” [54] and, addi-
tionally the peer-reviewed literature following the same approach
as Wolverton et al. [52]. Here, we categorize alloys as BMG formers
(Re < 103 K/s), ribbon formers (R < 108 K/s), and non-ribbon for-
mers (Rc > 106 K/s). All ribbon and non-ribbon data have been de-
termined through melt-spinning experiments and taken from the
Landolt-Bornstein Handbook. It should be noted that the ribbon
data have been only tested at a cooling rate of 10% K/s, meaning
the ability to form a bulk glass was not tested during the ribbon
forming experiments. Therefore, the label “ribbon” does not nec-
essarily indicate that the alloy cannot form BMG using bulk glass-
preparation techniques.

In summary, the database contains 6816 unique alloy composi-
tions with 1027 BMG, 4076 ribbon, and 1713 non-ribbon formers
(Fig. 2). The database covers a wide range of chemistries, contain-
ing 55 different elements (Fig. 2a) and considered alloys ranging
from binary to octonary alloys, with ternary as the majority of al-
loys (Fig. 2b). We also categorized all alloy data in subgroups based
on the major binary element pair (Fig. 2c). One example of a spe-
cific subgroup is the ZrBe alloy family which is visualized here in a
tree graph (Fig. 2d), showing example alloy compositions and their
critical casting diameters Dc.

2.2. Feature identification and construction

The goal of feature identification and construction is to repre-
sent alloy compositions in a set of features that are relevant for
the property of interest, which in our case is the GFA of the al-
loy. Features are essentially a set of quantitative and qualitative
attributes that describe the alloy, which serves as the basis for
the ML model. A set of features is expressed as a feature vector
which has a one-to-one correspondence to the alloy composition
and label (i.e., BMG, ribbon, or non-ribbon). To identify features,



G. Liu, S. Sohn, S.A. Kube et al.

Acta Materialia 243 (2023) 118497

Feature Identification and Construction
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Fig. 1. Process flow of the ML method for predicting the GFA of alloys. For the feature identification and construction step, we use either simple statistical functions of
elemental features or physics-based models with physical insights into the elemental interactions.
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Fig. 2. Alloy database. (a) The counts of the 20 most frequent individual elements found in BMG, ribbon, and non-ribbon formers in the database. (b) The counts of alloy
systems. (c) The counts of alloy subgroups (binary element pair based). (d) Tree graph of the ZrBe alloy family as an example of a specific alloy subgroup. D, is the reported

critical casting diameter of the alloy.

one can choose a strategy of considering essentially all possible
material properties as features and use machine learning strategies
such as feature selection to evaluate which features are important
[55]. This strategy, in principle, does not require any understanding
of the investigated problem. However, in reality, this strategy often
overfits the data and results in poor performance (low accuracy)
when applied to a new data set [56]. More effectively, one can use
physical insights into the problem to determine features. To bench-
mark the predictive power of the models, we also construct fea-
tures that are entirely unphysical and, in addition, develop models
without features where we only use the chemical composition of
alloys, i.e., the concentration of each respective element, as “fea-
tures”. In summary, we test and pursue the extremes of features
here where we use (i.) a large number of general-material features
without any specific physical insight, (ii.) random, unphysical fea-
tures, (iii.) no feature, only composition information, and (iv.) phys-
ical insight-based features from human learning. These features are
described below in detail:

1. General-material features: We started with an expansive
general-material feature set consisting of 201 features devel-
oped by Wolverton et al. [52]. These features originate from
31 elemental features (elemental properties defined for a con-
stituent element). Six simple statistical functions are used to
construct the alloy feature, including the minimum, maximum,
and range of the values of the properties of each element

present in the material, along with the fraction-weighted mean,
mean absolute deviation, and mode (i.e., the property of the
most prevalent element). Details on the features can be found
in the supplementary materials.

. Random, unphysical features: We randomly generated values
for each element for five elemental properties with no physical
meaning. We used the same six statistical functions described
above to translate elemental features to alloy features.

. No feature: We only use the composition information, i.e., the
atomic percent (at.%) of the constituent elements, as input to
the ML model.
Human learning features: It has been widely confirmed that
BMG formers generally exhibit a) a composition close to deep
eutectics b) an atomic size difference of > 12%, and c) a large
negative heat of mixing among at least some constituent ele-
ments. These features reflect the state-of-the-art understanding
of what characterizes a BMG forming alloy [19]. To represent
these empirical rules by properties that are a priori known, we
constructed three features:

(1) Liquidus temperature reduction AT: To determine AT for
an alloy we first separate the alloy in all binary combina-
tions. For those binary combinations, liquidus temperatures
are known. To construct the liquidus temperature of the al-
loy, we use the ratio of the binary combinations. We extrap-
olate the liquidus temperature of the alloy T4, by calcu-
lating from constituent binary pairs’ liquidus temperatures,
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e.g., Tap at composition ALbB . For a ternary alloy A;B,Ce,
a+

b
@b
Taoy is calculated as: "
(@+b) x Tap + (a+¢) x Tac + (b+¢) x Tgc

2x(a+b+c)

Talloy =

To determine the liquidus temperature reduction, T,y is
normalized by the mean liquidus temperature Tiean among
the constituent elements, e.g., Taxa+Tgxb+Tcxc for the
ternary alloy AqB,Cc. AT is expressed as:

Talloy

AT =

Tmean

(2) Atomic size difference 4:

§=100%x |3 x(1-r/r). 7= xni
i i

where r; is the atomic radius of the constituent element and
X; is the atomic fraction of the element.

(3) Maximum heat of mixing AHmax: We find the maximum
(absolute value) binary mixing enthalpy |AH| among con-
stituent binary pairs within the alloy. For this pair, we use
AH multiplied by a factor as our feature. For example, for
an alloy AqBC, if | AHpg| is the maximum binary pair value,
AHnmax is calculated as AHmayx = 22131’ x AHpg. AHpg is ob-

tained from the Miedema model [57]. The factor 2;—1;” con-
siders the fractional number of A-B bonds in the alloy.

2.3. Machine learning algorithm

In this study we choose the random forest algorithm to build
classification models that map different sets of features (described
in Section 2.2) to the GFA of the alloys. Random forest is robust,
easy-to-understand, and it handles high dimensional data well. In
short, a random forest classification model constructs a multitude
of decision trees at training (illustrated in detail in Fig. 3), and the
output of the model is the label selected by most decision trees.
Open-source python package Scikit-learn is used to build the ran-
dom forest ML model. Hyper-parameter choices such as the num-
ber of decision trees, the number of features to choose at each
tree node, or the maximum depth of each tree are optimized by
grid search in the training process to achieve the best classification
accuracy. The trained model can classify any new alloy (beyond
the training data) into different categories of GFA and computes
the relative likelihood for a new alloy to be in a certain category.
Therefore, we can use the ML model to make predictions for the
unknown composition space.

3. Results and discussion
3.1. Performance of machine learning models

We first evaluate and compare model performance using a 10-
fold CV test. In a 10-fold CV, the data set is partitioned ran-
domly into ten parts. Each time, 9/10 is used for training and
the remaining 1/10 for testing. We average the test accuracies
of the 10 models to get an average accuracy. Such test accuracy
shows how accurately the predictive model will perform in prac-
tice when facing unseen data. When considering all data, includ-
ing BMG (R < 103 K/s), ribbon (R. < 10¢ K/s), and non-ribbon
(Re > 108 K/s) formers for modelling, we found that high accu-
racy of 89% (Fig. 4a) is reproduced for the ML model based on
general-material features. Surprisingly, the ML model based on un-
physical, artificial features results in an 87% accuracy, essentially
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indistinguishable from the general-material model in terms of ac-
curacy. In fact, if we only consider the chemical composition in-
formation as input to build an ML model by using the atomic per-
cent of each element as features, we get the same high accuracy of
89%. When only considering BMG and non-ribbon data for build-
ing ML models, which essentially reduces the problem to a binary
classification problem, similar behaviors are observed from these
models with model performance results summarized in Fig. 4b.
This finding that the unphysical feature model and the model
based only on composition results in the same accuracy than the
general-material feature based model is surprising and requires
further investigation. The only information the unphysical model
and the composition model are built on is the chemical composi-
tion. Therefore, their predictions are based on the trivial approach
that it predicts new BMG compositions in close vicinity of exist-
ing BMGs used in training. We also characterized the performance
of the classification models using a receiver operating character-
istic (ROC) curve, indicating no significant difference among four
models (Fig. 4c). The confusion matrix of the various ML mod-
els is also analyzed and shown in the supplementary materials
(Figs. S1-4).

The training and test data sets typically contain alloys from the
same alloy system for the considered data. Therefore, the 10-fold
CV test is limited to an interpolation of the training data rather
than a true test into a significantly different composition space
which would require extrapolation. To address this, Wolverton et
al. previously proposed an extrapolation test called the “leave-
binary-out” CV test. The authors systematically withheld data sub-
sets containing each pair of elements (458 binary pairs in total) in
the training data and use the withheld subset as a test [52]. For
example, all alloys containing the ZrBe binary pair are withheld in
the training data and are used as test data. The classification accu-
racy is then calculated for the test data, and the average accuracy
across all binary pairs is used as the final measure. This “leave-
binary-out” test is designed to evaluate the ML model’s ability to
predict GFA for alloy systems different from the systems present in
training, addressing the limitation of the 10-fold CV test. Following
this argument, one should expect the unphysical and composition
models to fail and result in low prediction accuracy as they only
predict a BMG in the composition vicinity of an existing, used-in-
training BMG. However, unphysical and composition models yield
average classification accuracies of 77 and 75%, essentially indis-
tinguishable from the accuracy of the general-material model of
76%. When only considering BMG and non-ribbon data for build-
ing ML models, similar results are obtained, revealing high accu-
racy above 91% for all four models. The model performance results
are summarized in the supplementary Fig. S5. We argue that the
average accuracy is not informative since for many of the binary
pairs there are only a few alloys containing them in the database;
thus, their “leave-binary-out” accuracies are less reliable and not
indicative of the model’s ability. Instead, we argue here that one
should only select to leave out more prominent binary systems and
known BMG formers to reveal the differences among models. More
crucially, the classification is discrete but not continuous (i.e.,, BMG
or non-ribbon) since alloys are classified as BMG with a probabil-
ity to form BMG > 0.5 given by the model. This classification is
also insufficient. We argue that an effective model would predict
known BMGs not just with probability p > 0.5 but with a very high
probability, i.e., p > 0.95. To distinguish between these two criteria
of p > 0.5 from p > 0.95, one would need to predict all possible
alloys in the composition space and determine for each alloy the
probability to form a BMG. For example, as we will show below,
calculating for all potential ternary alloys (~2.6 million) p > 0.5
yields 0.5-1 million BMGs. This number is much too large to ex-
perimentally verify, even with high throughput methods, and it is
also unreasonably large; it has been estimated previously that only
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~1/106 alloys form BMGs [44]. Therefore, it is more reasonable to To construct the composition space that we consider for po-
look at high probability predictions and test a model’s predictive tential ternary BMG formation, we consider 24 practical elements
power for those predictions, i.e., p > 0.95. (metals and metalloids, considering cost, reactivity, and toxicity):

B, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Zr, Nb,
Mo, In, Sn, Si, Ba, and Ta. These elements yield 2024 ternary com-
binations (24 choose 3). For each ternary system, we space alloys
on a 2 at.% grid to reasonably consider the often rapid changes of
GFA with composition [58]. This results in 1326 alloys per ternary
and ~2.6 million alloys for all 2024 ternary systems from the here
considered elements.

For all ~2.6 million alloys, we use the model to calculate the

3.2. Prediction of unknown metallic glasses

To test the ability of various ML models to predict BMGs that
are novel and significantly different from known BMGs used in
training, we use the trained model and predict into the entire com-
position space, which is spanned by ternary combinations of 24
practical elements. We then examine the predicted compositions  label and its probability (i.e., BMG, p > 0.95). To test the model’s

and identify compositions with the highest likelihood of being a  Prediction performance, we leave some known BMGs out of the
BMG, i.e., p > 0.95. training set and subsequently determine if they have been pre-



G. Liu, S. Sohn, S.A. Kube et al.

5.19

Q

N w » 5

Prediction of known BMGs (%)
[

0.24

o 0.0 0.0
General-material Unphysical
Model

Composition Human Learning

Acta Materialia 243 (2023) 118497

=
o
o

—— Human Learning
—e— General-material
—a— Composition

B o ©
o o =)

Percentage of distinct alloys (%)
N
o

00 01 0.2 03 04 05 06 0.7 08 09 1.0
Threshold

Fig. 5. ML model performance predicting unknown bulk metallic glasses. (a) Comparison of the predictive power of ML models (general-material, unphysical, composition,
and human learning), quantified by the percentage of known BMG formers (the ones that contain any Cu, Pt, Ge, Sn, and Hf elements have been left out in training) that are
among the top BMG predictions by the ML model with a probability > 0.95. (b) Comparison of the ability of ML models (general-material, composition, and human learning)
to predict compositionally distinct alloys, quantified by the percentage of alloys that are compositionally distinct from known BMGs in training at varied at.% difference

thresholds.

dicted as BMGs with high probability. We quantify the prediction
performance by the percentage of known BMG formers (the ones
that have been left out in training) that are among the predicted
BMG formers with a p > 0.95. The BMG formers we leave out of
the training data set are: (i.) those that contain any Cu, Pt, Ge,
Sn, and Hf elements or (ii.) those that contain any ZrCu, ZrBe,
FeB, and NiNb element pair, respectively. The selection of the ele-
ments chosen for (i.) is such that “similar’ elements are still in the
training set whereas for (ii.) the pairs exhibit more unique behav-
ior [59] and hence are more different from alloys in the training
set.

When comparing the prediction performance of the four con-
sidered ML models with alloy features based on human learning,
general-material, unphysical, and composition, by far the best pre-
diction is achieved by the model using human learning-based fea-
tures. Its predictive power, as quantified here, is more than twenty
times higher than that of the general-material model, while the
unphysical model and the model based solely on composition can-
not predict the known BMGs that have been left out of the train-
ing set at all (Fig. 5a). The models based on unphysical features
and composition do not have any predictive power in the unknown
space as they only operate by predicting a BMG former in the
close vicinity of a known BMG used in training. As the general-
material model’s performance is only insignificantly higher, we
must also conclude that the general-material model does not
exhibit predictive ability beyond the trivial prediction very
close in composition to an already known and used-in-training
BMG.

To further investigate the predictions made by the various mod-
els and how different they are from the training data, we use
all BMG and non-ribbon data in training and investigate out of
the top predictions (BMG, p > 0.95) how many alloys are com-
positionally distinct from known BMGs used as training data. To
quantify compositional distinction between alloys in the train-
ing and in the prediction, we use the composition fraction dif-
ference, AqB,C. different by Aa, Ab, Ac, from AgiaaBprapCernc
To identify compositionally distinct alloys, we vary the thresh-
old for Aa, Ab, Ac. As shown in Fig. 5b, the human learn-
ing model can predict significantly more alloys that are compo-
sitionally distinct from the training data than the general-material
model and the composition model under any threshold. This find-
ing further strengthens the above finding that the general-material
model and the composition model only predict new BMG com-
positions in close vicinity of known BMGs used in the training
data.

3.3. Discussion of machine learning approaches to predict BMG
compositions

The presented comparisons of ML models are based on quali-
tatively and quantitatively very different features and feature con-
structions. The general-material model has the lowest requirement
of physical insights when constructing alloy features, hence hav-
ing the most hands-off ML characteristic. The human learning
model is the extreme opposite. The considered three features had
been identified as most indicative of bulk metallic glass forma-
tion through 50 years of research. To benchmark ML models for
the prediction of BMGs, we constructed two models, one based
on random features that are unphysical and another model that
does not use features but only the information of the composi-
tion. These models have no predictive power and reveal no insights
into glass formation motifs beyond the trivial prediction that in the
close vicinity of a known BMG used in training, other BMGs are
present. Even though BMG forming alloys can rapidly change their
GFA with composition [58], one can usually, and this is what these
models do, find a BMG in close vicinity of a known BMG. Hence,
an ML model with performance similar to the unphysical and com-
position models will also not have true predictive power.

Using the data set described in Section 2.1, we found that in
the interpolation test (10-fold CV) the performance of the general-
material model and the human learning model, quantified by the
10-fold CV accuracy, is essentially identical to the unphysical and
composition models. This observation suggests that the typically
used 10-fold CV accuracy [52,60] is not a useful method to mea-
sure how effective an ML model is to predict BMGs. The fact that
their accuracies are essentially identical suggests that interpolation
within the same composition space where training has been car-
ried out is only based on the trivial knowledge of composition. As
in the 10-fold CV for the data set used here, there typically exists
(statistically) an alloy in the 90% training data that is composition-
ally similar to every alloy the model predicts in the 10% test data.
Hence, interpolation of all models is most effective when only us-
ing the composition information. The performance of ML models
in the extrapolation mode is significantly different. Whereas the
general-material model does not extrapolate better than the mod-
els (unphysical and composition) with no true extrapolative abil-
ity, the human learning-based model performs significantly better
(Fig. 6).

These findings are highly surprising and demand a deeper dis-
cussion on why standard ML strategies requiring essentially no
physical insights are limited in studying or predicting complex ma-
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terials. It has been argued in the past that data set bias, con-
tinuous vs bimodal GFA classification, lack of reported failed or
null results in the literature are among the challenges faced by
ML models [61,62]. Even though not discussed in detail here, our
study confirmed some of these points. However, we argue that
the main challenge lies in the construction of a meaningful fea-
ture basis when describing alloys. Whereas the properties of indi-
vidual elements are essentially all known, mixing is vastly richer
and only for minute fractions determined. Instead, the field of ma-
terials science has been focusing and relying on physical mod-
els. Even though powerful to develop a conceptual understand-
ing, such models can only be applied for idealized cases, are al-
ways an approximation, and are often limited to binary mixing.
Hence, using elemental properties and combining them through
statistical functions that do not consider the underlying physical
mechanisms such as minimum, maximum, range, mean, mean ab-
solute deviation, and mode cannot generally describe alloy prop-
erties accurately. To give just one example, when constructing
the liquidus temperature feature T, for the alloy Aug,Siyg, using
the average values of the liquidus temperatures for Au and Si,
which are the most reasonable among the statistical functions pre-
viously used, results in 1127°C compared to the actual value of
T.(Aug,Siig) = 364°C. As the T of an alloy or more specifically the
reduction of the T relative to the weighted average of the consti-
tutive elements’ T, is a main contributor to bulk glass formation
[31], it is not surprising that the general-material model lacks in-
sights beyond the trivial knowledge of the data it uses.

It is important to mention that even in the human learning-
based model, the features are only simplified and idealized ap-
proximations to the real mixing behavior in the alloy, and hence
one cannot expect precise prediction. Further, as only idealized fea-
tures are used, the model will make “expected” predictions of new
BMG formers based on current understanding. “Unexpected” pre-
dictions beyond today’s understanding of BMG formation are less
likely to be made through the here constructed ML model based
on human learning. As the composition space for alloys is vast and
only a minute fraction has been considered where only a tiny frac-
tion of potential BMG formers have been identified [44], identi-
fying only the “expected” BMGs would already be a large success
and advance BMG technology. To also identify “unexpected” BMGs
beyond today’s understanding of BMG formation, ML strategies are
in principle capable but are unrealistic for addressing BMG forma-

tion or other complex materials science problems. This is because
when considering the effectiveness of an ML approach, one also
must take into account the quantity of experimental data that can
be practically determined and compare this to the potential data
space. The alloy space for multicomponent alloys is vast; for the
here limited ternary consideration ~2.6x108 alloys, when consider-
ing up to quinary alloys ~1012 alloys [44]. Only when a sufficiently
representative fraction of the potential data space can be experi-
mentally realized and used in the training set, the ML algorithms
can generate predictions with high accuracy, and even with fea-
tures that poorly represent the alloy (like the alloy features used
in the general-material model). However, determining such a rep-
resentative fraction is a grand challenge; even when the state-of-
the-art combinatorial synthesis paired with high-throughput char-
acterization methods that can determine and characterize ~10%-
105 alloys per year [63] are considered, it would take over million
years to determine 1% of the composition space of quinary alloys.
A better strategy may be to (i.) carefully determine fewer but care-
fully selected alloys to represent the alloy and features space and
determine for those alloys the GFA and (ii.) use models based on
physical insights that describe the mixing behavior.

4. Conclusion

We built ML models to predict bulk metallic glass formation.
Surprisingly we found that a general-material ML model with 201
alloy features constructed through simple statistical functions from
31 elemental features is indistinguishable from models that are un-
physical or do not consider any features, when the prediction ac-
curacy is tested in an interpolation manner. Only when significant
separation of training and testing data is carried out, the general-
material model performs better in this extrapolation mode than
the unphysical or composition models, yet significantly worse than
a human learning based 3-feature model. We explain the limited
performance of the general-material model by the general inabil-
ity to accurately represent alloy features through elemental fea-
tures. As generally the potential data space is too large to de-
termine a representative fraction, which would allow ML mod-
els to be effective even with poorly representative features, com-
plex material science problems like bulk metallic glass formation
require physical insights to develop effective and predictable ML
models.
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