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ABSTRACT ARTICLE HISTORY

Based on evolutionary game theory and Darwinian evolution, we Received 1 November 2021
propose and study discrete-time competition models of two species ~ Accepted 21 October 2022
where at least one species has an evolving trait that affects their KEYWORDS
intra-specific, but not their inter-specific competition coefficients. By Competition models;

using perturbation theory, and the theory of the limiting equations evolutionary dynamics; traits;
of non-autonomous discrete dynamical systems, we obtain global local stability; asymptotically
stability results. Our theoretical results indicate that evolution may autonomous; global stability
promote and/or suppress the stability of the coexistence equilibrium

depending on the environment. This relies crucially on the speed

of evolution and on how the intra-specific competition coefficient

depends on the evolving trait. In general, equilibrium destabiliza-

tion occurs when « > 2, when the speed of evolution is sufficiently

slow. In this case, we conclude that evolution selects against com-

plex dynamics. However, when evolution proceeds at a faster pace,

destabilization can occur when @ < 2. In this case, if the competition

coefficient is highly sensitive to changes in the trait v, destabilization

and complex dynamics occur. Moreover, destabilization may lead

to either a period-doubling bifurcation, as in the non-evolutionary

Ricker equation, or to a Neimark-Sacker bifurcation.

1. Introduction

Evolution is the physical, genetic, or behavioural change in populations of biological organ-
isms over time. Evolution’s more significant manifestations result from natural selection,
a process that engineers biological systems. Understanding an evolutionary design has its
roots in Darwin’s three postulates (Darwin [12], Sober [28]). According to Lewontin [15],
these postulates are:

o Postulate 1 (Variability). Like tends to beget like, and there is heritable variation in
traits associated with each type of organism,

e Postulate 2 (Differential fitness). Among organisms, there is a struggle for existence,

o Postulate 3 (Heritability). Heritable traits influence the struggle for existence.
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The strategy/postulate that there is a struggle for existence among organisms may be
simulated using population dynamics models. Such models contain many parameters, such
as growth rates, resources uptake rates, predation rates, and carrying capacities. These
parameters, in turn, depend on the strategies (i.e. heritable traits) used by various species
in the population.

Based on Darwinian theory [12], evolutionary game theory (EGT) is founded on three
axioms: variation in trait values, fitness differences, and inheritance. An evolutionary game
consists of players, rules, strategies, payofts, and solutions. In this setting, players are phe-
notypes who are defined by phenotypic traits. A strategy is defined as a set of values of
the adaptive traits, payofls consist of fitness, and the solution concept results in indefinite
persistence of a unique set of strategies. Evolutionary games differ from classical games in
some fundamental features. Classical games focus on strategies that optimize players pay-
offs. Evolutionary games focus on strategies that persist through time. Through births and
deaths, players come and go. But their strategies pass on from generation to generation
(Vincent and Brown [6]).

Most of the published papers on evolutionary dynamics deal with the dynamics of sin-
gle species. See for instance Cushing [8, 10] and Karima et al. [19]. There are, however,
few papers in the mathematical biology literature that investigate evolutionary competi-
tion models and we will mention here those papers that are relevant to our paper. In the
paper by Ackleh et al. [1], the authors investigated the dynamics of a Leslie-Gower com-
petition model of two-species in which only one of the species is subject to evolutionary
adaptations. The paper by Rael et al. [21] also deals with the evolutionary dynamics of
a Leslie-Gower competition model of two-species but most of the study was based on
extensive numerical simulations of the evolutionary model. It should be noted that the
Leslie-Gower model is monotone and hence one can apply Smith’s theory [25, 26] to show
global stability.

In this paper, we consider a more mathematically challenging model, namely, the Ricker
competition model, which it is monotone only for certain values of the parameters. We
investigate both cases when the Ricker model is monotone and when it is not monotone.
Moreover, we investigate the case where both species are subject to evolutionary adapta-
tions of their intra-specific (but not their inter-specific) competition coeflicients. The paper
is organized as follow. In Section 2, we introduce the evolutionary competition model of the
Ricker type, where we follow the basic ideas introduced in Ref. [8] and [19]. In Section 3,
we investigate the local stability of our models. In Section 4, we show that the Competi-
tion Exclusion Principle holds under some conditions on the parameters of the model. In
Section 5, we present a general theory on global stability based on perturbation theory and
the limiting equations of non-autonomous systems.

2, Evolutionary models

2.1. Single-species evolutionary models

Consider the single species model with no evolution

x(t+ 1) = r(x(6)x(1), (1)
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where r(x) is the density-dependent, per capita population growth rate. As a per capita
rate, r(x) is an individual’s contribution to the population growth rate in a population with
density x. In (1) all individuals are treated identically. In this paper we instead differentiate
individuals by means of a phenotype trait of the individual, denoted by v, that is subject
to evolutionary change over time. Under the axioms of Darwinian evolution (Postulates
1-3), the method of evolutionary game theory [6] provides a dynamic model for the popu-
lation density and the population’s mean phenotype trait, denoted by u. This methodology
assumes the trait has a Gaussian distribution with fixed variance throughout the popula-
tion at all times and this distribution is uniquely determined by the population mean trait
u. We make the common assumption that fitness is the exponential growth rate, so that
In(r(x, v, u)) is the fitness of an individual with trait v in a population with density x and
mean trait u.

This methodology asserts that population and mean trait dynamics are governed by the
equations

x(t+ 1) = r(x(6), v, u(®))x(D) lv=us)

u(t+1) = u(t) + o? 9 ln(l’(x(;)v, vu®) |v=u(t) ’ @

where 02 > 0 is called the speed of evolution (which is proportional to the constant vari-
ance of the individual trait v). The trait equation is often called Lande’s equation or Fisher’s
equation and says that the change in mean trait is proportional to the fitness gradient, with
fitness taken to be In r.

Next, we provide some examples to illustrate the effect of evolution on the dynamics of
species. The first example is the evolutionary (Darwinian) Ricker model which is based on
the Ricker model

x(t + 1) = bx(t) exp(—cx). (3)

In the evolutionary version of this model, we assume that the growth rate b is a function of v
alone, since it is the density-independent rate of an individual with trait v. The competition
coefficient ¢, on the other hand, is dependent on the individual’s trait v as well as the traits
of other individuals with whom it competes, as represented by the mean trait u. Thus we
assume

b=>bv), c=clvu).
Hence, the density-dependent fertility rate is given by
r(x, v, u) = b(v) exp(—c(v, u)x). (4)

Here we will assume that there is a trait at which inherent fertility rate has a maximum,
denoted by by, and we choose that the trait to be the reference point for v. In addition, we
assume that b(v) is distributed in a Gaussian fashion around its maximum at v = 0

N

4

b(v) = bge” 2.

Hence, the evolutionary model becomes

VZ
X(t 4 1) = box(t)e™ 7 OO _ o

u(t+1) = u(t) +o? (—u(t) - %:’(t))n:u(t)) x(t)
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To further specify the model, we place assumptions on c¢(v,u). A common assumption
that is made concerning trait dependency of competition coefficients in Darwinian models
is that they are functions of the difference v—u. In other words, the competition that an
individual experience depends on how different its trait v is from the typical individual in
the population, as represented by the mean trait . We make this assumption here and write
c(z) = c(v — u(t)), where the function c(z) is continuously differentiable for all values of
its argument z. Thus when v = u(¢), c(v — u) = ¢(0) = co.
Under these assumptions, we have the model

u2
xX(t+ 1) = box(t)e™ 7 ~THIXO)_

, 5
u(t+1) =u(t) + o2 <—u(t) — ag(zz) |Z:0> x(t) ®)
i.e.
x(t 4+ 1) = box(e T 00 ©
u(t+1) = (1 — odu(t) — ciox(t)

where ¢ = dizc(z)lzzo, and ¢p = c(0) = c(v — u(t)) ly=u(t)-

The coeflicient ¢; is the sensitivity of the competition c(z) to changes in the difference
z=v—uatv=u. If ¢; # 0, then ¢; measures the difference between the competition
intensities experienced by individuals that have the population mean trait and those whose
traits are slightly different from the mean. For example, if ¢; > 0, then an individual
that inherits a trait slightly larger (smaller) than the mean u will experience increased
(decreased) intraspecific competition. These interpretations can also hold, of course, if
c1 < 0, that is an individual that inherits a trait slightly smaller (larger) than the mean
u will experience increased (decreased) intraspecific competition. Now ¢; maybe equal
0 and the ecological reason for this assumption is that it is often assumed in evolution-
ary game theory models that an individual experiences maximum competition when its
trait equals the population mean, i.e. the competition coefficient ¢ is maximized when
v=u

In this case a commonly used model for c¢(z) is a Gaussian type distribu-
tion ¢(z) = exp(—%) (with variance w?) in which we obtain the decoupled model
equations

2
x(t+ 1) = box(tye” 70 (7)
u(t+1) = 1 —o®u(®) '

In contrast, if, for example, c(z) = exp(c;2), then competition intensity either decreases as
v decreases or increases from the mean u, depending on the sign of ¢;. We refer to this type
of competition coefficient c(z) when ¢; # 0 as hierarchical.

Remark 2.1: Note that we often replace by by e, where a > 0, so the inherent fertility
equation is written as

u2
x(t+ 1) = x(t)e* ™ 7 —0x®, (8)
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Hence, the evolutionary Ricker model (6) becomes
x(t+ 1) = x(t)e? w20 ©)
ut+1) = (1 — o2)u(t) — oc1x(t)

In this paper, we use this type of model.

2.2. Multi-species evolutionary models

Next, we consider the Ricker competition model of two species with evolution. Recall that

the Ricker competition model without evolution is given by
x(t+1) = ax(t)e—cnx(f)—flz)/(t)
Y(t + 1) = by(He—axD—ay®) > (10)

where a and b are the growth rates of species x and y, respectively, and c;; are the intraspe-
cific (for i = j) or the interspecific (i # j) competition coeflicients. A complete study of
local stability of the equilibrium points as well as the bifurcation scenario may be found
in Ref. [17]. Results on the global stability of the survival equilibrium point may be found
in Refs. [5, 25, 26] using monotonicity theory, in Refs. [4, 22-24] using singularity theory
and in the paper [3] using a Liapunov function.

Now we extend the single-species evolutionary Ricker model to the two-species evolu-
tionary Ricker model

x(t + 1) = a(v))x(t)en1—uO)xO—cray®

vi=u1(t)

yt+1) = b(V2)y(t)e—621x(t)—sz(VZ—uz(t)))/(t)

V2=u2(
(£ 1) = () + o2 I ED YD v (1)

D , (11)

0] = (O
u(t + 1) = p(t) + 02 2D, YD, v, 2 (1))
vy vrmita(®)
where
11 (e(8), y(£), v1, u1 () = a(v)e” N1~ OOy
and

P2 (x(), y (1), v2, () = b(vp)e” A¥W=R2m2ONO,

(See [19] for more details).

In this model, we assume that the coeflicients ¢1; and ¢;; do not depend on the traits
uy and/or uy. This is clearly a restriction on the model. We also assume there is a trait at
which inherent fertility rate of species x has a maximum, denoted by ay, and we choose
v1 = 0 to be the reference point for v;. In addition, we assume that a(v;) is distributed in
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a Gaussian fashion around its maximum at v; = 0

N

a(vi) = ape”

Making similar assumptions for species y, we get

1)2
b(Vz) = 506_72.
Since no scales for the traits are specified, it follows that one can choose scales so that the
standard deviations of the birth rate distributions are equal to 1.
We denote In(ag) by o with ¢ > 0 and In(bg) by 8 with 8 > 0 to obtain the following
Darwinian system

x(t + 1) = x(t)er 1 O/ 2=eOxO—cy®
y(t4+1) = y(t)eﬁ—u%/2—621x(t)—622(0)y(t)
w(t+1) =1 —od)ui(t) — ofcix(t)
w(t+1) = (1 —oP)uz(t) — oicy(t)

(12)

where ag = e* and by = e are the density-free birth rates of individuals with traits vi = 0
and v, = 0, respectively. Notice that this assumption doesn’t lose any generality because
one can assume any reference point for the traits. The competition parameters cij are
positive, the speed of evolution o of each species is positive and the parameters of the
sensitivity of the competition ¢; are real numbers.

The next sections are devoted to studying the local and the global dynamics of sys-
tem (12), and a special case when one of the two species has no evolution. For instance, if
species y has no evolution, then we obtain the following model.

x(t 4 1) = x(t)ed " O/2=enOx(H—cy(®)
yt+1) = y(t)eﬁ—Czw(t)—sz(O)y(t) . (13)
u(t+ 1) = (1 — o?)u(t) — o2cyx(t)

3. Local and global stability of the non-evolutionary model

In this section we briefly review the local and global stability of the equilibrium points of
the classical Ricker competition model [3, 17]

— o —cr1x(t)—cr2y(t)
{ x(t+1) = x(t)e (14)

yt+1) = y(t)eﬂ—mx(t)—my(t)

Note that model (14) has an unstable extinction equilibrium point E} = (0, 0), two exclu-
sion equilibrium points on the axes given by EX = («/c1;1,0) and E;,“ = (0,8/c;) and a

. 1l e . . . c —C I —c
survival equilibrium point in the first quadrant given by E* = (cnzcz;zl—cizil ) le;ﬁ_cf;ﬁ; )>

whenever ¢ > ¢128, c118 > a1 and ¢11¢2 > ¢12¢21. On the other hand, if ¢;;¢00 =
c12¢21 the model degenerates and there are no survival equilibrium points. Moreover, if
11622 < 12621 With e > ¢128, 118 > 210, there are no survival (positive) equilibrium
points. This corresponds to a situation where interspecific competition between the two
species is greater than their self-limitation and only one species can survive.
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The equilibrium point E is locally asymptotically stable when 0 < o <2 and 8 <
c210¢/cqp and it is unstable when o > 2 or 8 > ¢y ¢¢/c11. When o = 2 and 8 < ¢ ¢/c11
occurs a period-doubling bifurcation with o as a bifurcation parameter. The exclusion
equilibrium point E loses stability and a locally asymptotically stable 2— periodic exclu-
sion cycle on the x—axis is born. The scenario of period-doubling bifurcation continues
leading to chaos, with « as a bifurcation parameter. Similar analysis may be seen for the
exclusion equilibrium point E; in the y—axis.

The survival equilibrium point E* is locally asymptotically stable (by linearization)
whenever the following relations are satisfied

‘2 @ i

>0, >0 —<-—-—<—,
€22 1

and

((B —2)c11 —aca)(c12B — (@ — 2)cz2) + 4cz1c12 < 0.

If fora > 0 and B > 0 we have c;; < acy; or Scip < acy; or

((B —2)c11 —aca)(c12B — (@ — 2)cz2) + 4cz1c12 > 0.

then the equilibrium point E* is unstable.
When Bc1; > ac and Beip < e, and (o, B) lies on the hyperbola given by

((B—2)c11 —acz)(c12B — (o — 2)c2) +4c21c12 =0

in the o — B plane, a period-doubling bifurcation occurs. The equilibrium point E*
becomes unstable and a locally asymptotically stable 2—periodic cycle is born in the inte-
rior of the first quadrant. The period doubling route-to-chaos occurs with respect to the
parameters « and .

The stability regions, in the parameter space o — § bifurcation diagram, of the equi-
librium points are depicted in Figure 1. In region P the exclusion equilibrium point on
the x-axis is locally asymptotically stable having a period-doubling bifurcation at o« = 2
and Bc1; < ey, with o as a bifurcation parameter. In region Q the exclusion equilibrium
point on the y-axis is locally asymptotically stable, having a period-doubling bifurcation at
B =2and Bcia > oy, with B as a bifurcation parameter. In region S the survival equi-
librium point is locally asymptotically stable. On the hyperbola occurs a period-doubling
bifurcation with respect to the parameters  and 8.

In Ref. [3], the authors proved the following result on the global dynamics of the Ricker
model with no evolution

Theorem 3.1 ([3]): For the Ricker map with o, B € (0, 2], the following statements hold
true:

(a) If 2—; < % < 2—1, then the unique interior equilibrium point E* is globally asymptotically
stable in the interior of R%. and each of the axial equilibrium points Ef and Ej is a saddle
point with the positive half-axis as its stable manifold and the heteroclinic orbit from this

survival equilibrium point to E* as its unstable manifold. (see Figure 2).
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2.5

By = acy

2.0

Beyy = acy

0.5

0.0

0.0 0.5 1.0 1.5 2.0 25

Figure 1. Stability regions, in the « — 8 parameter plane, of the equilibrium points in the Ricker
competition model without evolution when ¢1; = ¢31 = 0.5and ¢y = ¢ = 1.

/ \
| b;.,

Figure 2. Examples of dynamics catalogued in Theorem 3.1.Inthe leftgraphweusea = 8 = 0.5,¢1p =
1 = 1.5,¢11 = ¢ = 1whileintherighta = 8 = 1.25,¢1 =1 =05and ¢y = ¢ = 1.

(b) If % > % > 2—;, then the unique survival equilibrium point E* is a saddle point with
orbits from Ej to E* as part of the stable manifold W*(E*), which divides Ri \ {Ej} into
two open disjoint regions Ry, Ry with Ri \ {Ej} = Ry U W¥(E*) U R, where E; € Ry
and E} € Ry. Each of the axial equilibrium points is asymptotically stable with Ry or R,

as its basin of attraction.

Remark 3.1: The conditions «, B € (0,2] and % < % < <UL in the hypothesis of

a1
Theorem 3.1 (a) are parts of the conditions of local stability, as it may be seen in Figure 1.

Note that the vertex of the hyperbola is the point (2, 2) (see [17] for more details).
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4. Stability of evolutionary models

We first assume that species y has no evolution, as defined by system (13), i.e. b(v2) = B
and 03 = 0. Then we study the model where both species evolve.

4.1. Constant trait in one species

Let

F(X) — (xea_”z/z_c“(O)x_clzy,yeﬂ_mx_m(o)y, (1 . O'Z)Ll _ O'2C1X)

be the map representing System (13), where x = (x, y, u) and we replace o7 by o for
simplicity.
The Jacobian matrix of the map F is given by

(1 — ¢11(0)x) ea—é—cn(O)x—Cn}' _Clzxea—§—611(0)x—clzy
JF(x) = _621),6/.‘3—62196—622(0)}/ (1 — sz(o)y) eP—cnx—cn(O)y
—02c1 0
_xuea—é—cu(o)x—cuy
0
1—o?

We should mention that when ¢; = 0, the local dynamics of the decoupled Model (13)
is the same as the model without evolution (10) whenever o2 < 2. In order to see this
fact, firstly from u(t + 1) = (1 — o?)u(t) we getu(t) = (1 — o%)tuy. Hence, u(t) — 0 as
t — 00. Secondly, at the equilibrium point (x*, y*, 0), the eigenvalues of JF((x*, y*,0)) are
{A1, A2, 1 — 02}, where A; and A, are the same eigenvalues of the Jacobian of the two-
dimensional map given by System (10). Therefore, the conditions of the local stability will
be the same and we have the following result.

Theorem 4.1: Let ¢; = 0, E* = (x*,y*,0) be an equilibrium point of Model (13), and the
speed of evolution o> < 2. Then the survival equilibrium point E* is locally asymptoti-
cally stable by linearization (unstable) if (x*,y*) is a locally asymptotically stable (unstable)
equilibrium point of Model (10) by linearization.

Remark 4.1: Obviously, if in the conditions of Theorem 4.1, we assume that c?>2, any
equilibrium point of Model (13) is unstable.

From now on, we consider ¢; # 0. Since the purpose of the model (13) is applications
in population dynamics, we discard equilibrium points with negative population densities
(negative trait values are allowed) and obtain the following equilibrium points

B A A
E'=(0,0,0), E‘={(0,——,0), E* =(—,0,——
0= > B ( 22(0) x 2 1

1
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and

B — <612621 —11(0)c22(0) + A ¢11(0)c22(0)c21 + c22(0)B — c1265; — €21 A

22(0)2 ’ ¢1c5,(0) )
e — e11(0)exn(0) 4 A)
c1¢22(0) ’
where
A=—c11(0) +/c1,(0) + 2c}a (15)
and

A= \/(612C21 — ¢11(0)22(0))% + 2¢§¢22(0) (c22(0)ex — c12B). (16)

We will refer the equilibrium point Ejj as the extinction fixed point, the equilibrium points
E;‘ and E}, as the exclusion equilibrium points and the equilibrium point E* as the survival
equilibrium point.

At the extinction equilibrium point Ej; we have

JF(EY) = 0 P 0
—02c1 0 1—o0?

Since > 0and B > 0, it follows that the origin is an unstable equilibrium point if 0% > 2
and a saddle equilibrium point if 0% < 2.

Theorem 4.2: The extinction equilibrium point Ej of the model (13) is unstable. More
precisely, it is source if 0> > 2 and a saddle equilibrium point if 6> < 2.

For the equilibrium point on the y-axis, we have

c128
& O 0 0
JFE)=| 2P g
c22(0)
—c102 0 1—o2

Thus, we have the following result concerning the stability of Ej.

Theorem 4.3: The equilibrium point Ey, of model (13) is:

(1) locally asymptotically stable if c2p(0)a < c128,0 < B < 2, and 0? < 2;
(2) asourceif c2p(0)x > c128, B > 2, and 0% > 2
(3) asaddle if cp(0)a > c12B oro? > 2 with0 < B < 2.
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We recall [14, page 248] that all the roots of a cubic polynomial
A+ p1A? + pak + p3,
lie inside the unit circle if and only if

Ip1 + p3l < 1+ pzand |ps — pipsl < 1 — pi. (17)

If the polynomial is the characteristic polynomial of a three dimension matrix, then p; is the
trace of the matrix, p; is the sum of the principal minors of the matrix and ps is the determi-
nant of the matrix. Conditions (17) can be applied to the Jacobian of a three-dimensional
discrete dynamical system to obtain local stability results from the linearization principle
(see [18]).

Since the conditions (17) for the equilibrium points E}, and E* are long, we present
only the conclusions of this analysis and in Appendix 1, we provide details. The derivation
and application of the results generally require the use of some algebraic software such as
Mathematica or Maple.

Theorem 4.4: Let 0 < 2 and ¢ # 0. The equilibrium point EX,, of System (13) is

(1) locally asymptotically stable whenever inequalities (A1), (A2), (A3) and (A4) in
Appendix 1 are satisfied;

(2) unstable if at least one of the inequalities (A1), (A2), (A3) and (A4) is reversed. More
precisely, EX, is a source if all the inequalities are reversed and is a saddle equilibrium
point if at least one of the inequalities is reversed but not all.

Concerning the equilibrium point E* we have the following:

Theorem 4.5: Let 6> < 2, ¢; # 0 and Py, P, and P3 be given as in Appendix 1. Then the
equilibrium point E* of System (13) is

(1) locally asymptotically stable whenever
|P, + P3| < 14 P and |P, — P\Ps| < 1 — P3;

(2) wunstable if at least one of the above inequalities is reversed. More precisely, E* is a source
if all the inequalities are reversed and is a saddle equilibrium point if at least one of the
inequalities is reversed but not all.

Remark 4.2: If in the conditions of Theorems 4.4 and 4.5, we have 62 > 2, then the
respective equilibrium points are unstable.

In Figure 3 we present two examples of the stability regions, in the @ — 8 parameter
plane, of the three equilibrium points Ej, E}, and E* of System (13) when cj; = 31 =
0% =0.5,¢11(0) = c»(0) =land¢c; = —2.In Regions R, Q and §, the equilibrium points
EJ, Eg,, and E* are locally asymptotically stable, respectively.

Remark 4.3: It is known that the non-evolutionary 2-species Ricker competition
model (14) destabilizes in period-doubling bifurcation in the region 2—; < % < g—i and



JOURNAL OF BIOLOGICAL DYNAMICS 827

25 25

20 2.5

Figure 3. Two examples of the stability regions, inthe « — 8 parameter plane, of the equilibrium points

E;‘, E}, and E* of the evolutionary 3-dimensional Darwinian Ricker model (13). The values of the param-

eters are ¢11(0) = ¢2(0) = 1, ¢12 = €31 = 02 = 0.5 and ¢; = —2 in the left figure and ¢; = —5 on
the right figure. The regions R, S and Q are the stability regions of the equilibrium point £, E* and E},
respectively. The regions will be similar in the case of positive values of ¢;.

at the boundary of the hyperbola in region S (Figure 3). For the Darwinian model of the
Ricker equation (13), we have the same dynamics as that of the non-evolutionary system if
c1 = 0in the trait-dependent density coefficient c(v — u). Hence, we conclude that evolu-
tion in this case has no effect on the onset of non-equilibrium and complex dynamics. In
contrast, when ¢; # 0, the onset of non-equilibrium and complex dynamics is accelerated
to a smaller critical value of . Moreover, the larger in absolute value the value of c;, the
sooner the onset of non-equilibrium and complex dynamics occurs as « is increased, as
may be seen in Figure 3. It should be noted that the onset of non-equilibrium and complex
dynamics can lead to either a period doubling bifurcation or to a Neimark-Sacker bifurca-
tion. Moreover, this bifurcation may occur for values of « and § greater or smaller than 2.
For instance, in Table 1, a Neimark-Sacker bifurcation occurs early for values of « slightly
greater than 1.7 and B slightly greater than 0.63. And in this case evolution promotes non-
equilibrium and complex dynamics. In contrast, a Neimark-Sacker bifurcation is delayed
by evolution for values of « slightly greater than 2.3 and B slightly greater than 1.932, as
may be seen in Table 1

Though the sufficient conditions of stability of Theorems 4.4 and 4.5 are for the lin-
earization principle, it may be easier to obtain sufficient conditions using Gerschgorin’s
Theorem [20, page 227], which estimates the location of the eigenvalues of a matrix.

Theorem 4.6 (Gerschgorin’s Theorem): Let M = [m;;] be an n x n real or complex
matrix. Let o; = m;; and r; = 2}1:1 i |mij|. Then all the eigenvalues of M are inside the
circles with centres a; and radii r;.
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Table 1. Some examples of stability of the survival equilibrium point £* of System (13).

Birth Rates Model with evolution (13) - Figure 3
Conditions
Model without
evolution |P1 + P3| < |Py — P1P3| < Real eigen-

o B (Figure 1) coefficients 14+ P, 1— P% values Stability

05 07 GS Py = —1.6875 True True yes LAS
P, = 0.894141
P; = —0.144336

1.2 0.7 GS P; = —1.3893 True True no LAS
P; =1.03411
P3 = —0.230439

2 1.05 GS Py = —0.861837 True True no U
P, =1.00823
P3; = —0.0003149

1.5 1.2 GS P; = —0.87329 True True no LAS
P, = 0.528663
P3 =0.122384

22 21 V] P; =0.1014 False False no V]
P, = —0.199404
P3 = 0.907961

23 1.932 U P; = —0.0162704 True True no LAS
P, =0.115483
P3 = 0.851567

1.7 063 GS Py = —1.3049 True True no LAS
P, =1.33419
P3 = —0.412873

Hence to obtain sufficient conditions for asymptotic stability of an equilibrium point
using Gerschgorin’s theorem and the Linearization Principle, one needs to show that all
the circles that contain the eigenvalues of the Jacobian matrix are located inside the unit
circle in the complex plane.

Let us see the case of the equilibrium EJ,. For this equilibrium point we have a; =
(c% — cll(O)A)/c%, r1 = (c12lc1] —|—A)A/|c{’|, oy = eﬁ’mA/C%, =0, a3 =1—02 and
r3 = |c1]|o2. Thus, from Gerschgorin’s Theorem we have the following result concerning
Exu.

Theorem 4.7: Sufficient conditions for local stability of the equilibrium point EZ, of Sys-
tem (13) are

A < lal(e11(0) = c12),  lerl(e11(0) + c124) + A% < 2|1 P,

c%ﬁ <A, al <1, 02(1 + |c1]) < 2,

where A is defined in (15).

Following the same ideas, we have the following result concerning the survival equilib-
rium point E*.



JOURNAL OF BIOLOGICAL DYNAMICS e 829

Theorem 4.8: Sufficient conditions for local stability of the survival equilibrium point E* of
System (13) are

Q2 Q2
aloa) ~ & @8+t 0
22(0)|cic22(0)(B — 1) — 212 < ¢163,(0) + 21 (212 + c22(0)c1 B),
2(0)|cic2(0)(B — 1) — 1 Q| < c1¢5,(0) — c21(c212 + 22(0)ci B),

leil <1, o*A+lal) <2,

c11(0)2 +c1p +

where Q = ¢11(0)c22(0) — c12c21 — A, and A is defined in (16).
4.2. Both species with evolution
Let us now consider the map
F(x,y, us, Mz) — (xea—u%/Z—cu(O)x—clzy’yeﬂ—ug/Z—CZIx—czz(O)y’
(1— alz)ul — olzclx, (11— 022)u2 — ozzczy)

which represents System (12). Hence, the Jacobian matrix of the mapping is given by

(1 —c11(0)x)e; —C1xe] —ujxe; 0
_ —a1ye; (I = c22(0)p)e2 0 —uzye;
JEx) = —ci0f 0 1-o} 0 ’
0 —c203 0 1—o0}

2
uy

wheree; =%~ 2

Following arguments similar to the single species evolution model, one can see that
when ¢; = ¢; = 0, the dynamics of the 4D decoupled system (12) is the same as the 2D
Ricker competition model (10) without evolution if al-z < 2,i =1, 2. Therefore, the con-
ditions on local stability obtained by linearization will be the same as the non-evolutionary
model and we have the following result.

2
u
e (Ox—c12y 4nd e = eﬁ7%7521x7522(0)y‘

Theorem 4.9: Let ¢; = 0, aiz <2,i=1,2and E* = (x*,y%0,0) an equilibrium point of
Model (12). Then E* is locally asymptotically stable by linearization (unstable) if (x*, y*) is
a locally asymptotically stable (unstable) equilibrium point of Model (10) by linearization.

Remark 4.4: Obviously, if in the conditions of Theorem 4.9 we assume that 67 > 2,i = 1,
2, any equilibrium point of Model (12) is unstable.

Now, if either ¢; = 0 or ¢; = 0, then the dynamics of System (12) is similar to the 3D
system studied in the previous section whenever either o < 2 or 07 < 2, respectively. Let
us consider the case when ¢; # 0and ¢; = 0 (the case c; = 0 and ¢, # 01is similar). Hence,
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we have the decoupled system given by

x(t+1) = x(t)ea—u%(t)/Z—Cn(U)X(f)—clzy(t)
Yt + 1) = p(t)eP—13/2—enx()—cnO)y®
u(t+1) =1 —oPu(t) — ofcx(t)
w(t+1)=1—oP)ur(t)

(18)

Notice that u,(t) — 0ast — o0o. The Jacobian of the map given by System (12), evaluated
atapoint of the form (x, y, u;, 0) has eigenvalues {11, 13, A3,1 — 022}, where the eigenvalues
Ai, i =1, 2, 3 are the same as the eigenvalues of the Jacobian of the map given by the 3D
system studied in Subsection 4.1. Therefore, the conditions of local stability obtained by
the linearization principle will be the same. Hence,

Theorem 4.10: Letc; # 0, c; = 0, 022 < 2and E* = (x*,y*, u},0) an equilibrium point of
Model (18). Then E* is locally asymptotically stable by linearization (unstable) if (x*, y*, u7)
is a locally asymptotically stable (unstable) equilibrium point of Model (13) by linearization.

Remark 4.5: Obviously, if in the conditions of Theorem 4.10 we assume that o5 > 2, all
equilibrium points of Model (18) are unstable.

From now on, we assume that ¢; # 0, i = 1, 2. The equilibrium points of the map
F with non-negative densities are O* = (0,0,0,0), EX, = (A1,0,—c1A1,0), E$u2 =

Xup

(0,A2,0, —2A3), where A} = —¢11(0) + /c11(0)2 + 2cia and GA; = —c2(0) +

\/65,(0) + 2¢5 8, and a possible survival equilibrium point of the form E* = (x*, y*, —c;x*,
—y®), x* > 0and y* > 0. We remark here that we omit the coordinates of E* since they
are big expressions and it is not practical to write them. In order to see the existence and
uniqueness of the survival equilibrium point E* we observe that x* and y* are the solutions
of the system

—0.5¢2x% — ¢11(0 —0.5¢2y* — (0
y- o 1x° —c11(0)x and x — B 4 22( ))"

€12 21

In the first quadrant of the x—y plane, these two parabolas are concave and monotone.
Hence, they intersect in at most one point, and consequently, we have either one or no
positive interior equilibrium point as shown in Figures 4 and 5.

At the origin we have

e” 0 0 0

0 P 0 0
F(O*) =
JEO™) —610‘12 0 1— 012 0

0 —620‘22 0 1-— 022

Hence, the origin is an unstable equilibrium point provide that o, 8 > 0.

Theorem 4.11: The origin is an unstable equilibrium point of the model (12) provide that

o > 0and B > 0. More precisely, it is a source ifo? > 2, i = 1, 2 and a saddle ifo? < 2 or
2

oy < 2.
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15 A 0.5 0 0. 1 15 2
-05
-1
-15;

Figure 4. The two isoclines do not intersect in the interior of RZ, and thus we have no positive interior
equilibrium points in System (12). Here we use @ = In(3), 8 = In(4.2), ¢c; = 0.8, c; = —1.6, ¢11(0) =
sz(O) =1¢=13 and ) = 28.

1 4
v \
1 05 0 0.5 1
05

Figure 5. The two isoclines intersect at one point in the interior of R?, and thus we have one interior
equilibrium point in System (12). Here we use &« = In(3), 8 =In(4.2), c; = 0.8, c; = —1.6, ¢11(0) =
C22(0) =1,¢1 = 1.8 and 1 = 2.1.

Let us recall that for a polynomial of the form

A+ Plk3 +P2}»2 + p3r + pa,
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all the roots lie inside the unit circle [16] whenever

Necessary Conditions: |p1 + p3| < 1+ p2 + pa,
Sufficient Conditions: |ps| <1, |pips — p3| < 1 — p3
(0% = D® = (pap1 — p3)°!|

> |(p3 — Dpa(ps — 1) — (p3ps — p1)(p1pa — p3)|.  (19)

In Appendix 2, we determine the coefficients of the characteristic polynomial of the Jacobin
matrix evaluated in each one of the equilibrium points Eg, , Eg,, and E* of System (12).
This leads to the following results:

Theorem 4.12: Let ¢; # 0 and 0 < 2, i = 1, 2. The equilibrium point Efy, (respectively
Ely,) of System (12) is locally asymptotically stable whenever Conditions (19) are satisfied,
where the sequence of coefficients p;, i = 1, 2, 3, 4 are determined in Appendix 2.

Theorem 4.13: Let ¢; # 0 and o <2, i = 1, 2. The survival equilibrium point E* of
System (12) is locally asymptotically stable whenever Conditions (19) are satisfied where
the sequence of coefficients p;, i = 1, 2, 3, 4 of the respective characteristic polynomial are
determined in Appendix 2.

Remark 4.6: If at least one of the inequalities given by (19) is reversed in Theorem 4.12
or either 0 > 2 or 07 > 2, then the respective equilibrium point is unstable. Similarly in
Theorem 4.13.

Observe that in Figure 6 the stability regions, in the parameter space bifurcation diagram
a — B, of the equilibrium points Eg, , E,,, and E*, for certain values of the parameters in
two distinct cases. In Region Q, the equilibrium point Eg,, is locally asymptotically stable,
in Region R the equilibrium point Ej,, islocally asymptotically stable while in Region S the
survival equilibrium point is locally asymptotically stable. It should be noted that the onset
of non-equilibrium and complex dynamics can lead to either period-doubling bifurcation
or to a Neimark-Sacker bifurcation. On the left figure in Figure 6, with smaller values ¢;
and c;, the onset of complex dynamics is delayed for larger values of @ and B. However,
on the right figure, with larger values c¢; and c;, the onset of complex dynamics occurs for
much smaller values of & and .

5. Global stability

In this section, we will use two results that enable us to prove a general theorem on the
global stability of the interior equilibrium point of our model. We first utilize a theorem on
nonautonomous systems that are asymptotic to either autonomous systems or to periodic
systems. This result is applied to the special case when ¢; = 0 and ¢; = 0, where the equa-
tions of the traits u; and u, decouple from the size (density) of species x and y, respectively.
The final step in our analysis is to use a perturbation theorem in Ref. [27] to extend the
result to our model.
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Figure 6. Stability regions, of the equilibrium points Ey, , Ey,,, and E* of Model (12),in oz — B parame-

ter plane, when ¢1; = ¢217 = 0.5,¢11(0) = ¢22(0) = 1,01 = 03 = +/0.5and ¢y = ¢; = —0.5in the left
figure and ¢; = ¢; = —5in the right figure. The scenario for ¢; > 0 will originate similar figures.

5.1. Asymptotically autonomous

Let R denote the cone of nonnegative vectors in R” and let int(R’} ) and 9(R"}) denote
the interior and the boundary of R} , respectively. Let F, F; : R’} —> R’} to be continuous
functions for all t € Z. Assume that

Aj : F; converges uniformly to F as t — oo.

Then x(0) € R’} implies that the solutions of the nonautonomous difference equation

x(t + 1) = Fi(x(1)), (20)

satisfies x(t) € R, forall t € Z; where x = (x1,x2,...,%,) € R}
The same is true for solutions of the limiting equation

x(t+1) = F(x(?)), (21)

where we assume

Az i fy 1 int(RY) — int(R7).

Here, it is always true that x(0) € int(R”}) implies that the solutions of the nonau-
tonomous difference Equation (20) satisfies x(t) € int(R’}), forall t € Z.

Theorem 5.1 ([11, 19]): Assume Ay and A, and the limiting equation has an equilibrium
pointx* € R’} Then

(i) ifx* € int(RY), and if it is globally asymptotically stable on int(R"}) as an equilibrium
point of limiting equation, then all solutions of the nonautonomous difference equation
with x(0) € int(R'}) tend to x*.

(ii) ifx* € 9(RY), and if it is globally asymptotically stable on int(R'} ), then all solutions of
the nonautonomous difference equation with x(0) € int(R"}) tend to x*.
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5.2. Aperturbation result

Consider the difference equation
x(t+ 1) = F(x(t),n), (22)

where F: U x G — U is continuous, U C R}, G C R and JF(x, ) (the Jacobian matrix)
is continuous on R’} x G. The following result is adapted from Ref. [27]. Before we present
the result we list one more assumption:

H: there is a compact set M C U such that for n € Gandz € U, F*(x) € M for all large
s, where F¥(x) = F o FF1(x).

Theorem 5.2: Assume that (xg,1n0) € U X G, F(xg,19) = X, p(JF(X9,19)) < 1 and xg
is globally attracting equilibrium point of (22) when n = no. If in addition, we assume
that H holds, then there exits § > 0 and a unique x*(n) € U for n € B(no,8) such that
F(x*(n),n) = x(n) and F'(z) — x*(n) ast — oo forallz € U.

Now, setting ¢c; = 0 and ¢; = 0 in System (12), yields the following system in our model

x(t+1) = x(t)ea—u%(t)/Z—Cn(U)X(f)—clzy(t)
y(t+1) = y(t)eﬂ—u%(t)/2—621x(t)—622(0)y(t)
ui(t+1) = (1 —oP)ui(t)
w(t+1) =1 —oP)u(t)

(23)

Since O'iz < 2, we have lim;_, o u;(t) = 0, where the equilibrium points of u;(t) are u} =
0, i = 1, 2. The limiting system will be the classical Ricker competition model with no
evolution

— o —c11(0)x(t) —c12y ()
{ x(t+ 1) = x(t)e (24)

y(t+1) = y(t)eﬂ—CmX(t)—sz(O)y(t)

Using Theorem (3.1) and Theorem (5.2) we obtain the following global asymptotic stability
result.

Theorem 5.3: Suppose all the assumptions in Theorem (3.1) hold true. Then there exists
8 > 0 such that for each ¢; € (=38,8), § < min{|4(1 — 02) /0|, |4(1 — 03)/0}|}, the inte-
rior equilibrium point EY, . = (x;,, V7> U],> Uy,,) of System (12) is globally asymptotically
stable.

6. Conclusion

In Darwin’s theory on the mechanism of evolution, competition among living species has
been viewed as a major part of the ‘struggle for existence’ and therefore as a basis for natu-
ral selection (Darwin 13 [13], Christiansen and Loeschcke 1990 [7]). Motivated by the fact
that competition for limiting resources is among the most fundamental ecological interac-
tions and has long been considered a key driver of species coexistence and biodiversity, we
investigated the evolutionary dynamics of two competing species. We made the restrictive
assumption that intraspecific competition is affected by the evolution of the traits of the
species, while interspecific competition is not.
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Our local and global analysis provides interesting and important results in both mathe-
matics and biological insights. In Section 4, we provide theoretical results on the sufficient
conditions for local stability of the interior equilibrium when one or two of the species are
subject to intra-specific evolutionary adaptation. The analysis, combined with parameter
space stability diagrams (e.g. see Figure 6), suggests that evolution may destablize the coex-
istence equilibrium of the two competing species or promote their stability depending on
the speed of evolution o7, i = 1, 2. Figure 6 suggests that the faster evolutionary speed the
more likely the coexistence equilibrium is stabilized. This result is in line with the work by
Cushing [9]. In Cushing’s paper, it was found that the speed of evolution and the degree
of the intraspecific competition coefficient dependence on the evolving trait of the species
play an important role in stability. For our competition model, when evolution proceeds
at a faster pace, evolution promotes complex dynamics in the way that destabilization can
occur when the intra-specific competition coefficient is highly sensitive to changes in the
trait.

In Section 5, using Theorem 3.1 and Theorem 5.2, we provide global stability results of
the 4-dimensional 2-species Ricker competition model with trait dynamics in each species.
As far as we know, this is the first result in the literature on the global stability of a 4-
dimensional system that is not monotone. For global stability results of 2-dimensional
systems, one may refer to the paper by Smith [26] and for higher dimensional systems,
one may refer to the work of Balreira, Elaydi and Luis [5]. In the paper by Ackleh et al. [1],
the authors investigated the global stability of a Leslie-Gower competition model of two-
species in which only one of the species is subject to evolutionary adaptations. The paper
by Rael et al. [21] also deals with the evolutionary dynamics of a Leslie-Gower competition
model of two-species but most of the study was based on extensive numerical simulations
of the evolutionary model. It should be noted that the Leslie-Gower model is monotone
and hence one can apply Smith’s theory [25, 26], or the results in Balreira, Elaydi and Luis
[5] to show global stability. Ackleh et al. [2] studied the dynamics of a predator-prey model
with a single evolutionary trait for both the predator and the prey. This paper uses a similar
perturbation approach as used here to obtain global asymptotically stability of the interior
equilibrium for an evolutionary predator-prey model.

In future work, we intend to study the effects of evolution of inter-specific competi-
tion on the dynamics of our evolutionary models in order to understand the evolutionary
adaptation of competing species. We also intend to study the nonautonomous evolution-
ary periodic Ricker competition model. By varying the competition parameters, which may
be caused by fluctuating habitats, we will study the effect of the traits on the evolution of
species.
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Appendices

Appendix 1: Local stability conditions of the model with constant trait in one
species

The Jacobian matrix evaluated at the equilibrium point E,, of Model (13) is

C% - Cll(O)A Cle A2

a a q
JF(E},) = p i ,
0 e A 0
—0?¢; 0 1—o?

where A is in (15). The coefficients of the characteristic polynomial of JF(E?,) are

(WA p-t
p=ot—24 11(2) _le
a
, (DAY p-H , (U+o0Hen (A
pp=|2—0"— 5 e V' +1-0"-———F—— +20%x
S a
cf (02 —-1— 202a) + (02 + 1) c11(0)A ﬁ—%A
p3= 5 e 1

a

Hence, we have local stability of the equilibrium point E},, whenever the following four inequalities
are satisfied

c11(0)A (02 + 2) < Zc% (02a — 0%+ 2) , (A1)
ﬂ*AC%l
l1—e A (26%0[ - cll(O)A) > 0, (A2)
- p- Ut
c%cu(O)A e T +o’+1)-— c‘l1 Qo — 1)02 — (02 — 2) e A >
ﬂ_# 2 2 2
e T (cf(Qa—10o%+1) —c11(0) (6° + 1) A)

(3] ) om0
x(cglo?{Qa—De 9 +1)=2|—cu(@A[|(c*+1)e T —1 (A3)
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and

_ 1A _a14
c‘lt (2 + Qa — 1)(72 — (02 — 2) e A ) — c%cu(O)A (e o +o2+ 1) >

—a24 _a14
( (Qa = 1o +2) —en@A@* + D)e G —(F0? —2) +cn(0)A) e <ﬁ q )

x (cf (2 — Do* + 1) — c11(0) (0 + 1) A) (A4)
The Jacobian matrix evaluated at the survival equilibrium point E* of Model (13) is given by
1—x*  —cppx®  —u*x*
JEEE) = | —cyt 1-—yF 0 ,
—02(:1 0 1—o02
% _ c2c21—¢11(0)cn(0)+A *Cll(0)522(0)521+C%522(0)ﬂ7512551*CZIA * _612621—611(0)622(0)+A
where x* = [} (O)Cf Y 0%5%2 (0) W= c1e22(0)

and A isin (16).
The coeflicients of the characteristic polynomial are

P =02 4+x*+y* -3,
Py =3—20%+ (62 = 2)(x* +y*) — cro?ux* + (1 — cpaco1)x*y*
and
Py=cio? —u*x* 1 —y*) + (02 = 1) (1 —x* —y* + (1 — cpca)x™y") .

Now, using a computer Algebra system, one may determine the inequalities |P; 4+ P3| < 1 4+ P, and
|P, — P1P3| < 1 — P} and we have the sufficient conditions for local stability of E*.

Appendix 2: Local stability conditions for both species with evolution

For the equilibrium point Ej,,, of Model (12) we have

¥ 122 0 0 0
« | A 1-A)Q 0 QA3
]F(Eyuz) = —51012 0 1— 012 0 ,
0 —62(722 0 1— 022

(22 (0)—?622 ©
where Q =c¢ 29 and A, is defined in Subsection (4.2).
Computing the coefficients of the characteristic polynomial we have

p1= 012 + 022 —2— (1= Ay)Q — ¥l
p2 =0 (= (“T12%2 — AyQ — 0F + Q+1)) + (—A2Q + Q + 2)e* T2
— oy (*T2R2 4 Q(— (A3 + Ay — 1)) +1) —2A,Q+2Q + 1
p3 =18 (67 (1-Q(SAS+ Ay — 1)) + 0l (=AM =07 + Q+1) +2(A, — DQ — 1)
+of ~1) 203 (a3 82— 1)~ 2 +1)
and
pa=(0f = 1) Q(—e*T222) (07 (SAS + Ay — 1) — Ay + 1).
Now, using a computer Algebra system, one may determine the inequalities in Conditions (19) and
we obtain the sufficient conditions for local stability of the equilibrium point Ey,, .

Following the same ideas as before we are able to find the values of p;, i =1,...,4 for the

equilibrium point EY, .
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Concerning the survival equilibrium point E* of Model (12) we have

1 —c11(0)x* —cppx* c1(x*)2 0 ,

o —cy* 1 — cn(0)y* 0 (")
JE(ET) = —clalz 0 1— 012 0

0 —cy03 0 1—o}

It follows that
p1 = c1(0x* + cn(0)y* +of + 037 — 4,
p2 =07 (G =3) + 03 (v (" + 2(0) +07) + c11(0x* (c22(0)y* + 07 + 05 — 3)
— cpenx™y* + c0(0) (of —3)y* — 305 +6,
by =02 (57 (G — ) + (07 — 2" (B + en®) + 07 (5~ 26
+ c22(0)y* (o7 (cF(*)? = 2) +3) — ciaca1 (0f + 05 — 2) x*y* + 307 — 4
+ 1 (0)x* (07 (G0 + 0f —2) +c0(0) (of + 07 —2) y* — 207 +3),
and
pa = (o (G2 = 1) +1) (07 (v (G0)? + c22(0)) — 1) — c0(0)y* + 1)
+¢11(0) (of — 1) x* (05 (7" (3¥* + c22(0)) — 1) — c22(0)y* + 1)
—cnaea (of — 1) (05 — 1) x*y*.

Once again, using a computer Algebra system, one may determine the inequalities in Condi-
tions (19) and obtain the sufficient conditions for local stability of the survival equilibrium point
E* of Model (12).



