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ABSTRACT
Based on evolutionary game theory and Darwinian evolution, we
propose and study discrete-time competition models of two species
where at least one species has an evolving trait that affects their
intra-specific, but not their inter-specific competition coefficients. By
using perturbation theory, and the theory of the limiting equations
of non-autonomous discrete dynamical systems, we obtain global
stability results. Our theoretical results indicate that evolution may
promote and/or suppress the stability of the coexistence equilibrium
depending on the environment. This relies crucially on the speed
of evolution and on how the intra-specific competition coefficient
depends on the evolving trait. In general, equilibrium destabiliza-
tion occurs when α > 2, when the speed of evolution is sufficiently
slow. In this case, we conclude that evolution selects against com-
plex dynamics. However, when evolution proceeds at a faster pace,
destabilization can occur when α < 2. In this case, if the competition
coefficient is highly sensitive to changes in the trait v, destabilization
and complex dynamics occur. Moreover, destabilization may lead
to either a period-doubling bifurcation, as in the non-evolutionary
Ricker equation, or to a Neimark-Sacker bifurcation.
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1. Introduction

Evolution is the physical, genetic, or behavioural change in populations of biological organ-
isms over time. Evolution’s more significant manifestations result from natural selection,
a process that engineers biological systems. Understanding an evolutionary design has its
roots in Darwin’s three postulates (Darwin [12], Sober [28]). According to Lewontin [15],
these postulates are:

• Postulate 1 (Variability). Like tends to beget like, and there is heritable variation in
traits associated with each type of organism,

• Postulate 2 (Differential fitness). Among organisms, there is a struggle for existence,
• Postulate 3 (Heritability).Heritable traits influence the struggle for existence.
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The strategy/postulate that there is a struggle for existence among organisms may be
simulated using population dynamicsmodels. Suchmodels containmany parameters, such
as growth rates, resources uptake rates, predation rates, and carrying capacities. These
parameters, in turn, depend on the strategies (i.e. heritable traits) used by various species
in the population.

Based on Darwinian theory [12], evolutionary game theory (EGT) is founded on three
axioms: variation in trait values, fitness differences, and inheritance. An evolutionary game
consists of players, rules, strategies, payoffs, and solutions. In this setting, players are phe-
notypes who are defined by phenotypic traits. A strategy is defined as a set of values of
the adaptive traits, payoffs consist of fitness, and the solution concept results in indefinite
persistence of a unique set of strategies. Evolutionary games differ from classical games in
some fundamental features. Classical games focus on strategies that optimize players pay-
offs. Evolutionary games focus on strategies that persist through time. Through births and
deaths, players come and go. But their strategies pass on from generation to generation
(Vincent and Brown [6]).

Most of the published papers on evolutionary dynamics deal with the dynamics of sin-
gle species. See for instance Cushing [8, 10] and Karima et al. [19]. There are, however,
few papers in the mathematical biology literature that investigate evolutionary competi-
tion models and we will mention here those papers that are relevant to our paper. In the
paper by Ackleh et al. [1], the authors investigated the dynamics of a Leslie-Gower com-
petition model of two-species in which only one of the species is subject to evolutionary
adaptations. The paper by Rael et al. [21] also deals with the evolutionary dynamics of
a Leslie-Gower competition model of two-species but most of the study was based on
extensive numerical simulations of the evolutionary model. It should be noted that the
Leslie-Gower model is monotone and hence one can apply Smith’s theory [25, 26] to show
global stability.

In this paper, we consider amoremathematically challengingmodel, namely, the Ricker
competition model, which it is monotone only for certain values of the parameters. We
investigate both cases when the Ricker model is monotone and when it is not monotone.
Moreover, we investigate the case where both species are subject to evolutionary adapta-
tions of their intra-specific (but not their inter-specific) competition coefficients. The paper
is organized as follow. In Section 2, we introduce the evolutionary competitionmodel of the
Ricker type, where we follow the basic ideas introduced in Ref. [8] and [19]. In Section 3,
we investigate the local stability of our models. In Section 4, we show that the Competi-
tion Exclusion Principle holds under some conditions on the parameters of the model. In
Section 5, we present a general theory on global stability based on perturbation theory and
the limiting equations of non-autonomous systems.

2. Evolutionarymodels

2.1. Single-species evolutionarymodels

Consider the single species model with no evolution

x(t + 1) = r(x(t))x(t), (1)
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where r(x) is the density-dependent, per capita population growth rate. As a per capita
rate, r(x) is an individual’s contribution to the population growth rate in a population with
density x. In (1) all individuals are treated identically. In this paper we instead differentiate
individuals by means of a phenotype trait of the individual, denoted by v, that is subject
to evolutionary change over time. Under the axioms of Darwinian evolution (Postulates
1-3), the method of evolutionary game theory [6] provides a dynamic model for the popu-
lation density and the population’s mean phenotype trait, denoted by u. This methodology
assumes the trait has a Gaussian distribution with fixed variance throughout the popula-
tion at all times and this distribution is uniquely determined by the population mean trait
u. We make the common assumption that fitness is the exponential growth rate, so that
ln(r(x, v, u)) is the fitness of an individual with trait v in a population with density x and
mean trait u.

This methodology asserts that population andmean trait dynamics are governed by the
equations

⎧
⎨

⎩

x(t + 1) = r(x(t), v, u(t))x(t)|v=u(t)

u(t + 1) = u(t) + σ 2 ∂ ln(r(x(t), v, u(t)))
∂v

|v=u(t)
, (2)

where σ 2 ≥ 0 is called the speed of evolution (which is proportional to the constant vari-
ance of the individual trait v). The trait equation is often called Lande’s equation or Fisher’s
equation and says that the change in mean trait is proportional to the fitness gradient, with
fitness taken to be ln r.

Next, we provide some examples to illustrate the effect of evolution on the dynamics of
species. The first example is the evolutionary (Darwinian) Ricker model which is based on
the Ricker model

x(t + 1) = bx(t) exp(−cx). (3)
In the evolutionary version of thismodel, we assume that the growth rate b is a function of v
alone, since it is the density-independent rate of an individual with trait v. The competition
coefficient c, on the other hand, is dependent on the individual’s trait v as well as the traits
of other individuals with whom it competes, as represented by the mean trait u. Thus we
assume

b = b(v), c = c(v, u).
Hence, the density-dependent fertility rate is given by

r(x, v, u) = b(v) exp(−c(v, u)x). (4)

Here we will assume that there is a trait at which inherent fertility rate has a maximum,
denoted by b0, and we choose that the trait to be the reference point for v. In addition, we
assume that b(v) is distributed in a Gaussian fashion around its maximum at v = 0

b(v) = b0e−
v2
2 .

Hence, the evolutionary model becomes
⎧
⎪⎨

⎪⎩

x(t + 1) = b0x(t)e−
v2
2 −c(v,u(t))x(t)|v=u(t)

u(t + 1) = u(t) + σ 2
(

−u(t) − ∂c(v, u(t))
∂v

|v=u(t)

)
x(t)

.
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To further specify the model, we place assumptions on c(v, u). A common assumption
that is made concerning trait dependency of competition coefficients in Darwinianmodels
is that they are functions of the difference v−u. In other words, the competition that an
individual experience depends on how different its trait v is from the typical individual in
the population, as represented by themean trait u.Wemake this assumption here andwrite
c(z) = c(v − u(t)), where the function c(z) is continuously differentiable for all values of
its argument z. Thus when v = u(t), c(v − u) = c(0) = c0.

Under these assumptions, we have the model
⎧
⎪⎨

⎪⎩

x(t + 1) = b0x(t)e−
u2
2 −c(v−u(t))x(t)|v=u(t

u(t + 1) = u(t) + σ 2
(

−u(t) − ∂c(z)
∂z

|z=0

)
x(t)

, (5)

i.e.
{

x(t + 1) = b0x(t)e−
u2
2 −c0x(t)

u(t + 1) = (1 − σ 2)u(t) − c1σ 2x(t)
, (6)

where c1 := d
dz c(z)|z=0, and c0 = c(0) = c(v − u(t))|v=u(t).

The coefficient c1 is the sensitivity of the competition c(z) to changes in the difference
z = v−u at v = u. If c1 ̸= 0, then c1 measures the difference between the competition
intensities experienced by individuals that have the populationmean trait and those whose
traits are slightly different from the mean. For example, if c1 > 0, then an individual
that inherits a trait slightly larger (smaller) than the mean u will experience increased
(decreased) intraspecific competition. These interpretations can also hold, of course, if
c1 < 0, that is an individual that inherits a trait slightly smaller (larger) than the mean
u will experience increased (decreased) intraspecific competition. Now c1 maybe equal
0 and the ecological reason for this assumption is that it is often assumed in evolution-
ary game theory models that an individual experiences maximum competition when its
trait equals the population mean, i.e. the competition coefficient c is maximized when
v = u.

In this case a commonly used model for c(z) is a Gaussian type distribu-
tion c(z) = exp(− z2

2w2 ) (with variance w2) in which we obtain the decoupled model
equations

{
x(t + 1) = b0x(t)e−

u2
2 −c0x(t)

u(t + 1) = (1 − σ 2)u(t)
. (7)

In contrast, if, for example, c(z) = exp(c1z), then competition intensity either decreases as
v decreases or increases from themean u, depending on the sign of c1. We refer to this type
of competition coefficient c(z) when c1 ̸= 0 as hierarchical.

Remark 2.1: Note that we often replace b0 by eα , where α > 0, so the inherent fertility
equation is written as

x(t + 1) = x(t)eα− u2
2 −c0x(t). (8)
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Hence, the evolutionary Ricker model (6) becomes

{
x(t + 1) = x(t)eα−u2(t)/2−c0x(t)

u(t + 1) = (1 − σ 2)u(t) − σ 2c1x(t)
. (9)

In this paper, we use this type of model.

2.2. Multi-species evolutionarymodels

Next, we consider the Ricker competition model of two species with evolution. Recall that
the Ricker competition model without evolution is given by

{
x(t + 1) = ax(t)e−c11x(t)−c12y(t)

y(t + 1) = by(t)e−c21x(t)−c22y(t) , (10)

where a and b are the growth rates of species x and y, respectively, and cij are the intraspe-
cific (for i = j) or the interspecific (i ̸= j) competition coefficients. A complete study of
local stability of the equilibrium points as well as the bifurcation scenario may be found
in Ref. [17]. Results on the global stability of the survival equilibrium point may be found
in Refs. [5, 25, 26] using monotonicity theory, in Refs. [4, 22–24] using singularity theory
and in the paper [3] using a Liapunov function.

Now we extend the single-species evolutionary Ricker model to the two-species evolu-
tionary Ricker model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) = a(v1)x(t)e−c11(v1−u1(t))x(t)−c12y(t)
∣∣∣∣
v1=u1(t)

y(t + 1) = b(v2)y(t)e−c21x(t)−c22(v2−u2(t))y(t)
∣∣∣∣
v2=u2(t)

u1(t + 1) = u1(t) + σ 2
1
∂ ln r1(x(t), y(t), v1, u1(t))

∂v1

∣∣∣∣
v1=u1(t)

u2(t + 1) = u2(t) + σ 2
2
∂ ln r2(x(t), y(t), v2, u2(t))

∂v2

∣∣∣∣
v2=u2(t)

, (11)

where

r1(x(t), y(t), v1, u1(t)) = a(v1)e−c11(v1−u1(t))x(t)−c12y(t)

and

r2(x(t), y(t), v2, u2(t)) = b(v2)e−c21x(t)−c22(v2−u2(t))y(t).

(See [19] for more details).
In this model, we assume that the coefficients c12 and c21 do not depend on the traits

u1 and/or u2. This is clearly a restriction on the model. We also assume there is a trait at
which inherent fertility rate of species x has a maximum, denoted by a0, and we choose
v1 = 0 to be the reference point for v1. In addition, we assume that a(v1) is distributed in
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a Gaussian fashion around its maximum at v1 = 0

a(v1) = a0e−
v21
2 .

Making similar assumptions for species y, we get

b(v2) = b0e−
v22
2 .

Since no scales for the traits are specified, it follows that one can choose scales so that the
standard deviations of the birth rate distributions are equal to 1.

We denote ln(a0) by α with α > 0 and ln(b0) by β with β > 0 to obtain the following
Darwinian system

⎧
⎪⎪⎨

⎪⎪⎩

x(t + 1) = x(t)eα−u21(t)/2−c11(0)x(t)−c12y(t)

y(t + 1) = y(t)eβ−u22/2−c21x(t)−c22(0)y(t)

u1(t + 1) = (1 − σ 2
1 )u1(t) − σ 2

1 c1x(t)
u2(t + 1) = (1 − σ 2

2 )u2(t) − σ 2
2 c2y(t)

, (12)

where a0 = eα and b0 = eβ are the density-free birth rates of individuals with traits v1 = 0
and v2 = 0, respectively. Notice that this assumption doesn’t lose any generality because
one can assume any reference point for the traits. The competition parameters cij are
positive, the speed of evolution σ 2

i of each species is positive and the parameters of the
sensitivity of the competition ci are real numbers.

The next sections are devoted to studying the local and the global dynamics of sys-
tem (12), and a special case when one of the two species has no evolution. For instance, if
species y has no evolution, then we obtain the following model.

⎧
⎨

⎩

x(t + 1) = x(t)eα−u2(t)/2−c11(0)x(t)−c12y(t)

y(t + 1) = y(t)eβ−c21x(t)−c22(0)y(t)

u(t + 1) = (1 − σ 2)u(t) − σ 2c1x(t)
. (13)

3. Local and global stability of the non-evolutionary model

In this section we briefly review the local and global stability of the equilibrium points of
the classical Ricker competition model [3, 17]

{
x(t + 1) = x(t)eα−c11x(t)−c12y(t)

y(t + 1) = y(t)eβ−c21x(t)−c22y(t) . (14)

Note that model (14) has an unstable extinction equilibrium point E∗
0 = (0, 0), two exclu-

sion equilibrium points on the axes given by E∗
x = (α/c11, 0) and E∗

y = (0,β/c22) and a
survival equilibrium point in the first quadrant given by E∗ = ( c22α−c12β

c11c22−c12c21 ,
c11β−c21α

c11c22−c12c21 ),
whenever c22α > c12β , c11β > c21α and c11c22 > c12c21. On the other hand, if c11c22 =
c12c21 the model degenerates and there are no survival equilibrium points. Moreover, if
c11c22 < c12c21 with c22α > c12β , c11β > c21α, there are no survival (positive) equilibrium
points. This corresponds to a situation where interspecific competition between the two
species is greater than their self-limitation and only one species can survive.
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The equilibrium point E∗
x is locally asymptotically stable when 0 < α ≤ 2 and β <

c21α/c11 and it is unstable when α > 2 or β ≥ c21α/c11. When α = 2 and β < c21α/c11
occurs a period-doubling bifurcation with α as a bifurcation parameter. The exclusion
equilibrium point E∗

x loses stability and a locally asymptotically stable 2− periodic exclu-
sion cycle on the x−axis is born. The scenario of period-doubling bifurcation continues
leading to chaos, with α as a bifurcation parameter. Similar analysis may be seen for the
exclusion equilibrium point E∗

y in the y−axis.
The survival equilibrium point E∗ is locally asymptotically stable (by linearization)

whenever the following relations are satisfied

α > 0, β > 0,
c12
c22

<
α

β
<

c11
c21

,

and

((β − 2)c11 − αc21)(c12β − (α − 2)c22) + 4c21c12 ≤ 0.

If for α > 0 and β > 0 we have βc11 < αc21 or βc12 < αc22 or

((β − 2)c11 − αc21)(c12β − (α − 2)c22) + 4c21c12 ≥ 0.

then the equilibrium point E∗ is unstable.
When βc11 > αc21 and βc12 < αc22, and (α,β) lies on the hyperbola given by

((β − 2)c11 − αc21)(c12β − (α − 2)c22) + 4c21c12 = 0

in the α − β plane, a period-doubling bifurcation occurs. The equilibrium point E∗

becomes unstable and a locally asymptotically stable 2−periodic cycle is born in the inte-
rior of the first quadrant. The period doubling route-to-chaos occurs with respect to the
parameters α and β .

The stability regions, in the parameter space α − β bifurcation diagram, of the equi-
librium points are depicted in Figure 1. In region P the exclusion equilibrium point on
the x-axis is locally asymptotically stable having a period-doubling bifurcation at α = 2
and βc11 < αc21, with α as a bifurcation parameter. In regionQ the exclusion equilibrium
point on the y-axis is locally asymptotically stable, having a period-doubling bifurcation at
β = 2 and βc12 > αc22, with β as a bifurcation parameter. In region S the survival equi-
librium point is locally asymptotically stable. On the hyperbola occurs a period-doubling
bifurcation with respect to the parameters α and β .

In Ref. [3], the authors proved the following result on the global dynamics of the Ricker
model with no evolution

Theorem 3.1 ([3]): For the Ricker map with α,β ∈ (0, 2], the following statements hold
true:

(a) If c12c22 < α
β < c11

c21 , then the unique interior equilibrium pointE∗ is globally asymptotically
stable in the interior ofR2

+ and each of the axial equilibrium points E∗
x and E∗

y is a saddle
point with the positive half-axis as its stable manifold and the heteroclinic orbit from this
survival equilibrium point to E∗ as its unstable manifold. (see Figure 2).
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Figure 1. Stability regions, in the α − β parameter plane, of the equilibrium points in the Ricker
competition model without evolution when c12 = c21 = 0.5 and c11 = c22 = 1.

Figure 2. Examplesofdynamics catalogued inTheorem3.1. In the left graphweuseα = β = 0.5, c12 =
c21 = 1.5, c11 = c22 = 1 while in the right α = β = 1.25, c12 = c21 = 0.5 and c11 = c22 = 1.

(b) If c12
c22 > α

β > c11
c21 , then the unique survival equilibrium point E∗ is a saddle point with

orbits from E∗
0 to E∗ as part of the stable manifoldWs(E∗), which dividesR2

+ \ {E∗
0} into

two open disjoint regions R1,R2 with R2
+ \ {E∗

0} = R1 ∪ Ws(E∗) ∪ R2 where E∗
y ∈ R1

and E∗
x ∈ R2. Each of the axial equilibrium points is asymptotically stable with R1 or R2

as its basin of attraction.

Remark 3.1: The conditions α,β ∈ (0, 2] and c12
c22 < α

β < c11
c21 in the hypothesis of

Theorem 3.1 (a) are parts of the conditions of local stability, as it may be seen in Figure 1.
Note that the vertex of the hyperbola is the point (2, 2) (see [17] for more details).
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4. Stability of evolutionarymodels

We first assume that species y has no evolution, as defined by system (13), i.e. b(v2) = β

and σ2 = 0. Then we study the model where both species evolve.

4.1. Constant trait in one species

Let

F(x) =
(
xeα−u2/2−c11(0)x−c12y, yeβ−c21x−c22(0)y, (1 − σ 2)u − σ 2c1x

)

be the map representing System (13), where x = (x, y, u) and we replace σ1 by σ for
simplicity.

The Jacobian matrix of the map F is given by

JF(x) =

⎛

⎜⎝
(1 − c11(0)x) eα− u2

2 −c11(0)x−c12y −c12xeα− u2
2 −c11(0)x−c12y

−c21yeβ−c21x−c22(0)y
(
1 − c22(0)y

)
eβ−c21x−c22(0)y

−σ 2c1 0

−xueα− u2
2 −c11(0)x−c12y

0
1 − σ 2

⎞

⎟⎠ .

We should mention that when c1 = 0, the local dynamics of the decoupled Model (13)
is the same as the model without evolution (10) whenever σ 2 < 2. In order to see this
fact, firstly from u(t + 1) = (1 − σ 2)u(t) we get u(t) = (1 − σ 2)tu0. Hence, u(t) → 0 as
t → ∞. Secondly, at the equilibrium point (x∗, y∗, 0), the eigenvalues of JF((x∗, y∗, 0)) are
{λ1, λ2, 1 − σ 2}, where λ1 and λ2 are the same eigenvalues of the Jacobian of the two-
dimensional map given by System (10). Therefore, the conditions of the local stability will
be the same and we have the following result.

Theorem 4.1: Let c1 = 0, E∗ = (x∗, y∗, 0) be an equilibrium point of Model (13), and the
speed of evolution σ 2 < 2. Then the survival equilibrium point E∗ is locally asymptoti-
cally stable by linearization (unstable) if (x∗, y∗) is a locally asymptotically stable (unstable)
equilibrium point of Model (10) by linearization.

Remark 4.1: Obviously, if in the conditions of Theorem 4.1, we assume that σ 2 ≥ 2, any
equilibrium point of Model (13) is unstable.

From now on, we consider c1 ̸= 0. Since the purpose of the model (13) is applications
in population dynamics, we discard equilibrium points with negative population densities
(negative trait values are allowed) and obtain the following equilibrium points

E∗
0 = (0, 0, 0), E∗

y =
(
0,

β

c22(0)
, 0
)
, E∗

xu =
(
A
c21
, 0,−A

c1

)
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and

E∗ =
(
c12c21 − c11(0)c22(0) + &

c22(0)c21
,
c11(0)c22(0)c21 + c21c22(0)β − c12c221 − c21&

c21c222(0)
,

− c12c21 − c11(0)c22(0) + &

c1c22(0)

)
,

where

A = −c11(0) +
√
c211(0) + 2c21α (15)

and

& =
√

(c12c21 − c11(0)c22(0))2 + 2c21c22(0)(c22(0)α − c12β). (16)

We will refer the equilibrium point E∗
0 as the extinction fixed point, the equilibrium points

E∗
y and E∗

xu as the exclusion equilibrium points and the equilibrium point E∗ as the survival
equilibrium point.

At the extinction equilibrium point E∗
0 we have

JF(E∗
0) =

⎛

⎝
eα 0 0
0 eβ 0

−σ 2c1 0 1 − σ 2

⎞

⎠ .

Since α > 0 and β > 0, it follows that the origin is an unstable equilibrium point if σ 2 > 2
and a saddle equilibrium point if σ 2 < 2.

Theorem 4.2: The extinction equilibrium point E∗
0 of the model (13) is unstable. More

precisely, it is source if σ 2 > 2 and a saddle equilibrium point if σ 2 < 2.

For the equilibrium point on the y-axis, we have

JF(E∗
y ) =

⎛

⎜⎜⎝

eα− c12β
c22(0) 0 0

− c21β
c22(0)

1 − β 0

−c1σ 2 0 1 − σ 2

⎞

⎟⎟⎠ .

Thus, we have the following result concerning the stability of E∗
y .

Theorem 4.3: The equilibrium point E∗
y of model (13) is:

(1) locally asymptotically stable if c22(0)α < c12β, 0 < β < 2, and σ 2 < 2;
(2) a source if c22(0)α > c12β, β > 2, and σ 2 > 2;
(3) a saddle if c22(0)α > c12β or σ 2 > 2 with 0 < β < 2.
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We recall [14, page 248] that all the roots of a cubic polynomial

λ3 + p1λ2 + p2λ + p3,

lie inside the unit circle if and only if

|p1 + p3| < 1 + p2 and |p2 − p1p3| < 1 − p23. (17)

If the polynomial is the characteristic polynomial of a three dimensionmatrix, then p1 is the
trace of thematrix, p2 is the sumof the principalminors of thematrix and p3 is the determi-
nant of the matrix. Conditions (17) can be applied to the Jacobian of a three-dimensional
discrete dynamical system to obtain local stability results from the linearization principle
(see [18]).

Since the conditions (17) for the equilibrium points E∗
xu and E∗ are long, we present

only the conclusions of this analysis and in Appendix 1, we provide details. The derivation
and application of the results generally require the use of some algebraic software such as
Mathematica or Maple.

Theorem 4.4: Let σ 2 < 2 and c1 ̸= 0. The equilibrium point E∗
xu of System (13) is

(1) locally asymptotically stable whenever inequalities (A1), (A2), (A3) and (A4) in
Appendix 1 are satisfied;

(2) unstable if at least one of the inequalities (A1), (A2), (A3) and (A4) is reversed. More
precisely, E∗

xu is a source if all the inequalities are reversed and is a saddle equilibrium
point if at least one of the inequalities is reversed but not all.

Concerning the equilibrium point E∗ we have the following:

Theorem 4.5: Let σ 2 < 2, c1 ̸= 0 and P1, P2 and P3 be given as in Appendix 1. Then the
equilibrium point E∗ of System (13) is

(1) locally asymptotically stable whenever

|P1 + P3| < 1 + P2 and |P2 − P1P3| < 1 − P23;

(2) unstable if at least one of the above inequalities is reversed. More precisely, E∗ is a source
if all the inequalities are reversed and is a saddle equilibrium point if at least one of the
inequalities is reversed but not all.

Remark 4.2: If in the conditions of Theorems 4.4 and 4.5, we have σ 2 ≥ 2, then the
respective equilibrium points are unstable.

In Figure 3 we present two examples of the stability regions, in the α − β parameter
plane, of the three equilibrium points E∗

y , E∗
xu and E∗ of System (13) when c12 = c21 =

σ 2 = 0.5, c11(0) = c22(0) = 1 and c1 = −2. In Regions R, Q and S, the equilibrium points
E∗
y , E∗

xu and E∗ are locally asymptotically stable, respectively.

Remark 4.3: It is known that the non-evolutionary 2-species Ricker competition
model (14) destabilizes in period-doubling bifurcation in the region c12

c22 < α
β < c11

c21 and
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Figure 3. Two examples of the stability regions, in theα − β parameter plane, of the equilibriumpoints
E∗
y , E

∗
xu and E

∗ of the evolutionary 3-dimensional Darwinian Ricker model (13). The values of the param-
eters are c11(0) = c22(0) = 1, c12 = c21 = σ 2 = 0.5 and c1 = −2 in the left figure and c1 = −5 on
the right figure. The regions R, S and Q are the stability regions of the equilibrium point E∗

y , E
∗ and E∗

xu,
respectively. The regions will be similar in the case of positive values of c1.

at the boundary of the hyperbola in region S (Figure 3). For the Darwinian model of the
Ricker equation (13), we have the same dynamics as that of the non-evolutionary system if
c1 = 0 in the trait-dependent density coefficient c(v − u). Hence, we conclude that evolu-
tion in this case has no effect on the onset of non-equilibrium and complex dynamics. In
contrast, when c1 ̸= 0, the onset of non-equilibrium and complex dynamics is accelerated
to a smaller critical value of α. Moreover, the larger in absolute value the value of c1, the
sooner the onset of non-equilibrium and complex dynamics occurs as α is increased, as
may be seen in Figure 3. It should be noted that the onset of non-equilibrium and complex
dynamics can lead to either a period doubling bifurcation or to a Neimark-Sacker bifurca-
tion. Moreover, this bifurcation may occur for values of α and β greater or smaller than 2.
For instance, in Table 1, a Neimark-Sacker bifurcation occurs early for values of α slightly
greater than 1.7 and β slightly greater than 0.63. And in this case evolution promotes non-
equilibrium and complex dynamics. In contrast, a Neimark-Sacker bifurcation is delayed
by evolution for values of α slightly greater than 2.3 and β slightly greater than 1.932, as
may be seen in Table 1

Though the sufficient conditions of stability of Theorems 4.4 and 4.5 are for the lin-
earization principle, it may be easier to obtain sufficient conditions using Gerschgorin’s
Theorem [20, page 227], which estimates the location of the eigenvalues of a matrix.

Theorem 4.6 (Gerschgorin’s Theorem): Let M = [mij] be an n × n real or complex
matrix. Let αi = mii and ri =

∑n
j=1,j ̸=i |mij|. Then all the eigenvalues of M are inside the

circles with centres αi and radii ri.
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Table 1. Some examples of stability of the survival equilibrium point E∗ of System (13).

Birth Rates Model with evolution (13) – Figure 3

Conditions

α β

Model without
evolution
(Figure 1) coefficients

|P1 + P3| <
1 + P2

|P2 − P1P3| <
1 − P23

Real eigen-
values Stability

0.5 0.7 GS P1 = −1.6875 True True yes LAS
P2 = 0.894141
P3 = −0.144336

1.2 0.7 GS P1 = −1.3893 True True no LAS
P2 = 1.03411
P3 = −0.230439

2 1.05 GS P1 = −0.861837 True True no U
P2 = 1.00823
P3 = −0.0003149

1.5 1.2 GS P1 = −0.87329 True True no LAS
P2 = 0.528663
P3 = 0.122384

2.2 2.1 U P1 = 0.1014 False False no U
P2 = −0.199404
P3 = 0.907961

2.3 1.932 U P1 = −0.0162704 True True no LAS
P2 = 0.115483
P3 = 0.851567

1.7 0.63 GS P1 = −1.3049 True True no LAS
P2 = 1.33419
P3 = −0.412873

Hence to obtain sufficient conditions for asymptotic stability of an equilibrium point
using Gerschgorin’s theorem and the Linearization Principle, one needs to show that all
the circles that contain the eigenvalues of the Jacobian matrix are located inside the unit
circle in the complex plane.

Let us see the case of the equilibrium E∗
xu. For this equilibrium point we have α1 =

(c21 − c11(0)A)/c21, r1 = (c12|c1| + A)A/|c31|, α2 = eβ−c21A/c21 , r2 = 0, α3 = 1 − σ 2 and
r3 = |c1|σ 2. Thus, from Gerschgorin’s Theorem we have the following result concerning
Exu.

Theorem 4.7: Sufficient conditions for local stability of the equilibrium point E∗
xu of Sys-

tem (13) are

A < |c1|(c11(0) − c12), |c1|(c11(0) + c12A) + A2 < 2|c1|3,

c21β < c21A, |c1| < 1, σ 2(1 + |c1|) < 2,

where A is defined in (15).

Following the same ideas, we have the following result concerning the survival equilib-
rium point E∗.
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Theorem 4.8: Sufficient conditions for local stability of the survival equilibrium point E∗ of
System (13) are

c11(0)' + c12 + '2

|c1|c22(0)
< 0, c11(0)' + 2 > c12' + '2

|c1|c22(0)
c22(0)|c21c22(0)(β − 1) − c21' < c21c

2
22(0) + c21(c21' + c22(0)c21β),

c22(0)|c21c22(0)(β − 1) − c21'| < c21c
2
22(0) − c21(c21' + c22(0)c21β),

|c1| < 1, σ 2(1 + |c1|) < 2,

where ' = c11(0)c22(0) − c12c21 − &, and & is defined in (16).

4.2. Both species with evolution

Let us now consider the map

F(x, y, u1, u2) =
(
xeα−u21/2−c11(0)x−c12y, yeβ−u22/2−c21x−c22(0)y,

(1 − σ 2
1 )u1 − σ 2

1 c1x, (1 − σ 2
2 )u2 − σ 2

2 c2y
)

which represents System (12). Hence, the Jacobian matrix of the mapping is given by

JF(x) =

⎛

⎜⎜⎝

(1 − c11(0)x)e1 −c12xe1 −u1xe1 0
−c21ye2 (1 − c22(0)y)e2 0 −u2ye2
−c1σ 2

1 0 1 − σ 2
1 0

0 −c2σ 2
2 0 1 − σ 2

2

⎞

⎟⎟⎠ ,

where e1 = eα− u21
2 −c11(0)x−c12y and e2 = eβ− u22

2 −c21x−c22(0)y.
Following arguments similar to the single species evolution model, one can see that

when c1 = c2 = 0, the dynamics of the 4D decoupled system (12) is the same as the 2D
Ricker competition model (10) without evolution if σ 2

i < 2, i = 1, 2. Therefore, the con-
ditions on local stability obtained by linearization will be the same as the non-evolutionary
model and we have the following result.

Theorem 4.9: Let ci = 0, σ 2
i < 2, i = 1, 2 and E∗ = (x∗, y∗, 0, 0) an equilibrium point of

Model (12). Then E∗ is locally asymptotically stable by linearization (unstable) if (x∗, y∗) is
a locally asymptotically stable (unstable) equilibrium point of Model (10) by linearization.

Remark 4.4: Obviously, if in the conditions of Theorem 4.9 we assume that σ 2
i > 2, i = 1,

2, any equilibrium point of Model (12) is unstable.

Now, if either c1 = 0 or c2 = 0, then the dynamics of System (12) is similar to the 3D
system studied in the previous section whenever either σ 2

1 < 2 or σ 2
2 < 2, respectively. Let

us consider the case when c1 ̸= 0 and c2 = 0 (the case c1 = 0 and c2 ̸= 0 is similar). Hence,
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we have the decoupled system given by
⎧
⎪⎪⎨

⎪⎪⎩

x(t + 1) = x(t)eα−u21(t)/2−c11(0)x(t)−c12y(t)

y(t + 1) = y(t)eβ−u22/2−c21x(t)−c22(0)y(t)

u1(t + 1) = (1 − σ 2
1 )u1(t) − σ 2

1 c1x(t)
u2(t + 1) = (1 − σ 2

2 )u2(t)

. (18)

Notice that u2(t) → 0 as t → ∞. The Jacobian of the map given by System (12), evaluated
at a point of the form (x, y, u1, 0) has eigenvalues {λ1, λ2, λ3, 1 − σ 2

2 }, where the eigenvalues
λi, i = 1, 2, 3 are the same as the eigenvalues of the Jacobian of the map given by the 3D
system studied in Subsection 4.1. Therefore, the conditions of local stability obtained by
the linearization principle will be the same. Hence,

Theorem 4.10: Let c1 ̸= 0, c2 = 0, σ 2
2 < 2 and E∗ = (x∗, y∗, u∗

1, 0) an equilibrium point of
Model (18). Then E∗ is locally asymptotically stable by linearization (unstable) if (x∗, y∗, u∗

1)
is a locally asymptotically stable (unstable) equilibrium point of Model (13) by linearization.

Remark 4.5: Obviously, if in the conditions of Theorem 4.10 we assume that σ 2
2 > 2, all

equilibrium points of Model (18) are unstable.

From now on, we assume that ci ̸= 0, i = 1, 2. The equilibrium points of the map
F with non-negative densities are O∗ = (0, 0, 0, 0), E∗

xu1 = (&1, 0,−c1&1, 0), E∗
yu2 =

(0,&2, 0,−c2&2), where c21&1 = −c11(0) +
√
c11(0)2 + 2c21α and c22&2 = −c22(0) +

√
c222(0) + 2c22β , and a possible survival equilibriumpoint of the formE∗ = (x∗, y∗,−c1x∗,

−c2y∗), x∗ > 0 and y∗ > 0. We remark here that we omit the coordinates of E∗ since they
are big expressions and it is not practical to write them. In order to see the existence and
uniqueness of the survival equilibrium point E∗ we observe that x∗ and y∗ are the solutions
of the system

y =
α − 0.5c21x2 − c11(0)x

c12
and x =

β − 0.5c22y2 − c22(0)y
c21

.

In the first quadrant of the x−y plane, these two parabolas are concave and monotone.
Hence, they intersect in at most one point, and consequently, we have either one or no
positive interior equilibrium point as shown in Figures 4 and 5.

At the origin we have

JF(O∗) =

⎛

⎜⎜⎝

eα 0 0 0
0 eβ 0 0

−c1σ 2
1 0 1 − σ 2

1 0
0 −c2σ 2

2 0 1 − σ 2
2

⎞

⎟⎟⎠ .

Hence, the origin is an unstable equilibrium point provide that α, β > 0.

Theorem 4.11: The origin is an unstable equilibrium point of the model (12) provide that
α > 0 and β > 0. More precisely, it is a source if σ 2

i > 2, i = 1, 2 and a saddle if σ 2
1 < 2 or

σ 2
2 < 2.
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Figure 4. The two isoclines do not intersect in the interior of R2, and thus we have no positive interior
equilibrium points in System (12). Here we use α = ln(3), β = ln(4.2), c1 = 0.8, c2 = −1.6, c11(0) =
c22(0) = 1, c12 = 1.3 and c21 = 2.8.

Figure 5. The two isoclines intersect at one point in the interior of R2, and thus we have one interior
equilibrium point in System (12). Here we use α = ln(3), β = ln(4.2), c1 = 0.8, c2 = −1.6, c11(0) =
c22(0) = 1, c12 = 1.8 and c21 = 2.1.

Let us recall that for a polynomial of the form

λ4 + p1λ3 + p2λ2 + p3λ + p4,
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all the roots lie inside the unit circle [16] whenever

Necessary Conditions: |p1 + p3| < 1 + p2 + p4,

Sufficient Conditions: |p4| < 1, |p1p4 − p3| < 1 − p24
|(p24 − 1)2 − (p4p1 − p3)2|

> |(p24 − 1)p2(p4 − 1) − (p3p4 − p1)(p1p4 − p3)|. (19)

InAppendix 2, we determine the coefficients of the characteristic polynomial of the Jacobin
matrix evaluated in each one of the equilibrium points E∗

xu1 , E
∗
yu2 and E∗ of System (12).

This leads to the following results:

Theorem 4.12: Let ci ̸= 0 and σ 2
i < 2, i = 1, 2. The equilibrium point E∗

yu2 (respectively
E∗
xu1) of System (12) is locally asymptotically stable whenever Conditions (19) are satisfied,

where the sequence of coefficients pi, i = 1, 2, 3, 4 are determined in Appendix 2.

Theorem 4.13: Let ci ̸= 0 and σ 2
i < 2, i = 1, 2. The survival equilibrium point E∗ of

System (12) is locally asymptotically stable whenever Conditions (19) are satisfied where
the sequence of coefficients pi, i = 1, 2, 3, 4 of the respective characteristic polynomial are
determined in Appendix 2.

Remark 4.6: If at least one of the inequalities given by (19) is reversed in Theorem 4.12
or either σ 2

1 > 2 or σ 2
2 > 2, then the respective equilibrium point is unstable. Similarly in

Theorem 4.13.
Observe that in Figure 6 the stability regions, in the parameter space bifurcation diagram

α − β , of the equilibrium points E∗
xu1 , E

∗
yu2 and E∗, for certain values of the parameters in

two distinct cases. In Region Q, the equilibrium point E∗
xu1 is locally asymptotically stable,

in Region R the equilibriumpointE∗
yu2 is locally asymptotically stable while in Region S the

survival equilibrium point is locally asymptotically stable. It should be noted that the onset
of non-equilibrium and complex dynamics can lead to either period-doubling bifurcation
or to a Neimark-Sacker bifurcation. On the left figure in Figure 6, with smaller values c1
and c2, the onset of complex dynamics is delayed for larger values of α and β . However,
on the right figure, with larger values c1 and c2, the onset of complex dynamics occurs for
much smaller values of α and β .

5. Global stability

In this section, we will use two results that enable us to prove a general theorem on the
global stability of the interior equilibrium point of our model. We first utilize a theorem on
nonautonomous systems that are asymptotic to either autonomous systems or to periodic
systems. This result is applied to the special case when c1 = 0 and c2 = 0, where the equa-
tions of the traits u1 and u2 decouple from the size (density) of species x and y, respectively.
The final step in our analysis is to use a perturbation theorem in Ref. [27] to extend the
result to our model.
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Figure 6. Stability regions, of the equilibrium points E∗
xu1 , E

∗
yu2 and E

∗ of Model (12), in α − β parame-
ter plane, when c12 = c21 = 0.5, c11(0) = c22(0) = 1, σ1 = σ2 =

√
0.5 and c1 = c2 = −0.5 in the left

figure and c1 = c2 = −5 in the right figure. The scenario for ci > 0 will originate similar figures.

5.1. Asymptotically autonomous

Let Rn
+ denote the cone of nonnegative vectors in Rn and let int(Rn

+) and ∂(Rn
+) denote

the interior and the boundary ofRn
+, respectively. Let F, Ft : Rn

+ −→ Rn
+ to be continuous

functions for all t ∈ Z+. Assume that
A1 : Ft converges uniformly to F as t → ∞.
Then x(0) ∈ Rn

+ implies that the solutions of the nonautonomous difference equation

x(t + 1) = Ft(x(t)), (20)

satisfies x(t) ∈ Rn
+, for all t ∈ Z+ where x = (x1, x2, . . . , xn) ∈ Rn

+.
The same is true for solutions of the limiting equation

x(t + 1) = F(x(t)), (21)

where we assume
A2 : ft : int(Rn

+) −→ int(Rn
+).

Here, it is always true that x(0) ∈ int(Rn
+) implies that the solutions of the nonau-

tonomous difference Equation (20) satisfies x(t) ∈ int(Rn
+), for all t ∈ Z+.

Theorem 5.1 ([11, 19]): Assume A1 and A2 and the limiting equation has an equilibrium
point x∗ ∈ Rn

+. Then

(i) if x∗ ∈ int(Rn
+), and if it is globally asymptotically stable on int(Rn

+) as an equilibrium
point of limiting equation, then all solutions of the nonautonomous difference equation
with x(0) ∈ int(Rn

+) tend to x∗.
(ii) if x∗ ∈ ∂(Rn

+), and if it is globally asymptotically stable on int(Rn
+), then all solutions of

the nonautonomous difference equation with x(0) ∈ int(Rn
+) tend to x∗.
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5.2. A perturbation result

Consider the difference equation

x(t + 1) = F(x(t), η), (22)

where F : U × G → U is continuous, U ⊂ Rn
+, G ⊂ R and JF(x, η) (the Jacobian matrix)

is continuous onRn
+ × G. The following result is adapted fromRef. [27]. Before we present

the result we list one more assumption:
H: there is a compact setM ⊂ U such that for η ∈ G and z ∈ U, Fs(x) ∈ M for all large

s, where Fs(x) = F ◦ Fs−1(x).

Theorem 5.2: Assume that (x0, η0) ∈ U × G, F(x0, η0) = x0, ρ(JF(x0, η0)) < 1 and x0
is globally attracting equilibrium point of (22) when η = η0. If in addition, we assume
that H holds, then there exits δ > 0 and a unique x∗(η) ∈ U for η ∈ B(η0, δ) such that
F(x∗(η), η) = x̂(η) and Ft(z) → x∗(η) as t → ∞ for all z ∈ U.

Now, setting c1 = 0 and c2 = 0 in System (12), yields the following system in our model
⎧
⎪⎪⎨

⎪⎪⎩

x(t + 1) = x(t)eα−u21(t)/2−c11(0)x(t)−c12y(t)

y(t + 1) = y(t)eβ−u22(t)/2−c21x(t)−c22(0)y(t)

u1(t + 1) = (1 − σ 2
1 )u1(t)

u2(t + 1) = (1 − σ 2
2 )u2(t)

. (23)

Since σ 2
i < 2, we have limt→∞ ui(t) = 0, where the equilibrium points of ui(t) are u∗

i =
0, i = 1, 2. The limiting system will be the classical Ricker competition model with no
evolution

{
x(t + 1) = x(t)eα−c11(0)x(t)−c12y(t)

y(t + 1) = y(t)eβ−c21x(t)−c22(0)y(t) . (24)

Using Theorem (3.1) andTheorem (5.2) we obtain the following global asymptotic stability
result.

Theorem 5.3: Suppose all the assumptions in Theorem (3.1) hold true. Then there exists
δ > 0 such that for each ci ∈ (−δ, δ), δ < min{|4(1 − σ 2

1 )/σ 2
1 |, |4(1 − σ 2

2 )/σ 2
2 |}, the inte-

rior equilibrium point E∗
c1,c2 = (x∗

c1 , y
∗
c2 , u

∗
1c1 , u

∗
2c2) of System (12) is globally asymptotically

stable.

6. Conclusion

In Darwin’s theory on the mechanism of evolution, competition among living species has
been viewed as a major part of the ‘struggle for existence’ and therefore as a basis for natu-
ral selection (Darwin 13 [13], Christiansen and Loeschcke 1990 [7]). Motivated by the fact
that competition for limiting resources is among the most fundamental ecological interac-
tions and has long been considered a key driver of species coexistence and biodiversity, we
investigated the evolutionary dynamics of two competing species. We made the restrictive
assumption that intraspecific competition is affected by the evolution of the traits of the
species, while interspecific competition is not.
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Our local and global analysis provides interesting and important results in both mathe-
matics and biological insights. In Section 4, we provide theoretical results on the sufficient
conditions for local stability of the interior equilibrium when one or two of the species are
subject to intra-specific evolutionary adaptation. The analysis, combined with parameter
space stability diagrams (e.g. see Figure 6), suggests that evolutionmay destablize the coex-
istence equilibrium of the two competing species or promote their stability depending on
the speed of evolution σ 2

i , i = 1, 2. Figure 6 suggests that the faster evolutionary speed the
more likely the coexistence equilibrium is stabilized. This result is in line with the work by
Cushing [9]. In Cushing’s paper, it was found that the speed of evolution and the degree
of the intraspecific competition coefficient dependence on the evolving trait of the species
play an important role in stability. For our competition model, when evolution proceeds
at a faster pace, evolution promotes complex dynamics in the way that destabilization can
occur when the intra-specific competition coefficient is highly sensitive to changes in the
trait.

In Section 5, using Theorem 3.1 and Theorem 5.2, we provide global stability results of
the 4-dimensional 2-species Ricker competitionmodel with trait dynamics in each species.
As far as we know, this is the first result in the literature on the global stability of a 4-
dimensional system that is not monotone. For global stability results of 2-dimensional
systems, one may refer to the paper by Smith [26] and for higher dimensional systems,
one may refer to the work of Balreira, Elaydi and Luís [5]. In the paper by Ackleh et al. [1],
the authors investigated the global stability of a Leslie-Gower competition model of two-
species in which only one of the species is subject to evolutionary adaptations. The paper
by Rael et al. [21] also deals with the evolutionary dynamics of a Leslie-Gower competition
model of two-species but most of the study was based on extensive numerical simulations
of the evolutionary model. It should be noted that the Leslie-Gower model is monotone
and hence one can apply Smith’s theory [25, 26], or the results in Balreira, Elaydi and Luís
[5] to show global stability. Ackleh et al. [2] studied the dynamics of a predator-prey model
with a single evolutionary trait for both the predator and the prey. This paper uses a similar
perturbation approach as used here to obtain global asymptotically stability of the interior
equilibrium for an evolutionary predator-prey model.

In future work, we intend to study the effects of evolution of inter-specific competi-
tion on the dynamics of our evolutionary models in order to understand the evolutionary
adaptation of competing species. We also intend to study the nonautonomous evolution-
ary periodic Ricker competitionmodel. By varying the competition parameters, whichmay
be caused by fluctuating habitats, we will study the effect of the traits on the evolution of
species.
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Appendices

Appendix 1: Local stability conditions of themodel with constant trait in one
species
The Jacobian matrix evaluated at the equilibrium point E∗

xu of Model (13) is

JF(E∗
xu) =

⎛

⎜⎜⎜⎜⎜⎝

c21 − c11(0)A
c21

− c12A
c21

A2

c31

0 e
β−

Ac21
c21 0

−σ 2c1 0 1 − σ 2

⎞

⎟⎟⎟⎟⎟⎠
,

where A is in (15). The coefficients of the characteristic polynomial of JF(E∗
xu) are

p1 = σ 2 − 2 + c11(0)A
c21

− e
β− c21A

c21 ,

p2 =
(
2 − σ 2 − c11(0)A

c21

)
e
β− c21A

c21 + 1 − σ 2 − (1 + σ 2)c11(0)A
c21

+ 2σ 2α

p3 =
c21
(
σ 2 − 1 − 2σ 2α

)
+
(
σ 2 + 1

)
c11(0)A

c21
e
β− c21A

c21

Hence, we have local stability of the equilibrium point E∗
xu whenever the following four inequalities

are satisfied

c11(0)A
(
σ 2 + 2

)
< 2c21

(
σ 2α − σ 2 + 2

)
, (A1)

(

1 − e
β− Ac21

c21

)
(
2c21α − c11(0)A

)
> 0, (A2)

c21c11(0)A

(

e
β− c21A

c21 + σ 2 + 1

)

− c41

(

(2α − 1)σ 2 −
(
σ 2 − 2

)
e
β− c21A

c21

)

>

e
β− c21A

c21
(
c21
(
(2α − 1)σ 2 + 1

)
− c11(0)

(
σ 2 + 1

)
A
)

×
(

c21

(

σ 2

(

(2α − 1)e
β− c21A

c21 + 1

)

− 2

)

− c11(0)A

(
(
σ 2 + 1

)
e
β− c21A

c21 − 1

))

(A3)
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and

c41

(

2 + (2α − 1)σ 2 −
(
σ 2 − 2

)
e
β− c21A

c21

)

− c21c11(0)A

(

e
β− c21A

c21 + σ 2 + 1

)

>

⎛

⎝(c21
(
(2α − 1)σ 2 + 2

)
− c11(0)A(σ 2 + 1)

)
e
β− c21A

c21 −
(
c21(σ

2 − 2) + c11(0)A
)
e
2
(

β− c21A
c21

)⎞

⎠

×
(
c21
(
(2α − 1)σ 2 + 1

)
− c11(0)

(
σ 2 + 1

)
A
)

(A4)

The Jacobian matrix evaluated at the survival equilibrium point E∗ of Model (13) is given by

JF(E∗) =

⎛

⎝
1 − x∗ −c12x∗ −u∗x∗

−c21y∗ 1 − y∗ 0
−σ 2c1 0 1 − σ 2

⎞

⎠ ,

where x∗ = c12c21−c11(0)c22(0)+&

c22(0)c21
, y∗ c11(0)c22(0)c21+c21c22(0)β−c12c221−c21&

c21c
2
22(0)

, u∗ = − c12c21−c11(0)c22(0)+&
c1c22(0)

and & is in (16).
The coefficients of the characteristic polynomial are

P1 = σ 2 + x∗ + y∗ − 3,

P2 = 3 − 2σ 2 + (σ 2 − 2)(x∗ + y∗) − c1σ 2u∗x∗ + (1 − c12c21)x∗y∗

and
P3 = c1σ 2 − u∗x∗(1 − y∗) +

(
σ 2 − 1

) (
1 − x∗ − y∗ + (1 − c12c21)x∗y∗) .

Now, using a computer Algebra system, one may determine the inequalities |P1 + P3| < 1 + P2 and
|P2 − P1P3| < 1 − P23 and we have the sufficient conditions for local stability of E∗.

Appendix 2: Local stability conditions for both species with evolution
For the equilibrium point E∗

yu2 of Model (12) we have

JF(E∗
yu2) =

⎛

⎜⎜⎝

eα−c12&2 0 0 0
−c21'&2 (1 − &2)' 0 c2'&2

2
−c1σ 2

1 0 1 − σ 2
1 0

0 −c2σ 2
2 0 1 − σ 2

2

⎞

⎟⎟⎠ ,

where ' = e
(c22(0)−1)c22(0)

2c22 and &2 is defined in Subsection (4.2).
Computing the coefficients of the characteristic polynomial we have

p1 = σ 2
1 + σ 2

2 − 2 − (1 − &2)' − eα−c12&2 ,

p2 = σ 2
1
(
−
(
eα+c12&2 − &2' − σ 2

2 + ' + 1
))

+ (−&2' + ' + 2)eα+c12&2

− σ 2
2
(
eα+c12&2 + '

(
−
(
c22&

2
2 + &2 − 1

))
+ 1

)
− 2&2' + 2' + 1

p3 = eα+c12&2
(
σ 2
2
(
1 − '

(
c22&

2
2 + &2 − 1

))
+ σ 2

1
(
−&2' − σ 2

2 + ' + 1
)
+ 2(&2 − 1)' − 1

)

+
(
σ 2
1 − 1

)
'
(
σ 2
2
(
c22&

2
2 + &2 − 1

)
− &2 + 1

)

and
p4 =

(
σ 2
1 − 1

)
'
(
−eα+c12&2

) (
σ 2
2
(
c22&

2
2 + &2 − 1

)
− &2 + 1

)
.

Now, using a computer Algebra system, one may determine the inequalities in Conditions (19) and
we obtain the sufficient conditions for local stability of the equilibrium point E∗

yu2 .
Following the same ideas as before we are able to find the values of pi, i = 1, . . . , 4 for the

equilibrium point E∗
xu1 .
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Concerning the survival equilibrium point E∗ of Model (12) we have

JF(E∗) =

⎛

⎜⎜⎝

1 − c11(0)x∗ −c12x∗ c1(x∗)2 0
−c21y∗ 1 − c22(0)y∗ 0 c2(y∗)2

−c1σ 2
1 0 1 − σ 2

1 0
0 −c2σ 2

2 0 1 − σ 2
2

⎞

⎟⎟⎠ .

It follows that

p1 = c11(0)x∗ + c22(0)y∗ + σ 2
1 + σ 2

2 − 4,

p2 = σ 2
1
(
c21(x

∗)2 − 3
)
+ σ 2

2
(
y∗ (c22y

∗ + c22(0)
)
+ σ 2

1
)
+ c11(0)x∗ (c22(0)y∗ + σ 2

1 + σ 2
2 − 3

)

− c12c21x∗y∗ + c22(0)
(
σ 2
1 − 3

)
y∗ − 3σ 2

2 + 6,

p3 = σ 2
2
(
σ 2
1
(
c21(x

∗)2 − 2
)
+
(
σ 2
1 − 2

)
y∗ (c22y

∗ + c22(0)
))

+ σ 2
1
(
3 − 2c21(x

∗)2
)

+ c22(0)y∗ (σ 2
1
(
c21(x

∗)2 − 2
)
+ 3

)
− c12c21

(
σ 2
1 + σ 2

2 − 2
)
x∗y∗ + 3σ 2

2 − 4

+ c11(0)x∗ (σ 2
2
(
c22(y

∗)2 + σ 2
1 − 2

)
+ c22(0)

(
σ 2
1 + σ 2

2 − 2
)
y∗ − 2σ 2

1 + 3
)
,

and

p4 =
(
σ 2
1
(
c21(x

∗)2 − 1
)
+ 1

) (
σ 2
2
(
y∗ (c22(y

∗)2 + c22(0)
)
− 1

)
− c22(0)y∗ + 1

)

+ c11(0)
(
σ 2
1 − 1

)
x∗ (σ 2

2
(
y∗ (c22y

∗ + c22(0)
)
− 1

)
− c22(0)y∗ + 1

)

− c12c21
(
σ 2
1 − 1

) (
σ 2
2 − 1

)
x∗y∗.

Once again, using a computer Algebra system, one may determine the inequalities in Condi-
tions (19) and obtain the sufficient conditions for local stability of the survival equilibrium point
E∗ of Model (12).


