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DYNAMICAL BEHAVIOR OF A COLONY MIGRATION SYSTEM:
DO COLONY SIZE AND QUORUM THRESHOLD AFFECT

COLLECTIVE DECISION?*

LISHA WANG†, ZHIPENG QIU‡, TAKAO SASAKI§, AND YUN KANG¶

Abstract. Social insects are ecologically and evolutionarily the most successful organisms on
earth and can achieve robust collective behaviors through local interactions among group members.
Colony migration has been considered as a leading example of collective decision making in social
insects. In this paper, a piecewise colony migration system with recruitment switching is proposed
to explore underlying mechanisms and synergistic e↵ects of colony size and quorum on the outcomes
of collective decision. The dynamical behavior of the nonsmooth system is studied, and su�cient
conditions for the existence and stability of equilibrium are provided. The theoretical results suggest
that large colonies are more likely to emigrate to a new site. More interesting findings include but
are not limited to that (a) the system may exhibit oscillation when the colony size is below a critical
level and (b) the system may also exhibit a bistable state, i.e., the colony migrates to a new site or
the old nest depending on the initial size of recruiters. Bifurcation analysis shows that the variations
of colony size and quorum threshold greatly impact the dynamics. The results suggest that it is
important to distinguish between two populations of recruiters in modeling. This work may provide
important insights on how simple and local interactions achieve the collective migrating activity in
social insects.
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1. Introduction. Social insects have been studied extensively since they are
typically groups of living organisms with collective decision-making behaviors [8, 46,
42, 39, 41, 15]. Without any central control, the members in these groups can make
a colony-level choice by individual communication and acting with simple decision
rules [35]. Each member who contributes to the collective behavior only accesses and
processes local information [35]. However, it still enables the colony to reach an accu-
rate and e�cient decision from a complex environment. Social insects with collective
decision-making behavior range from the foraging honeybee to the migrating ant, all
of which can perform complex organizational activities without well-informed leaders
[43, 51, 26, 5, 32, 21]. These biological phenomena encourage more perspectives on
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understanding the relationship between individual behavioral rules and the overall
ability behind performing complex activities.

Colony migration of social insects is one of the leading examples of collective
decision-making behavior [33]. The colony as a whole can move to a suitable nest
rather than splitting. They typically achieve this consensus decision through a high
degree of communication and coordination among group members [35]. Colony mi-
gration of ants of the genus Temnothorax (formerly Leptothorax ) is a particularly
promising subject. Temnothorax ants typically live in rock crevices and are likely to
require frequent migration due to fragility of their nest sites [30]. In the laboratory,
ants can be easily marked and monitored by taking advantage of their small colony
size (usually a few hundred workers). Using these detailed individual data, extensive
investigations [36, 4, 28, 3] have revealed underlying processes during a migration in
this genus. Generally, migrations are initiated only by active workers, about one-third
of the colony, who search for potential new homes, assess their quality, and recruit
nestmates to the finds. Understanding this emergence of colony migration would
provide insights into the study of a wide array of collective decision-making behavior.

Over the past few decades, increasing experimental work has promoted a deeper
understanding of the process of colony migration incorporating complicated individual
behavior and decision rules [49, 13]. Mallon, Pratt, and Franks [26] showed that
ants may contribute to the collective decision through quality-dependent di↵erence
of recruitment latency, i.e., the individuals take less time to initiate recruitment to
a superior than to a mediocre site. Pratt et al. [35] found that the scout assesses
the new site and then recruits nestmates through tandem running until a quorum
threshold is reached, at which point the ant switches from tandem running to transport
behavior to carry the remaining nestmates and brood to the new site. In [34], Pratt
revealed that the ants measure the achievement of a quorum through their rate of
direct encounters with nestmates. Sasaki, Stott, and Pratt [40] studied the rationality
of time investment during nest-site choice, and the results show that the isolated ants
took more time to complete the migration when choosing between two similar nests,
but the whole colonies rationally made faster decisions. These experimental works
exhibit extensive interesting phenomena of emergence of collective decision making
from individuals. Thus, to fully understand the collective decision making in colony
migration, it is necessary to investigate the mechanism underlying it.

The mathematical model is a powerful tool to gain insights into deeper analysis on
the colony mechanism and explain collective performance in migration. Most recent
mathematical works on colony migration concentrate on simulating colonywide trends
by using an agent-based model [36, 37, 10, 47]. However, it is also necessary to develop
models for analyzing the dynamics and generating testable predictions in a changing
environment. The di↵erential equations model is useful to understand the underlying
dynamical mechanisms in the colony migration process and predict how the collective
nest choice changes in response to di↵erent situations. In [35], Pratt et al. have
proposed di↵erential equations to explore how a quorum can help colonies choose
between two sites with di↵erent quality, and the simulations show that the colony
splits into di↵erent sites when the quorum is too small and reaches a consensus on
nest choice by increasing the quorum threshold. Assis et al. [2] have presented a
di↵erential equations model to describe the competition of the di↵erent sites, and
they clarify that the threshold factor and the flux of resource provided by the colony
play roles in decision making. Although some agent-based models and di↵erential
equations models have been proposed to explore the colony migration behavior in
social insects, using mathematical tools to rigorously analyze the collective migration
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COLLECTIVE MIGRATION DYNAMICS S45

process is still in an early stage. Motivated by [35] and the recent work in [36], we
develop an ODE model that incorporates complicated migration rules and provide
some biological implications from novel interesting mathematical studies.

Increasing evidence suggests that the variation of colony size significantly a↵ects
collective behaviors in social insects. Many works have shown a positive correlation
between group size and information flow rate [7, 23, 19]. Larger colony size may
display a higher level of division of labor and allocation of tasks [18, 14] and more
e↵ective exploration with lower risk aversion [12, 20], and can better resist random
disturbance of local information acquisition [26]. In some cases, the colony size can
also a↵ect the time needed to make a decision and the methods used in recruitment
in group activities [4, 31]. Dornhaus and Franks [12] studied the influence of colony
size on collective decision making in the colony migration. The results show that
the quorum threshold may remain constant with the size of natural colonies or be
proportional to the size of manipulated colonies. All the biological observation sup-
ports the hypothesis that colony size is important to collective decision making in
ants. Hence, it is also necessary to evaluate the potential impact of colony size as
well as the synergistic e↵ect of colony size and quorum threshold on the outcomes of
migrations. In this paper, we develop a mathematical model to describe the process
of colony migration in social insects. Our proposed model is expected to address the
following ecological questions in social insects from our mathematical studies:

• How does the colony size a↵ect the migration result?
• What is the synergy e↵ect of colony size and quorum threshold on the out-

comes of migrations?
The structure of this article is as follows. In section 2, we provide the biological

background of colony migration and derive a migrating system described by piecewise
di↵erential equations. In section 3, we perform the mathematical analysis of our
model. In section 4, we classify the dynamical behaviors of the colony migration
system. In section 5, we investigate the synergistic e↵ects of colony size and quorum
threshold on the dynamics of system through bifurcation analysis. In section 6, we
provide a conclusion of our results and the potential outlook of our current work.

2. Model derivations. We start with a simple description of ants’ behavior
during the migration process. Generally, the active workers follow a strategy of graded
commitment to the new site they have found, i.e., their commitments transit to higher
levels depending on the quality of the site and the interactions among nestmates [36].
At the lowest level of commitment, the searchers enter the new site and stay inside
for an independent assessment. The duration of assessment is inversely related to the
quality of the new site. At the next level, the workers start to recruit other active
workers via tandem runs, in which a single follower is led from the old nest to the
new site. The new arrivals would make their independent decisions about whether
to recruit. Once the number of active workers presented at the new site reaches a
quorum threshold, the workers enter the highest level of commitment. They carry the
remaining nestmates and brood items to the new site by transportation. At any level
of commitment, the workers may leave the new site with a probability and search the
surrounding area again for a new potential site.

The model presented in this paper is based on assumed processes showed in
Figure 1. We consider the most typical scenario of colony migration, namely the active
workers will proactively search for new suitable nests when the old nest deteriorates,
and only one potential site is available near the old nest. Assume that the colony
in the old nest has a total of N workers, and ⇢N (0 < ⇢ < 1) of them are active
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Fig. 1. Model diagram of single-nest colony migration.

workers who will search for, evaluate, and recruit to the new site. According to the
biological description, each active worker should be in one of the following four classes:
the searching workers denoted by S, the assessing workers denoted by A, the leading
workers denoted by L, and the carrying workers denoted by C. The passive workers
in the old nest are denoted as P0, and the passive workers in the new site are denoted
as P . A transition diagram between the di↵erent classes of populations is depicted in
Figure 1, whose assumptions are as follows:

(a) During the colony migration, the total number of workers in this colony is
constant, i.e., N = P0 + P + S +A+L+C.

(b) Searching workers S . The change in the number of the searching work-
ers S depends on the rates at which the assessing workers A, the leading
workers L, and the carrying workers C join the searching workers S, ↵asA,
↵lsL, and ↵csC, respectively, the rate at which the searching workers inde-
pendently find the new site and join the assessing workers A, ↵saS, the rate at
which the searching workers transit to the assessing workers A by interaction
with the leaders, �lsSL, and the rate at which the searching workers transit
to the assessing workers A by interaction with the carriers, �csSC. Therefore,
the population dynamics of the searching workers S could be described by

dS

dt
=� �csSC| {z }

S transits to A after interaction with C

� �lsSL| {z }
S transits to A after interaction with L

� ↵saS| {z }
S transits to A independently

+ ↵asA+ ↵lsL+ ↵csC| {z }
the transition from A,L and C to S

.

(c) Assessing workers A. The change in the number of the assessing work-
ers A depends on the rate at which the searching workers S join the as-
sessing workers A after independently finding the new site, ↵saS, the rates
at which the searching workers S transit to the assessing workers A by in-
teractions with the leaders and carriers respectively, �lsSL and �csSC, the
rate at which the assessing workers A join the searching workers S, ↵asA,
and the rate at which the assessing workers A join the leading workers L,
↵alA. Therefore, the population dynamics of the assessing workers A could be
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COLLECTIVE MIGRATION DYNAMICS S47

described by

dA

dt
= �lsSL| {z }

S transits to A after interaction with L

+ �csSC| {z }
S transits to A after interaction with C

+ ↵saS| {z }
S transits to A independently

� ↵asA| {z }
the transition to S

� ↵alA| {z }
the transition to L

.

(d) Leading workers L. The change in the number of the leading workers
L depends on the rate at which the assessing workers A join the leading
workers L, ↵alA, the rate at which the leading workers L join to the searching
workers S, ↵lsL, and the rate at which the leading workers L join the carrying
workers C, ↵lcQ1L, where Q1 is the probability of switching recruitment. The
recruitment decision is scored as either 0 or 1 depending on the relationship
between the size of total active workers at new site (A + L + C) and the
quorum threshold (⇥). Specifically, Q1 = 1 if A+ L+C > ⇥, and Q1 = 0 if
A+L+C <⇥. Therefore, the population dynamics of the leading workers L
could be described by

dL

dt
= ↵alA| {z }

the transition from A

� ↵lcQ1L| {z }
recruitment switching

� ↵lsL|{z}
L transits to S

.

(e) Carrying workers C . The change in the number of the carrying workers C
depends on the rate at which the leading workers L join the carrying workers
C, ↵lcQ1L, and the rate at which the carrying workers C join the searching
workers S, ↵csC. Therefore, the population dynamics of the carrying workers
C could be described by

dC

dt
= ↵lcQ1L| {z }

recruitment switching

� ↵csC| {z }
C transits to S

.

(f) Passive workers P at the new site. The change in the number of passive
workers P depends on the rate at which the passive workers P are transported
from the old nest to the new site by the carrying workers C, �csC[(1�⇢)N�P ].
For the single-nest emigration, there is no output of passive workers P . There-
fore, the population dynamics of the passive workers P could be described by

dP

dt
= �csC [(1� ⇢)N � P ]| {z }

passive workers who are carried from the old nest to the new site

.

Based on the above assumptions, we have the following di↵erential equations to
describe the dynamics of colony migration:

dS

dt
=�↵saS � �lsSL� �csSC + ↵asA+ ↵lsL+ ↵csC,

dA

dt
= ↵saS + �lsSL+ �csSC � ↵asA� ↵alA,

dL

dt
= ↵alA� ↵lcQ1L� ↵lsL,

dC

dt
= ↵lcQ1L� ↵csC,

dP

dt
= �csC [(1� ⇢)N � P ] ,

(2.1)
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Table 1
Parameter values used in model (2.1) and their sources [33, 34, 35, 36, 44, 45, 29].

Parameter Description Units Values

S Density of searcher nbr –
A Density of assessor nbr –
L Density of leader nbr –
C Density of carrier nbr –
P Density of passive workers at new site nbr –
P0 Density of passive workers at old nest nbr –
N Total number of workers in colony nbr [0, 350]
⇢ Proportion of active workers – 0.25

↵sa The discovery rate of new site min�1 [0.01, 0.15]
↵al The transition rate from assessors to leaders min�1 [0.007, 0.2]
↵lc The transition rate from leaders to carriers min�1 [0.15, 0.28]
�ls The rate at which leaders recruit searchers (min ant)�1 [0.004, 0.049]
�cs The rate at which carriers recruit searchers (min ant)�1 [0.0025, 0.079]
⇥ Quorum threshold nbr [0, 50]
↵as The transition rate from assessors to searchers min�1 [0.24, 0.5]
↵ls The transition rate from leaders to searchers min�1 [0.018, 0.12]
↵cs The transition rate from carriers to searchers min�1 [0.05, 0.07]

where Q1 is a switching function defined as follows
(
Q1 = 0 if A+L+C <⇥,

Q1 = 1 if A+L+C >⇥.

For model (2.1), all variables and parameters are listed in Table 1. Among these
parameters, �ls is the recruitment rate by the leaders and �cs is the recruitment rate by
the carriers. For Temnothorax ants, the recruitment rate of the carriers is more rapid
than that of the leaders, i.e., �ls < �cs. However, there exists an opposite situation in
other species of social insects, such as Diacamma indicum [24]. Therefore, within the
framework of our model in this paper, we also consider the case that �ls � �cs.

Notes. Our work is motivated by the di↵erential equations model in [35] and the
agent-based model in [36]. Compared with the model in [35], model (2.1) has three
innovations: (i) The model in [35] incorporates only three types of active populations,
i.e., the searchers, the assessors, and the recruiters, while in model (2.1) the recruiters
are divided into population L and population C. (ii) We add the transitions from
the assessing, leading, or carrying population to the searching population. (iii) We
assume there are nonlinear interactions between the recruiters (including population
L and population C) and searching population S, and nonlinear interactions that
describe the biological process of searchers S transiting to the assessors A through
their physical/signal contacts with the leaders L or carriers C. All these hypotheses
are biologically relevant. In [36], the authors use an agent-based model to simulate
colony emigration, which incorporates a variety of behavioral rules from experimental
data. Their agent-based model seems to be able to predict the emergence of variation
in individual behavior but it did not fully capture variance in colony performance,
despite the use of identical parameter values for all ants. The results in [36] illustrate
that it is important to incorporate these behavioral rules into the colony migration
model. In general, agent-based models are mathematically untractable. The work
conducted in [36] is simulation based with limited parameter values. In order to have
better prediction power and more insights of biological processes of colony migration,
there is a need to develop a mathematically tractable and realistic model. Thus,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

5/
23

 to
 9

8.
16

1.
14

2.
40

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



COLLECTIVE MIGRATION DYNAMICS S49

motivated by this and the work of [36], in this paper we propose an ODE model
that incorporates the behavioral rules supported by both the agent-based model and
data in [36] to mathematically analyze the colony migration system in the dynamic
environment and to predict the possible e↵ects of key parameters (colony size, quorum
threshold, etc.) on the colony migration system. Our results provide additional
insights compared to the results in [36]. For example, besides the successful migration
state, the failed migration state and bistability are also observed in our system when
the colony size is small, or the quorum is large enough. The migration also might be
partially successful when the leaving rate and recruitment rate for the two types of
recruiters have more possible quantitative relationships. Our work logically reflects
interesting migration phenomena that may occur in social insects in the complex
dynamic environment, which is di�cult to obtain through controlled experiments or
numerical simulation of an agent-based model with limited parameters alone.

3. Mathematical analysis. In this section, we perform mathematical analy-
sis on the existence and stability of equilibria of the colony migration model (2.1).
Let � = max{�ls,�cs} be the maximum recruitment rate of the colony and � =
min{↵as,↵ls,↵cs} be the minimum transition rate from the other groups to the search-
ing group S. The basic dynamical result regarding model (2.1) is shown below.

Theorem 3.1. Model (2.1) is positive invariant in R5
+, and every trajectory of

model (2.1) is attracted to the compact set

⌦=
�
(S,A,L,C,P )2R5

+ : S +A+L+C = ⇢N,0 P  (1� ⇢)N
 
,

where S is uniformly persistent, i.e., there exists a constant ✏ = ⇢N
↵sa
� +1+ �⇢N

�

such

that

✏ lim inf
t!1

S(t) limsup
t!1

S(t) ⇢N.

The persistence of S leads to the persistence of A and L. More specifically,

lim inf
t!1

A(t)� ↵sa✏

(↵as + ↵al)
= ✏A and lim inf

t!1
L(t)� ↵al✏A

(↵lc + ↵ls)
.

Notes. The technical proof of Theorem 3.1 is provided in the supplementary
material file (migration supplementRevised1.pdf [local/web 762KB]). This theorem
indicates that model (2.1) is biologically well-defined. Note that within 1

� minutes, a
worker can independently discover the new site ↵sa times and can successfully recruit
�⇢N searchers, where 1

� is the maximum duration of ants staying in the new site.
Theorem 3.1 implies that, for a colony with ⇢N active workers, there are always
at least ✏ searchers who are outside and who search for other sites. The minimum
size of persistent searchers ✏ is increasing with the maximum duration time 1

� and is
decreasing with the discovery rate ↵sa and the maximum recruitment rate �.

Note that S +A+L+C = ⇢N and the populations A, L, and C do not depend
on the population P . These properties allow us to simplify model (2.1) as follows:

dA

dt
= (↵sa + �lsL+ �csC) (⇢N �A�L�C)� ↵asA� ↵alA,

dL

dt
= ↵alA� ↵lcQ1L� ↵lsL,

dC

dt
= ↵lcQ1L� ↵csC

(3.1)
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with
(
Q1 = 0 if A+L+C <⇥,

Q1 = 1 if A+L+C >⇥.

System (3.1) is a Filippov system [6, 9, 16, 27] which can be converted to a
generalized form. Let H(Z) =A+L+C �⇥ with vector Z = (A,L,C)T , and

FS1
(Z) =

0

@
(↵sa + �lsL+ �csC) (⇢N �A�L�C)� (↵as + ↵al)A

↵alA� ↵lsL

�↵csC

1

A ,

FS2
(Z) =

0

@
(↵sa + �lsL+ �csC) (⇢N �A�L�C)� (↵as + ↵al)A

↵alA� (↵lc + ↵ls)L
↵lcL� ↵csC

1

A .

Then system (3.1) can be rewritten as the following generalized Filippov system

(3.2) Ż =

(
FS1

(Z), Z 2 S1,

FS2
(Z), Z 2 S2,

where S1 = {Z 2 � |H(Z) < 0}, S2 = {Z 2 � |H(Z) > 0} are two regions divided by
the manifold

⌃= {Z 2 � |H(Z) = 0} ,

and � = {(A,L,C) | 0  A + L + C  ⇢N}. We call system (3.2) defined in region
S1 a failed emigration state and call system (3.2) defined in region S2 a successful
emigration state. The state portrait of system (3.2) is composed of the state portrait
on ⌃ and the state portraits in each region Si. Thus, we first study the dynamics of
subsystems and the sliding mode on ⌃, respectively.

3.1. Dynamics of subsystems and equilibria of Filippov system (3.2).

Define ⌘1 =
1

↵sa
↵as+↵al

(1+
↵al
↵ls

)
, ⇠1 =

↵al�ls
↵ls(↵as+↵al)
↵sa

↵as+↵al
(1+

↵al
↵ls

)
, and

L
f =

(⇢N⇠1 � 1� ⌘1) +
q
(⇢N⇠1 � 1� ⌘1)

2 + 4⇠1⇢N

2⇠1
⇣
1 + ↵ls

↵al

⌘ , A
f =

↵ls

↵al
L
f
.

Note that ↵sa
↵as+↵al

(1 + ↵al
↵ls

) is the sum of the times that a worker independently dis-
covers the new site and the times that a worker transits from the assessing population
into the leading population, within 1

↵as+↵al
+ 1

↵ls
minutes, and ↵al�ls

↵ls(↵as+↵al)
is the

times that the leader recruits a nestmate into the new site in the same time period.
Biologically, the interpretation to ⌘1 is the “recruitment e�ciency” of active workers
in the new site without transportation, namely, the ratio of nestmates recruited by
the leaders to the sum of active workers in each population (including assessing and
leading populations) during the average duration of active workers in the new site.
The interpretation to ⇠1 is the “input-output” ratio of the migrating colony, namely,
the ratio of the initial searching workers to the sum of active workers in each pop-
ulation (including assessing and leading populations) during the average duration of
active workers in the new site.
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COLLECTIVE MIGRATION DYNAMICS S51

Let ⌘2 =
1

↵sa
↵as+↵al

[1+
↵al

↵ls+↵lc
+

↵al↵lc
(↵ls+↵lc)↵cs

]
, ⇠2 =

�ls↵al
(↵lc+↵ls)

+
�cs↵al↵lc

↵cs(↵lc+↵ls)

↵sa[1+
↵al

↵ls+↵lc
+

↵al↵lc
(↵ls+↵lc)↵cs

]
, and

C
s =

⇢N⇠2 � 1� ⌘2 +
q
(⇢N⇠2 � 1� ⌘2)

2 + 4⇠2⇢N

2⇠2
h
1 + ↵cs

↵lc
+ ↵cs(↵lc+↵ls)

↵al↵lc

i , L
s =

↵cs

↵lc
C

s
, A

s =
↵lc + ↵ls

↵al
L
s
.

The interpretation to ⌘2 is the recruitment e�ciency of active workers in new site with
transportation, namely, the ratio of nestmates recruited by the leaders and carriers
to the sum of active workers in each population (including assessing, leading, and
carrying populations) during the average duration of active workers. ⇠2 also is an
“input-output” ratio of the migrating colony, namely, the ratio of initial searching
workers to the sum of active workers in each population (including assessing, leading,
and carrying populations) during the average duration of active workers. For the
subsystems of the Filippov system (3.2), we are able to state the following results.

Theorem 3.2. The Filippov system (3.2) defined in region S1 is

dA

dt
= (↵sa + �lsL+ �csC) (⇢N �A�L�C)� ↵asA� ↵alA,

dL

dt
= ↵alA� ↵lsL,

dC

dt
=�↵csC.

(3.3)

The subsystem (3.3) has a unique equilibrium E
f (Af

,L
f
,0) which is globally asymp-

totically stable. The Filippov system (3.2) defined in region S2 is

dA

dt
= (↵sa + �lsL+ �csC) (⇢N �A�L�C)� ↵asA� ↵alA,

dL

dt
= ↵alA� ↵lcL� ↵lsL,

dC

dt
= ↵lcL� ↵csC.

(3.4)

The subsystem (3.4) has a unique equilibrium E
s(As

,L
s
,C

s) which is locally asymp-
totically stable. Moreover, if ↵as > ↵ls > ↵cs and �cs > �ls, then the equilibrium E

s

is globally asymptotically stable.

Notes. The technical proof of Theorem 3.2 is provided in the supplementary
material file (migration supplementRevised1.pdf [local/web 762KB]). Theorem 3.2
provides the global stability of boundary equilibrium E

f for subsystem (3.3), the local
stability of interior equilibrium E

s for subsystem (3.4), and the global stability of Es

under su�cient conditions. Extensive numerical simulations suggest that the interior
equilibrium E

s for subsystem (3.4) is always globally asymptotically stable. Some
typical simulations are shown in Figure 2. Thus, we conjecture that E

s is globally
asymptotically stable for all parameters. However, we cannot prove this conjecture in
theory due to the complexity of the system.

In the case that A(t)+L(t)+C(t)<⇥ for all t, let us consider the fourth and fifth
equations in model (2.1). For any initial condition satisfying C(t0)> 0, P (t0)� 0, we
have C(t) = C(t0)e�↵cs(t�t0), and the analytical solution of P (t) in model (2.1) can
be expressed as

P (t) = (1� ⇢)N � [(1� ⇢)N � P (t0)] e
�csC(t0)

↵cs
[e�↵cs(t�t0)�1]

.
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Fig. 2. Time series of populations A, L, and C of subsystem (3.4). The parameters are N =
200, ⇢= 0.25, ↵cs = 0.07, ↵ls = 0.12, �ls = 0.033, �cs = 0.079, ↵al = 0.032, ↵lc = 0.15, ↵as = 0.24,
↵sa = 0.01.

It then follows that limt!1P (t) = (1 � ⇢)N � [(1 � ⇢)N � P (t0)]e
� �csC(t0)

↵cs . This
indicates that the final steady state size of population P depends on the initial values
C(t0) and P (t0). Mathematically, this is an interesting result. In real colonies, this can
be tested to see how initial conditions impact the migration when A(t)+L(t)+C(t)<
⇥ and C(t0) > 0, P (t0) � 0. The experimental testing could be our future work.
Moreover, for the subsystem (3.4), the steady state value of population C is greater
than zero. In this case, the population P will be completely moved into the new site
by the carriers.

In order to investigate the dynamics of the Filippov system (3.2), we provide some
definitions related to equilibrium in the piecewise smooth system [11, 25] as follows.

Definition 3.3 (regular equilibrium). A point Z⇤ is called a regular equilibrium
of system (3.2) if FS1

(Z⇤) = 0, H(Z⇤)< 0 or FS2
(Z⇤) = 0, H(Z⇤)> 0.

Definition 3.4 (virtual equilibrium). A point Z⇤ is called a virtual equilibrium
of system (3.2) if FS1

(Z⇤) = 0, H(Z⇤)> 0 or FS2
(Z⇤) = 0, H(Z⇤)< 0.

Define

(3.5) Ni :=
⇥

⇢
+

⇥⌘i

⇢ (1 + ⇠i⇥)
.

The biological implication of Ni is a critical size of a colony. The active workers in the
colony with size Ni are equal to the sum of ⇥ and the active workers who can recruit
⇥ nestmates into the new site before leaving. From (3.5), the size of Ni is increasing
with the threshold value ⇥ and the “recruitment e�ciency” ⌘i and is decreasing with
the “input-output” ratio ⇠i and the ratio ⇢. Then, we have the following results of
the equilibria of system (3.2).

Theorem 3.5. If Af + L
f
< ⇥, then the system (3.2) has a regular equilibrium

E
f
R(A

f
R,L

f
R,0) (failed emigration state), and if Af + L

f
> ⇥, then the system (3.2)

has a virtual equilibrium E
f
V (A

f
V ,L

f
V ,0).

Notes. Theorem 3.5 gives su�cient conditions for the existence of regular equi-
librium E

f
R located in region S1, namely,

(3.6) A+L|Ef
R
=

(⇢N⇠1 � 1� ⌘1) +
q
(⇢N⇠1 � 1� ⌘1)

2 + 4⇠1⇢N

2⇠1
<⇥.

Direct calculation yields that the condition (3.6) is equivalent to N < N1. This
condition indicates that the colony size N has great impacts on the dynamics of
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COLLECTIVE MIGRATION DYNAMICS S53

system (3.2), namely, if N < N1, then the colony will stabilize at failed emigration
state E

f
R(A

f
R,L

f
R,0).

Theorem 3.6. If As+L
s+C

s
>⇥, then the system (3.2) has a regular equilibrium

E
s
R(A

s
R,L

s
R,C

s
R) (successful emigration state), and if As+L

s+C
s
<⇥, then the system

(3.2) has a virtual equilibrium E
s
V (A

s
V ,L

s
V ,C

s
V ).

Notes. Theorem 3.6 implies that system (3.2) has a regular equilibrium E
s
R

located in region S2 if the parameters meet

(3.7) A+L+C|Es
R
=

(⇢N⇠2 � 1� ⌘2) +
q
(⇢N⇠2 � 1� ⌘2)

2 + 4⇠2⇢N

2⇠2
>⇥.

By algebraic calculations, we can obtain that the condition (3.7) is equivalent to
N > N2. This condition indicates that if N > N2, then the colony will stabilize at
successful emigration state E

s
R(A

s
R,L

s
R,C

s
R).

3.2. Dynamics on threshold manifold ⌃. In order to investigate the dynam-
ics on the separating manifold ⌃, we first determine the existence of a crossing set
and a sliding set on ⌃ by using the Filippov convex method [16, 9, 6, 48, 52].

Let �(Z) = hHz(Z), FS1
(Z)ihHz(Z), FS2

(Z)i, where h·i denotes the standard
scalar product and Hz(Z) is the nonvanishing gradient of smooth function H on
⌃. Define the crossing set ⌃C ⇢⌃ as

⌃C = {Z 2⌃ | �(Z)> 0}

and the sliding set ⌃S ⇢⌃ as

⌃S = {Z 2⌃ | �(Z) 0} ,

where ⌃S =⌃ \⌃C . For system (3.2), it is easy to get that

�(Z) = [(↵sa + �lsL+ �csC)(⇢N �A�L�C)� ↵asA� ↵lsL� ↵csC]2 > 0

for all Z 2 �. Therefore, we have the following result.

Lemma 3.7. For system (3.2), we have ⌃C =⌃ and ⌃S = ;.
Notes. According to the definitions of crossing set and sliding set, if Z0 2 ⌃C ,

then the two vectors FS1
(Z0) and FS2

(Z0) point to the same side of ⌃ (see Figure 3(a)),
and if Z0 2 ⌃S , then the vectors FS1

(Z0) and FS2
(Z0) point to the di↵erent sides of

⌃ (see Figure 3(b)). It indicates that the trajectories reaching ⌃C immediately cross
from one side to another, and the trajectories reaching ⌃S may slide along the sliding
vector to an internal point or the boundary of ⌃S . The result ⌃C = ⌃ suggests
that system (3.2) is a nonsliding piecewise system, i.e., all trajectories in system (3.2)
hitting the manifold ⌃ would cross into the opposite region instead of sliding on ⌃.
This implies that if system (3.2) has multiple locally stable regular equilibria, then the
system has multiple attractors, while if system (3.2) has multiple virtual equilibria,
then the system is more likely to have oscillating dynamics. In the next section, we
will classify the dynamics of system (3.2) in more detail.

4. Dynamical behaviors of Filippov system (3.2). In this section, we ex-
plore the global dynamics of system (3.2). It follows from Theorems 3.5 and 3.6 that
system (3.2) can have zero, one, and two regular equilibria according to the relation-
ship between N and Ni (i= 1,2). Thus, based on the relationship between N and Ni

(i = 1,2), we classify the possible dynamics of the system into four cases, which are
provided in the following four corollaries, respectively.
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(a) Crossing (b) Sliding

Fig. 3. Two possible vector fields on manifold ⌃: (a) crossing and (b) sliding along the sliding
vector FS .
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Fig. 4. Time series diagrams of system (3.2). Figure (a) shows that the equilibrium Ef
R is the

unique attractor when N = 100, ⇥ = 30, ⇢ = 0.25, ↵cs = 0.07, ↵ls = 0.12, �ls = 0.033, �cs = 0.079,
↵al = 0.032, ↵lc = 0.15, ↵as = 0.24, ↵sa = 0.01. Figure (b) shows that the equilibrium Es

R is the
unique attractor when the parameters are the same as in (a) except N = 300.

Corollary 4.1. System (3.2) has local stability at E
f
R(A

f
R,L

f
R,0) (failed emi-

gration state) if N <min{N1,N2}.
If the colony size N is small, system (3.2) has one regular equilibrium E

f
R. In

this case, the trajectories starting from region S1 tend to E
f
R, and the trajectories

starting from region S2 also tend to E
f
R after crossing the separating manifold. The

time series in Figure 4(a) suggests that E
f
R (failed emigration state) is the unique

attractor for system (3.2). Biologically, if the size of a colony is less than the sum of
quorum threshold ⇥ and the number of active workers who can recruit ⇥ nestmates
into the new site before leaving, then the colony will stabilize at the failed emigration
state.

Corollary 4.2. System (3.2) has local stability at Es
R(A

s
R,L

s
R,C

s
R) (successful

emigration state) if N >max{N1,N2}.
If the colony size N is large enough, system (3.2) has one regular equilibrium E

s
R.

In this case, all trajectories of system (3.2) tend to the equilibrium E
s
R. An example

of the time series for system (3.2) is shown in Figure 4(b). Biologically, if the size
of a colony is greater than the sum of quorum threshold ⇥ and the number of active
workers who can recruit ⇥ nestmates into the new site before leaving, then the colony
will reach consensus on emigration without splitting.

Corollary 4.3. System (3.2) has only virtual equilibrium if N1 <N <N2.

From Corollary 4.3, both E
f and E

s are virtual equilibria when the colony size
N is intermediate. Figure 5 shows that, regardless of initial conditions, the size of
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Fig. 5. Time series diagrams show the existence of oscillation when system (3.2) has two virtual
equilibria. The parameters are N = 200, ⇥ = 30, ⇢ = 0.25, ↵cs = 0.07, ↵ls = 0.018, �ls = 0.049,
�cs = 0.079, ↵al = 0.007, ↵lc = 0.15, ↵as = 0.24, ↵sa = 0.01.

total active workers at new site (A(t)+L(t)+C(t)) continuously oscillates around the
quorum threshold, and the oscillations are also found in each active population. In
this case, the solutions starting from regions S1 and S2 tend to the threshold interface,
then go back and forth between the two sides of the threshold interface along a periodic
orbit. Biologically, if the workers in a colony can recruit ⇥ nestmates into the new
site via tandem runs before they leave, but fail to do it via transportation, then the
active workers will make multiple visits to the new site and the passive population is
mostly moved to the new site. We call system (3.2) the partially successful emigration
state.

Corollary 4.4. System (3.2) has two regular equilibrium E
f
R(A

f
R,L

f
R,0) (failed

emigration state) and E
s
R(A

s
R,L

s
R,C

s
R) (successful emigration state) which are always

locally stable if N2 <N <N1.

From Corollary 4.4, both E
f and E

s are regular equilibria. It indicates that
system (3.2) exhibits bistability between E

f
R and E

s
R, namely the trajectories with

di↵erent initial conditions will stabilize at two di↵erent levels (see Figure 6). Biolog-
ically, if the active workers in a colony can recruit ⇥ nestmates into the new site via
transportation before leaving, but fail to do it via tandem runs, then the colony either
emigrates to the new site or stays in the old nest. In the following, we will analyze
how the initial values a↵ect the solutions of system (3.2) when system (3.2) exhibits
bistability in more detail.

Initial condition impact for bistable case. From Figure 6, the solution start-
ing from region S1 reaches the equilibrium E

s
R and the solution starting from region

S2 reaches the equilibrium E
f
R. It implies that the relationship between the initial

values of active workers and the quorum threshold does not completely determine
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Fig. 6. Time series of system (3.2) shows the bistablity between Ef
R and Es

R when the param-
eters are the same as in Figure 4(a) except N = 200.

(a) (b)

Fig. 7. Figure (a) shows the basin attractions of system (3.2) with parameters that are the same
as those in Figure 6. The red region is the basin of attraction for the successful emigration state

Es
R, and the blue region is the basin of attraction for the failed emigration state Ef

R. Figure (b)

shows the boundary points between the basin attraction for Es
R and the basin attraction for Ef

R in
(a), and the fitting curve of these points.

whether the trajectory tends to E
f
R or Es

R. In order to explore how initial conditions
a↵ect the dynamics of system (3.2), we take extensive numerical simulations to obtain
an estimate of basins of attractions for system (3.2) with varying S(0), A(0), and L(0)
(C(0) = 0). A typical simulation is shown in Figure 7(a). From Figure 7(a), we can
obtain the following results: (1) If L(0) = 0, all solutions tend to E

f
R regardless of the

variations of S(0) and A(0); (2) if L(0)> 0, the solution with S(0)+A(0)+L(0)<⇥
tends to E

s
R when L(0) is large enough, and the solution with S(0)+A(0)+L(0)>⇥

tends to E
f
R when L(0) is small.

In order to illustrate the importance of L(0) on the outcomes of the dynamics
quantitatively, we fit the boundary between two basins of attractions of Ef

R and E
s
R.

The result is shown in Figure 7(b), where the red points are the boundary points on
the basins of attractions of Ef

R (red region in Figure 7(a)) that connect with the basins
of attractions of Es

R (blue region in Figure 7(a)), and the black line is the fitting curve
of the red points. The function of the fitting curve is

(4.1)
L(0)� a1

a4
=

A(0)� a2

a5
=

S(0)� a3

a6
,

where a1 = 5.9739, a2 = 31.0209, a3 = 12.0327, a4 = 0.8444, a5 =�4.8755, a6 = 4.1945.
It then follows from |a4|⌧ |a6| < |a5| that L(0) has a much lower change rate along
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COLLECTIVE MIGRATION DYNAMICS S57

the fitting curve than S(0) or A(0). This result indicates that, near the fitting curve,
system (3.2) is more sensitive to the variations of L(0) than the variations of S(0) or
A(0). From a1 < a3 < a2, the values of L(0) are much less than the values of S(0)
or A(0) along the fitting curve. It indicates that the solutions of system (3.2) with
larger L(0) are much more likely to tend to E

s
R. We also take extensive numerical

simulations of basins of attractions with varying S(0), A(0), and C(0) (L(0) = 0), and
then fit the boundary points. The results indicate that the solutions with larger C(0)
are much more likely to tend to E

s
R.

Figure 7 suggests that the initial values of recruiters (including the leaders and
carriers) have great impact on dynamical patterns when system (3.2) exhibits bista-
bility. From the biological point of view, if environmental disturbance kills abundant
active ants who are migrating from an old nest to the new site, the size of surviving
recruiters at the new site plays a crucial role in the decision to keep migrating.

5. Synergistic e↵ects of colony size and quorum threshold on the dy-
namics. In this section, we will explore the synergistic e↵ects of colony size N and
quorum threshold ⇥ on the dynamics of system (3.2) by analysis and bifurcation
approaches.

Denote a critical size of recruiters

⇥c =
↵sa(1� ↵cs

↵ls
)

�ls(
↵cs
↵ls

� �cs

�ls
)
.

Biologically, within 1
↵ls

minutes, the number of the searchers who enter the new site
that has ⇥c leaders is equal to the number of the searchers who enter the new site that
has ⇥c carriers within

1
↵cs

minutes, where 1
↵ls

and 1
↵cs

are the duration of the leaders
and carriers staying in the new site, respectively. If ⇥c > 0, the above biological
scenario exists; if ⇥c < 0, the above biological scenario cannot exist, i.e., the number
of the searchers recruited by the new site that has ⇥c carriers is always greater (less)
than that of the searchers recruited by the new site that has ⇥c leaders per unit time.
Recall that

Ni :=
⇥

⇢
+

⇥⌘i

⇢ (1 + ⇠i⇥)
,

which is increasing with ⇥ and ⌘i and is decreasing with ⇢ and ⇠i. Next, we show how
the existence of positive ⇥c is related to the relationship of N1 and N2 as follows.

Theorem 5.1. Assume that ⇥c < 0. Then we have
(a) if ↵cs

↵ls
<min{1, �cs

�ls
}, then N1(⇥)>N2(⇥) for all ⇥> 0;

(b) if ↵cs
↵ls

>max{1, �cs

�ls
}, then N1(⇥)<N2(⇥) for all ⇥> 0.

Assume that ⇥c > 0. Then we have
(c) if 1< ↵cs

↵ls
<

�cs

�ls
, then N1(⇥)<N2(⇥) for all 0<⇥<⇥c and N1(⇥)>N2(⇥)

for all ⇥>⇥c;
(d) if 1> ↵cs

↵ls
>

�cs

�ls
, then N1(⇥)>N2(⇥) for all 0<⇥<⇥c and N1(⇥)<N2(⇥)

for all ⇥>⇥c.

Notes. The technical proof of Theorem 5.1 is provided in the supplementary
materials (migration supplementRevised1.pdf [local/web 762KB]). Theorem 5.1 gives
the relationships between N1 and N2 with respect to ⇥ and ⇥c that are determined
by the signs of 1 � ↵cs

↵ls
and ↵cs

↵ls
� �cs

�ls
: If ⇥c < 0, then N1 is always greater (less)

than N2; if ⇥c > 0, then the distinctive crossing of N1 and N2 will exist at ⇥ = ⇥c.
The technical results can be explained from the biological perspective. For instance,
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if 1� ↵cs
↵ls

> 0, ↵cs
↵ls

� �cs

�ls
< 0 (corresponding to case (a) in Theorem 5.1), i.e., if the

average time the carrier commits to the new site is longer than the average time the
leader commits to the new site, and if the number of searchers recruited by a carrier
is greater than that of searchers recruited by a leader, then N1(⇥) > N2(⇥), i.e.,
the number of workers who can recruit ⇥ nestmates into the new site via tandem
runs is always greater than the number of workers who can recruit ⇥ nestmates via
transportation. The other cases in Theorem 5.1 can be biologically explained in the
same way. Theorem 5.1 suggests that it is important to distinguish two populations
of recruiters, L and C, in modeling the migration process. In other words, if we
consider all recruiters as a group, we are not able to capture the interaction between
di↵erent recruitment methods or explain the complex dynamic behavior that may
occur. Moreover, the existence of positive ⇥c suggests the coexistence of a partially
successful emigration case and bistability between E

f
R (failed emigration state) and

E
s
R (successful emigration state) in N and ⇥ space which will be shown in more detail

later.
Based on Theorem 5.1 and Corollaries 4.1 to 4.4, we investigate the regular/virtual

equilibrium bifurcations of system (3.2) with respect to N and ⇥ in four cases.
Case (a): ↵cs

↵ls
< min{1, �cs

�ls
}. The N and ⇥ parameter space is divided into

three regions by curves N1(⇥) and N2(⇥). The existence of a regular equilibrium or
virtual equilibrium in each region is indicated in Figure 8(a). Figure 8(a) suggests
that system (3.2) has at least one regular equilibrium, i.e., the partially successful
emigration state for system (3.2) does not exist in this case.

Case (b): ↵cs
↵ls

>max{1, �cs

�ls
}. The N and ⇥ parameter space is also divided into

three regions. The existence of equilibria in each region is indicated in Figure 8(b).
From Figure 8(b), system (3.2) has at most one regular equilibrium, i.e., the bistability
between E

f
R and E

s
R for system (3.2) does not exist in this case.

Case (c): 1 <
↵cs
↵ls

<
�cs

�ls
. The N and ⇥ parameter space is divided into four

regions as shown in Figure 8(c). The existence of equilibria in each region implies
that system (3.2) has zero to two regular equilibria. In this case, system (3.2) has
four possible dynamics. Note that the partially successful emigration case may exist
only if the value of ⇥ is smaller than ⇥c, and the bistability may exist only if the
value of ⇥ is greater than ⇥c.

Case (d): 1 >
↵cs
↵ls

>
�cs

�ls
. The N and ⇥ parameter space is divided into four

regions as shown in Figure 8(d). In this case, system (3.2) also has four possible
dynamics. However, contrary to Case (c), the partially successful emigration case
exists only if the value of ⇥ is greater than ⇥c, and the bistability exists only if the
value of ⇥ is smaller than ⇥c.

In the following, we illustrate how colony size and quorum threshold a↵ect the dy-
namics of system (3.2) in more detail. We perform bifurcation analysis of system (3.2)
satisfying 1< ↵cs

↵ls
<

�cs

�ls
. We fix two di↵erent levels ofN (seeNa andNb in Figure 8(c))

and vary ⇥ to obtain bifurcation diagrams as shown in Figures 9(a) and 9(b), respec-
tively. We also fix two di↵erent levels of ⇥ (see ⇥a and ⇥b in Figure 8(c)) and vary N

to obtain bifurcation diagrams as shown in Figures 9(c) and 9(d), respectively. The
bifurcation analysis for the other cases can be obtained by using the same argument,
which is detailed in the supplementary materials (migration supplementRevised1.pdf
[local/web 762KB]).

For a colony with small size (see Figure 9(a)), when the quorum threshold is small
(e.g., ⇥ varies from 0 to 7), system (3.2) will stabilize at E

s
R (successful emigration

state); when the quorum threshold is moderate (e.g., ⇥ varies from 7 to 8), Figure 9(a)
shows that the points with two colors distribute discretely near the quorum threshold
⇥, i.e., system (3.2) will exhibit oscillations; when the quorum threshold is large
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(a) (b)

(c) (d)

Fig. 8. Two parameter bifurcation diagrams of system (3.2) with respect to N and ⇥ in four

cases: (a) ↵cs
↵ls

< min{1, �cs
�ls

}; (b) ↵cs
↵ls

> max{1, �cs
�ls

}; (c) 1 < ↵cs
↵ls

< �cs
�ls

; (d) 1 > ↵cs
↵ls

> �cs
�ls

. The

curves of N1(⇥) and N2(⇥) are marked in blue and red, respectively.

(e.g., ⇥ varies from 8 to 50), system (3.2) will stabilize at E
f
R (failed emigration

state). For a colony with large size (see Figure 9(b)), as ⇥ increases, the colony
goes from the successful emigration state (e.g., ⇥ varies from 0 to 36) to the failed
emigration state (e.g., ⇥ varies from 39 to 59) but with the bistability between E

f
R

and E
s
R as an intermediate (e.g., ⇥ varies from 36 to 39).

For a small quorum threshold (see Figure 9(c)), when the colony size is small (e.g.,
N varies from 0 to 28), system (3.2) will stabilize at E

f
R (failed emigration state);

when the colony size is moderate (e.g., N varies from 28 to 36), system (3.2) exhibits
oscillations; when the colony size is large (e.g., N varies from 36 to 300), system (3.2)
will stabilize at E

s
R (successful emigration state). For large quorum threshold (see

Figure 9(d)), as N increases, the colony goes from the failed emigration state (e.g.,
N varies from 0 to 230) to the successful emigration state (e.g., N varies from 250 to
300) with the bistability between E

f
R and E

s
R as an intermediate (e.g., N varies from

230 to 250).

6. Conclusion. Social insects are considered one of the evolutionarily most suc-
cessful organisms on earth, exhibiting diverse decentralized organizations resulting
from interactions among individuals and the environment. Colony migration is a
perfect example of collective decision making, which causes great concern for ento-
mologists and conservationists [22, 50]. Many studies have explored the decision rules
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(a)

0 10 20 30 40 50
34

35

36

37

38

39

40

A
(t

)+
L
(t

)+
C

(t
)

successful emigration state

failed

emigration

state

bistable

state

A(t)+L(t)+C(t)=

(b)

(c) (d)

Fig. 9. One parameter bifurcation diagrams of system (3.2) with two di↵erent levels of N and
two di↵erent levels of ⇥. (a) N = 56; (b) N = 220; (c) ⇥ = 4; (d) ⇥ = 42. The other parameters
are ⇢ = 0.25, ↵cs = 0.05, ↵ls = 0.018, �ls = 0.004, �cs = 0.025, ↵al = 0.057, ↵lc = 0.28, ↵as = 0.5,
↵sa = 0.15.

and communication signals guiding the individual behaviors during colony migration
[49, 13]. However, the underlying mechanisms at the group level are less well under-
stood. The observation of colony migration in previous studies predicts that large
colony size is necessary for collective decision making, and the quorum threshold is
not always correlated with group size. How does the colony size a↵ect outcomes of
migration? How do synergies of colony size and quorum threshold regulate migra-
tion dynamic behaviors? To address these questions, we develop a piecewise system
with a switching threshold and analyze the impact of key parameters (colony size and
quorum threshold) on the dynamical patterns.

The dynamical features of the colony migration system are provided in this pa-
per. For each subsystem, there exists a unique stable equilibrium and all the solutions
converge to the equilibrium point (see Theorem 3.2). For the case that the colony mi-
gration system can switch between the two subsystems, the dynamical result becomes
more complicated, namely system (3.1) has a regular/virtual equilibrium E

f and a
regular/virtual equilibrium E

s based on the relationship between the colony size N

and a critical size Ni (i = 1,2) of this colony (see Theorems 3.5 and 3.6), and the
solutions of system (3.1) may converge to a regular equilibrium or oscillate between
two virtual equilibria.

Mathematical results (see Corollaries 4.1 to 4.4) suggest how the colony size a↵ects
outcomes of migration. If the colony size is very small (i.e., N < min{N1,N2}), the
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COLLECTIVE MIGRATION DYNAMICS S61

system will stabilize at the failed emigration state. If the colony size is large enough
(i.e., N >max{N1,N2}), the system will stabilize at the successful emigration state. If
the colony size is at a critical level (i.e., N2 <N <N1 orN1 <N <N2), the system will
stabilize at the partially successful emigration state or exhibit bistability between the
failed emigration state and the successful emigration state. The partially successful
emigration case is one of the interesting findings of our work, that is, the passive
workers are moved into the new site but the number of active workers present at the
new site fluctuates over time. In this paper, the success of migration is of two di↵erent
degrees. One is when some active workers are fully committed to the new site, and the
colony can e�ciently move to the new site within a few hours at most. We term this
typical scenario as the successful emigration state whose conditions are illustrated in
Corollary 4.2. The case of the partially successful emigration state, whose conditions
are illustrated in Corollary 4.3, seems to be observed in the experimental work shown
in [38]. The experimental results in [38] show that the ants make multiple visits to
di↵erent sites when the di↵erences in quality are very small, so that the ants can make
many comparisons between the two nests. However, unlike our finding, the active ants
are likely to make a decision between the two sites eventually instead of constantly
visiting and comparing. Our result of oscillation reflects a part of the interesting
migrating behavior of the social insects in the complicated and changing environment,
which can be further tested on future work. Our work also shows that the initial value
of the recruiter (who recruits nestmates via tandem runs or transportation) plays an
important role in determining which state the colony eventually tends to when the
system exhibits bistability (see Figure 7). This result provides support to previous
experimental studies [35] showing that tandem runs and transportation o↵er great
advantages for e�cient emigration. Moreover, from the view on competition, system
(3.2) can also be interpreted as the competition between the old nest and the new
site for colonies. Specifically, the four dynamical patterns of system (3.2) have the
following explanations: (a) the new site wins; (b) the old nest wins; (c) no winner; (d)
both sites have the potential to win. It provides great new insight into understanding
the decision-making issues on colony migration in social insects.

Bifurcation analysis (see Figures 8 and 9) reveals how the synergies of colony size
and quorum threshold regulate the dynamics of migration system (3.2). If the quorum
threshold is relatively low to colony size, then system (3.2) is more likely to stabilize
at a successful emigration state. If the quorum threshold is relatively high to colony
size, then system (3.2) is able to stabilize at a failed emigration state. The dynamics
of system (3.2) with a relative intermediate quorum threshold is more complicated,
which is also determined by the critical size of recruiters (⇥c). Specifically, if ⇥c <

0, then system (3.2) either stabilizes at a partially successful emigration state or
exhibits bistability between a successful emigration state and a failed emigration state,
depending on the recruitment rates and transition rates of two recruiters; if ⇥c > 0, the
large colony and the small colony stabilize at the partially successful emigration state
and have bistability respectively depending on the recruitment rates and transition
rates. Our finding shows that the variations of colony size and quorum threshold have
great impacts on migration. Empirical studies have claimed that the social insects
could respond to environmental conditions or the need for urgency through adjusting
their quorum [26, 35]. For instance, the colonies will use a high quorum threshold to
ensure a nonemergency and worthwhile emigration if the old nest remains intact; by
contrast, they use a very small quorum threshold if the old nest is in a harsh situation
[13, 17]. In addition, our results may benefit experts interested in the potential
factors influencing colony migration, such as transition rates and recruitment rates of
two di↵erent recruiters.
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In our current model, we assume that the quorum threshold is constant. This
simplification allows us to obtain rigorous results on how colony size and quorum
threshold a↵ect the colony dynamics. However, this limitation also implies that our
current model may not be a good description of the case that the quorum threshold
could be correlated with colony size. Dornhaus and Franks [12] have shown that ants
may measure the relative quorum, i.e., population in the new nest relative to that of
the old nest, rather than the absolute number. Therefore, it is important to expand the
colony migration model adopted the relative quorum threshold. The colony migration
model is our first attempt. In addition to the above suggestion, there are more
reasonable and practical ways to extend this work: (i) In a dynamical environment,
the organisms are inevitably a↵ected by environmental noise and demographic noise.
It has been shown that the noises a↵ect the interaction rate among group members
and the follower’s behavior in social insects [1]. Thus, it would be interesting to
incorporate the e↵ect of the randomly fluctuating environment in our model. (ii)
Temnothorax colonies can change the quorum size according to their colony size.
They can achieve this end by considering the encounter rate at the old nest and at
the target site. Thus, it would be an interesting subject to extend this model and
investigate how the encounter rate a↵ects collective decision making. (iii) In nature,
migrating social insects can evaluate several potential sites, compare them, and choose
the best one, even when most of the workers visit only one site [35, 36]. Therefore, it
is interesting to propose a colony migration model with two or several potential sites
to investigate the dynamic mechanism underlying nest-selection behavior, the e↵ects
of distances or qualities on the outcome of migration, and the impact of colony size
on the duration of collective decision making. We keep these considerations for our
future work.
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