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A B S T R A C T

This paper proposes and studies the dynamics of a Holling-type II predator–prey interaction system that
incorporates the following three components: (1) a prey refuge; (2) predation fear and its carry-over effects;
and (3) environmental noise in both prey and predator populations. The impacts of those three components are
studied through both rigorous analysis and numerical simulations. Analytical results show that the introduction
of prey refuge, predation fear, and its carry-over effects can generate Hopf bifurcation. It is found that
increasing prey refuge and predation fear effect in a reasonable region can stabilize the system, while excessive
refuge strength would lead to the extinction of predators. The theoretical results of the corresponding system
with environmental noise include (1) sufficient conditions for the existence of a unique ergodic stationary
distribution of the SDE system by constructing appropriate stochastic Lyapunov functions; (2) the explicit
probability density function of the distribution by solving the Fokker–Planck equation; and (3) the extinction
conditions of prey and/or predator species at an exponential rate in the long run. Our work shows that
the proposed model, incorporating prey refuge, predation fear, carry-over effect, and environmental noise,
exhibits rich and complex dynamic behaviors. Moreover, our results indicate that small environmental noise
can save the prey and predator from extinction, while large environmental noise can drive the species to
extinction. These interesting findings provide more perspectives on the protection and control of species in
complex communities.

1. Introduction

The dynamic interplay between prey and predator has been a major
subject of interest in ecology for a long time and will continue to be
so, given their ubiquitous presence and relevance in the field [1]. Prey
animals use various anti-predator tactics to avoid being eaten, such
as seeking safe shelter [2], changing their habitat, reducing foraging
frequency [3], and altering their metabolism [4]. The non-lethal effects
of predation, caused by the predator’s influence on prey behavior and
characteristics, have the potential to impact the entire prey population
over time [5]. For instance, prey animals that are fearful of being eaten
may forage less and undergo physiological changes that affect their
reproductive success (see [6–16]). Research by Zanette et al. [6] has
shown that the fear of predators can reduce offspring generation in song
sparrows, as anti-predator behavior lowers both birth rates and survival
rates. In an experiment with Drosophila melanogaster and mantid
predators, Elliott et al. [8] found that fear disrupted population dynam-
ics and increased the likelihood of extinction by sevenfold, highlighting
the impact of fear on fitness in species with limited sociality.
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Many researchers constructed mathematical models to investigate
prey and predator interaction, how the fear of predators and group
defense [13,17], or prey refuge [14,18,19], or additional food [15]
are interrelated and affect dynamical behaviors of the populations.
The mathematical analyses of [7] revealed that large levels of fear
can maintain the predator–prey system by eliminating the presence
of periodic solutions, but comparatively low levels of fear can cre-
ate numerous limit cycles via subcritical Hopf bifurcations, resulting
in bi-stability phenomena. Halder et al. [11] studied the effects of
indirect prey–predator contact on the prey population by analyzing
the influence of predation fear combined with the Allee effect caused
by predation. Cong et al. [16] developed a three-species food chain
system that incorporates the cost and utility of anti-predator behaviors.
They showed that the predator’s fear impact can cause the system to
transition from chaotic to stable dynamics. To assess the impact of
fear on prey demography, Zhang et al. [18] developed a Holling-type-II
predation model including a prey refuge. They revealed that the model
contains a Hopf bifurcation and a limit cycle and that the fear effect has
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no influence on prey population density. On the other side, the preda-
tion fear’s carry-over effects [20] have lately been used in ecological
and evolutionary aspects, and they may be applied to a wide range
of scenarios, e.g. [5,21,22]. Predation fear and its carry-over effects
in prey–predator interaction with Holling-type-I functional response
were investigated by Sasmal and Takeuchi [5] using continuous time
population models.

Moreover, environmental noise is an inevitable factor that affects
species models in the natural world [23–25]. The noises can be classi-
fied as additive or multiplicative depending on the source. The former
is not governed by the system and may be brought directly into it,
whereas the latter is connected to system parameters and variables.
One advantage of using multiplicative noises is that they can en-
sure the nonnegativity of the solution. Additionally, the presence of
multiplicative noise can lead to two main peculiarities: an absorbing
barrier at zero population density and the occurrence of anomalous
fluctuations [26,27]. Fiasconaro et al. [23] investigated noise-induced
pattern formation in a population dynamical model of three interacting
species in coexistence and found nonmonotonic patterns influenced by
multiplicative noise intensity and evolution time. Chichigina et al. [24]
studied dynamical system stability in multiplicative one-sided pulse
noise with hidden periodicity, finding high periodicity stable and low
periodicity unstable. By adding a source of multiplicative noise to
the diffusion equation for the picophytoplankton biomass concentra-
tion, Valenti et al. [25] can take into account random fluctuations of
environmental variables.

Stochastic noises are being employed more and more in the tran-
sient dynamics of multidisciplinary physics models [28–35]. Noise not
only leads to the disorder of the dynamics but also can have a positive
impact, such as noise induced resonances and noise enhanced stability
(NES) [36–39]. For instance, Mikhaylov et al. [33] investigated the
stochastic resonance phenomenon in a metal-oxide memristive device
and analyzed the effect of white Gaussian noise on the sub-threshold
sinusoidal driving signal. Guarcello et al. [34] proposed a threshold
detector for noise-distributed fluctuations based on a Josephson junc-
tion. In [35], the authors studied non-Gaussian noise sources’ impact on
transient Josephson junction dynamics, finding nonmonotonic escape
time behavior influenced by intensity and frequency. Furthermore, the
NES phenomenon is that the presence of steady-state and multiplicative
noise sources causes the non-monotonic behavior of the mean first
passage time (MFPT) as a function of the noise intensity. Bonanno
et al. [36] analyzed NES effect on escape time statistical properties, ex-
amining the correlation between noise sources and stochastic volatility
in a model with stochastic volatility. Valenti et al. [37] investigated
ohmic dissipation and monochromatic driving’s impact on quantum
system stability, and studied the quantum noise-enhanced stability phe-
nomenon. In [38], the study examined volatility, risk, and instability
in financial markets, using mean first hitting time as a price stability
indicator, showing nonmonotonic behavior.

It is obvious that the essential structure and factors of species
growth, such as resources and vital rates—birth, death, and immigra-
tion, vary non-deterministically as a result of environmental variations
(e.g., seasonal impacts, temperature, social cycles, etc.) [40]. It is
a crucial aspect to consider when constructing mathematical models
since it adds an additional degree of realism compared to its determin-
istic version (see [41–47] and references therein). Cai and Mao [44]
explored the dynamics of a two-dimensional foraging arena model in
the face of environmental disruption. They investigated the existence
and uniqueness of a positive solution of the model, as well as the
long-term dynamical behaviors. Majumder et al. [46] built a stochastic
predator–prey-parasite model by randomly perturbing three biologi-
cally significant parameters, and investigated the routes of population
extinction in the model. In [47], the authors presented a stochastic
prey–predator model with a fear function based on predators’ induced
dread, in which the predators compete intra-specifically. They obtained
sufficient conditions for both species’ extinction, non-persistence, and

weak persistence. All of these findings show that environmental noise
has a significant impact on ecosystems. Therefore, it is an interesting
problem to try to qualitatively describe the combined impacts of pre-
dation fear, its carry-over effects, prey refuge, and environmental noise
on population survival.

Motivated by the explanation above and thanks to the insightful
works, we constructed a stochastic predation system with prey refuge
subject to predation fear and its carry-over effects, and explore, in a
stochastic environment, how the interplay among prey refuge, preda-
tion fear, and its carry-over effects can affect the dynamic pattern of the
system, especially for the impact on the permanence of populations.
Here, we assume that stochastic perturbations are of multiplicative
white noise type that is directly proportional to the prey and predator
species, then the stochastic system can be described as the following
form:
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(1)

its state space is the first quadrant

R2
+ = {(N(t),P (t)) : N(t) > 0, P (t) > 0}, (2)

and N(t), P (t) are the densities of prey and predator populations at
time t, respectively. The parameters � , c, f , d1, d2, d3, ↵ and � are all
positive constants, � the maximum birth rate of prey without preda-
tors, c the fear-related carry-over effect parameter, quantified by the
parameter f , d2 the density-dependent death rate of prey, d1 and d3 the
natural death rates of prey and predator, respectively, ↵ the conversion
factor that indicates the amount of newly born predators for each
captured prey, �

a the maximum quantity of prey that can be devoured
by a predator per unit time, 1

a the density of prey required to reach one
half that rate.

The term �N
1+aN is the Holling-type II functional response. (1 * m)N

denotes the number of prey available to predators, where m is in
the range [0, 1) and it is the prey refuge protection rate. The stan-
dard one-dimensional independent Brownian motion described over
the complete probability space

�

R2
+,B(R2

+), {Ft}tg0,P
�

is denoted by
B(t) with B(0) = 0, where B(R2

+) denotes the Borel �-algebra on R2
+,

and a filtration {Ft}tg0 satisfies the usual conditions (i.e., it is rightly
continuous and increasing while F0 contains all P-null sets). �2i > 0 (i =
1, 2) denote the intensities of the white noise B(t).

The remaining sections of our paper are organized as follows. In
Section 2, we investigate the fundamental dynamical results of the
deterministic system of (1), such as the boundedness and asymptotic
stability of equilibria, as well as the existence of Hopf bifurcation.
Section 3 proves that the stochastic system (1) has a unique ergodic
stationary distribution; we obtain the exact expression of the proba-
bility density function of the system (1) by solving the corresponding
Fokker–Planck equation; and we provide the conditions that lead to the
extinction of both prey and predator species. In Section 4, we present
numerical simulation findings that show some of the potential roles that
predation fear, its carry-over effects, prey refuge, and environmental
noises may play in predator–prey interactions. Section 5 ends with a
summary of the findings. The deterministic system’s results are detailed
in Appendix.
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2. Dynamics of the deterministic version of system (1)

Without the environmental noises, i.e., �1 = �2 = 0, two-species
prey–predator system becomes,
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(3)

and the fundamental dynamical properties of (3) are summarized as
follows.

Theorem 2.1. For the system (3), R2
+ is positively invariant, and every

solution of the system is ultimately bounded in R2
+ with the properties as

follows:
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(� * d1 + d3)2

4d2d3
if d3 f � * d1.

In addition, we have the following:

(i) If �*d1
d2

< d3
↵�(1*m) , then lim suptôÿ P (t) = 0.

(ii) If � < min{d1, d3}, then limtôÿ N(t) + 1
↵ P (t) = 0.

(iii) If there exists a positive number w <
�*max{d1 ,d3}

d2
* 1

c

max{ f
c ,

1
↵ }

such that

lim
tôÿ

inf N(t) + 1
↵
P (t) g w for any N(0) + 1

↵
P (0) > w.

The detailed proof of Theorem 2.1 can be found in Appendix.
Based on the existence of c, f , m and d1, we discuss the dynamics

of the system (3) in the following three cases:

• Case (a): c = f = m = d1 = 0. In the absence of predation
fear, its carry-over effects, prey refuge, and natural death rate, the
predation system (3) is the classical Holling type II predator–prey
model with a logistic growth in prey population. If �

d2
< d3

↵�*ad3
,

the boundary equilibrium E1 is globally asymptotically stable;
if d3

↵�*ad3
< �

d2
< ↵�+ad3

a(↵�*ad3)
, the system has a unique positive

equilibrium E< which is globally asymptotically stable.
• Case (b): c = f = m = 0, d1 ë 0. In the absence of predation
fear, its carry-over effects, and prey refuge, the predator–prey
relationship in the predation system (3) follows the Holling type
II model. If 0 < �*d1

d2
< d3

↵�*ad3
, the boundary equilibrium E1 is

globally asymptotically stable; if d3
↵�*ad3

< �*d1
d2

< ↵�+ad3
a(↵�*ad3)

, the
system has a unique positive equilibrium E< which is globally
asymptotically stable.

• Case (c): c = f = 0, m ë 0, d1 ë 0. In this case, the predation
system (3) has no predation fear and its carry-over effects in prey.
The boundary equilibrium E1 is globally asymptotically stable if
0 < �*d1

d2
< d3

(↵�*ad3)(1*m)
; if d3

(↵�*ad3)(1*m)
< �*d1

d2
< ↵�+ad3

a(↵�*ad3)(1*m)
, the

unique positive equilibrium E< is globally asymptotically stable.

The dynamics of Cases (a)–(c) can be summarized by the following
theorem:

Theorem 2.2. The system (3) always has a trivial equilibrium E0 =
(0, 0), and a boundary E1 = (N<, 0) and the unique positive equilibrium
E< = (N<,P <) in Cases (a)–(c), respectively. Sufficient conditions for the
existence and stability of these equilibria are summarized in Table 1.

For proof of this theorem, see Appendix.
Since the system (3) can be reduced to the system given by

dN
dt = N(� * d1 * d2N), P = 0,

and
dP
dt = *d3P , N = 0.

Therefore, the system (3) always has a trivial extinction equilibrium
E0 = (0, 0) and a boundary equilibrium E1 = ( �*d1d2

, 0) if �
d1

> 1.

Theorem 2.3. For the system (3), a sufficient condition for the persistence
of predator is �*d1

d2
> d3

(↵�*ad3)(1*m)
> 0.

For proof of this theorem, see Appendix.
Notice that the equilibria of the system (3) satisfy the following

equations:

dN
dt = N

0

�(1 + cN)
1 + cN + fP

* d1 * d2N * �(1 * m)P
1 + a(1 * m)N

1

= 0 Ÿ N = 0

or

l1P 2 + l2P + l3 = 0, (4)

where
l1 = �f (1 * m) > 0,
l2 = �(1 * m)(1 + cN) + f (d1 + d2N)(1 + a(1 * m)N),
l3 = (d1 + d2N * �)(1 + cN)(1 + a(1 * m)N),

(5)

and
dP
dt = P

0

↵�(1 * m)N
1 + a(1 * m)N * d3

1

= 0 Ÿ N =
d3

(↵� * ad3)(1 * m) or P = 0.

As l1 > 0, Eq. (4) has exactly one positive root if l3 < 0. A necessary
condition for N< to be positive is d3 < ↵�

a . Then the coexistence
equilibrium E< = (N<,P <) is feasible provided,
� * d1
d2

>
d3

(↵� * ad3)(1 * m) > 0. (6)

In case, the former inequality is not satisfied, then Eq. (4) has either
two or no positive roots. In fact, l2 > 0 always holds as N< > 0. Thus,
the system (3) has a unique interior equilibrium E< = (N<,P <), where

N< =
d3

(↵� * ad3)(1 * m) , P < =
*l2 +

t

l22 * 4l1l3
2l1

. (7)

Remark 1. The density of the prey population does not rely on the
cost of predation fear f and its carry-over effect c when the prey and
predator populations coexist at E< = (N<,P <), but the density of the
predator population is influenced by both the variables (see Fig. 4(a)).
Moreover, the strength of prey refuges m influences the density of two
populations (see Fig. 1).

In order to illustrate the impact of prey refuge m on the change
of coexistence equilibrium E< = (N<,P <) of the system (3), we also
present the diagram with varying m as shown in Fig. 1. This suggests
that: (a) Large values of m can increase the size of the prey population;
(b) Decreasing the values of m can increase the size of the predator
population.

The classification for the existence and stability of these equilibria
of the system (3) is summarized in the following theorem.

Theorem 2.4. For the system (3), it always has a trivial extinction
equilibrium E0 = (0, 0) and the boundary equilibrium E1 = ( �*d1d2

, 0) if
�
d1

> 1, and can have up to a unique positive equilibrium E< = (N<,P <).
The necessary and sufficient conditions for their existence and stability are
listed in Table 2. The global dynamics of (3) can be classified into the
following scenarios:

(i) If �
d1

< 1, then the system (3) has only the extinction equilibrium E0
which is globally stable. Under this condition, the prey is unable to
survive and the predator dies out.
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Table 1
Existence and stability of equilibria where GAS is an abbreviation for globally asymptotically stable.
Cases Equilibria Existence condition Stability condition

(a) E0 = (0, 0) Always Unstable

E1 =
� �
d2
, 0
�

Always GAS if �
d2

< d3
↵�*ad3

E< =
⇠

d3
↵�*ad3

, ↵(�(↵�*ad3 )*d2d3 )
(↵�*ad3 )2

⇡

�
d2

> d3
↵�*ad3

and d3 <
↵�
a

GAS if d3
↵�*ad3

< �
d2

< ↵�+ad3
a(↵�*ad3 )

(b) E0 = (0, 0) Always Unstable

E1 =
� �*d1

d2
, 0
� �

d1
> 1 GAS if �*d1

d2
< d3

↵�*ad3

E< =
⇠

d3
↵�*ad3

, ↵((↵�*ad3 )(�*d1 )*d2d3 )
(↵�*ad3 )2

⇡

�*d1
d2

> d3
↵�*ad3

and d3 <
↵�
a

GAS if d3
↵�*ad3

< �*d1
d2

< ↵�+ad3
a(↵�*ad3 )

(c) E0 = (0, 0) Always Unstable

E1 =
� �*d1

d2
, 0
� �

d1
> 1 GAS if �*d1

d2
< d3

(↵�*ad3 )(1*m)

E< =
⇠

d3
(↵�*ad3 )(1*m)

, ↵((↵�*ad3 )(�*d1 )(1*m)*d2d3 )
(↵�*ad3 )2 (1*m)2

⇡

�*d1
d2

> d3
(↵�*ad3 )(1*m)

and d3 <
↵�
a

GAS if d3
(↵�*ad3 )(1*m)

< �*d1
d2

< ↵�+ad3
a(↵�*ad3 )(1*m)

Table 2
Equilibria and their stability of the system (3), where N< = d3

(↵�*ad3 )(1*m)
, P < =

*l2+
˘

l22*4l1 l3
2l1

, where l1 , l2 and l3 are given in (5).

Equilibria Existence condition Stability condition

E0 = (0, 0) Always Globally asymptotically stable if �
d1

< 1

E1 =
� �*d1

d2
, 0
� �

d1
> 1 Globally asymptotically stable if �*d1

d2
< d3

(↵�*ad3 )(1*m)

E< = (N< ,P <) �*d1
d2

> d3
(↵�*ad3 )(1*m)

> 0 Globally asymptotically stable if d2 >
�cfP <

(1+cN<+fP < )2 + a�(1*m)2P <

(1+a(1*m)N< )2 .

Fig. 1. When � = 2.25, c = 0.8, f = 1, ↵ = 0.8, � = 0.5, a = 0.5, d1 = 0.1, d2 = 0.25, d3 =
0.55, N< increases with an increase in the strength of prey refuge m while P < gradually
approach zero as m goes to large.

(ii) If �
d1

> 1 and �*d1
d2

< d3
(↵�*ad3)(1*m)

, then the system (3) has the
extinction equilibrium E0 and the boundary equilibrium E1, where
E0 is unstable while E1 is globally asymptotically stable.

(iii) If �
d1

> 1 and �*d1
d2

> d3
(↵�*ad3)(1*m)

> 0, then the system (3) has the
extinction equilibrium E0 and the boundary equilibrium E1 and one
interior equilibrium E<, where both E0 and E1 are unstable while E<

is globally asymptotically stable if d2 > �cfP <

(1+cN<+fP <)2 + a�(1*m)2P <

(1+a(1*m)N<)2 .

Remark 2. The detailed proof of Theorem 2.4 can be found in
Appendix. The number of equilibria and the dynamical behavior of the
system (3) are determined by the values of its parameters � , d1, d2 and
the relationship of �*d1

d2
and d3

(↵�*ad3)(1*m)
. Moreover, the local stability

of the equilibria of (3) is determined by the eigenvalues �i(E<) (i = 1, 2)
of its associated Jacobian matrix (54). Theorem 2.4 implies that: (1)
the predator dies out if the maximum birth rate of prey is smaller than
its natural death rate � < d1; (2) the predator dies out while the prey
still exists if 0 < �*d1

d2
< d3

(↵�*ad3)(1*m)
; (3) the system (3) has one stable

interior equilibrium which occurs when �*d1
d2

> d3
(↵�*ad3)(1*m)

> 0 and

d2 >
�cfP <

(1+cN<+fP <)2 + a�(1*m)2P <

(1+a(1*m)N<)2 .

Bifurcations explain how the system dynamics can change funda-
mentally dramatically when a parameter changes. A Hopf bifurcation
is a crucial location where the stability of a system changes and a
periodic solution appears. We consider here some parameters: the fear-
related carry-over effect (c), the maximum birth rate of prey (�), a prey
refuge factor (m), and the fear factor (f ) as bifurcation parameters.
Analytically we take the fear-related carry-over effect c of the prey
as a bifurcation parameter to investigate the instability of the positive
equilibrium E< = (N<,P <) and keep other parameters fixed.

Theorem 2.5. Assume that d(�(c))
dc c=cH ë 0 holds, the positive equilibrium

E< = (N<,P <) of the system (3) is locally asymptotically stable when
c < cH , and undergoes Hopf bifurcation at E< when c = cH , where

cH =
(↵� * ad3)(1 * m)

2d23 (a(↵� * ad3)2(1 * m)2P < * ↵2�d2)
ù
⇠

(↵2��f (↵� * ad3)(1 * m)P <(4ad3f (↵� * ad3)2(1 * m)2P <2

+(4ad3(↵� * ad3)2(1 * m)2 + ↵2��f (↵� * ad3)(1 * m)
*4d2d3↵2�f)P < * 4d2d3↵2�))

1
2

*2ad3f (↵� * ad3)2(1 * m)2P <2 * (2ad3(↵� * ad3)2(1 * m)2

+↵2��f (↵� * ad3)(1 * m) * 2d2d3↵2�f)P < + 2d2d3↵2�
⇡

.

(8)

For proof of this theorem, see Appendix.
We present the bifurcation diagrams with varying c, � , m, and f in

Fig. 2 to explore these parameters’ impact on the predator’s dynamics.
The bifurcation diagram in Fig. 2(a) corresponds to Theorem 2.5, which
provides the additional information that: (a) increasing the values of c
can increase the size of the predator population; (b) too large value of
c destabilizes the system and leads to a Hopf bifurcation. And Fig. 2(b)
displays similar results for the intrinsic growth rate � on predators.
Fig. 2(c) shows that increasing the values of m can increase first and
then reduce the size of the predator population to zero, and Fig. 2(d)
shows the size of the predator population reduces with increasing the
values of f . However, the parameters m and f can lead to a Hopf
bifurcation to stabilize the system.

For the above analytical results, we also offer some numerical
simulation in Section 4.1, see Fig. 5 that depicts the dynamics of the
convergence to equilibria; Figs. 6, 7 and 8 that respectively display
the effects of parameters � , ↵, �, c, f , d1, d2, d3 and a in the form of
bifurcation graph.
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Fig. 2. One parameter bifurcation diagrams with varying � , c, m and f , respectively. Other parameters are ↵ = 0.8, � = 0.8, a = 0.5, d1 = 0.1, d2 = 0.25, d3 = 0.55. Fig. 2(b), 2(a), 2(c)
and 2(d) describe positive equilibrium’s changes in stability as increasing � , c, m and f , respectively, where the blue solid line represents the stable equilibrium point, the green
dotted line represents the unstable equilibrium point and the black dot denotes Hopf bifurcation.

Fig. 3. When � = 2.25, c = 0.8, f = 1, ↵ = 0.8, � = 0.5, a = 0.5, d1 = 0.1, d2 = 0.25, d3 = 0.55, �1 = 0.01, the effect of changing the values of prey refuge m and noise intensity �2 in
the equations of N+ and P +, respectively.

3. Dynamics of the stochastic system

In this section, we focus on the dynamics of the stochastic sys-
tem (1). Consider a Markov process X(t) = (N(t),P (t)) ç (X1(t),X2(t))
in the state space (R2

+,B(R2
+), {Ft}tg0,P) that satisfies the It Ço SDE as

follows:

dX(t) = f (X(t))dt + h(X(t))dB(t), X(0) = X0, (9)

where f (�) : R2
+ R2

+ and h(�) : R2
+ ÑR2ù2

+ are locally Lipschitz
functions, and the diffusion matrix of X(t) is defined as A(X) :=

h(X)hT (X) = (aij (X)). For system (1), the diffusion matrix is A(X) =
diag(�21N

2, �22P
2).

The generator L which is uniformly elliptical in R2
+ related with

system (1) is introduced in the following. Define an operator LV for
each twice continuously differentiable function V (X(t)) as

LV (X(t)) =
2
…

i=1
f i(X) )V (X)

)Xi
+ 1

2

2
…

i,j=1
aij (X) )

2V (X)
)Xi)Xj

.
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3.1. Stationary distribution

For further study of the stochastic system (1)’s dynamics, we assume
that ⌅ is a bounded set:

⌅ =
T

(N ,P ) À R2
+ : 0 < N(t) + 1

↵ P (t)

f
<

�*d1
d2

if d3 > � * d1
(�*d1+d3)2

4d2d3
if d3 f � * d1

U

œ R2
+,

and the following lemma proves the existence of a positive solution for
system (1).

Lemma 3.1. For any given initial value (N(0),P (0)) À ⌅, there is a unique
positive solution (N(t),P (t)) of the system (1) for all t g 0 and will remain
in ⌅ with probability one.

Since the detailed proof is virtually identical to Lemma 2.4 in [45]
and Theorem 2.6 in [43], we omit it.

Remark 3. From Lemma 3.1, it can be obtained that ⌅ is almost surely
positively invariant of the stochastic system (1), that is, if (N(0),P (0)) À
⌅, then P{N(t),P (t) À ⌅} = 1 for all t g 0.

One major concern in biology is the long-term persistence of the
species. In this section, we will analyze sufficient conditions for the
existence of a unique ergodic stationary distribution via Theorem 4.1
and Assumption (B) in [48].

Theorem 3.2. Assume that � * d1 >
�21
2 , d3 > max{ �21

2 ,
�22
2 } and

Rs :=
↵�(1 * m)(� * d1 *

�21
2 )2

(� * d1)(d2 + a(1 * m)(� * d1))(d3 +
�22
2 )

> 1

hold, then the system (1) has a unique stationary distribution ⇡(�) with initial
value (N(0),P (0)) À R2

+ and it has ergodic property.

Proof. For the stochastic system (1), the diffusion matrix is

G =
0

�21N
2 0

0 �22P
2

1

, (10)

which is positive definite for any compact subset of R2
+, then there is a

positive number g0 = min(N ,P )À⇧
�

�21N
2, �22P

2� such that

2
…

i,j=1
gij⌘i⌘j = �2

1N
2⌘21 + �2

2P
2⌘22 g g0⌘2, (N ,P ) À ⇧ œ R2

+, ⌘ = (⌘1, ⌘2) À R2
+.

(11)

This means that the condition (B.1) of Assumption (B) in [48] holds.
Define a C2-functions V : R2

+ ô R+

V(N ,P ) = C0(V1(N ,P ) + 2
u

k1↵�(�*d1)2
ad2

V2(N) + V3(P )) + V4(N ,P ),

(12)

where
V1(N ,P ) = k1N * lnP ,

V2(N) = d2
2(�*d1)2

N + 1
�*d1

(* lnN),

V3(P ) =
2(�f+�(1*m))

d3

u

k1↵�
ad2

P ,

V4(N ,P ) = 1
✓+2 (N + P

↵ )
✓+2, 0 < ✓ < 1,

(13)

and C0 > 0 is a sufficiently large number satisfying

*C0Rs + F�
1 + F�

2 f *2,

where F�
1 = supN>0 F1(N), F�

2 = supP>0 F2(P ), and F1(N), F2(P ) are
defined in (24). It can be seen that V(N ,P ) is continuous and it tends
to ÿ as (N ,P ) approaches the boundary of R2

+. Then, there is a unique
minimum point (N ,P ) of V(N ,P ) in the interior of R2

+. Hence, we
construct a non-negative C2-function V : R2

+ ô R+ ‰ {0} as follows:

V (N ,P ) = V(N ,P ) * V(N ,P ). (14)

Applying the It Ço’s formula, we derive

LV1(N ,P ) = k1L(N) +L(* lnP )

= k1

0

�N(1 + cN)
1 + cN + fP

* d1N * d2N2 * �(1 * m)NP
1 + a(1 * m)N

1

* ↵�(1 * m)N
1 + a(1 * m)N + d3 +

�2
2
2

f k1
�

(� * d1)N * d2N2� * ↵�(1 * m)N
1 + a(1 * m)N + d3 +

�2
2
2

f *
0

k1(� * d1)
a(1 * m) (1 + a(1 * m)N) + ↵�(1 * m)N

1 + a(1 * m)N

1

+
k1(� * d1)(d2 + a(1 * m)(� * d1))

a(1 * m)d2
+ d3 +

�2
2
2

f *2
u

k1↵�(� * d1)
a

˘

N +
k1(� * d1)(d2 + a(1 * m)(� * d1))

a(1 * m)d2
+ d3 +

�2
2
2 ,

(15)

LV2(N) =
d2

2(� * d1)2
L(N) + 1

� * d1
L(* lnN)

f d2
2(� * d1)2

�

(� * d1)N * d2N2�

+ 1
� * d1

H

*(� * d1) + d2N + (�f + �(1 * m))P +
�2
1
2

I

f d2N
2(� * d1)

0

1 *
d2N
� * d1

1

+
d2N
� * d1

* 1
� * d1

H

� * d1 *
�2
1
2

I

+ �f + �(1 * m)
� * d1

P

f
v

d2
� * d1

˘

N * 1
� * d1

H

� * d1 *
�2
1
2

I

+ �f + �(1 * m)
� * d1

P ,

(16)

L

`

r

r

p

V1(N ,P ) + 2

v

k1↵�(� * d1)2
ad2

V2(N) + V3(P )
a

s

s

q

f *2
u

k1↵�(� * d1)
a

˘

N +
k1(� * d1)(d2 + a(1 * m)(� * d1))

a(1 * m)d2

+ 2
d3

v

k1↵�
ad2

(�f + �(1 * m))
0

↵�(1 * m)NP
1 + a(1 * m)N * d3P

1

+ d3 +
�2
2
2

+2

v

k1↵�(� * d1)2
ad2

H
v

d2
� * d1

˘

N * 1
� * d1

H

� * d1 *
�2
1
2

I

+ �f + �(1 * m)
� * d1

P
1

f *2
v

k1↵�
ad2

H

� * d1 *
�2
1
2

I

+
k1(� * d1)(d2 + a(1 * m)(� * d1))

a(1 * m)d2

+ 2
d3

v

k1↵�
ad2

↵�(1 * m)(�f + �(1 * m))
1 + a(1 * m)N NP + d3 +

�2
2
2 .

(17)

Taking

k1 =
↵�ad2(1 * m)2(� * d1 *

�21
2 )2

(� * d1)2(d2 + a(1 * m)(� * d1))2
, (18)

then we get

L

`

r

r

p

V1(N ,P ) + 2

v

k1↵�(� * d1)2
ad2

V2(N) + V3(P )
a

s

s

q

f *
↵�(1 * m)(� * d1 *

�2
1
2 )

2

(� * d1)(d2 + a(1 * m)(� * d1))
+ d3 +

�2
2
2

+
2↵2�2(1 * m)2(�f + �(1 * m))(� * d1 *

�2
1
2 )

d3(� * d1)(d2 + a(1 * m)(� * d1))
NP

= *
�

d3 +
�2
2
2

�

(Rs * 1) +
2↵2�2(1 * m)2(�f + �(1 * m))(� * d1 *

�2
1
2 )

d3(� * d1)(d2 + a(1 * m)(� * d1))
NP ,

(19)
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Fig. 4. When � = 2.25, ↵ = 0.8, � = 0.5, a = 0.5, d1 = 0.1, d2 = 0.25, d3 = 0.55, the effects of changing the values of c and f in the equation of P + with or without noise.

where

Rs :=
↵�(1 * m)(� * d1 *

�21
2 )2

(� * d1)(d2 + a(1 * m)(� * d1))
�

d3 +
�22
2
�

. (20)

And

LV4(N ,P ) =
⇠

N + P
↵

⇡✓+1 0 �N(1 + cN)
1 + cN + fP

* d1N * d2N2 * �(1 * m)P
1 + a(1 * m)N

+ �(1 * m)N
1 + a(1 * m)N *

d3
↵
P
1

+ ✓ + 1
2

⇠

N + P
↵

⇡✓ 0

�2
1N

2 + �2
2

⇠P
↵

⇡21

f ⇠

N + P
↵

⇡✓+1 ⇠
(� + d3 * d1)N * d2N2 * d3

⇠

N + P
↵

⇡⇡

+ ✓ + 1
2

⇠

N + P
↵

⇡✓
�2
max

⇠

N + P
↵

⇡2

f ⇠

N + P
↵

⇡✓+1 0 (� + d3 * d1)2

4d2
* d3

⇠

N + P
↵

⇡

1

+
�2
max(✓ + 1)

2

⇠

N + P
↵

⇡✓+2

=
(� + d3 * d1)2

4d2

⇠

N + P
↵

⇡✓+1
* 1

2

H

d3 *
�2
max(✓ + 1)

2

I

⇠

N + P
↵

⇡✓+2

* 1
2

H

d3 *
�2
max(✓ + 1)

2

I

⇠

N + P
↵

⇡✓+2

f C1 *
1
2

H

d3 *
�2
max(✓ + 1)

2

I

⇠

N + P
↵

⇡✓+2

f C1 *
1
2

H

d3 *
�2
max(✓ + 1)

2

I

0

N✓+2 +
⇠P
↵

⇡✓+21

,

(21)

where

C1 = sup(N ,P )ÀR2
+

<

(�+d3*d1)2
4d2

⇠

N + P
↵

⇡✓+1

* 1
2

0

d3 *
�2max(✓+1)

2

1

⇠

N + P
↵

⇡✓+2=

< ÿ.
(22)

Therefore, according to (19) and (21), we deduce

LV (N ,P ) = L(V(N ,P ) *V(N ,P ))

= L

`

r

r

p

C0

`

r

r

p

V1(N ,P ) + 2

v

k1↵�(� * d1)2
ad2

V2(N) + V3(P )
a

s

s

q

+ V4(N ,P ) *V(N ,P )
a

s

s

q

f *C0Rs +
2C0↵2�2(1 * m)2(�f + �(1 * m))(� * d1 *

�2
1
2 )

d3(� * d1)(d2 + a(1 * m)(� * d1))
NP + C1

* 1
2

H

d3 *
�2
max(✓ + 1)

2

I

0

N✓+2 +
⇠P
↵

⇡✓+21

= *C0Rs +
2C0↵2�2(1 * m)2(�f + �(1 * m))(� * d1 *

�2
1
2 )

d3(� * d1)(d2 + a(1 * m)(� * d1))
NP

+C1 + F1(N) + F2(P ),

(23)

where

F1(N) := *1
2

H

d3 *
�2max(✓ + 1)

2

I

N✓+2,

F2(P ) := *1
2

H

d3 *
�2max(✓ + 1)

2

I

⇠P
↵

⇡✓+2
.

(24)

Set

F (N ,P ) = *C0Rs +
2C0↵2�2(1*m)2(�f+�(1*m))(�*d1*

�21
2 )

d3(�*d1)(d2+a(1*m)(�*d1))
NP

+C1 + F1(N) + F2(P )
(25)

and assume that d3 >
�2max(✓+1)

2 , �max = max{�1, �2}, thus we obtain

F (N ,P ) f
h

n

l

n

j

F (ÿ,P ) ô *ÿ, if N ô ÿ,
F (N ,ÿ) ô *ÿ, if P ô ÿ,
*C0Rs + F�

1 + F�
2 f *2, if N ô 0+ or P ô 0+.

Therefore, for a sufficiently small 0 < ✏ < 1, we can get

LV (N ,P ) f *1 for any (N ,P ) À R2
+ ‰⇧✏ ,

where ⇧✏ =
⌧

✏, 1✏
�

ù
⌧

✏, 1✏
�

. This implies that the condition (B.2) of
Assumption (B) in [48] also holds. Thereupon, the stochastic system (1)
has a unique stationary distribution that is ergodic.

Remark 4. Theorem 3.2 indicates that the system (1)’s solution can
have an asymptotically stationary distribution, suggesting stochastic
stability, instead of exploding to infinity. As a result of Theorem 3.2, the
system (1) oscillates around the positive equilibrium E< = (N<,P <) of
the corresponding deterministic system, and it has the ergodic property
where the positive solution converges to a unique stationary distri-
bution if the conditions � * d1 >

�21
2 , d3 > max{ �21

2 ,
�22
2 } and Rs :=

↵�(1*m)(�*d1*
�21
2 )2

(�*d1)(d2+a(1*m)(�*d1))(d3+
�22
2 )

> 1 are met. In this way, the prey and

predator species have shown their capacity to sustain themselves under
specific conditions.

3.2. Probability density function

As a result of the foregoing study, it can be concluded that the global
solution (N ,P ) of the stochastic system (1) follows a unique stationary
distribution. Next, we will derive the distribution’s explicit probability
density function. It is necessary to show the system’s two fundamental
transformations to accomplish this goal effectively.
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Let (x1, x2)T = (lnN , lnP )T and using It Ço’s formula, the system (1)
depicts that

h

n

n

n

l

n

n

n

j

dx1 =
0

�(1 + cex1 )
1 + cex1 + fex2 * d1 * d2ex1 *

�(1 * m)ex2
1 + a(1 * m)ex1

* �21
2

1

dt + �1dB(t),

dx2 =
H

↵�(1 * m)ex1
1 + a(1 * m)ex1 * d3 *

�22
2

I

dt + �2dB(t).

(26)

A crucial value is obtained by taking into consideration the random
effect, that is,

õRs =
↵�

a
�

d3 +
�22
2
�

, (27)

which is related to R0 = ↵�
ad3
. From the expressions of õRs and R0, we

get õRs f R0, and the sign holds if and only if �2 = 0. If õRs > 1, the
following equation

h

n

n

l

n

n

j

�(1 + cex1 )
1 + cex1 + fex2 * d1 * d2ex1 *

�(1 * m)ex2
1 + a(1 * m)ex1 *

�21
2 = 0,

↵�(1 * m)ex1
1 + a(1 * m)ex1 * d3 *

�22
2 = 0,

(28)

determines the quasi-equilibrium E+ = (N+, P+) := (ex
+
1 , ex

+
2 ) À R2

+.
From (28), it can be calculated that

N+ = 1
a(1 * m)(õRs * 1)

, (29)

and the equation

H(P ) =
H

�(1 * m)(1 + cN+) + f (1 + a(1 * m)N+)
H

d2N+ + d1 +
�2
1
2

II

P

+f�(1 * m)P 2 + (1 + cN+)(1 + a(1 * m)N+)

ù
H

d1 +
�2
1
2 + d2N+ * �

I

= 0

has a unique positive solution

P + = 1
2f (2d3 + �2

2 )

⌧⇠ ⇠

2↵fd2N+2
⇡2

+ 4↵fd2
�

2↵fd1 + ↵f�2
1 * c�2

2 * 2cd3
�

N+3

+
⇠

c2
�

2d3 + �2
2
�2 + 2↵f

�

4c� * 2cd1 * 2d2 * cd2
1
� �

2d3 + �2
2
�

+↵2f 2 �2d1 + �2
1
�2
⇡

N+2

+2
�

2d3 + �2
2
� �

2cd3 + 4�↵f * 2↵fd1 * ↵f�2
1 + c�2

2
�

N+ +
�

2d3 + �2
2
�2

⇡ 1
2

*
⇠

2↵fd2N+2 +
�

2↵fd1 + 2cd3 + c�2
2 + ↵f�2

1
�

N+ + 2d3 + �2
2

⇡ �

(30)

if �*d1
d2

> N+ + �21
2d2
.

Eqs. (29) and (30) determine the relationship between E+ =
(N+, P+) and the strength of prey refuge m and noise intensity in the
predator species �2. The expressions show how the values ofN+ and P+

are influenced by the parameter m and noise intensity �2, respectively.
Fig. 3 illustrates this relationship. The quantity of prey N+ may grow
as the parameters m and �2 increase, but the number of predators
P+ may decrease. If the system (1) does not contain stochastic noise
(i.e., �1 = �2 = 0), then E+ = E< = (N<, P <). Figs. 4(a) and 4(b)
display the connections between these points P <, P+ and the carry-over
effect parameter c, as well as the fear level induced by predator f with
or without noise intensity. The number of predators P+ impacted by
both parameters c and f varies more complicated due to environmental
noise.

In light of the foregoing, let (y1, y2)T = (x1 * x+1 , x2 * x+2 ), where
x+1 = lnN+, x+2 = lnP+, then the corresponding linearized system
of (26) is
<

dy1 = (*c11y1 * c12y2)dt + �1dB(t),
dy2 = c21y1dt + �2dB(t),

(31)

where

c11 = d2N+ * a�(1 * m)2N+P +

(1 + a(1 * m)N+)2
* �cfN+P +

(1 + cN+ + fP +)2
,

c12 =
�(1 * m)P +

1 + a(1 * m)N+ + �f (1 + cN+)P +

(1 + cN+ + fP +)2
> 0,

c21 =
↵�(1 * m)N+

(1 + a(1 * m)N+)2
> 0.

(32)

The probability density function of the system (1) may be found in
the following theorem.

Theorem 3.3. Assume that õRs =
↵�

a(d3+
�22
2 )

> 1 and c11 > 0, for any initial

value (N(0), P (0)) À R2
+, the system (1)’s stationary distribution around

E+ = (N+, P+) follows a unique log-normal density function P(N ,P ), that
is,

P(N ,P ) = (2⇡)*1⌃

* 1
2 e*

1
2

�

ln N
N+ , ln P

P+
�

⌃*1
�

ln N
N+ , ln P

P+
�T

, (33)

where the positive definite matrix ⌃ = %21Z
*1
1 ⌃0(Z*1

1 )T + %22Z
*1
2 ⌃0(Z*1

2 )T
with %1 = c21�1, %2 = c12�2,

⌃0 =
H 1

2c11
0

0 1
2c11c12c21

I

, Z1 =
0

c21 0
0 1

1

, Z2 =
0

*c11 *c12
1 0

1

,

and c11, c12, c21 are described in Eq. (32).

Proof. As a matter of simplicity, let Y = (y1, y2)T , ÇG = diag(�1, �2) and

A =
0

*c11 *c12
c21 0

1

. (34)

The system (31) then can be rewritten as dY = AYdt + ÇGdB(t). The
unique density function P(Y) around the equilibrium E+ = (N+,P+),
according to [49], fulfills the Fokker–Planck equation as follows

*
2
…

i=1

�2i
2

)2

)y2i
P + )

)y1

⌅

(*c11y1 * c12y2)P
⇧

+ )
)y2

⌅

c21y1P
⇧

= 0. (35)

P(Y) can be characterized by a quasi-Gaussian distribution [50],
i.e., P(Y) = ce*

1
2YW Y

T
, where c > 0 is given by the normalized conditionîR2

+
P(Y)dY = 1 and W is a real symmetric matrix, since the diffusion

matrix ÇG is a constant matrix. Putting these results into Eq. (35) yields
the fact that W obeys W ÇG2W +ATW +WA = 0 which is an algebraic
equation. If W is an inverse matrix, an equivalent equation is given by
setting ⌃ = W *1,

ÇG2 + A⌃ + ⌃AT = 0. (36)

According to the principle of finite independent superposition [51],
Eq. (36) is equal to combining two equations, as below,

ÇG2
i + A⌃i + ⌃iAT = 0, i = 1, 2,

where ÇG1 = diag(�1, 0), ÇG2 = diag(0, �2), ÇG2 = ÇG2
1 + ÇG2

2 and ⌃ = ⌃1+⌃2.
The matrix A’s character polynomials are

JA(�) = �2 + c11� + c12c21, (37)

then if c11 > 0, A has all negative real-part eigenvalues. ⌃ of Eq. (36)
is positive definite and can be deduced from Lemma 2.6 of [52]. To
obtain the special expression for ⌃, two processes are necessary.

Firstly, for the algebraic equation

ÇG2
1 + A⌃1 + ⌃1AT = 0, (38)

where ÇG1 = diag(�1, 0), we can calculate a matrix as

B1 =
0

*c11 *c12c21
1 0

1

= Z1AZ*1
1 , (39)

where Z1 =
0

c21 0
0 1

1

. Then, Eq. (38) can be transformed into the

following equation

Z1 ÇG2
1Z

T
1 +B1Z1⌃1Z

T
1 + Z1⌃1Z

T
1 B

T
1 = 0,
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that equals

G2
0 +B1⌃0 + ⌃0B

T
1 = 0,

where G0 = diag(1, 0), ⌃0 = %*21 Z1⌃1Z
T
1 , %1 = c21�1, and we can derive

the positive definite matrix

⌃0 =
H 1

2c11
0

0 1
2c11c12c21

I

. (40)

Thus, ⌃1 = %21Z
*1
1 ⌃0(Z*1

1 )T can be calculated and it is positive definite.
Secondly, consider the algebraic equation

ÇG2
2 + A⌃2 + ⌃2AT = 0, (41)

where ÇG2 = diag(0, �2). Similarly, we can get the following matrix

B2 = Z2AZ*1
2 = B1, (42)

where Z2 =
0

*c11 *c12
1 0

1

. We also transform Eq. (41) into the

equation as follows

Z2 ÇG2
2Z

T
2 +B2Z2⌃2Z

T
2 + Z2⌃2Z

T
2 B

T
2 = 0,

which means G2
0+B2⌃0+⌃0B

T
2 = 0, where ⌃0 = %*22 Z2⌃2Z

T
2 , %2 = c12�2.

As indicated in the above step, ⌃0 is positive definite. Thus, we get the
positive definite matrix ⌃2 = %22Z

*1
2 ⌃0(Z*1

2 )T .
As a result, the real symmetric matrix ⌃ = ⌃1 + ⌃2 is positive

definite, and the probability density function P(N , P ) is approximately
normal around the equilibrium point E+. The processing is done.

Remark 5. According to Theorem 3.3, a unique log-normal density
function, P(N , P ), exists in the presence of õRs > 1 and c11 > 0, which
also illustrates the system (1)’s stochastic permanence. That is to say, in
the sense of probability, the quasi-equilibrium point E+ = (N+,P+) is
stable with a higher probability. That means that the prey and predator
trajectories will spend more time in the vicinity of E+.

3.3. Extinction

In this subsection, we investigate the conditions that lead to the
extinction of the prey and predator populations. For convenience, we
define a constant

öRs :=
2�

min
��

d1 +
�21
2
�

,
�

d3 +
↵2�22
2

��

,

and then have the following extinction result.

Theorem 3.4. Assume that öRs < 1, then for any initial value (N(0),P (0))
À R2

+, the solution (N(t),P (t)) of system (1) has the following property

lim sup
tôÿ

1
t
ln
⇠

N(t) + 1
↵
P (t)

⇡ f min
��

d1 +
�21
2

�

,
�

d3 +
↵2�22
2

��

2 (öRs * 1) a.s.

which means that the prey and predator populations will go to extinction
almost surely, respectively.

Proof. From the stochastic system (1), let U (t) = N(t) + 1
↵ P (t), and

using It Ço’s formula to lnU (t), we obtain

d lnU (t) =
4

1
N+ 1

↵
P

⇠

�N(1+cN)
1+cN+fP * d1N * d2N2 * �(1*m)NP

1+a(1*m)N + 1
↵

⇠

↵�(1*m)NP
1+a(1*m)N * d3P

⇡⇡

* �2
1N

2+�2
2P2

2(N+ 1
↵
P )2

5

dt

+ �1N+�2P
N+ 1

↵
P

dB(t)

f
4

� *
0

d1N+ d3
↵
P

N+ 1
↵
P

+ �2
1N

2+�2
2P

2

2(N+ 1
↵
P )2

15

dt + �1N+�2P
N+ 1

↵
P

dB(t)

f �dt * 1
(N+ 1

↵
P )2

⇠

(d1 +
�2
1
2 )N

2 + ( d3
↵2

+ �2
2
2 )P

2
⇡

dt + �1N+�2P
N+ 1

↵
P

dB(t)

f rdt * 1
(N+ 1

↵
P )2

min{(d1 +
�2
1
2 ), (d3 +

↵2�2
2

2 )}(N2 + 1
↵2
P 2)dt

+ �1N+�2P
N+ 1

↵
P

dB(t)

f �dt * min{(d1+
�21
2 ), (d3+

↵2�22
2 )}

2 dt + �1N+�2P
N+ 1

↵
P

dB(t).

Table 3
Definitions of variables and parameters in the system (1).
Parameters Description Value Resource

� Intrinsic growth rate 2.25 [5]
c Carry-over effect parameter 0.8 [5]
f Fear level induced by predator 1 [5]
↵ Energy conversion rate 0.8 [18]
� Search rate 0.8 [18]
a The half-saturation constant 0.5 [18]
m Strength of prey refuge 0.25 [18]
d1 Natural death rate of prey 0.1 [5]
d2 The density-dependent death rate of prey. 0.25 [5]
d3 Natural death rate of predator 0.55 [18]
�1 , �2 Intensities of the noise Variables Estimate

(43)

Integrating the above inequality from 0 to t and then dividing by t
into both sides, we derive

lnU (t) * lnU (0)
t

f � *
min

��

d1+
�21
2

�

,
�

d3+
↵2�22
2

��

2
+ 1

t î t
0

�1N(s)+�2P (s)
N(s)+ 1

↵ P (s)
dB(s),

(44)

then

lim sup
tôÿ

lnU (t)
t

f � *
min

��

d1+
�21
2

�

,
�

d3+
↵2�22
2

��

2

=
min

��

d1 +
�21
2
�

,
�

d3 +
↵2�22
2

��

2 (öRs * 1) a.s.

(45)

When öRs < 1, it can be obtained that limtôÿ U (t) = limtôÿ(N(t) +
1
↵ P (t)) = 0 a.s., which is shown that

lim
tôÿ

N(t) = 0 and lim
tôÿ

P (t) = 0 a.s. (46)

This completes the proof.

Remark 6. Theorem 3.4 discusses the dynamics of a no-species situa-
tion for the stochastic system (1), that is, öRs =

2�

min
�

(d1+
�21
2 ), (d3+

↵2�22
2 )

�

< 1

is satisfied, N(t) and P (t) in system (1) go to extinction with probability
one, respectively. From the expression of öRs, we can conclude that
the maximum birth rate of prey �, the natural death rate of prey and
predator populations (d1, d3), and environmental noise (�1, �2) have a
critical influence on species extinction in system (1). In addition, we
obtain that large values of the natural death rates and environmental
disturbances and small values of � will lead to the species extinction of
system (1).

4. Numerical simulations

In this section, we make some numerical simulations to verify
the dynamic results of the system (1) with or without noises. The
corresponding biological parameters of the system (1) are shown in
Table 3.

4.1. Deterministic version of the system (1)

Fig. 5 illustrates the stability of three equilibria (E0 = (0, 0),E1 =
( �*d1d2

, 0), E< = (N<,P <)) of the system (1) with �1 = �2 = 0 (i.e., the
system (3)), and the dynamics of evolution to various equilibria are de-
picted. By setting the parameters’ values (see Table 3), in Fig. 5(a), both
prey and predator species become extinct when the intrinsic growth
rate � of the prey N is smaller and satisfies � < d1. In Figs. 5(b), 5(c)
and 5(d), let the parameters satisfy the conditions of Theorems 2.4 and
2.5, one can see that the development of equilibria E0,E1 and E< is
illustrated in its dynamics, respectively.
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Fig. 5. Dynamics of the convergence to equilibrium with initial value (N(0),P (0)) = (1, 3) and different values of � , d1. Table 3 lists other parameter values for (a), (b), (c), and
(d), respectively. (a) Both N and P cannot survive; (b) N can survive but P cannot; (c) N and P can survive; (d) N and P coexist cyclically.

Fig. 6. Bifurcation diagram of the system (1) without noises, with � , ↵ and � as bifurcation parameters, respectively. At (a) � = 1.848, (b) ↵ = 0.6876 and (c) � = 0.696, respectively,
Hopf bifurcation occurs where the steady state becomes unstable and the system begins to exhibit limit cycles.

Bifurcation analysis with � , ↵, � (see Fig. 6), c, f (see Fig. 7),
d1, d2, d3, a (see Fig. 8) as the bifurcation parameters respectively
present the stability of the system (3)’s states. Figs. 6(a), 6(b), 6(c) and
Fig. 7(a) display that for smaller � , ↵, � and c, the prey-only equilibrium
E1 = ( �*d1d2

, 0) is stable which means the predator population vanishes.
And for bigger � , ↵, � and c, Hopf bifurcation occurs that implies the
prey and predator population coexist and show periodic behavior. It
is indicated that these parameters have a destabilizing influence on
the system (3). Furthermore, the amplitude of the oscillations grows
as � , ↵ and c increase respectively (see Figs. 6(a), 6(b) and Fig. 7(a)),
while the rise in amplitude does not grow monotonically as � increases
(see Fig. 6(c)). Fig. 7(b) and Fig. 8 show that the periodic oscillations
gradually disappear as the parameters f , d1, d2, d3 and a increase. For
larger values of f (Fig. 7(b)), d3 (Fig. 8(c)) and a (Fig. 8(d)), the

predator population cannot persist and goes extinct, and for greater
values of d1 (Fig. 8(a)) and d2 (Fig. 8(b)) both the prey and predator
populations cannot survive.

Fig. 9 depicts the impact of the strength of prey refuge via the
parameter m, and other parameters are taken as in Table 3. With an
increase in m, the system (3) respectively exhibits periodic oscillations
(see Figs. 9(a), m = 0.15), a limit cycle around the interior equilibrium
point E< = (N<,P <) (Figs. 9(b), m = 0.3955), and a stable positive
equilibrium E< (Figs. 9(c), m = 0.6). The maximum Lyapunov exponent
graphs in Fig. 10 with respect to the parameter m illustrate the sys-
tem (3)’s transitions between the three forms of dynamics mentioned in
Fig. 9. The negative Lyapunov exponent demonstrates that the system
corresponds to a stable state (see Fig. 10(c)).
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Fig. 7. Bifurcation diagram of the system (1) without noises, respectively, with c and f as bifurcation parameters. (a) At c = 0.4164, there is a Hopf bifurcation; (b) at f = 3.088,
a bifurcation disappears and the predator population P dies out with an increase in f .

Fig. 8. Bifurcation diagram of the system (1) without noises, respectively, with d1 , d2 , d3 and a as bifurcation parameters. At (a) d1 = 0.544, (b) d2 = 0.3002, (c) d3 = 0.6399 and
(d) a = 0.6828, the bifurcation and periodic oscillation are no longer present.

Fig. 9. Solutions of the system (3) with different values for m. Other parameters are fixed in Table 3. (a) Periodic oscillations when m = 0.15; (b) limit cycle when m = 0.3955; (c)
stable equilibrium when m = 0.6, respectively.

4.2. The stochastic system (1)

Numerical simulations are performed in this section to validate
the theoretical conclusions. We use the Milstein higher-order approach
introduced in [53] for the stochastic system (1), and the discretization
form of the stochastic system is provided by:

h

n

n

l

n

n

j

Nk+1 = Nk +
0

�Nk(1 + cNk)
1 + cNk + fPk * d1Nk * d2Nk2 * �(1 * m)NkPk

1 + a(1 * m)Nk

1

�t

+Nk
H

�1
˘

�t!k +
�21
2 (!2

k * 1)�t
I

,

Pk+1 = Pk +
0

↵�(1 * m)NkPk

1 + a(1 * m)Nk * d3Pk
1

�t + Pk
H

�2
˘

�t!k +
�22
2 (!2

k * 1)�t
I

,

(47)

where �t > 0 is the time step, �2i (i = 1, 2) denote the intensity of white
noises, !k (k = 1, 2,… , n) are mutually independent Gaussian random
variables following the distribution N(0, 1).

Fig. 11 depicts the time series and stationary distributions of prey
N(t) and predator P (t) for the stochastic system (1) at t = 1000 from
1000000 simulations with different values of �i (i = 1, 2) and keeping all
parameters fixed as in Table 3, with the probability density functions of
N(t) and P (t) represented by red smoothed curves. Figs. 11(a), 11(b)
and 11(c) show a visible difference in the stationary distributions as
the magnitude of �i (i = 1, 2) increases. It can be seen that the average
values and skewness of the distribution for N(t) and P (t) change when
the intensity of noise �i (i = 1, 2) increases. When �i = 0.01 (i = 1, 2),
in Fig. 11(a), the distribution is similar to a normal distribution. With
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Fig. 10. The maximum Lyapunov exponent for m with different values and other parameters are the same as those in Fig. 9. (a) m = 0.15, �max = 0.148; (b) m = 0.3955, �max = 0.0653;
(c) m = 0.6, �max = *0.211.

increasing �i (i = 1, 2) to 0.2, the distribution is positively skewed, see
Fig. 11(c).

Fixing the noise intensity �1 = 0.01 and other parameters are taken
as in Table 3, Fig. 12 illustrates the influence of noise intensity �2
which respect to predator population to the stochastic system (1). We
can observe that as the amount of �2 increases, the prey population N
survives and the density of N increases, while the predator population
P becomes extinct (see Figs. 12(a), 12(b) and 12(c)).

Studying the transition time from an initial state to extinction is
crucial for both predator and prey species. As an example, we conduct
10,000 simulations using the stochastic system (1) with equal values for
� := �1 = �2. We vary � within the range of 0.1 to 1 and calculate the
extinction time for N(t) and P (t) as a function of �. This analysis allows
us to observe how changes in � affect the duration until N(t), P (t)
reach extinction. Fig. 13 depicts the relationship between the mean
first passage time (MFPT) and the intensity of multiplicative noise �.
Initially, the mean first passage time increases, but then it starts to
decrease as the noise intensity increases further. At a certain point,
a maximum value is reached, creating a resonance peak in the curve.
This resonance phenomenon implies that the system (1)’s stability is
enhanced, making it less susceptible to phase transitions.

Figs. 13(a) and 13(b) show the relationship of MFPT with the carry-
over effect parameter c or fear level induced by predator f and the
noise intensity � in the system (1), respectively. The peak height in
Fig. 13(a) decreases as the carry-over effect parameter c increases,
whereas in Fig. 13(b), the peak height increases with a higher predator-
induced fear level f . That is, when the noise intensity value is kept
constant, increasing the carry-over effect parameter accelerates the
mean first passage time (see Fig. 13(a)). In this case, the acceleration
of time implies that the likelihood of extinction increases. Higher levels
of predator-induced fear resulted in a slower mean first passage time,
indicating a decreased probability of extinction for the population (see
Fig. 13(b)).

According to Theorem 3.3, the system (1) has a unique log-normal
probability density function P(N ,P ) around the quasi-endemic equilib-
rium E+ = (N+,P+). Then, we illustrate how the probability density
function graph changes when the environmental noise factors vary.
Fig. 14 shows graphs of P(N ,P ) derived using parameters �1 = 0.1, �2 =
0.6 (see Fig. 14(a)), �1 = �2 = 0.6 (Fig. 14(b)), �1 = 0.6, �2 = 0.72
(Fig. 14(c)), and �1 = 1.25, �2 = 0.8 (Fig. 14(d)), respectively, other
parameters are kept unchanged as given in Table 3. The two bigger
environmental noises work to the shape parameter P(N ,P ).

Furthermore, the relationship between the parameters d3, �2 and
the critical values Rs and õRs of the stochastic system (1) is shown in
Fig. 15, and the remaining parameter values are the same in Table 3.
Figs. 15(a) and 15(b) delineate a full look at the gradual changes of
Rs and õRs by both the natural death rate of predator d3 and the noise
intensity �2.

5. Conclusions

The prey–predator system with Holling-type II functional response
is investigated in this paper in the presence of environmental noise, a
prey refuge, predation fear, and its carry-over effects. The determin-
istic version of system (1) (i.e., the system (3)) demonstrates com-
plicated dynamics in terms of both fear and its carry-over effects,
as well as refuge characteristics, as demonstrated by theoretical re-
sults and numerical simulations. By altering the parameter values of
� , ↵, �, c, f , d1, d2, d3, a or m, the deterministic system (i.e., �1 = �2 =
0) can undergo supercritical or subcritical bifurcation behavior (see
Figs. 6, 7, 8 and 9). As a result, we see that the prey refuge m, predation
fear f , and its carry-over effect c play a critical part in the system’s
stability. We also discover that prey refuge or predation fear can cause
shifts between the species’ survival and extinction states.

On the other side, our assumption is that the environmental dis-
turbances are modeled as white noise and that they directly influence
prey and predator populations. Based on this, we investigated if the
stochastic system (1) is stable and how environmental fluctuations
affect it to understand how the species might survive in the long run.

By Theorem 3.2, under Rs = ↵�(1*m)(�*d1*
�21
2 )2

(�*d1)(d2+a(1*m)(�*d1))(d3+
�22
2 )

> 1 and extra

conditions, the system (1) has a unique ergodic stationary distribu-
tion ⇡(�), which contributes to the two species’ stochastic persistence.
Moreover, by considering the two dimensional Fokker–Planck equation,
Theorem 3.3 demonstrates that under the condition õRs =

↵�

a(d3+
�22
2 )

> 1,

the stationary distribution ⇡(�) around E+ = (N+,P+) has a log-normal
density function P(N , P ). We are concerned with persistence, which
not only indicates that the species is not on the verge of extinction
but also indicates that it is settling into a form of random equilibrium.
Theorem 3.4 further demonstrates the extinction of both prey and
predator species for a long time when öRs = 2�

min
�

(d1+
�21
2 ), (d3+

↵2�22
2 )

�

< 1

holds. Environmental noises may alter the dynamic behavior of the
species, and if the disturbance is severe enough, it is very destructive
to the persistence of the population and can result in the extinction
of prey and predator populations. In other words, multiplicative noise
leads to the presence of absorbing barriers at N = 0 and P = 0, causing
ecological systems to converge towards these states as noise intensities
increase. Anomalous fluctuations occur during the decay process. We
also analyze that the mean first passage time is influenced by both the
intensity of multiplicative noise and the carry-over effect parameter
c, or the fear level induced by the predator f . Interestingly, these
factors exhibit a similar effect on MFPT. Specifically, the curve of MFPT
demonstrates a maximum value, indicating the presence of a resonance
phenomenon. The study’s findings indicated that the survival of the
population is adversely affected by high carry-over effect parameters,
while high levels of fear induced by predators promote population
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Fig. 11. Time series and histogram of the probability density function for N(t) and P (t) at t = 1000 for the stochastic system (1) with three different values of �i (i = 1, 2): (a)
�1 = �2 = 0.01; (b) �1 = �2 = 0.1; (c) �1 = �2 = 0.2, the probability density functions of N(t) and P (t) are represented by the red smoothed curves. Keeping all parameters fixed
as in Table 3. Number of simulations for the frequency histogram fitting density curves of N and P of system (1) with 1000000 iteration points, and the run time of our code is
about 6.9547 s.

survival. All of these results might influence population control and
conservation biology.

Finally, numerical simulations confirm our mathematical findings
that include: (1) the existence of predation fear and prey refuge can
end the oscillations and bring the deterministic system back to a stable
state, even to a boundary state; (2) the system undergoes a Hopf
bifurcation as the level of predation fear’s carry-over effects gradually
increases; and (3) the environmental noise can affect the growth of
predator and prey populations, and when it is big enough, the random
disturbance will alter the dynamics of the stochastic system.

There are some interesting topics that could be explored using
the proposed system. For example, the system could be extended to
investigate how different types of disturbances, such as multiplicative

noise or human disturbance, impact population dynamics. Addition-
ally, the proposed model could be applied to inform conservation and
management strategies by predicting the effects of various management
actions, such as habitat restoration or invasive species removal, on
population dynamics. These topics are expected to be addressed in
future research.
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Fig. 12. Time series of the stochastic system (1) with different noise intensity �2. Other parameters are taken as in Table 3 and �1 = 0.01.

Fig. 13. Mean first passage time as a function of multiplicative noise intensity � for transferring from the initial value state (N(0),P (0)) to the state of the extinction is plotted
respectively for different values of the carry-over effect parameter c and predator-induced fear level f . (a) c = 0.8, 1.9, 3 and (b) f = 1, 2, 3. The other fixed parameter values are
the same as in Table 3.
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Appendix

Proof of Theorem 2.2

Proof. The proof of the existence of equilibria is straightforward,
so it is omitted here. To prove the stability of equilibria, let E< be
the corresponding equilibrium of the above three cases, J (E<) the
corresponding Jacobian matrix evaluated at E< and �i(E<) (i = 1, 2) the
eigenvalues of J (E<).

Case (a) The system (48) always has an equilibrium
E< = ( d3

↵�*ad3
, ↵(�(↵�*ad3)*d2d3)(↵�*ad3)2

). The Jacobian matrix of (48)

h

n

l

n

j

dN(t)
dt = �N * d2N2 * �NP

1 + aN
,

dP (t)
dt = ↵�NP

1 + aN
* d3P ,

(48)

evaluated at E< is

J (E<) =
`

r

r

p

*d3(a�(↵�*ad3)*d2(↵�+ad3))
*↵�(↵�*ad3)

* d3
↵

(↵�*ad3)�*d2d3
� 0

a

s

s

q

. (49)

Direct computation yields

�1(E<) + �2(E<) =
d3(a�(↵� * ad3) * d2(↵� + ad3))

↵�(↵� * ad3)
,
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Fig. 14. Graphs of the probability density function of (N ,P ) showing the effect of noises in the system (1). Other parameters are taken as in Table 3.

Fig. 15. The combined influence of parameters d3 and �2 on Rs and õRs of the system (1), respectively. Other parameters are taken as in Table 3.

and

�1(E<)�2(E<) =
d3((↵� * ad3)� * d2d3)

↵�
.

Then the unique equilibrium E< is locally asymptotically stable if

d3
↵�*ad3

< �
d2

< ↵�+ad3
a(↵�*ad3)

. It follows from the Poincare–Bendixson
theorem [54] that all solutions of (48) converge to E<, i.e., E< is

globally asymptotically stable.

Case (b) The system (50) always has an equilibrium
E< = ( d3

↵�*ad3
, ↵((↵�*ad3)(�*d1)*d2d3)(↵�*ad3)2

). The Jacobian matrix of (50)

h

n

l

n

j

dN(t)
dt = �N * d1N * d2N2 * �NP

1 + aN
,

dP (t)
dt = ↵�NP

1 + aN
* d3P ,

(50)

evaluated at E< is

J (E<) =
`

r

r

p

d3(a(↵�*ad3)(�*d1)*d2(↵�+ad3))
↵�(↵�*ad3)

* d3
↵

(↵�*ad3)(�*d1)*d2d3
� 0

a

s

s

q

. (51)



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 175 (2023) 113935

16

F. Rao and Y. Kang

By calculating the eigenvalues, we have

�1(E<) + �2(E<) =
d3(a(↵� * ad3)(� * d1) * d2(↵� + ad3))

↵�(↵� * ad3)
,

and

�1(E<)�2(E<) =
d3((↵� * ad3)(� * d1) * d2d3)

↵�
.

It follows that the unique equilibrium E< of system (50) is globally
asymptotically stable if d3

↵�*ad3
< �*d1

d2
< ↵�+ad3

a(↵�*ad3)
.

Case (c) The system (52) always has an equilibrium
E< = ( d3

(↵�*ad3)(1*m)
, ↵((↵�*ad3)(�*d1)(1*m)*d2d3)(↵�*ad3)2(1*m)2

).
The Jacobian matrix of (52)

h

n

l

n

j

dN(t)
dt = �N * d1N * d2N2 * �(1 * m)NP

1 + a(1 * m)N ,

dP (t)
dt = ↵�(1 * m)NP

1 + a(1 * m)N * d3P ,
(52)

evaluated at E< is

J (E<) =
`

r

r

p

d3(a(↵�*ad3)(�*d1)(1*m)*d2(↵�+ad3))
↵�(↵�*ad3)(1*m)

* d3
↵

(↵�*ad3)(�*d1)(1*m)*d2d3
�(1*m) 0

a

s

s

q

. (53)

By computing the eigenvalues, we obtain that

�1(E<) + �2(E<) =
d3(a(↵� * ad3)(� * d1)(1 * m) * d2(↵� + ad3))

↵�(↵� * ad3)(1 * m) ,

and

�1(E<)�2(E<) =
d3((↵� * ad3)(� * d1)(1 * m) * d2d3)

↵�(1 * m) .

Then the unique equilibrium E< of system (52) is globally asymptoti-
cally stable if d3

(↵�*ad3)(1*m)
< �*d1

d2
< ↵�+ad3

a(↵�*ad3)(1*m)
.

Proof of Theorem 2.1

Proof. We skip the analytical detail of the forward part of Theorem 2.1
since it is similar to the proof of Theorem 2.1 in [13]. We only show
the items (i), (ii), and (iii).

If �*d1
d2

< d3
↵�(1*m) , then from the system (3) and limtôÿ supN(t) f

�*d1
d2

, we have

dP (t)
dt = ↵�(1 * m)NP

1 + a(1 * m)N * d3P

=
0

↵�(1 * m)N
1 + a(1 * m)N * d3

1

P

f `

r

r

p

↵�(1 * m) �*d1d2
1 + a(1 * m)N * d3

a

s

s

q

P

f
0

↵�(1 * m)(� * d1)
d2

* d3

1

P < 0

which indicates that limtôÿ supP (t) = 0.
The system (3) gives the following equation:

d(N + 1
↵ P )

dt = �N(1 + cN)
1 + cN + fP

* d1N * d2N2 *
d3
↵
P .

If � < min{d1, d3}, then

d(N + 1
↵ P )

dt f �N * d1N *
d3
↵
P f �(N + 1

↵
P ) *min{d1, d3}(N + 1

↵
P ).

which indicates that limtôÿ N + 1
↵ P = 0. Moreover, we have the

following

d(N + 1
↵ P )

dt = �N(1 + cN)
1 + cN + fP

* d1N * d2N2 *
d3
↵
P

g ( �c
1 + cN + fP

* d2)N2 * (d1N +
d3
↵
P )

g 1
c
(�c * d2 * d2(cN + fP ))N * (d1N +

d3
↵
P )

g 1
c
(�c * d2 * d2c(N + f

c
P ))N * (d1N +

d3
↵
P )

g 1
c
(�c * d2 * d2cmax{f

c
, 1
↵
}(N + 1

↵
P ))N *max{d1, d3}(N + 1

↵
P )

g ( 1
c
(�c * d2 * d2cmax{f

c
, 1
↵
}(N + 1

↵
P )) *max{d1, d3})(N + 1

↵
P ).

If there exists a positive number w < �c*d2*dmax{d1 ,d3}
d2cmax{ f

c ,
1
↵ }

such that

d(N+ 1
↵ P )

(N+ 1
↵ P )dt

Û

Û

ÛN+ 1
↵ P=w

> 0. Then, lim inf tôÿ N + 1
↵ P g w for any N(0) +

1
↵ P (0) > w.

Proof of Theorem 2.3

Proof. Let ⌦N = {(N ,P ) À R2
+ : w f N+ 1

↵ P f max{ �*d1
d2

, (�*d1+d3)
2

4d2d3
}}„

{P = 0}. Referring to the results in [55], the persistence of predator is
determined by the sign of dP

Pdt ⌦N
= dP

Pdt E1=(
�*d1
d2

,0). The dynamics of

P -class are governed by

dP
dt = P

0

↵�(1 * m)N
1 + a(1 * m)N * d3

1

,

which gives

dP
Pdt

Û

Û

Û⌦N
=
0

↵�(1 * m)N
1 + a(1 * m)N * d3

1

Û

Û

ÛE1=(
�*d1
d2

,0)

=
↵�(� * d1)(1 * m)

d2 + a(� * d1)(1 * m) * d3 > 0

if �*d1
d2

> d3
(↵�*ad3)(1*m)

, which means that the persistence of predator for
the system (3).

Proof of Theorem 2.4

Proof. Straightforward computation yields that the system (3) always
has an extinction equilibrium E0 = (0, 0) and the prey-only equilibrium
E1 = ( �*d1d2

, 0) if �
d1

> 1. The stability of the boundary equilibria is
obtained from the signs of eigenvalues of the corresponding Jacobian
matrices. Thus, E1 is locally asymptotically stable if 0 < �*d1

d2
<

d3
(↵�*ad3)(1*m)

, and it is unstable if �*d1
d2

> d3
(↵�*ad3)(1*m)

> 0.
The Jacobian matrix of the system (3) at E< = (N<,P <) is

J (E<)

=
`

r

r

p

�cfN<P <

(1+cN<+fP <)2 * d2N< + a�(1*m)2N<P <

(1+a(1*m)N<)2 * �f (1+cN<)N<

(1+cN<+fP <)2 * �(1*m)N<

1+a(1*m)N<
↵�(1*m)P <

(1+a(1*m)N<)2 0

a

s

s

q

,

(54)

where

J11 =
�cfN<P <

(1+cN<+fP <)2 * d2N< + a�(1*m)2N<P <

(1+a(1*m)N<)2 ,

J12 = * �f (1+cN<)N<

(1+cN<+fP <)2 * �(1*m)N<

1+a(1*m)N< < 0,

J21 =
↵�(1*m)P <

(1+a(1*m)N<)2 > 0,

and the characteristic equation at E< is

F(�) = �2 * J11� * J12J21 = 0. (55)
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Let �1(E<), �2(E<) be the roots of (55) and assume that R�1(E<) f
R�2(E<), we have

�1(E<) + �2(E<) = J11,
�1(E<)�2(E<) = *J12J21 > 0.

Both roots of Eq. (55) are either negative or with negative real parts
since if J11 < 0, i.e., d2 >

�cfP <

(1+cN<+fP <)2 +
ad23P

<

↵2�N<2 , then we haveR�1(E<) f
R�2(E<) < 0, and the positive equilibrium E< = (N<,P <) is locally
asymptotically stable; if J11 > 0, i.e., d2 < �cfP <

(1+cN<+fP <)2 +
ad23P

<

↵2�N<2 , then
we have 0 < R�1(E<) f R�2(E<), and the positive equilibrium E< is
unstable.

From the first equation of system (3), we have

dN
dt = �N(1 + cN)

1 + cN + fP
* d1N * d2N2 * �(1 * m)NP

1 + a(1 * m)N
f (� * d1)N * d2N2 * �(1 * m)NP

1 + a(1 * m)N .

When �
d1

< 1, then dN
dt < 0 which shows thatN(t) goes to zero as t ô ÿ.

It also causes P (t) to go to zero. Thus, E0 is globally asymptotically
stable.

From the second equation of system (3), we get

dP
dt = ↵�(1 * m)NP

1 + a(1 * m)N * d3P <
0

↵�(1 * m)(� * d1)
d2 + a(1 * m)(� * d1)

* d3

1

P .

If �*d1
d2

< d3
(↵�*ad3)(1*m)

, then P (t) ô 0 as t ô ÿ. Hence, the system (3)
reduces to a limiting system [56] as follows

dN
dt = �N * d1N * d2N2,

which shows that N(t) ô �*d1
d2

. Thus E1 = ( �*d1d2
, 0) is globally

attractive.
Let F1(N ,P ) = �N(1+cN)

1+cN+fP * d1N * d2N2 * �(1*m)NP
1+a(1*m)N , F2(N ,P ) =

↵�(1*m)NP
1+a(1*m)N * d3P and choose Dulac function D(N ,P ) = 1

NP , then we
have

)F1(N ,P )D(N ,P )
)N

=
)
⇠

�(1+cN)
P (1+cN+fP ) *

d2N
P

* �(1*m)
1+a(1*m)N

⇡

)N
= �cf

(1 + cN + fP )2
+ a�(1 * m)2

(1 + a(1 * m)N)2
*

d2
P

,

)F2(N ,P )D(N ,P )
)P

=
)
⇠

↵�(1*m)
1+a(1*m)N * d3

N

⇡

)P
= 0.

Therefore, if d2 >
�cfP

(1+cN+fP )2 + a�(1*m)2P
(1+a(1*m)N)2 , the system (3) has no limit

cycle according to Dulac–Bendixson theorem [57], which implies that
this system has only equilibrium dynamics. That is, E< = (N<,P <) is
globally asymptotically stable.

Proof of Theorem 2.5

Proof. Set �(c) = ⇠(c) + i!(c) be an eigenvalue of Eq. (55), then we
obtain

⇠2 * !2 * J11⇠ * J12J21 = 0,
2⇠! * J11! = 0. (56)

There is �(c) = 0 at the Hopf bifurcation point, then we let c = cH ,

!2(cH ) + J12J21 = 0,
J11!(cH ) = 0, (57)

where !(cH ) ë 0. Thus, J11(cH ) = 0 and !(cH ) =
˘

*J12(cH )J21(cH ) > 0,
where
cH = (↵�*ad3)(1*m)

2d23 (a(↵�*ad3)
2(1*m)2P<*↵2�d2)

ù
⇠

(↵2��f (↵� * ad3)(1 * m)P<(4ad3f (↵� * ad3)2(1 * m)2P<2

+(4ad3(↵� * ad3)2(1 * m)2 + ↵2��f (↵� * ad3)(1 * m) * 4d2d3↵2�f )P< * 4d2d3↵2�))
1
2

*2ad3f (↵� * ad3)2(1 * m)2P<2 * (2ad3(↵� * ad3)2(1 * m)2 + ↵2��f (↵� * ad3)(1 * m)
*2d2d3↵2�f )P< + 2d2d3↵2�

⇡

.

(58)

Differentiating Eq. (55) and ⇠(cH ) = 0, we derive

*2!d!
dc * J11

d⇠
dc =

dJ12J21
dc ,

2!d⇠
dc * J11

d!
dc = !

J11
dc ,

thus, if
�

2!2 dJ11
dc * J11

dJ12J21
dc

�

c=cH ë 0, we get

d⇠
dc

Û

Û

Û

Ûc=cH
=

2!2 dJ11
dc * J11

dJ12J21
dc

J 2
11 + 4!2

Û

Û

Û

Ûc=cH
ë 0.
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