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Abstract
The honeybee plays an extremely important role in ecosystem stability and diversity
and in the production of bee pollinated crops. Honey bees and other pollinators are
under threat from the combined effects of nutritional stress, parasitism, pesticides, and
climate change that impact the timing, duration, and variability of seasonal events. To
understandhowparasitismand seasonality influence honeybee colonies separately and
interactively,wedeveloped anon-autonomousnonlinear honeybee-parasite interaction
differential equation model that incorporates seasonality into the egg-laying rate of
the queen. Our theoretical results show that parasitism negatively impacts the honey
bee population either by decreasing colony size or destabilizing population dynamics
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through supercritical or subcritical Hopf-bifurcations depending on conditions. Our
bifurcation analysis and simulations suggest that seasonality alone may have positive
or negative impacts on the survival of honey bee colonies. More specifically, our study
indicates that (1) the timing of the maximum egg-laying rate seems to determine when
seasonality has positive or negative impacts; and (2) when the period of seasonality is
large it can lead to the colony collapsing. Our study further suggests that the synergistic
influences of parasitism and seasonality can lead to complicated dynamics that may
positively and negatively impact the honey bee colony’s survival. Our work partially
uncovers the intrinsic effects of climate change andparasites,whichpotentially provide
essential insights into how best to maintain or improve a honey bee colony’s health.

Keywords Honey bees · Seasonality · Parasitism · Climate change

Mathematics Subject Classification 92D25 Population dynamics 34C60 Qualitative
investigation and simulation of ordinary differential equation models 34C25 Periodic
solutions to ordinary differential equations

1 Introduction

Honey bee, Apis mellifera, the colony is not only an excellent example of a complex
adaptive system (Wilson 2000), but also has great value to our ecosystemand economic
development. Per USDA statistics, 80% of crops benefit from pollination by honey
bees, including more than 130 types of fruits and vegetables (https://www.farmers.
gov/connect/blog/conservation/value-birds-and-bees), worth $215 billion annually
worldwide (Smith et al. 2013). Additionally, honey bees produce honey and other
hive products that are beneficial to human health. For example, the average Amer-
ican consumed 1.0 pounds of honey per person in 2019, which has increased from
0.5 pounds in 1990 (https://www.ers.usda.gov/data-products/food-availability-per-
capita-data-system/). Unfortunately, honey bee colonies are collapsing at an alarming
rate, especially during winter (Neumann et al. 2010) causing unsustainable losses to
commercial beekeepers and colony shortages to growers.

Research (Oldroyd 2007; Perry et al. 2015; Smith et al. 2013) suggests that there
are many factors contributing to the global decline of the honey bee population. Those
factors include nutritional stress from lack of flowering plants, environmental stressors
such as global warming, lack of genetic variation, and vitality, parasites such as Varroa
mites and Nosema, and diseases such as acute bee paralysis virus and deformed wing
virus. Most notably, Varroa mites pose a huge threat to the health of honey bees
(DeGrandi-Hoffman andCurry 2004;Kang et al. 2016;Messan et al. 2017, 2021; Peng
et al. 1987; Vetharaniam and Barlow 2006). They can parasitize honey bees, transmit
viruses, and also make honey bees more susceptible to viral outbreaks (Koleoglu et al.
2017). Mites parasitize workers and drones (male bees), larvae and adults, but not
the queen (DeGrandi-Hoffman et al. 2017). Parasitized honey bees have shortened
lifespans, lower weight, and weakened immune systems (Peng et al. 1987). Foragers
that have been parasitized during development are more easily disoriented during
foraging as adults (Koleoglu et al. 2017). Infected colonies also are more prone to

123

https://www.farmers.gov/connect/blog/conservation/value-birds-and-bees
https://www.farmers.gov/connect/blog/conservation/value-birds-and-bees
https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/
https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/


Impacts of seasonality and parasitismon on honey bee... Page 3 of 45 19

viral diseases and struggle to survive in the winter (Chen and Siede 2007; DeGrandi-
Hoffman et al. 2019; DeGrandi-Hoffman and Curry 2004; Martin et al. 2012).

Seasonality has important effects on honey bee foraging behaviors. For example, in
temperate areas during in fall andwinter, food can become unavailable as temperatures
drop below freezing. During this time, honey bees remain in their hives and form
a thermoregulated cluster of bees (Stabentheiner et al. 2003), but if the bees fail
to maintain cluster warmth, the colony will perish (Simpson 1961). Moreover, the
queen bee stops or reduces egg laying (DeGrandi-Hoffman et al. 1989; Research
and Extension Consortium 2004; SEELEY and Visscher 1985) in preparation for
overwintering (Martin 2001). Overwintering is stressful to colonies and losses may
exceed 30% (Doeke et al. 2015).

Both experimental and simulated bee population data show seasonal patterns in
colony population dynamics (DeGrandi-Hoffman et al. 1989; Harris 1980). Sea-
sonality also plays a role in the dynamics of parasites and viruses in colonies
(DeGrandi-Hoffman and Curry 2004;Martin 2001; Smoliński et al. 2021). Thus, there
is increased attention to including seasonality in honey bee population models. For
example, Ratti et al. (2015), Eberl et al. (2010), Sumpter andMartin (2004) adding sea-
sonality equations using four sets of parameter values to differentiate seasons revealed
that seasonal dynamics can lead to colonies with persistant Varroa infestations to sud-
denly collapse in late fall or spring because of the compounding effects of parasitism
and viruses transmitted by Varroa Ratti et al. (2015). The seasonal models also gen-
erated recommendations that controls for Varroa should occur in summer to reduce
the colony losses (Sumpter and Martin 2004). The work of Betti et al. (2014, 2016)
directly used two sets of models to represent the dynamics of non-winter and winter,
respectively. The model (Betti et al. 2014) has no egg laying in the winter system and
considering the age structure of the colony during its yearly cycle. The model (Betti
et al. 2016) added 21-day transition equations for colonies to wake-up between the
end-of-winter and a new active season. Thismodel captured the sharp decline in colony
size often seen in the spring (spring dwindling) and showed that the timing of the onset
of disease in a colony can impact its severity and persistence in the population.

Here, motivated by the experimental work shown in DeGrandi-Hoffman et al.
(1989), Harris (1980), we describe a model where seasonality has been incorporated
into the queen’s egg-laying rate through cosine functions. An age-structure model of
honey bees’ population dynamics Chen et al. (2020) showed that seasonality may
reduce colony survival but may also prevent colony collapse. Messan et al. (2021)
focused on the colonies with parasites, and found seasonality can help colonies recover
under certain conditions. Messan et al. (2018) focused on the nutrition of colonies,
and found that seasonality can effects from stress and cause colony death.

Based on the data (DeGrandi-Hoffman et al. 1989; Kang et al. 2016) and previously
reported models (Chen et al. 2020; Messan et al. 2018, 2021), we formulate a mathe-
matical modeling framework describing honeybee–mite interactions with seasonality
in the queen’s egg-laying rate to address the following questions:
– How may seasonality impact honey bee populations in the absence of parasitism?
– How may parasitism impact the honey bee population?
– What are the synergistic impacts of seasonality and parasitism on the honey bee
population?
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The remaining parts of this article are structured as follows: In Sect. 2, we provide
details of how we modeled seasonality in the egg-laying rate and a general modeling
framework for the interactions of parasitism and honey bees. In Sect. 3, we address how
seasonality impacts the survival of honey bee colonies and their population dynamics.
We theoretically demonstrate the impacts of parasitism on the honey bee populations
without seasonality. In Sect. 4, we explore how parasites and seasonality might influ-
ence colony survival and population dynamics. In the last section, we conclude our
theoretical and bifurcation analysis results regarding the effects of seasonality and
parasites on colony dynamics and propose future studies needed for understanding
how climate-related factors may threaten honey bee colonies.

2 Model derivation

In this section, we focus on modeling the honeybee–parasite colony dynamics with
seasonality. Let H(t) be the population of the honey bee and M(t) be the population
of the mites in a given colony at time t . We assume that:

A1: The term H2

K+H2 reflects the cooperative brood care from adult bees that perform
nursing and collecting food for brood (Chen et al. 2020; Eischen et al. 1984;Kang
et al. 2016; Messan et al. 2018, 2021; Schmickl and Crailsheim 2007), where√
K indicates the colony size at which brood survival rate is half maximum.

A2: We assume that the queen egg-laying rate is seasonal (r(t)) due to resource
constraints. The literature work suggests that food, temperature, weather, and
oviposition place would affect the queen (Bodenheimer 1937; DeGrandi-
Hoffman et al. 1989; Khoury et al. 2011). Motivated by literature (Chen et al.
2020, 2021;Messan et al. 2021) and analysis of recent experimental data (Fisher
et al. 2021), we model the egg-laying rate with seasonality as follows:

r(t) = r0

(
1+ ϵ cos

(
2π(t − ψ)

γ

))
(1)

with ϵ ∈ (0, 1) measuring the intensity of seasonal impacts, r0 representing the
average of egg-laying rate, γ representing the length of seasonality, andψ being
the time of the maximum laying rate.

A3: Female mites breed offspring in the cell, and complete the mating in the cell.
In the phoretic phase, female mites feed on adult bees and immigrate to other
colonies (Vetharaniam and Barlow 2006). In the reproductive phase, mites attach
to foraging bees and then reproduce offspring in the cell (Ramsey et al. 2019).
Based on the biological background and literature work (Betti et al. 2014; Mes-
san et al. 2021; Sumpter and Martin 2004), we model the honeybee–parasite
interaction as follows:

aH
b + cH
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!t
Parameter Definition (units) Parameter Definition (Units)

H Honey bee population (bees) M Parasite (mites) population (bees)
a The parasitism rate to honey bee (per

day)
b The size of honey bee population at

which the rate of attachment is half-
maximal (bees)

c Parasite attachment effects r0 The average of egg-laying rate
(bees/day)√

K The colony size at which brood sur-
vival rate is half-maximum (bees)

σ The conversion rate of nutrient con-
sumption obtained from bees to suste-
nance for mites’ reproduction

dh & dm The death rate of honey bee and para-
site (mites) (per day)

γ The length of seasonality (days)

ψ The time of the maximum laying rate
(days)

ϵ The strength of seasonality

where a is the mite parasitism rate to the honey bee, c is parasite attachment
effects, and b is the size of honey bee population at which rate of attachment is
half maximal.

A4: Female mites need nutrition from honey bees to produce the next generation.
The parameter σ indicates conversion rate of nutrient consumption obtained
from bees into nutrients needed by mites to reproduce.

The four assumptions above lead to the following nonautonomous and non-linear
ordinary differential equations of the honeybee–parasite interaction model with sea-
sonality (Model (2)):

H ′ = r(t)H2

K + H2 − dhH − aH
b + cH

M,

M ′ = σaH
b + cH

M − dmM, (2)

with r(t) = r0(1+ ϵ cos( 2π(t−ψ)
γ )).

Note: If b = 1 and c = 0, Model (2) reduces to the previous work of Kang
et al. (2016) disease free model; and if c = 1, Model (2) reduces to our previous
works of Messan et al. (2017, 2021). Thus the current model (2) processes the general
interaction properties of honey bees and parasitism.

In the following two sections, we will provide our detailed study to obtain insights
regarding how may seasonality and/or parasitism alone or combined impact honey
bee population dynamics.

3 Mathematics analysis

To facilitate our analysis of the proposed system, we start with re-scaling our system
(2). Assume that b ̸= 0, c ̸= 0 and σ ̸= 0, let u = c

b H , v = c
bσ M , K̂ = Kc2

b2 ,ω = aσ
c ,
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r̄(t) = r(t)c
b , d̄h = dh and d̄m = dm , then system (2) can scaled by following:

u′ = r̄(t)u2

K̂ + u2
− d̄hu − ωu

1+ u
v

v′ = ωu
1+ u

v − d̄mv (3)

We first show that the proposed model (3) is positive invariant and bounded in R2
+

as the following theorem:

Theorem 1 Assume that all parameters are non-negative. Model (3) with initial value
u(0) = u0, v(0) = v0, and (u0, v0) ∈ X possesses a unique solution, and the space
X is positively invariant and bounded in R2

+.

Remark 1 Theorem 1 provides us reassurances that the proposed model (3) is well
defined biologically, provides bases for our careful designed numerical studies.

3.1 Impact of seasonality on honeybee-only population dynamics

If there is no mites, i.e., v(0) = 0, the model (2) reduces to the following bee-only
population model with seasonality:

u′ = r̄(t)u2

K̂ + u2
− d̄hu (4)

with r̄ = r0(1 + ϵ cos( 2π(t−ψ)
γ )) which satisfies a Lipschitz condition for all u ≥ 0.

Thus according to Theorem 1, the initial value problem with u(0) ≥ 0 has a unique
non-negative and bounded solution.

In order to study the effects of the strength of seasonality (ϵ) and the length of
seasonality (γ ) on bee populations, we start with the dynamics of the Honeybee-only
model (4) when r̄(t) = r0 is a constant. The honeybee-only systemwithout seasonality

(4) has two equilibria u∗
i , i = 1, 2 shown as below provided r0 > 2d̄h

√
K̂ :

u∗
1 =

r0 −
√
r20 − 4d̄2h K̂

2d̄h
, u∗

2 =
r0 +

√
r20 − 4d̄2h K̂

2d̄h
.

The global dynamics of (4) when r̄(t) = r0 can be summaries as the following
proposition:

Proposition 1 If r0 < 2d̄h
√
K̂ , then the population of u(t) converges to 0 for any

initial condition u(0) ≥ 0. In the case that r0 > 2d̄h
√
K̂ , u(t) converges to 0 for

any initial condition u(0) < u∗
1 while u(t) converges to u∗

2 for any initial condition
u(0) > u∗

1.
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(a) Seasonality leads to the collapsing of
the colony when u0 = 1
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(b) Seasonality can promote the survival
of the colony when u0 = 0.1

Fig. 1 Population dynamics of honeybee-only model (4) with or without seasonality by setting r0 = 1,
d̄h = 0.5, K̂ = 1/4, ψ = 0 and γ = 100 with u0 = 0.1 or 1 as its initial population

Notes: Proposition 1 indicates that the relationship among the constant egg-laying rate
r0, the honey beemortality, and the half-maximum rate K̂ , as well as initial conditions,
determine whether the honey bee colony can survive. With the larger egg-laying rate
r0 with the larger initial condition u0, the honey bee colony is more likely to survive.
In the case that the egg-laying rate is seasonal, r̄(t) = r0(1 + ϵ cos( 2π(t−ψ)

γ )) with
its average value over each seasonal length γ being r0, the consequence of honey bee
population dynamics can be complicated. Examples shown in Fig. 1 suggest that the
seasonality in the egg-laying rate can promote the survival of honey bees when the
intensity of seasonality is not too high, and it can also make the honey bee colony
prone to collapsing when the intensity of seasonality is high.

In Fig. 1, without seasonality ϵ = 0, the honey bee colony with r0 = 1, d̄h = 0.5,
K̂ = 1/4, ψ = 0 and γ = 100 can survive under its initial condition u(0) = 1 (red
curve in Fig. 1a) while it collapses under its initial condition u(0) = 0.1 (red curve
in Fig. 1b). When the intensity of seasonality is not too high, i.e., ϵ = 0.2 or 0.5,
the honey bee colony can survive under its initial condition u(0) = 0.1 (black and
green curves in Fig. 1b). This is an example showing that seasonality can promote the
survival of a honey bee colony. On the other hand, When the intensity of seasonality
is high, i.e., ϵ = 0.8 (blue curve in Fig. 1a), the honey bee colony collapses with
the initial condition of u(0) = 1 when the honey bee colony can survive without
seasonality. This is an example showing that seasonality can make honey bee colony
collapse under certain conditions.

In order to explore the impact of the intensity of seasonality ϵ, we first define the
minimum and maximum value of the egg-laying rate function: rm = min r̄(t) =
r0(1 − ϵ) and rM = max r̄(t) = r0(1+ ϵ). Motivated by Proposition 1, the intensity
of seasonality can be classified into the following three cases:

1. The low egg-laying rate if rM = r0(1+ ϵ) ≤ 2d̄h
√
K̂ . This case is equivalent to

0 ≤ ϵ ≤ 1 − 2d̄h
√
K̂

r0
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2. The high egg-laying rate if rm = r0(1 − ϵ) ≥ 2d̄h
√
K̂ . This case is equivalent to

0 ≤ ϵ ≤ 2d̄h
√
K̂

r0
− 1

3. The intermediate egg-laying rate if rm = min r̄(t) = r0(1−ϵ) < 2d̄h
√
K̂ ≤ rM =

max r̄(t) = r0(1+ ϵ). This is the case when

max

{

1 − 2d̄h
√
K̂

r0
,
2d̄h

√
K̂

r0
− 1

}

≤ ϵ ≤ 1.

Now we have the following theorem:

Theorem 2 Let rM = r0(1 + ϵ) and rm = r0(1 − ϵ). If the egg-laying rate r̄(t) =
r0(1+ϵ cos( 2π(t−ψ)

γ )) is low, i.e., rM = r0(1+ϵ) ≤ 2d̄h
√
K̂ , the honey bee population

u(t) converges to zero for any initial condition u(0) ≥ 0. In the case that the egg-

laying rate r̄(t) is high, i.e., rm = r0(1 − ϵ) ≥ 2d̄h
√
K̂ , honey bee population u(t)

can survive if the initial condition u(0) >
rm−

√
r2m−4d̄2h K̂

2d̄h
. More specifically, we have

rm −
√
r2m − 4d̄2h K̂

2d̄h
< lim inf

t→∞ u(t) ≤ lim sup
t→∞

u(t) <
rM +

√
r2M − 4d̄2h K̂

2d̄h

if rm ≥ 2d̄h
√
K̂ and u(0) >

rm−
√
r2m−4d̄2h K̂

2d̄h
.

Notes: Theorem 2 implies that we can focus on how seasonality impacts honey bee

population when the egg-laying rate r̄(t) is not low, i.e.,rM = r0(1 + ϵ) ≥ 2d̄h
√
K̂

which includes the case 2 and 3. Because the low egg-laying rate leads the colony
to collapse. Thus, we can reduce the three cases above to the following two cases by

introducing the critical intensity of seasonality ϵc = 2d̄h
√

K̂
r0

− 1

1. The low intensity of seasonality, i.e.,

0 ≤ ϵ ≤ ϵc

2. The high intensity of seasonality, i.e.,

0 < ϵc ≤ ϵ ≤ 1.

By applying Proposition 3.1 and the method used in Ratti et al. (2015), we obtain
the stability condition whenModel 4 processes a periodic solution u∗ as the following
theorem:
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Fig. 2 Impacts of the strength of seasonality (ϵ) and the length of seasonality (γ ). The blue area is colony
collapse and red area is colony survive. r0 = 1, d̄h = 0.5, K̂ = 1/4 andψ = 0. Honey bee initial population
is u0 ∈ [0, 0.4] (color figure online)

Fig. 3 Impacts of the maximum laying rate (ψ). The blue area is colony collapse and the red area is colony
survival. The horizontal line is the dividing line between ϵ in results 1 and 3. r0 = 1, d̄h = 0.5 and K̂ = 1/4.
Honey bee initial population is u0 ∈ [0, 0.4] (color figure online)

Theorem 3 Suppose u(t) = u∗ are periodic solutions of the Model 4, and f (u) =
u2

K̂+u2
. Then u(t) = u∗ is stable if λ =

∫ t
0

[
r̄(z) ∗ f ′(u∗) − d̄h

]
dz < 0, or is unstable

if λ > 0, where f ′(u∗) = 2K̂ u∗
(
K̂+(u∗)2

)2 .

Notes: Theorem 3 shows that the stability of the periodic solution of Model 4 requires∫ t
0

[
r̄(z) ∗ f ′(u∗) − d̄h

]
dz < 0, thus u = 0 is always locally stable as the casewithout

seasonality.
To further address the impacts of seasonality on honey bee population dynamics, we

provide basins of attractions for Model (4) in Figs. 2 and 3 by setting d̄h = 0.5, K̂ =
1/4, r0 = 1. We set ψ = 0 in Fig. 2. The x-axis is the initial honey bee population
u(0), and the y-axis is the intensity of seasonality measured by ϵ. Those parameter
values gives ϵc = 0.5 which is a white horizontal line in Figs. 2 and 3. The blue region
in Figures is the value of the strength of seasonality (ϵ) and the corresponding initial
conditions that lead the colony to collapse, while the red region is the value of ϵ and
u(0) that lead to the colony survival.
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Figures 2 and 3 suggest that the strength of seasonality (ϵ), the length of seasonality
(γ ), and the time of the maximum laying rate (ψ) impact the survival of honey bee
colony in the synergistic ways:

1. The length of seasonality (γ ) is small, e.g., γ = 4:

– If the time of the maximum laying rate (ψ) is less than the half period γ , the
seasonality seems to promote the survival of the colony in the sense that the
initial bee population that originally leads to collapsing but it leads to colony
survival with seasonality.

– If the time of the maximum laying rate (ψ) is larger than the half period γ ,
the seasonality seems to suppress the survival of the colony in the sense that
the initial bee population that originally leads to survival but it leads to colony
collapsing with seasonality.

2. When the length of seasonality (γ ) is larger, e.g., γ = 40, 400, the large intensity
of seasonality ϵ can lead to the collapsing of the colony while the impacts of the
smaller intensity of seasonality ϵ depends on the timing of the maximum laying
rate (ψ) as follows:

– If the time of the maximum laying rate (ψ) is less than the half period γ , the
seasonality seems to promote the survival of the colony.

– If the time of the maximum laying rate (ψ) is larger than the half period γ , the
seasonality seems to suppress the survival of the colony.

3.2 Impact of parasitism on honey bee population without seasonality

In this subsection, we focus on dynamics of the honeybee–parasite interaction model
(3) in the absence of seasonality, i.e., r̄(t) = r̄ . Thus, we have the following rescaled
model (5):

u′ = r̄u2

K̂ + u2
− d̄hu − ωu

1+ u
v

v′ = ωu
1+ u

v − d̄mv (5)

that would allow us to obtain biological insights on how parasitism impacts the honey
bee population by comparing the dynamics of v(0) = 0 versus v(0) > 0. In the case
that v(0) = 0, the model (3) reduces to the honey bee only model in the constant
environment (4) whose dynamics are summarized in Proposition 1.

Let (u∗, v∗) be an equilibriumofModel (3), then it satisfies the following equations:

r̄(u∗)2

K̂ + (u∗)2
− d̄hu∗ − ωu∗

1+ u∗ v
∗ = 0, (6)

ωu∗

1+ u∗ v
∗ − d̄mv∗ = 0 ⇒

(
ωu∗

1+ u∗ − d̄m

)
v∗ = 0 (7)
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Solving Eq. 7 gives v∗ = 0 or u∗ = d̄m
ω−d̄m

. And if v∗ = 0, then Eq. 6 is

r̄(u∗)2

K̂ + (u∗)2
− d̄hu∗ = 0,

which gives the following two positive solutions provided that r̄ > 2d̄h
√
K̄ ,

u∗
1 =

r̄ −
√
r̄2 − 4K̂ d̄2h
2d̄h

or

u∗
2 =

r̄ +
√
r̄2 − 4K̂ d̄2h
2d̄h

.

In the case that ω > d̄m , we have u∗ = d̄m
ω−d̄m

and v∗ =
[
r̄u∗−d̄h

(
(u∗)2+K̂

)]
(1+u∗)

ω((u∗)2+K̂ )
as

the unique interior equilibrium of Model 3. The stability of the equilibrium point can
be evaluated through the following Jacobean matrix of Model 3 is

J =

⎧
⎨

⎩

−d̄h + 2K̂ r̄u(
K̂+u2

)2 − ωv
(1+u)2 − ωu

1+u

ωv
(u+1)2

ωu
u+1 − d̄m

⎫
⎬

⎭

Now we are the following on the dynamics of the Honeybee–Parasite system (3):

Theorem 4 (Dynamics of Honeybee–Parasite system (3)) The system (3) can have
one, three, or four equilibria whose existence and stability conditions are listed in
Table 1. The global dynamics of Model (3) can be summarized as follows:

1. The system (3) converges to extinction (0, 0) for almost all initial conditions if
one the three conditions holds (1) r̄

2
√

K̂
< dh; (2) ω > d̄m; or (3)N̄ c

h > u∗.

2. If ω < d̄m or N̄∗
h < u∗, depending on initial condition, the trajectory of system

(3) converges to either (0, 0) or (N̄∗
h , 0).

3. If N̄ c
h < u∗ < N̄∗

h , then system (3) has a unique interior equilibrium (u∗, v∗)
which is locally asymptotically stable when K̂ < K̂1 and is a source when K̂ >

K̂1.

Notes: Theorem 4 provides us a global picture of the dynamics of the system (3) and
the related biological implications of the impact of parasitism on honey bee population
dynamics in constant conditions. Theorem4 suggests that parasitism can have negative
impacts on the honey bee population in three ways: (1) May lead to the collapsing of
the colony; (2) May lead to the coexistence of both honey bee and parasitism but the
honey bee population decreases compared to the case without parasitism, or (3) May
destabilize the honey bee population.
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Table 1 The existence and stability of equilibrium for Model 3, where N̄ c
h =

r̄−
√
r̄2−4K̂ d̄2h
2d̄h

, N̄∗
h =

√
r̄2−4K̂ d̄2h+r̄

2d̄h
, u∗ = d̄m

ω−d̄m
, v∗ =

[
r̄u∗−d̄h

(
(u∗)2+K̂

)]
(1+u∗)

ω((u∗)2+K̂ )
, K̂1

= −
√
r̄
√
r̄(2u∗+1)2−8d̄h (u∗)2(u∗+1)+2r̄u∗+r̄−2d̄h (u∗)2

2d̄h

Equilibria Existence condition Stability condition

(0, 0) Always exists Always locally stable

(N̄ c
h , 0)

r̄
2
√

K̂
> dh Saddle if N̄ c

h < u∗; Source if ω < d̄m or N̄ c
h > u∗

(N̄∗
h , 0)

r̄
2
√

K̂
> d̄h Sink if N̄∗

h < u∗ or ω < d̄m ; Saddle if N̄∗
h > u∗

(u∗, v∗) ω > d̄m & r̄u∗
K̂+(u∗)2

> d̄h Sink if K̂ < K̂1; Source if K̂ > K̂1

Item (3) needs further theoretical exploration regarding how may parasitism desta-
bilize the colony dynamics. For example, the colony destabilizes to show fluctuating
dynamics through supercritical Hopf-bifurcation; or to collapse supercritical Hopf-
bifurcation.

By applying the results in Wang et al. (2011), our system 3 undergoes a Hopf-
bifurcation. To study further, we re-scaled the system 3 to the following model:

u′ = g(u)( f (u) − v)

v′ = v(g(u) − d̄m), (8)

where g(u) = ωu
1+u and f (u) = r̄

g(u) · u2

K̂+u2
− d̄h

g(u) ·u. We can verify that our system 8
satisfies the following conditions:

(a1) f ∈ C1(R̄), f (a) = f (b) = 0, where 0 < a < b; f (u) is positive for
a < u < b, and f (u) is negative otherwise; there exists λ̄ ∈ (a, b) such that
f ′(u) > 0 on [a, λ̄), f ′(u) < 0 on (λ̄, b];

(a2) g ∈ C1(R̄), g(0) = 0; g(u) > 0 for u > 0 and g′(u) > 0 for u > 0, and there
exists λ > 0 such that g(λ) = d.

(a3) f (u) and g(u) are C3 near λ = λ̄ and f ′′(λ̄) < 0.

Then according to Theorem 3.1 in Wang et al. (2011), we can conclude that our
system 8 exists the first Lyapunov coefficient

a(λ̄) = f ′′′(λ̄)g(λ̄)g′(λ̄)+ 2 f ′′(λ̄)[g′(λ̄)]2 − f ′′(λ̄)g(λ̄)g′′(λ̄)
16g′(λ̄)

= ω

16(1+ λ̄)
(2 f ′′(λ̄)+ λ̄ f ′′′(λ̄))
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where

2 f ′′(λ̄)+ λ̄ f ′′′(λ̄)

=
2r̄
(
2K̂ 3 − K̂ 2(2λ̄(2λ̄ + 9)+ 3)+ 2K̂ (λ̄(4 − 3λ̄)+ 9)λ̄2 + (2λ̄ − 3)λ̄4

)

ω
(
K̂ + λ̄2

)4

(9)

Thus, we have the following results on Hopf-bifurcations:

Theorem 5 The system 3 undergoes a supercritical Hopf-bifurcation at K̂ = K̂1 with
a(λ̄) < 0, and a subcritical Hopf-bifurcation at K̂ = K̂1 with a(λ̄) > 0.

Note: Theorem 5 implies that the system 3 can undergo a supercritical or subcriti-
cal Hopf-bifurcation depending on the relationship between K̂ and λ̄. If the system
goes supercritical bifurcation at K̂1, then it has a stable limit cycle surrounding a
source equilibrium when K̂ > K̂1. When the system 3 undergoes a subcritical Hopf-
bifurcation, then both population of honey bees and the parasitic mites go to zero
through the unstable limit cycle. Biologically, it implies that parasitism in the con-
stant environment can destabilize the dynamics and even lead to colony collapse, thus
parasitism has negative impacts on honey bee population dynamics.

4 Synergistic impacts of parasitism and seasonality

In the previous two sections, we explore the impacts of seasonality on the honey bee
population and the impacts of parasitism on the honey bee population in a constant
environment, respectively. Our study shows that seasonality can have positive or neg-
ative effects on the survival of honey bee colonies depending on the values of the
strength of seasonality ϵ, the period γ , and the timing of the maximum egg-laying rate
ψ . Our theoretical work shows that parasitism in general has negative impacts on the
survival of honey bee colonies in a constant environment.

In this section, we will explore how seasonality combined with parasitism affects
honey bee population dynamics. We start with the following theorem regarding the
stability condition when Model 3 processes a periodic solution of (u∗, 0) by applying
Floquet theory theorem and the approach in Ratti et al. (2015).

Theorem 6 Suppose u∗(t) is a periodic positive solution of the Model 4, and f (u) =
u2

K̂+u2
. Then, (u∗, 0) is a periodic solution of Model 3, and f ′(u) = 2K̂ u(

K̂+u2
)2 . It is

stable if
∫ T
0

[
r̄(t) ∗ f ′(u∗) − d̄h

]
dt < 0 and

∫ T
0

[
ωu∗
1+u∗ − d̄m

]
dt < 0.

Note: Theorem 6 implies that (0, 0) is always locally stable, thus initial conditions
play important roles in the survival of honeybee colonies.

By comparing the results of Theorems 4 and 6, we can see that the impact of sea-
sonality: the seasonality in the egg laying rate r(t) generates the periodic solution u∗(t)
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whose stability requires
∫ T
0

[
r̄(t) ∗ f ′(u∗) − d̄h

]
dt < 0 and

∫ T
0

[
ωu∗
1+u∗ − d̄m

]
dt <

0. Those conditions reduce to r f ′(u∗) < d̄h and ωu∗
1+u∗ < d̄m when r(t) = r being a

constant.
By comparing the results of Theorem 3 and Theorem 6, we can see the impact

of parasitism. Specifically, the stability of nontrial periodic boundary solution (u∗, 0)
requires

∫ T
0

[
ωu∗
1+u∗ − d̄m

]
dt < 0.

Note that our honeybee–parasite model (4) exhibits strong Allee effects in honey
bees due to collaborative behavior in the colony. There is limited theoretical work on
exploring the impacts of both parasitism and seasonality. Ratti et al. (2015) developed a
honeybee–mite–virus model with seasonality. Their model also exhibits strong Allee
effects in honey bees while their mite-free solution is always unstable due to their
formulation of the mite population. They discussed the existence of periodic solution
and its stability in the bee-only model and discussed the stability of the disease-free
solution and mite-free solution through linearization and the method of Floquet theory
in the bee-mite model and bee-mite-virus model respectively. The most recent work
that can be related to our topic is the paper by Rebelo and Soresina (2020). Their
paper proposed and studied a prey-predator model with weak or strong Allee effects
in a periodic environment. They discussed the stability conditions of trivial, nontrivial
solutions, and periodic solutions. They also showed that different initial conditions
might lead to the extinction of both species or the coexistence of two species that
converges to a stable periodic orbit.

To further our understanding of the impacts of seasonality and parasitism, we per-
form simple time series simulations and observe the following by setting

r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3, K̂ = 4.49, ψ = 0

1. In the absence of seasonality and parasitism, a honey bee colony can establish its
population when its initial condition is greater than 1.173 otherwise, it collapses.

2. With seasonality but without parasitism, Fig. 4a suggests that seasonality can pro-
mote the survival of a honey bee colony when its initial condition is 1 (< 1.173)
and it can also make a honey bee colony prone to collapse when its initial condition
is above 1.173 (see the black curve in Fig. 4b).

3. With parasitism but without seasonality, a honey bee colony can survive through
the stable limit cycle around the interior equilibrium (2.33, 0.3875) for the right
initial conditions. For example, a honey bee colony survives when u0 = 1.2 and
v0 = 0.02 (see the red curve in Fig. 5a) while it collapses when the initial parasites
population grows up to 0.05 (see the red curve in 5b).

4. With both seasonality and parasitism, Fig. 5b suggests that seasonality can promote
the survival of a honey bee colony when the parasite’s initial population is 0.05
and the seasonality can also make the honey bee colony prone to collapse when the
parasite initial population is 0.02 (see Fig. 5a).

Theobservations above suggest that seasonality combinedwith parasitismmayhave
positive or negative impacts on the honey bee colony survival depending on varied
conditions. To explore further, we will perform a bifurcation analysis to understand
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Fig. 4 Comparison examples of seasonality having positive or negative effects in the honey bee colony
survival without parasitism. Red curves are honey bee populations without seasonality and black curves are
honey bee populations with seasonality (color figure online)

Fig. 5 Comparison examples of seasonality having positive or negative effects in the honey bee colony
survival with parasitism. Red curves are the honey bee populations without seasonality and black curves
are the honey bee population with seasonality (color figure online)

how may the strength of seasonality ϵ, the length of seasonal period γ , the timing
of the maximum egg-laying rate ψ , and the severity of parasitism measured by ω

in the following two scenarios of honeybee–parasitism dynamics in the absence of
seasonality:

– Honey bee and parasitism Coexists at a stable equilibrium
– Honey bee and parasitism Coexists as a stable limit cycle

4.1 Impacts of seasonality on the stable equilibrium coexistence

Wechoose a typical example of our honeybee–parasite interactionmodel (3) by setting

r̄0 = 2.86, d̄h = d̄m = 0.25,ω = 0.3, K̂ = 2.04

123



19 Page 16 of 45 J. Chen et al.

which has a bistability between the colony collapsing state (0, 0) and the survival equi-
librium at the locally stable equilibrium point (5, 5.5769) whose basins of attractions
are red area shown in Fig. 6a.

To further explore the impacts of the seasonality strength ϵ and the period of season-
ality γ on the colony survival and population dynamics, without loss of generosity, we
set the queen laying her maximum number of eggs at time ψ = 0, and we perform the
following simulations (Figs. 6, 7, 8) on basin’s attractions of our honeybee–parasite
model (3).

1. When the period of the seasonality γ is small, e.g., γ = 4, comparisons of areas
of basin attractions for the colony survival among Fig. 6a (no seasonality), 6c (the
seasonality strength ϵ = 0.2), and6d (the seasonality strength ϵ = 0.8), suggest that
seasonality strength ϵ may not impact the basin attractions of the colony survival
but it impacts the population dynamics as shown in Fig. 6b. Simulations suggest
that the larger value of the strength of seasonality ϵ, the larger amplitude of the
population.

2. When the period of the seasonality γ is in the intermediate range, e.g., γ = 80,
the impacts from the strength seasonality ϵ can be very complicated. For example,
Fig. 7d shows that basins of attractions for the colony survival are splitted into two
red areas, and Fig. 7b shows larger ϵ gives larger population amplitude.

3. When the period of seasonality γ is large, e.g., γ = 100, 250, comparisons of the
basin attractions for the colony survival suggest that the small strength seasonality ϵ

may not impact the basin attractions of the colony survival while its large valuemay
cause the colony collapsing (see Fig. 8c and d). In some cases, the large strength of
seasonality ϵ may have a positive influence on the colony survival by increasing the
area of basin attractions of the colony survival (see the comparison of Fig. 8a and f).
From the population dynamics point of view, Fig. 8b suggests that the population
has a larger amplitude when ϵ is larger.

Next, we explore the impacts of the timing of the maximum egg-laying rate (ψ) on
colony survival and population dynamics in Fig. 9 by fixing

r̄0 = 2.86, d̄h = d̄m = 0.25,ω = 0.3, K̂ = 2.04, γ = 70, ϵ ∈ {0.2, 0.35}.

γ = 70 : 1) ϵ = 0.2 (the order from large to small):ψ = 10 is largest, then ψ = 0,
ψ = 60 = 30 these two cases have same survival area, ψ = 35, and ψ = 40 is the
smallest.

2) ϵ = 0.35 (the order from large to small):ψ = 60 is largest, thenψ = 0,ψ = 40,
ψ = 10, ψ = 35, and ψ = 30 is the smallest.

Notice that the seasonality period is γ = 70 and ϵ = 0.35. We choose the timing of
the maximum egg-laying rate ψ ∈ {0, 10, 30, 35, 40 and 60} and observe that the red
area of the basin attractions for the colony survival is largest when the timing of the
maximum laying rate (ψ) isψ = 60 (Fig. 9l), then the second largest in the case when
ψ = 0 (Fig. 9g), the smallest one is ψ = 30 (Fig. 9i), and the second smallest in the
case when ψ = 35 (Fig. 9j). These observations from Fig. 9 regarding the impacts of
the maximum laying rate (ψ) of our honeybee–parasite model 3 seem to show similar
trends of our honey bee-only model 4 (see Fig. 3): as the ψ increases, the seasonality
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Fig. 6 Impacts of seasonality on the honey bee colony survival when the period of seasonality γ is large;
and r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3 and K̂ = 2.04 and ψ = 0. Initial population is u0 ∈ [0, 20],
and v0 ∈ [0, 20]. The blue area is the basin attraction that leads to colony collapse, while the red area is the
basin attraction the colony can survive (color figure online)

can suppress the survival of the colony; and after the minimum survival area, the ψ

can promote the survival of the colony. But the significant difference with the bee-only
model is the smallest area is not ψ = γ

2 . Figure9m and n show how different timing
of the maximum egg-laying rate ψ can lead to different colony dynamics.

To further understand the impacts of the timing of the maximum laying rate (ψ) of
our honeybee–parasite model 3, we set the strength of the seasonality being ϵ = 0.2,
and choose the timing of the maximum egg-laying rateψ ∈ {0, 10, 30, 35, 40 and 60},
respectively. The basin attractions for the colony survival is largest when the timing
of the maximum laying rate (ψ) is ψ = 10 (Fig. 9b), the second largest in the case
when ψ = 0 (Fig. 9a), the smallest one is ψ = 40 (Fig. 9e), and the second smallest
in the case when ψ = 35 (Fig. 9d). These observations are different than the case of
ϵ = 0.35 shown in Fig. 9 and the case of the honey bee only model 4 (see Fig. 3).
The significant difference is that ψ can promote the survival of the colony at the very
beginning ofψ growth (ψ = 10 in our simulation). These comparisons and our further
simulations suggest that the impacts of the timing of the maximum laying rate (ψ) on
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Fig. 7 Impacts of seasonality on the honey bee colony survival when the period of seasonality γ is inter-
mediate; and r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3 and K̂ = 2.04 and ψ = 0. Initial population is
u0 ∈ [0, 20], and v0 ∈ [0, 20]. The blue area is the basin attraction that leads to colony collapse, while the
red area is the basin attraction the colony can survive (color figure online)

the honey bee colony survival in the presence of parasitism are very complicated. The
area of the basin attractions for the colony survival may be increasing or decreasing
with respect to the value of ψ and ϵ without clear patterns.

By comparing the basins of attractions of the honeybee–mite system without sea-
sonality in Fig. 7a to the honeybee-mite system with seasonality in Figs.7d, 9e, g, we
observe that seasonality can split the basins of attractions into disconnected regions.
This may lead to two scenarios after adding seasonality: (1) the colony may survive
from collapsing (see Point A in Fig. 10c vs. Fig. 10d), and (2) the colony may be prone
to collapsing (see Point B in Fig. 10c vs. Fig. 10d). This suggests that seasonality may
generate varied outcomes depending on initial conditions. For instance, while an ini-
tial rise in the parasite population is generally perceived as detrimental, it can enhance
colony survival under specific circumstances, particularly when considering seasonal
factors (compare points A and B in Fig. 10d). This phenomenon has been observed in
experimental data (DeGrandi-Hoffman et al. 2020). To illustrate those observations,

123



Impacts of seasonality and parasitismon on honey bee... Page 19 of 45 19

Fig. 8 Impacts of seasonality on the honey bee colony survival when the period of seasonality γ is small;
and r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3 and K̂ = 2.04 and ψ = 0. Initial population is u0 ∈ [0, 20],
and v0 ∈ [0, 20]. The blue area is the basin attraction that leads to colony collapse, while the red area is the
basin attraction the colony can survive (color figure online)
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Fig. 9 Impacts of the timing of the maximum egg-laying rate (ψ). The blue area is colony collapse, and the
red area is colony coexistence. r̄0 = 2.86, d̄h = d̄m = 0.25,ω = 0.3, K̂ = 2.04, and γ = 70, ϵ = 0.2&0.35
Honey bee initial population is u0 ∈ [0, 20], and mite initial population is v0 ∈ [0, 20] (color figure online)
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Fig. 10 a The total bee population of four colonies from July to December. Colonies 1 (Case 1, blue)
and 3 (Case 3, gray) survive, and Colonies 2 (Case 2, red) and 4 (Case 4, black) collapse. b The total
mite population in four colonies from July to December. Colonies had different initial populations. c The
simulation result from Fig. 7a with two signed points A and B. d The simulation result from Fig. 7d with
two signed points A and B and cases. These four cases correspond to (a) and (b) colonies (color figure
online)

we use Fig. 7d as an example where we list four cases. Among them, the initial bees
population of Colony 1 (Case 1, blue) and Colony 3 (Case 3, gray) are similar, and
Colony 2 (Case 2, red) and Colony 4 (Case 4, black) are close. While, the initial mite
population is increasing in the order of Case 1, Case 2, Case 3, and Case 4. Figure10a
shows the colony of Case 1 and Case 3 survived while Case 2 and Case 4 collapsed,
especially Colony 3 has fewer bees and more mites than Colony 2, but survives.

The potential biological explanation for this phenomenon lies in the heart of sea-
sonality impacts on the egg laying rate incorporated in the model, and mite population
is impacted through bee population. For the mite population to grow, colonies must
have enough bees. If the system doesn’t consider the impacts of seasonality (Model 5),
then a higher parasite level (v0: Point A > Point B) leads to colony collapse (see red
curves in Fig. 11b and d), because parasitism reduces colony population growth by
shortening the lifespan of adult workers, then the population of bees is reduced and
so will Varroa population growth. However, the system with seasonality (Model 3)
leads to a switch in the outcomes of these two colonies, which is survival colony goes
to collapse because of seasonality, whereas the collapsing colony becomes survival.
The point is that the egg-laying rate of bees is periodic due to seasonal effects, then

123



19 Page 22 of 45 J. Chen et al.

Fig. 11 Colony dynamics with time series. These point A and point B correspond with Fig. 10c and d.
Point A: seasonality leads the colony from collapsing to survive. Point B: seasonality leads the colony from
survival to collapse (color figure online)

the number of bees will increase at some time intervals (the green curve in Fig. 11a).
At a higher parasite level, fewer bees will bring the mite population down ( ωu

1+u v)
to a manageable level, and the seasonality egg-laying rate helps the colony grow up
periodically (seasonality in Point A). At a lower parasite level, seasonality also leads
mites to grow upmore thanwithout seasonality effects (Fig. 11d). Seasonality and high
numbers of bees may lead to excessive mite growth beyond the colony’s sustainable
threshold and colony collapse. This principle is similar to one method of controlling
Varroa mites: removing the brood from the hive and interrupting the brood reproduc-
tive cycle. With no brood present, mites are compelled to feed on adult bees, which
can limit the mites’ ability to reproduce, helping to control their populations (Jack and
Ellis 2021). Nevertheless, this method will be affected by seasonality. Removing lots
of broods in the fall may have strong negative impacts on overwintering survival (Jack
et al. 2020).

Now we explore the impacts of parasitism ω on honey bee population dynamics
and its colony’s survival in Fig. 12. Comparison of black areas (which is the basins of
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Fig. 12 Impacts of parasitism (ω) on the colony dynamics of honeybee–mite model (2). The blue area is
colony collapse, the red area is colony coexistence, and the black area is only bee survive with r̄0 = 2.86,
d̄h = d̄m = 0.25, γ = 100, ψ = 0, ϵ = 0.2 and K̂ = 2.04. Honey bee initial population is u0 ∈ [0, 20],
and mite initial population is v0 ∈ [0, 20] (color figure online)

attractions of only honey bee survival) in Fig. 12a and d suggest that small parasitism
(e.g., ω = 0.18) with seasonality is more likely to lead to the colony survival than the
case without seasonality. When parasitism is not small (e.g., ω = 0.30) (see Fig. 12b),
seasonality can destabilize the systemand decrease the average population of the honey
bee. When ω is large (e.g., ω = 0.5), parasitism has negative impacts on the honey
bee colony that lead the colony to collapse (see all blue areas in Fig. 12c). Figure12e
shows increasing parasitism, colonies may still survive but the average population of
honey bees decreases (see black and green curves). These observations are in line with
our Theorem 4 for the case without seasonality.

4.2 Impacts of seasonality on stable limit cycle coexistence

We choose a stable limit cycle example of our honeybee–parasite interaction model 3
by setting

r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3, K̂ = 4.49, ψ = 0
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which has a stable collapsing state (0, 0) for the colony, and a stable limit cycle around
the source interior equilibrium (2.33, 0.3875) whose basins of attractions are red area
shown in Fig. 13e.

We explore the impacts of the seasonality strength ϵ, the period of seasonality γ , the
queen laying her maximum number of eggs at time ψ , and the parasitism effects ω on
the colony survival and population dynamics. We perform the following simulation in
Fig. 13 on the basin’s attractions of our honeybee–parasite model 3. We set the queen
laying her maximum number of eggs at time ψ = 0 to observe the impacts of γ and
ϵ.

1. When the period of the seasonality is small, i.e., γ = 4, comparisons of areas of
basin attractions for the colony survival among Fig. 13e (no seasonality), 13a (the
seasonality strength ϵ = 0.2) suggest that small seasonality strength ϵ may not
significantly impact the survival of the colony much but larger seasonality strength
ϵ can generate larger population amplitude (see Fig. 13f).

2. When the period of the seasonality is in the intermediate range, e.g., γ = 40,
comparisons of areas of basin attractions for the colony survival among Fig. 13e
(no seasonality), 13c (the seasonality strength ϵ = 0.2) and 13d (the seasonality
strength ϵ = 0.5) suggest that seasonality strength ϵ seems to suppress the survival
of the colony.

3. When the the seasonality strength ϵ is fixed, increasing the period of the seasonality
γ seems to suppress the survival of the colony (see Fig. 13a–d).

4. The large γ and ϵ would lead to the colony collapsing as we observe that the colony
collapses when γ > 60.

Let the period of the seasonality be γ = 40 and the strength of the seasonality
be ϵ = 0.2. We explore the impacts of the timing of the maximum egg-laying rate
ψ by varying ψ=0, 15(< γ

2 = 20), 35(> γ
2 = 20) in Fig. 14. We observe that the

basin attractions for the colony survival seem to have similar shapes: the largest area
is ψ = 0 (Fig. 14a), the second largest being ψ = 35 (Fig. 14c), and the smallest one
is ψ = 15 (Fig. 14b). The observation under this particular parameter set regarding
the impacts of ψ of our honeybee-parasite model 3 seems to show similar trends as
our honey bee only model 4 (see Fig. 3). Figure14d provides some visual insights on
how may γ and ϵ impact population dynamics.

Let the period of the seasonality be γ = 40 and the strength of the seasonality be
ϵ = 0.2. We explore the impacts of the parasitism by varying ω ∈ [0.1, 0.35] in Fig.
15. We observe follows:

1. When the parasitism ω is small (e.g., ω = 0.1), the honey bee can survive while
the parasite dies out (see Fig. 15a).

2. When parasitism is increased to ω = 0.292, colonies can survive with parasitism,
but the area of basins of attractions for survival decreases as parasitism increases
(see Fig. 15a–c). Thus parasitism has a negative influence on the colonies’ survival.

3. When the parasitism is large (e.g., ω > 0.3 when u0 = 5, v0 = 0.04), colonies
collapse.

We observe that (1) If the colony can survive, increasing the parasitism attack degree
can decrease the average population of honey bees. (2) Large parasitism can lead to a
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Fig. 13 Impacts of seasonality on the stable limit cycle: the strength of seasonality ϵ and the period of
seasonality γ when r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3, ψ = 0, and K̂ = 4.49. Honey bee initial
population is u0 ∈ [0, 40], and mite initial population is v0 ∈ [0, 1]. The blue area is colony collapse, and
the red area is colony coexistence (color figure online)
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Fig. 14 Impacts of seasonality on the stable limit cycle: the timing of the maximum egg-laying rateψ when
r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3, γ = 40, ϵ = 0.2, and K̂ = 4.49. Honey bee initial population
is u0 ∈ [0, 40], and mite initial population is v0 ∈ [0, 1]. The blue area is colony collapse, the red area is
colony coexistence (color figure online)

colony collapsing. In general, Seasonalitywith parasitism can have negative impacts in
terms of either decreasing the average honey bee population or the colony collapsing.

Without seasonality, the value of parasitism rate ω can lead to destability through
hopf-bifurcation (see Theorem 5). To further explore how parasitism may impact the
honeybee population dynamics with or without seasonality, we perform bifurcation
on the impacts of parasitism ω = [0.2, 0.33] with (see Fig. 15(e)) or without (see
Fig. 15(f)) seasonality by setting r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ψ = 0, γ = 40,
ϵ = 0.2, K̂ = 4.49, u(0) = 5 and v(0) = 0.04.

In the absence of seasonality (Model 3), the ω3 is the bifurcation value where the
mite-free equilibrium ((N̄∗

h , 0)) changes from being locally stable to unstable (see
Theorem 4 item (2)), and the coexistence of bee and mite population emerges as
the locally stable interior equilibrium, and the interior equilibrium become unstable
(see Theorem 4 item (3)) through supercritical Hopf-bifurcation at ω4, where exists
the stable limit cycle (see Theorem 5). After the value of ω5, the colony collapses.
Therefore, the bifurcation diagram in Fig. 15f) suggests that: (1) when the severity of
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parasitism (ω) is small, the colony survives with non-parasites; (2) when the value of
ω rise, bees and parasites coexist in the colony and gradually decreases the population
of bees; (3) under the conditions of supercritical Hopf-bifurcation, bees and parasites
coexist in a periodic state; (4) whenω is large enough, the parasites leads to the colony
collapse.

In the seasonality model (Model 4 and see Fig. 15e), before the value of ω1, the
system is locally stable around mite-free solutions (see Theorem 6); after this bifurca-
tion point, bees and parasites coexist as the periodic interior solutions. The ω2 is the
critical value when colony collapses.

We observe that seasonality can delay the impact of parasitism in two bifurcation
points: (1) ω1 > ω3: parasite needs larger attacking rates to survive in the periodic
environment. And (2)ω2 > ω5 > ω4: colony can still survive with the larger attacking
rates from parasites in the periodic environment.

5 Conclusion

Studies (Chen et al. 2021; Ullah et al. 2021; Vanbergen 2021; Vercelli et al. 2021)
suggest that pollinators like honey bees are facing a crisis of dwindling numbers, due
to combinations of stressors. In this paper, we proposed and study a non-autonomous,
nonlinear differential equations model that describes the interactions between honey
bees’ and parasite’ while including seasonality in the queen’s egg-laying rate. The
seasonality logistics are adopted from the literature (Chen et al. 2020; Messan et al.
2018, 2021). The proposed model with related theoretical and bifurcation analysis
aims to address how (1) seasonality can influence honey bee colony dynamicsies?
(2) parasitism impacts honey bee colonies? and (3) seasonality and parasitism jointly
influence honey bee colonies?

We first explored the seasonality impacts on the honey bee colony. Our theoretical
results (Theorem 2) imply that the egg-laying rate plays an important role in determin-
ing the colony’s survival. If the egg-laying rate is low, the colony is expected to die.
When egg laying is not low, the colony’s fate depends on the initial population size in
varied seasonal conditions. Ourmathematical analysis of the honeybee–parasitemodel
(3) in a constant environment shows that parasitism most likely has negative impacts
on honeybee population dynamics and the survival of the colony. Our theoretical work
on Model (3) indicates that parasites decrease the honeybee population (Theorem 4)
and destabilize the dynamics through subcritical or supercritical Hopf-bifurcation (see
Theorem 5). TheHopf-bifurcation is determined by the queen egg-laying rate r0, death
rates of both honeybee dh and parasite dm , and parasitism ω. More specifically, the
colony collapses through supercriticalHopf-bifurcation, and the colony has fluctuating
population dynamics through supercritical Hopf- bifurcation.

Seasonality in this paper is defined by its strength of seasonality ϵ ∈ [0, 1], period
γ , and timing of the maximum queen egg-laying rate ψ . These three factors are
intertwined and generate complicated impacts on honeybee population dynamics with
or without parasitism. Our study shows that seasonality can have both negative and
positive influences on honeybee colony survival depending on conditions. The colony
is more likely to collapse when the period of seasonality (γ ) is limited and the strength
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Fig. 15 Impacts of seasonality and parasitism on the stable limit cycle when r̄0 = 1, d̄h = 0.2, d̄m = 0.21,
γ = 40, ψ = 0, ϵ = 0.2 and K̂ = 4.49. Honey bee initial population is u0 ∈ [0, 40], and mite initial
population is v0 ∈ [0, 1]. The blue area is colony collapse, the red area is colony coexistence, and the
black area is only bee survival. e Max and min honey bee population with seasonality. The red dot-dashed
curve indicates the maximum bee population of the period, and the blue dot-dashed curve indicates the
minimum bee population of the period. The black dashed curve shows the average of the max and min
population. f Max and min honey bee population without seasonality. The blue solid curve indicates the
locally stable equilibrium, the red solid curves indicate the stable limit cycle of the Hopf-bifurcation, and
the red dot-dashed curve indicates the source equilibrium. The black dashed line indicates the critical of
ω which makes the colony survive to collapse. The orange square zooms in the Hopf-bifurcation details.
Both figures: The black lines indicate collapse. The red and blue indicate critical values of ω (color figure
online)
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of seasonality (ϵ) is large (see Fig. 2). In the absence of parasitism, the colony may
benefit from the seasonality when the timing of the maximum egg-laying (ψ) is larger
than half of the period of seasonality (γ ), i.e. ψ > γ

2 (see Fig. 3). In the presence of
parasites, the impacts of the timing of the maximum egg-laying (ψ) are much more
complicated.Depending on other parameters’ values, in some cases, the smaller timing
of the maximum egg-laying (ψ) or closer to the γ may benefit the colony survival
(see Figs. 9 and 14). There are also situations that are beneficial to the colony when
growing ψ in the beginning (ϵ = 0.2 in Fig. 9 ).

As shown by our model and results, seasonality plays a significant role in honey
bee colony dynamics. Seasonality can affect bees’ behavior and resources. Bees tend
to visit flowers more frequently and forage more actively in warm and favorable
weather rather than in cold and harsh weather (Tuell and Isaacs 2010). Ogilvie and
Forrest (2017) have also highlighted the crucial role of floral resources in determining
bee community growth rates and foraging decisions, suggesting that periodic seasonal
changes can help bee communities recover. However, because of climate change, there
are seasonality changes, such as a longer period of low flowering abundance in mid-
summer, which negatively affects bees (Aldridge et al. 2011). Moreover, studies have
shown that Africanized bees are better adapted to low-shade habitats than native bees
in Mexico, indicating that hotter or longer summers because of seasonality or climate
change is unfriendly for native bees (Jha and Vandermeer 2009). Bees can adapt to
seasonal changes by altering their brood production and lifespan throughout the year
(Feliciano-Cardona et al. 2020; Jha and Vandermeer 2009). These phenomena all
reflect that the impact of seasonality on bee populations is complex and tied to factors
both within the colony and in the environment.

Seasonality also affects the reproduction and spread of parasites. Jack et al. (2023)
pointed out that reducing the Varroa mites’ population in the spring is important
for long-term mite control. Winter also can be an effective time for treating Varroa
because there is no brood and all mites are feeding on adult bees and therefore exposed
to the miticide. However, interrupting brood rearing in the fall may not be an effective
strategy for mite control by Jack et al. (2020), as mite populations increase after
treatment (Jack et al. 2023). These findings are consistent with the conclusion of
our model, which underscores the complex impacts of seasonality on bee-parasite
dynamics. At present, seasonal temperatures are rising due to climate change, and will
affect resource availability, bee abundance, and varroa parasitism especially in the fall
(Smoliński et al. 2021). Our model is can predict the different fates of bee colonies by
changing the seasonal parameters of egg-laying rate. Such research underscores the
importance of studying the effects of seasonality and our research further highlights
the need for investigation to quantify these impacts mathematically.

Bifurcations and simulations (see Fig. 8b) suggest that larger strength of seasonality
ϵ leads to a larger amplitude in population oscillating dynamics. Large strength of
seasonality ϵ alone can cause colony collapse, especially when the colony exhibits
oscillations due to parasitism (see Fig. 13). Both our theoretical and bifurcation (see
Fig. 15e and f) results show that parasitism with or without seasonality can lead to the
colony collapsing and decrease the average population dynamics of honey bees.

As bee numbers continue to decline, it is crucial to understand the factors that can
help honeybees face these threats and/or help them mitigate these ecological distur-
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bances. Strong evidence suggests that climate changes contribute greatly to pollinators’
population decline. Seasonality is one aspect of climate change. Our current work and
literature (Chen et al. 2020;Messan et al. 2018, 2021) provide useful insights into how
seasonality in the queen egg-laying rate and parasites impact honeybee colonies. Our
study suggests that these impacts can be positive or negative depending on the environ-
ment. Based on our results, it is possible to develop specific strategies to take advantage
of the positive impacts and avoid situations when certain attributes of seasonality lead
to colony collapsing or population decreasing. For example, beekeepers may regulate
the honeybee population by altering the timing and amount of the egg-laying rate
through the amount of food such as sugar and pollen fed to the colonies. Seasonality
affects parasite reproduction, maturation, and transmission rates of the viruses they
carry. Colony losses might be reduced if the beekeeper can actively respond to the
colonies’ needs by observing the colonies’ situation, she/he can help the colony to
reduce or even eliminate the impacts of seasonality with well-timed treatments (Piot
et al. 2022; Vercelli et al. 2021).

Climate change has been considered one of the current significant threats to honey
bees and beekeeping (Flores et al. 2019). As beekeepers have observed in the past ten
years, climate impacts on honeybees include scarcity of floral resources and greater
spread of disease (Vercelli et al. 2021). Climate change affects the flowering period,
directly affecting foraging and resource gathering through weather conditions and
extreme heat and shifts in the timing and duration of bloom.Available nectar and pollen
affect brood rearing and colony growth impacting both colony survival and pollina-
tion services (Reddy et al. 2012; Vercelli et al. 2021), potentially affecting societal risk
and prolonging exposure to more extreme events within a season (https://www.epa.
gov/climate-indicators/seasonality-and-climate-change). Including seasonality in our
model is the first step towards studying the impacts of climate changes on honeybee
colonies. To better understand howclimate change affects the seasonality of bee behav-
ior, including brood rearing, colony growth, and foraging. There is a need for further
field studies that provide data to validate our models and direct our future work.
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Appendix A Proofs

Proof of Theorem 1

Proof Let

f1(u, v) = r̄(t)
u2

K̂ + u2
− d̄hu − ωu

1+ u
v
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and

f2(u, v) =
ωu

1+ u
v − d̄mv.

Assume each point (u1, v1) ∈ X in functions f1 and f2 has a neighbour (u2, v2) ∈ X0,
and u1 > u2. As we know, r(t) = r0(1 + ϵ cos( 2π(t−ψ)

γ )), the maximum of r(t) is
rmax = r0(1+ ϵ), and the minimum of r(t) is rmin = r0(1 − ϵ). Then r̄max = rmax∗c

R∗b
and r̄min = rmin∗c

R∗b . Then we can get:

| f1(u1, v1) − f1(u2, v2)| = |r̄(t)
(

u21
K̂ + u21

− u22
K̂ + u22

)

+ d̄h(u2 − u1)

+
(

ωu2
1+ u2

v2 − ωu1
1+ u1

v1

)
|

< |r̄max

(
u21 − u22
K̂ + u22

)

+ d̄h(u2 − u1)+ ω(v2 − v1)|

= |r̄max

(
(u1 + u2)(u1 − u2)

K̂ + u22

)

+ d̄h(u2 − u1)+ ω(v2 − v1)|

< (r̄max + d̄h)|u2 − u1| + ω|v2 − v1|

Therefore, there exists two real constants M1 = r̄max + d̄h and M2 = ω for
| f1(u1, v1)− f1(u2, v2)| ≤ M1|u1 − u2| + M2|v1 − v2|. Similarly, function f2(u, v)
has:

| f2(u1, v1) − f2(u2, v2)| = | ωu1
1+ u1

v1 − ωu2
1+ u2

v2 + d̄m(v2 − v1)|

< ω|v2 − v1| + d̄m |v2 − v1|

Therefore, there exists a real constant L = ω+ d̄m for | f2(u1, v1)− f2(u2, v2)| ≤
L|v1 − v2|. Since Eq. (3) are Lipschitz continuous, following the Lipschitz condition,
the system (3) has local existence and uniqueness solution.

According to Theorem A.4 (p.423) of Thieme (2018), we can conclude that Model
(3) is positive invariant in X. Let g(u) = u2

K̂+u2
< 1 and h(u) = ωu

1+u , then model (3)
follows:

u′ = r̄(t)g(u) − d̄hu − h(u)v

and

v′ = (h(u) − d̄m)v.
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From above,

u′ < r̄ − d̄hu < r̄max − d̄hu

⇒ u(t) <
r̄max

d̄h
−
(
r̄max

d̄h
− u0

)
e−d̄h t

⇒ u(t) < max
{
u0,

r̄max

d̄h

}
.

Therefore, u is boundedness.
Now, to show the boundedness of v, define H = u + v, then

H ′ = u′ + v′ = r̄(t)g(u) − d̄hu − d̄mv

H ′ < r̄(t) − max{d̄h, d̄m}H

Therefore, H is boundedness. Since u is boundedness, v is boundedness. ⊓⊔

Proof of Proposition 1

Proof Let

f (u) = r0u2

K̂ + u2
− d̄hu = u

[
r0u − dh(K̂ + u2)

K̂ + u2

]

,

Then if r0 > 2d̄h
√
K̂ , there exists u∗

1 and u∗
2 such that f (u∗

i ) = 0, i = 1, 2 and

u∗
1 =

r0 −
√
r20 − 4d̄2h K̂

2d̄h
≤ u∗

2 =
r0 +

√
r20 − 4d̄2h K̂

2d̄h

with

u∗
2 =

r0 +
√
r20 − 4d̄2h K̂

2d̄h
>

r0
2d̄h

>
√
K̂ .

Notice that

f ′(u) = −d̄h K̂ 2 − 2d̄h K̂ u2 − d̄hu4 + 2K̂ r0u
(
K̂ + u2

)2 =
−d̄h

(
K̂ + u2

)2
+ 2K̂ r0u

(
K̂ + u2

)2 ,

then we have

f ′(0) = −d < 0, f ′(u∗
i ) = −dh +

2K̂ d2h
r0u∗

i
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which implies that u∗ = 0 is a locally stable equilibrium, and f ′(u∗
1) > 0 and

f ′(u∗
2) < 0. Therefore u∗

2 is locally stable equilibrium while u∗
1 is locally unstable.

Note that

u′ = f (u) = u

[
r0u − dh(K̂ + u2)

K̂ + u2

]

= dhu
[
(u − u∗

1)(u
∗
2 − u)

K̂ + u2

]
.

For any initial condition u(0) ∈ (u∗
1, u

∗
2), we have u

′ > 0 for all future t > 0, thus
u(t) increases and approaches to u∗

2. For any initial condition u(0) > u∗
2, we have

u′ < 0 for all future t > 0, thus u(t) decreases and approaches to u∗
2.

If r0 < 2d̄h
√
K̂ , then we have

u′ = f (u) = u

[
r0u − dh(K̂ + u2)

K̂ + u2

]

= dhu

⎡

⎣
−(u − r0

2d̄h
)2 + ((r0/2d̄h)2 − K̂ )

K̂ + u2

⎤

⎦ < 0.

Therefore u(t) converges to 0 if r0 < 2d̄h
√
K̂ holds. ⊓⊔

Proof of Theorem 2

Proof Notice that u = 0 is an equilibrium of

u′ = r̄(t)u2

K̂ + u2
− d̄hu = u

[
r̄(t)u

K̂ + u2
− d̄h

]
.

From Theorem 1, we know that u ≥ 0 for any initial u(0) ≥ 0. Define D = {u ∈
[0, d̄h K̂

rM
)}. Applying for Lyapunov Stability Theorem (Aeyels 1995) and we define

V (u) = u2 ≥ 0 ∀u ∈ D.
Notice that

V̇ (t, u) = u′ = u

[
r̄(t)u − d̄h(K̂ + u2)

K̂ + u2

]

<
rMu

K̂
− d̄h .

Thus,

V̇ (t, u) ≤ 0,∀u ∈ Dandt ≥ 0

which the D is a neighborhood of the origin, and t ≥ 0. Thus we can conclude that
u = 0 is locally stable.
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Define f (u, t) = r̄(t)u2

K̂+u2
− d̄hu, then we have

f (u, t) = u

[
r̄(t)u − dh(K̂ + u2)

K̂ + u2

]

.

If rmax = rM = r0(1+ ϵ) < 2d̄h
√
K̂ , then we have

r̄(t) ≤ rM < 2d̄h
√
K̂ .

Thus,

u′ = f (u, t)

≤ u

[
rMu − dh(K̂ + u2)

K̂ + u2

]

= dhu

⎡

⎣
−(u − rM

2d̄h
)2 + ((rM/2d̄h)2 − K̂ )

K̂ + u2

⎤

⎦ < 0.

This implies that u = 0 is globally stable when rM = r0(1+ ϵ) < 2d̄h
√
K̂ .

If rmin = rm = r0(1− ϵ) > 2d̄h
√
K̂ holds, then rm ≤ r̄(t) ≤ rM = r0(1+ ϵ) and

u′ = f (u, t) ≥ u

[
rmu − dh(K̂ + u2)

K̂ + u2

]

= u

[
rmu − dh(K̂ + u2)

K̂ + u2

]

= dhu
[
(u − u∗

1)(u
∗
2 − u)

K̂ + u2

]

with

u∗
1 =

rm −
√
r2m − 4d̄2h K̂

2d̄h
≤ u∗

2 =
rm +

√
r2m − 4d̄2h K̂

2d̄h
.

Similar, we have

u′ = f (u, t) ≤ u

[
rMu − dh(K̂ + u2)

K̂ + u2

]

= u

[
rMu − dh(K̂ + u2)

K̂ + u2

]

= dhu
[
(u − h∗

1)(h
∗
2 − u)

K̂ + u2

]

with

h∗
1 =

rM −
√
r2M − 4d̄2h K̂

2d̄h
≤ h∗

2 =
rM +

√
r2M − 4d̄2h K̂

2d̄h
.
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Therefore, we have u being a positive invariant in [u∗
1, h

∗
2]. Note that for any u > h∗

2
we have u′ < 0, thus we have

lim inf
t→∞ u(t) ≤ u∗

1 ≤ lim sup
t→∞

u(t) < h∗
2

if rm ≥ 2d̄h
√
K̂ and u(0) > u∗

1. ⊓⊔

Proof of Theorem 3

Proof Let f (u) = u2

K̂+u2
, then Eq. 4 rewrites to

u′ = L(u) = r̄(t) ∗ f (u) − d̄hu. (10)

Linearizing Eq. 10 about u = u∗ gives,

L(u) ≈ L(u∗)+
[
r̄(t) ∗ f ′(u∗) − d̄h

]
∗ (u − u∗).

Then, this linear equation can be

h′ =
[
r̄(t) ∗ f ′(u∗) − d̄h

]
∗ h

where h = u − u∗. After that, we can solve the differential equation by integrating
factors:

h(t) = C0e
∫ t
0
[
r̄(z)∗ f ′(u∗)−d̄h

]
dz = C0eλ

Therefore, if λ < 0, the stability of the periodic solution u = u∗ is stable; if λ > 0,
then the solution is unstable. ⊓⊔

Proof of Theorem 4

Proof 1. For E∗
1 = (0, 0),

JE∗
1
=
{−d̄h 0

0 −d̄m

}
.

Eigenvalues are λ1 = −d̄h < 0 and λ2 = −d̄m < 0, therefore E∗
1 always stable.

2. For Eb1 = (
r̄−
√
r̄2−4K̂ d̄2h
2d̄h

, 0), eigenvalues are

λ1 =

(
ω − d̄m

) (
−r̄ +

√
r̄2 − 4K̂ d̄2h

)
+ 2d̄h d̄m

2d̄h +
√
r̄2 − 4K̂ d̄2h + r̄

123



19 Page 36 of 45 J. Chen et al.

and

λ2 =
r̄ d̄h

(
r̄ −

√
r̄2 − 4K̂ d̄2h

)
− 4K̂ d̄3h

r̄
(√

r̄2 − 4K̂ d̄2h − r̄
) .

Since r̄

2
√

K̂ d̄h
> 1, λ2 > 0. If d̄m > ω, λ1 > 0, then Eb1 is source. If d̄m < ω,

u∗ = d̄m
ω−d̄m

> N̄ c
h = r̄−

√
r̄2−4K̂ d̄2h
2d̄h

, then 2d̄h d̄m
ω−d̄m

> r̄ −
√
r̄2 − 4K̂ d̄2h , i.e. λ1 < 0,

therefore Eb1 is saddle.

For Eb2 = (
r̄+
√
r̄2−4K̂ d̄2h
2d̄h

, 0), eigenvalues are

λ1 =

(
ω − d̄m

) (
r̄ +

√
r̄2 − 4K̂ d̄2h

)
− 2d̄h d̄m

2d̄h +
√
r̄2 − 4K̂ d̄2h + r̄

and

λ2 =

√
r̄2 − 4K̂ d̄2h

(
4K̂ d̄3h − 2r̄2d̄h

)
+ r

(
8K̂ d̄3h − 2r̄2d̄h

)

r̄
(√

r̄2 − 4K̂ d̄2h + r̄
)2 .

Since r̄2 > 4K̂ d̄2h > 2K̂ d̄2h , 2r̄
2d̄h > 8K̂ d̄3h > 4K̂ d̄3h , then 8K̂ d̄3h −2r̄2d̄h < 0 and

4K̂ d̄3h − 2r̄2d̄h < 0, i.e. λ2 < 0. If d̄m > ω, λ1 < 0, then Eb2 is sink. If d̄m < ω,

N̄∗
h = r̄+

√
r̄2−4K̂ d̄2h
2d̄h

> u∗ = d̄m
ω−d̄m

, then
(
ω − d̄m

) (√
r̄2 − 4K̂ d̄2h + r̄

)
> 2d̄h d̄m ,

i.e. λ1 > 0. Therefore Eb2 is saddle.

3. For E∗ = ( d̄m
ω−d̄m

,

[
r̄u∗−d̄h

(
(u∗)2+K̂

)]
(u∗+1)

ω((u∗)2+K̂ )
), we simplified the matrix J to

JE∗ =

⎧
⎪⎪⎨

⎪⎪⎩

−
u∗
(
dh
(
K̂+(u∗)2

)2
+r
(
(u∗)2−K̂ (2u∗+1)

))

(u∗+1)
(
K̂+(u∗)2

)2 − ωu∗
u∗+1

ωv∗
(u∗+1)2 0

⎫
⎪⎪⎬

⎪⎪⎭
.
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which gives the following two equations:

λ1 + λ2 = −
u∗
(
dh
(
K̂ + (u∗)2

)2
+ r̄

(
(u∗)2 − K̂ (2u∗ + 1)

))

(u∗ + 1)
(
K̂ + (u∗)2

)2

= u∗(−d̄h K̂ 2 + (r̄ + 2u∗r̄ − 2d̄h(u∗)2)K̂ − r̄(u∗)2 − d̄h(u∗)4)

(u∗ + 1)
(
K̂ + (u∗)2

)2

λ1λ2 = ω2u∗v∗

(u∗ + 1)3
> 0 (11)

-Equation11gets two K̂1,2 tomake theλ1+λ2 = 0,where K̂2 = r̄u∗
d̄h

−(u∗)2+ r̄
2d̄h

+
√
r̄
√

r̄(2u∗+1)2−8d̄h(u∗)2(u∗+1)
2d̄h

and the condition of E∗ is K̂ < r̄u∗
d̄h

− (u∗)2, therefore

only K̂1 = r̄u∗
d̄h

− (u∗)2 + r̄
2d̄h

−
√
r̄
√

r̄(2u∗+1)2−8d̄h(u∗)2(u∗+1)
2d̄h

exists E∗ where is

the trace equals 0. Because of λ1λ2 > 0, λ1 + λ2 > 0 as K̂ ∈ (K̂1,
r̄u∗
d̄h

− (u∗)2),

i.e. E∗ is source, whereas, λ1 + λ2 < 0 as K̂ ∈ (−∞, K̂1), i.e. E∗ is sink. From
Fig. 16, there exists a K̂ that makes interior equilibrium (E∗) from sink to source.

⊓⊔

Proof of Theorem 5

Proof We re-scaled the system 3 to the following model:

u′ = g(u)( f (u) − v)

v′ = v(g(u) − d̄m), (12)

where g(u) = ωu
1+u and f (u) = r̄

g(u) · u2

K̂+u2
− d̄h

g(u) · u.
We would apply Theorem 3.1 inWang et al. (2011) into system 12, then our system

must have:

(a1) f ∈ C1(R̄), f (a) = f (b) = 0, where 0 < a < b; f (u) is positive for a < u <

b, and f (u) is negative otherwise; there exists λ̄ ∈ (a, b) such that f ′(u) > 0 on
[a, λ̄), f ′(u) < 0 on (λ̄, b];

(a2) g ∈ C1(R̄), g(0) = 0; g(u) > 0 for u > 0 and g′(u) > 0 for u > 0, and there
exists λ > 0 such that g(λ) = d.

(a3) f (u) and g(u) are C3 near λ = λ̄ and f ′′(λ̄) < 0.
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Fig. 16 Simulation for the trace (λ1 + λ2) of JE∗ . The black curve indicates the trace is positive, i.e. the
stability of E∗ is source, and the blue curve indicates the trace is negative, i.e. the stability of E∗ is sink.
r̄ = 500, ω = 0.05, d̄h = 0.01, d̄m = 0.049969, and K̂ ∈ [30000, 70000] (color figure online)

Then the Jacobean matrix of Model (12) is

J =
{
f ′(u)g(u) −g(u)
vg′(u) 0

}

g′(u) = ω

(u + 1)2
> 0

and we set h(u) = ru2

K+u2 − ud̄h , f (u) = h(u)
g(u) ,then

f ′(u) = h′(u)g(u) − h(u)g′(u)
g2(u)

= h′(u)
g(u)

− f (u)g′(u)
g(u)

=

r̄
(
2K̂ u+K̂−u2

)

(
K̂+u2

)2 − d̄h

ω
(13)

(a1) f ∈ C1(R̄), f (a) = f (b) = 0, where 0 < a < b; f (u) is positive for
a < u < b, and f (u) is negative otherwise; there exists λ̄ ∈ (a, b) such that f ′(u) > 0
on [a, λ̄), f ′(u) < 0 on (λ̄, b];
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f (u) = h(u)
g(u) where h(u) = ru2

K+u2 − ud̄h and the solution of h(u) = 0 being

u1 = r̄−
√
r̄2−4d̄2h K̂

2d̄h
and u2 = r̄+

√
r̄2−4d̄2h K̂

2d̄h
. Let a = u1 and b = u2,then you have

f (a) = f (b) = 0.
Then,

h′(u1) = −
2d̄h

(
r̄2
(
r̄ −

√
r̄2 − 4K̂ d̄2h

)
+ 2K̂ d̄2h

(√
r̄2 − 4K̂ d̄2h − 2r̄

))

r̄
(
r̄ −

√
r̄2 − 4K̂ d̄2h

)2

and

h′(u2) = −
2d̄h

(
r̄2
(√

r̄2 − 4K̂ d̄2h + r̄
)
+ 2K̂ d̄2h

√
r̄2 − 4K̂ d̄2h

)

r̄
(√

r̄2 − 4K̂ d̄2h + r̄
)2

Since r̄2 > 4K̂ d̄2h , h
′(u1) > 0 and h′(u2) < 0, then we have

f ′(u1) =
h′(u1)
g(u1)

> 0 and f ′(u2) =
h′(u2)
g(u2)

< 0

Therefore, there exists a λ̄ ∈ (a, b)make the sign of f ′(u) from positive to negative.
(a2) g ∈ C1(R̄), g(0) = 0; g(u) > 0 for u > 0 and g′(u) > 0 for u > 0, and there

exists λ > 0 such that g(λ) = d.
g(u) = ωu

1+u , if u = 0 then g(0) = 0, if u > 0 then g(u) > 0. g′(u) = ω
(1+u)2 > 0.

We assume there exist λ > 0 such that g(λ) = ωλ
1+λ = d > 0, i.e λ = d

ω−d .
(a3) f (u) and g(u) are C3 near λ = λ̄ and f ′′(λ̄) < 0.

f ′′(λ) = f ′′(λ̄)

= − 4r̄ λ̄2

ω
(
K̂ + λ̄2

)2 − 6r̄(λ̄ + 1)λ̄

ω
(
K̂ + λ̄2

)2 + 2r̄

ω
(
K̂ + λ̄2

) + 8r̄(λ̄ + 1)λ̄3

ω
(
K̂ + λ̄2

)3

=
2r̄
(
K̂ 2 − 3K̂ (λ̄ + 1)λ̄ + λ̄3

)

ω
(
K̂ + λ̄2

)3 (14)

From (13), since f ′(λ̄) = 0,

r̄
(
2K̂ λ̄ + K̂ − λ̄2

)

(
K̂ + λ̄2

)2 = d̄h ⇒ r̄(K̂ + 2K̂ λ̄ − λ̄2) = d̄h(K̂ + λ̄2)2
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Therefore, it must has K̂ + 2K̂ λ̄ > λ̄2.
In addition to this, f ′(u) also is following

f ′(u) = − d̄h
ω

− 2r̄(u + 1)u2

ω
(
K̂ + u2

)2 + r̄u

ω
(
K̂ + u2

) + r̄(u + 1)

ω
(
K̂ + u2

)

= − 2r̄(u + 1)u2

ω
(
K̂ + u2

)2 + r̄(u + 1)

ω
(
K̂ + u2

) + v∗

= v∗ + r̄(1+ u)

(K̂ + u2)ω

(
1 − 2u2

K̂ + u2

)
(15)

From (15), v∗ > 0 and f ′(u) = 0, if u=λ̄, then λ̄ and K̂ must be λ̄2 > K̂ . Then

K̂ 2 − 3K̂ λ̄2 − 3K̂ λ̄ + λ̄3 = (K̂ 2 − 2λ̄K̂ − λ̄2 K̂ )+ (λ̄3 − λ̄K̂ − 2λ̄2 K̂ ) < 0.

In summary, f ′′(λ̄) < 0. ⊓⊔

Corollary 1 (Theorem 3.1 in Wei et al. (2011)) Assume that f,g satisfy (a1)-(a3). Then
the system (12) undergoes a Hopf bifurcation at (λ̄, vλ); the Hopf bifurcation is super-
critical and backward (respectively, subcritical and forward) if a(λ̄) < 0 (a(λ̄) > 0),
where a(λ̄) is defined in 16.

According to theCorollary (1), the direction of theHopf bifurcation and the stability
of bifurcating periodic orbits are determined by the first Lyapunov coefficient

a(λ̄) = f ′′′(λ̄)g(λ̄)g′(λ̄)+ 2 f ′′(λ̄)[g′(λ̄)]2 − f ′′(λ̄)g(λ̄)g′′(λ̄)
16g′(λ̄)

= ω

16(1+ λ̄)
(2 f ′′(λ̄)+ λ̄ f ′′′(λ̄)) (16)

From Eq. (16), since λ̄ > 0, ω
16(1+λ̄)

> 0, and

2 f ′′(λ̄)+ λ̄ f ′′′(λ̄)

=
2r̄
(
2K̂ 3 − K̂ 2(2λ̄(2λ̄ + 9)+ 3)+ 2K̂ (λ̄(4 − 3λ̄)+ 9)λ̄2 + (2λ̄ − 3)λ̄4

)

ω
(
K̂ + λ̄2

)4

From Fig. 17 and Eq. 16, we got a(λ̄) > 0. According to Corollary 1, the system 3
undergoes a Hopf bifurcation at K̂ = K̂1; the Hopf bifurcation is subcritical and
forward. From Figure A and Eq. 16, we can got a(λ̄) < 0. According to Corollary 1,
the system 3 undergoes a Hopf bifurcation at K̂ = K̂1; the Hopf d.

From Fig. 18, K̂ > K̂1, there exists a stable limit cycle.
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Fig. 17 Simulation for the sign of a(λ̄). All a(λ̄) is positive. From Theorem 1, the bifurcation is sub-
critical and forward. The black curve indicates positive and red curve indicates negative. r̄ = 100,
ω =∈ [0.000010001, 0.0010002], d̄h = 0.0009, d̄m = 0.001, and K̂ = K̂1 ∈ [6.9 ∗ 105, 5.0 ∗ 106]
(color figure online)
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Fig. 18 Simulation for a stable limit cycle around whenever K̂ > K̂1. b The conditions for subcritical
or supcritical of hopf-bifurcation when K̂ = K̂1. The black indicates supcritical i.e. a(λ̄) > 0; the blue
indicates subcritical i.e. a(λ̄) > 0. Choose values at blue dot conditions to get a K̂ = 4.6, K̂1 = 4.34,
r̄ = 1, ω = 0.3, d̄h = 0.2, d̄m = 0.21, u∗ = 2.33, r̄u

∗
d̄h

− (u∗)2 = 6.22 (color figure online)
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Proof of Theorem 6

Proof Let f (u) = u2

K̂+u2
, then the Jacobian of the system is obtained as:

J =
{

−d̄h + r̄(t) f ′(u) − ωv
(1+u)2 − ωu

1+u
ωv

(u+1)2
ωu
u+1 − d̄m

}

.

After that, the linearized system at (u∗, 0) is

[
h′

g′

]
=
[
−d̄h + r̄(t) f ′(u∗) − ωu∗

1+u∗

0 ωu∗
u∗+1 − d̄m

]

∗
[
h
g

]
.

Assume the linearly independent set of initial conditions:

h1(0) = 1, g1(0) = 0

and

h2(0) = 0, g2(0) = 1

to find linearly independent solutions (h1(t), g1(t)) and (h2(t), g2(t)) of linear system.
Then the solutions are:

h1(t) = e
∫ t
0
[
r̄(z)∗ f ′(u∗)−d̄h

]
dz and g1(t) = 0,

h2(t) = e
∫ t
0
[
r̄(z)∗ f ′(u∗)−d̄h

]
dz ∗

∫ t

0

[
− ωu∗

u∗ + 1
e
∫ s
0

[
ωu∗
1+u∗ −d̄m+d̄h−r̄(s)∗ f ′(u∗)

]
ds
]
dz

and

g2(t) = e
∫ t
0

[
ωu∗
1+u∗ −d̄m

]
dz
.

Hence, we can obtain the fundamental matrix F(t) of the linearized system over the
interval 0 ≤ t ≤ T , where T is the period, which is following:

F(T ) =
[
h1(T ) h2(T )
g1(T ) g2(T )

]
,

and the eigenvalues of the transition matrix are

λ1 = e
∫ T
0
[
r̄(t)∗ f ′(u∗)−d̄h

]
dt and λ2 = e

∫ T
0

[
ωu∗
1+u∗ −d̄m

]
dt
.

Therefore, if λ1 < 0 and λ2 < 0, the (u∗, 0) is stable, otherwise, it is unstable. ⊓⊔
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