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1 | INTRODUCTION

Most proteins must fold into some specific 3D shape called tertiary
structures to carry out their biological function. Two or more proteins

(more precisely protein chains) often interact to form a protein

Nabin Giri | Zhiye Guo | lJianlin Cheng

Abstract

Estimating the accuracy of quaternary structural models of protein complexes and
assemblies (EMA) is important for predicting quaternary structures and applying them to
studying protein function and interaction. The pairwise similarity between structural
models is proven useful for estimating the quality of protein tertiary structural models,
but it has been rarely applied to predicting the quality of quaternary structural models.
Moreover, the pairwise similarity approach often fails when many structural models are
of low quality and similar to each other. To address the gap, we developed a hybrid
method (MULTICOM_qga) combining a pairwise similarity score (PSS) and an interface
contact probability score (ICPS) based on the deep learning inter-chain contact predic-
tion for estimating protein complex model accuracy. It blindly participated in the 15th
Critical Assessment of Techniques for Protein Structure Prediction (CASP15) in 2022
and performed very well in estimating the global structure accuracy of assembly models.
The average per-target correlation coefficient between the model quality scores pre-
dicted by MULTICOM_ga and the true quality scores of the models of CASP15 assem-
bly targets is 0.66. The average per-target ranking loss in using the predicted quality
scores to rank the models is 0.14. It was able to select good models for most targets.
Moreover, several key factors (i.e., target difficulty, model sampling difficulty, skewness
of model quality, and similarity between good/bad models) for EMA are identified and
analyzed. The results demonstrate that combining the multi-model method (PSS) with

the complementary single-model method (ICPS) is a promising approach to EMA.
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complex or assembly to collaboratively perform a complicated biologi-
cal function such as transduction of an extracellular signal into a cell
to trigger gene expression. Therefore, predicting the tertiary structure
of a single protein (monomer) and the quaternary structure of a pro-

tein complex/assembly (multimer) from its sequence has been a major
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pursuit of the scientific community for the last few decades because
the experimental methods of determining protein structures are
expensive and time-consuming and therefore can only be applied to a
small fraction of proteins.

To rigorously and objectively assess the progress in protein struc-
ture prediction, the Critical Assessment of Techniques for Protein
Structure Prediction (CASP) was launched in 1994 and continued to be
held every 2 years,'™® with the latest CASP15 experiment concluded in
2022. Stimulated by the CASP experiments, significant progress has
been made in protein tertiary structure prediction. Particularly, with the
development of deep learning-based methods over the last decade,®™*®
the prediction of protein tertiary structures had steadily improved from
one CASP experiment to another until a deep learning method—Alpha-
Fold2°? drastically advanced the field with its outstanding capability of
predicting tertiary structures with the quality close to that of the exper-
imental techniques such as x-ray crystallography in the 2020 CASP14
experiment. The success of AlphaFold2 and other deep learning
methods has revolutionized the prediction and application of protein
tertiary structures in various biological research.

As the tertiary structure prediction problem has been largely
solved, the field started to focus more on predicting the quaternary
structures of protein complexes and assemblies, which also had a long
history of development but did not progress as fast as the tertiary
structure prediction.’”’™*° However, the situation started to change as
more and more deep learning methods were developed to predict

20-25 particularly,

inter-protein contacts and quaternary structures.
adapting AlphaFold2 for protein quaternary structure prediction
(i.e., AlphaFold-Multimer?®) substantially improved the accuracy of
protein complex/assembly structure prediction.

In parallel to the development of the methods for sampling pro-
tein quaternary structures, numerous methods have been developed
for estimating the accuracy of predicted quaternary structural models
(EMA) in order to select the best predicted structures and use them
effectively in biological research.’® The EMA methods can be classi-
fied into four categories: (1) single-model energy/statistical potential-
based methods; (2) single-model machine learning methods; (3) multi-
model consensus methods; and (4) hybrid methods of combining (1),
(2) and/or (3). Single-model energy/statistical potential-based

27-30

methods calculates the physical energy (e.g., electrostatics,

hydrophobic interactions, solvation) or statistical potential®!
(e.g., residue—residue contact potentials) of a model to estimate its
quality. Machine learning methods including deep learning

methods3273¢

use expert-curated or automatically extracted features
of a model as input to predict its quality. For instance, DProQA3? uses
a gated-graph transformer to take a protein quaternary structure
represented as a graph (nodes: residues and edges: residue—residue
interactions) as input to predict its quality score. The multi-model con-
sensus methods leverage the similarity between structural models to
evaluate their quality, which have been extensively used in assessing

37742 and are considered one

the quality of protein tertiary structures
of the most effective methods for tertiary structure quality assess-
ment.**> The reason that the model consensus methods work well in
many situations is that the good models similar to the native struc-

tures must be similar to each other, while bad models can have many

ways to be incorrect and are therefore often much less similar to each
other, leading to a relatively higher average pairwise similarity score
for good models. The approach generally works well when there is a
significant or relatively high proportion of good models in a model
pool that dominate over the bad models. However, the model consen-
sus approach was rarely used in estimating the accuracy of protein
quaternary structures until the 2022 CASP15 experiment.

To prepare for the CASP15 experiment, we extended our pair-
wise model similarity method for tertiary structure quality assess-
ment®!  to estimate the quality of protein quaternary structural
models. However, the pairwise similarity between models cannot
work well when many models in a model pool have low quality and
are also similar to each other (e.g., structure predictors making the
same rather than different folding mistakes), leading to bad models
having high pairwise similarity scores (i.e., higher estimated quality
scores) to be ranked higher. To address the weakness, we developed a
hybrid method (MULTICOM_ga) combining the pairwise similarity
score between a multimer model and other models (PSS) with a
single-model-based interface contact probability score (ICPS) that
does not depend on the similarity between models to estimate the
accuracy of the model. ICPS is calculated from the inter-chain contact
map predicted by inter-chain residue—residue contact/distance pre-
dictors?*2*?* such as CDPred.’® MULTICOM_ga uses a weighted
average of PSS and ICPS to predict the global accuracy (quality) of a
quaternary structural model. We first benchmarked MULTICOM_qa
on the CASP14 dataset internally and then blindly tested it in the
2022 CASP15 experiment. It ranked first out of 24 EMA predictors in
estimating the global fold accuracy of protein quaternary structural
models in CASP15. Our post-CASP15 analysis investigates several
important factors influencing MULTICOM_qga's performance and iden-

tifies its strengths and weaknesses for further improvement.

2 | METHODS

To prepare for CASP15, we developed several individual EMA methods
to measure the pairwise similarity between multiple quaternary struc-
tural models and predict the quality of the contact interfaces of a single
structural model, which are described in Section 2.1. We then com-
bined them to design a hybrid method of estimating model accuracy for

the CASP15 experiment, which is described in Sections 2.2 and 2.3

2.1 | Individual EMA methods

2.1.1 | Average pairwise similarity score (PSS)
A complex structure alignment tool—-MMAlign**—is used to calculate
the structural similarity score (i.e., TM-score®’) between a multimer
model and each of the other multimer models in a model pool for a
multimer target. The average TM-score between a model and all other
models is t|inen average pairwise similarity score (PSS) for the model
(i, PSS %—2z """ pss s PSS of model i, | is the index of any
model other than i, TM-score;; is the TM-score between model i and
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model j, and n is the total number of models in the pool). PSS is consid-
ered an estimation of the true quality of a model. As a comparison with
the PSS, the average similarity between the monomer structural units of
one multimer model and their counterparts of each of the other multi-
mer models (called monomer_pss) and the average similarity between
the pairs of chains (dimers) of one multimer model and their counter-
parts of each of the other multimer models (called dimer_pss) are also
calculated. monomer_pss and dimer_pss are calculated by TM-score*®
and DockQ,*® respectively. Different from monomer_pss considering
only tertiary structure similarity but not inter-chain interactions and
dimer_pss considering both tertiary structure similarity and dimeric
interactions, PSS takes into account the overall fold and interface sim-
ilarity between a multimer model and all the other multimer models
and therefore is expected to be more informative about the quality of
the model than mnomer_pss and dimer_pss. It is worth noting that
PSS, monomer_pss and dimer_pss are all multi-model EMA methods
because multiple structural models for the same target are required to

compute them.

2.1.2 | Average interface contact probability
score (ICPS)

The inter-chain residue—residue contacts in a multimer model are first
identified. Two residues are considered in contact if their Ca—Ca atom
distance is less than 8 A. The interaction interfaces between two chains
that interact in at least 20% of multimers are selected for the ICPS cal-
culation. The inter-chain residue—residue contact probability map for
every two chains forming a selected interaction interface are then pre-
dicted by an inter-chain residue—residue contact predictor—CDPred.?!
CDPred is a deep learning-based tool that can predict the inter-chain
distance map for homodimers and heterodimers. It leverages the 2D
attention mechanism and deep residual network to capture the interac-
tion between different chains to increase the accuracy of inter-chain
distance prediction. The inter-chain distance map predicted by CDPred
is converted into an inter-chain contact probability map. The predicted
probabilities for the inter-chain residue—residue contacts in each
selected interaction interface in a multimer model are extracted from
the inter-chain contact probability maps predicted by CDPred. The
average probability of the inter-chain residue—residue contacts in the
interaction interfaces is called the average interface contact probability
score (ICPS), measuring the likelihood of the interaction interfaces in a
multimer model. For example, Figure 1A illustrates how ICPS is calcu-
lated for an interface. ICPS is a single-model quality score because it
only needs the information of a single model to be computed, which is

different from PSS that depends on the comparison between models.

2.1.3 | Number of interface contacts
(interface_size)

A simple metric—the number of inter-chain contacts in a multimer,
which measures the size of the interaction interfaces of a multimer

model, was shown to have some discriminative power of ranking

multimer models in.*’ In this study, this method serves as a baseline to
measure the performance of PSS, monomer_pss, dimer_pss and ICPS.

We evaluated the five methods above in terms of average ranking
loss on the CASP14 dataset. The CASP14 multimer dataset consists of
21 multimer targets, each of which has about 100 structural models pre-
dicted by CASP14 assembly predictors. Each method was used to rank the
models for each target. The ranking loss is the true TM-score of the best
model for a target minus the true TM-score of the no. 1 model ranked by
a method. If a method ranks the truly best model of a target no. 1, the
ranking loss for the target is 0. The average per-target ranking loss of each
method over all the CASP14 targets was computed (Figure S1).

PSS has the lowest loss of 0.118, which is much lower than the
other methods, indicating it is quite effective in ranking CASP14 mul-
timer models. interface_size has the highest loss of 0.319. The loss of
dimer_pss is 0.147, lower than 0.199 of monomer_pss and 0.204 of
ICPS. dimer_pss performs better than monomer_pss because the for-
mer considers the interactions between protein chains but the latter
does not. It is also interesting to see that the single-model score—ICPS
performs similarly to a multi-model score—monomer_pss and much
better than the interface_size, indicating that ICPS contains valuable

information for ranking multimer structural models.

2.2 | Combination of EMA methods

After establishing PSS as the best individual model ranking method on
the CASP14 dataset, we tried to combine the different methods (mul-
timer_pss, dimer_pss, monomer_pss, and ICPS) to further improve the
model ranking performance. In one experiment, we used the average
of the four methods ((PSS + dimer_pss + monomer_pss + ICPS)/4) to
rank the models of the CASP14 targets. However, the average ranking
loss of this combination is 0.156, higher than 0.118 of using PSS
alone. The reason for the worse performance is that the dimer_pss
and monomer_pss are redundant and inferior to PSS and therefore
combining them with PSS does not help.

In another experiment, we tested the combination of the multi-
model method—PSS and the single-model method—ICPS. We used
each of them to rank the models for each CASP14 target. The
weighted average of the two ranks for each model (i.e., 0.4 rank
based on ICPS +0.6 rank based on PSS) from the two rankings is
used as the final rank for the model. The ranking loss of this average
ranking approach is 0.105, lower than 0.118 of using only PSS, indicat-
ing that ICPS and PSS are complementary and combining them can
improve model ranking. Therefore, we chose to combine PSS and ICPS
to develop an EMA predictor for the CASP15 experiment. However,
the weights of combining them were not fully optimized prior to

CASP15 due to the time constraint.
23 | MULTICOM_qga for estimating assembly
model accuracy in CASP15

Because CASP15 required an estimated global quality score for each

model instead of its predicted rank, MULTICOM_ga used the
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FIGURE 1

(A) A simplified illustration of the ICPS calculation. (i) A dimer model with chain A in red and chain B in blue. (ii) All the inter-chain

contacts from a dimeric interface of the model are identified, which are colored in red and blue. (iii) The green lines highlight some inter-chain
contacts present in the interface. (iv) The predicted probability scores for the inter-chain contacts are extracted from the inter-chain contact map
predicted by a deep learning predictor (CDPred). (v) The probability scores of the contacts in the interface are averaged as ICPS for the model.

(B) The pipeline of MULTICOM_ga for estimating CASP15 assembly model accuracy. The input is a pool of assembly models for a target and
other related information such as the stoichiometry of the target, protein sequences, predicted tertiary structures for each unit in the target, and
the number of CPU cores. Multiple CPU cores can be used to speed up the calculation of the pairwise similarity scores between assembly models.
PSS and ICPS for each model are computed and then averaged as the predicted global fold accuracy score for the model. The ICPS score is also

used as the predicted interface score for each model.

weighted average of PSS and ICPS (i.e,, 0.4 ICPS +0.6 PSS) asthe
predicted global fold accuracy score for each model. ICPS was also used
as the predicted interface score for each model. CDPred was used to
predict inter-chain contact maps for the ICPS calculation. The
prediction pipeline of MULTICOM_qa is illustrated in Figure 1B.

Given a pool of models for an assembly target, MULTICOM_qa
extracts their backbone structures by filtering out their side chain
atoms. The pairwise similarity score (i.e., TM-score) between any
two models is calculated by MMalign. To speed up the calculation,
multiple CPU cores can be used to compute the scores in parallel.
The average pairwise similarity score between one model and all
other models (PSS) is computed for each model. The stoichiometry
and sequence information are used to find all the acceptable interac-

tions for a target. A dimeric interaction between two chains is

considered as an acceptable interaction and is taken into account in
the calculation of the ICPS if it is present in at least 20% of the
models in the pool. The tertiary structure for each chain of the target
predicted by AlphaFold2 is provided for CDPred to predict the inter-
chain residue—residue contact map for any two interacting chains
containing an acceptable interaction, from which the ICPS for the
interfaces of each assembly model is computed. The weighted aver-
age of ICPS and PSS for each model is used as the predicted global
structure accuracy score of the model, while ICPS is used as the pre-
dicted global interface score.

MULTICOM_ga was internally benchmarked on the CASP14
dataset with four existing methods: ZRANK,>”> ZRANK2,*°
GNN_DOVE,*® and DProQA*? (Table S1). MULTICOM_qa clearly per-
formed better than the other four methods. After being briefly tested,
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MULTICOM_ga blindly participated in the CASP15 experiment from
May to August 2022.

3 | RESULTS

3.1 | Evaluation metrics and CASP15 assembly
targets and models

The CASP15 assessors of the EMA category used a comprehensive
evaluation metric composed of Pearson's correlation, Spearman's cor-
relation, ranking loss, and area under ROC curve in terms of both TM-
score*® and GDT-TS score*® to compare the performance of CASP15
EMA predictors in estimating the global fold accuracy (called SCORE)
of CASP15 assembly models.*® Based on this metric,c MULTICOM_ga
ranks No. 1 in estimating the global structure accuracy of the CASP15
assembly models (see the CASP15 official ranking in terms of SCORE:
https://predictioncenter.org/casp15/zscores_EMA.cgi for details).

To complement the CASP15 official assessment, in this study, we
mainly use two individual, complementary metrics (i.e., per-target cor-
relation coefficient (PTCC) and per-target ranking loss (PTRL)) to evalu-
ate the CASP15 global model structure accuracy prediction results of
MULTICOM_qga and analyze its strengths and weaknesses. PTCC is
the Pearson's correlation coefficient between model quality scores
predicted by an EMA method (e.g., MULTICOM_qa) and true TM-
scores (global structure quality) of the models of a target. Higher
PTCC, the better the estimation of the global structure accuracy of
the models for the target. PTRL for a target is the difference between
TM-score of the truly best model in a model pool and TM-score of
the no. 1 model selected by an EMA method for a target. Smaller
PTRL, the better the ranking for the target. The true TM-score of a
model is obtained by using MMalign to compare it with the native
structure and is normalized with respect to the length of the native
structure. It is worth noting that the TM-scores obtained by MMalign
may be somewhat different from those obtained by USalign used in
the CASP15 official assessment, even though they correlate well.
PTCC and PTRL measures how well an EMA method performs on one
target from the two complementary perspectives. PTCC (or PTRL) can
be averaged over all the targets to assess the overall performance of
an EMA method on a dataset.

We evaluate MULTICOM_qga's EMA predictions for the assembly
models of all the CASP15 assembly targets except H1171, H1172,
T11150, T11920, and H1185 (i.e., 36 targets in total). H1171 and
H1172 with multiple native conformations and T11150, T11920, and
H1185 whose native structures were not available to us are excluded.
The assembly models for the targets were predicted by CASP15
assembly predictors and were released for CASP15 EMA predictors
including MULTICOM_qga to estimate their accuracy from May to
August 2022. Each target has about 275 structural models. The 36
assembly (multimer) targets include 13 homodimers, 10 heterodi-mers,
6 homomultimers with more than two chains, and 7 heteromulti-mers
with more than two chains. Some targets (e.g., H1111, H1114,
T11150,and H1137) are very large. For instance, H1137 has 10 chains

with a stoichiometry of A1B1C1D1E1F1G2H1l1. Almost all the
models for these targets were generated by the customized
AlphaFold-Multimer used by the CASP15 assembly predictors, and
most targets have some models of good or reasonable quality. How-
ever, quite a few targets are very hard and have few good models,

posing a significant challenge for EMA.

3.2 | The overall performance of estimating the
accuracy of CASP15 assembly models and the factors
influencing the performance

Figure 2A shows the distribution of PTCC between MULTICOM_qa
predicted global quality scores and the true TM-scores of the models
for the 36 CASP15 assembly targets. Higher PTCC indicates the more
linear consistency between the predicted global accuracy and the true
global accuracy of the models of a target. Twenty-six targets have a
relatively high PTCC 20.7, indicating MULTICOM_qga can estimate the
relative global quality of the models of most targets reasonably well.
The average PTCC on the 36 CASP15 targets is 0.6626. Two targets
(H1141 and H1111) have a moderate correlation between 0.35 and
0.65, while another three targets (T11600, H1144, and T11760) have a
low positive correlation between O and 0.2. MULTICOM_qga
completely failed on five targets (T1121o, T11870, H1142, H1140,
and T11610) as the PTCCs for them are negative.

Figure 2B illustrates the distribution of PTRL for the models of
36 CASP15 multimers. The average PTRL is 0.1421. Most targets
have a low or acceptable ranking loss less than 0.15, indicating that
MULTICOM_ga can select a reasonable model for most targets as
no. 1 model. However, 12 targets (H1142, T11740, T11760, H1141,
T11730, H1135, T1121o, H1140, H1144, T11600, T11610, and
T11870) have a high ranking loss (PTRL > 0.15), indicating MULTI-
COM_ga failed to rank good or acceptable models of these targets at
the top. Interestingly, 9 out of the 12 targets (i.e.,, H1142, T11760,
H1141, T11210, H1140, H1144, T11600, T11610, and T11870) also
have a low or negative correlation coefficient (PTCC < 0.4), indicating
poorly predicted quality scores often lead to a high ranking loss.
Indeed, there is a highly negative correlation of 0.84 between PTRL
and PTCC (Figure 2C). Most of the targets that have high PTCC (>0.7)
have a relatively low ranking loss (PTRL < 0.15) as expected. But there
are three pronounced exceptions (T11740, T11730, and H1135) that
have high PTCC and high PTRL. Figure S2 plots MULTICOM_qga pre-
dicted quality scores against the true quality scores of the models of
the three targets, respectively. Interestingly, even though there is an
overall strong positive correlation between the predicted quality
scores and true quality scores across the entire quality score range,
their correlation for good models (true TM-score > 0.6 or 0.7) are neg-
ative, indicating that MULTICOM_qga was not able to select better
models among the good models and instead it chose some mediocre
ones from them as no. 1. There are no targets that have both low
PTCC (<0.6) and low PTRL (<0.1).

To analyze what factors influence the PTCC of MULTI-
COM_ga, we plot PTCC against the average true TM-score of the
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(A) Distribution of Per-Target Correlation Coefficient (PTCC) of Global Quality on CASP15 Models of 36 Multimers
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(B) Distribution of Per-Target Ranking Loss (PTRL) of Global Quality on CASP15 Models of 36 Multimers
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FIGURE 2 The overall performance of MULTICOM_ga on the models of 36 CASP15 multimer targets. (A) Distribution of the per-target
correlation coefficient between MULTICOM_qga predicted and true global quality scores (PTCC). The green area contains targets with high PTCC
>0.75. Several targets with low/moderate correlation coefficients are labeled. The average PTCC on the 36 targets is 0.6626. (B) Distribution of
the per-target ranking loss (PTRL). The green area contains targets with low PTRL <0.1. Several targets with high ranking loss are labeled. The red
color highlights nine targets with both high ranking loss and low correlation. The average PTRL on the 36 targets is 0.1421. (C) PTCC is plotted
against PTRL on the 36 multimer targets. The general trend is that a higher PTCC corresponds to a lower PTRL (correlation between

them = 0.84). However, there are three pronounced exceptions (T11740, T11730, and H1135) with both high correlation and high ranking loss.

models for each target (i.e., a measure of the absolute difficulty of a
target; higher, less difficult), the proportion of good models (i.e.,
a measure of the sampling difficulty of a target; higher, less
difficult to sample a good model by a method such as AlphaFold-
Multimer), and the skewness of the distribution of the quality (true
TM-scores) of the models for each target (Figure S3A—C). The
skewness is a measure ofl;hne;asy;pmetry of model quality distribu-
XX

tion, which is equal to—5 i, where n is the number of the

models for a target, X; is the TM-score of model i, X is the mean TM-

score and o is the standard deviation. A high positive skewness indi-
cates that there are more highly concentrated below-average models
within a narrow range and there is a wide spread (a long tail) of low-
frequency above-average models (Figure S4A). A low negative skew-
ness indicates that there are more highly concentrated above-average
models within a narrow range and there is a wide spread (a long tail) of
low-frequency below-average models (Figure S4B). A zero skew-ness
means the above-average and below-average models are sym-

metrically distributed.
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The Pearson's correlation between PTCC and each of the three
factors (average TM-score, proportion of good models, skewness) is
0.5852, 0.615, and 0.7314, respectively (Figure S3A—C). A moderate
positive correlation between PTCC and the average TM-score indi-
cates that the absolute difficulty of a target plays a moderate role in
estimating the accuracy of the models of the target. A slightly stronger
positive correlation between PTCC and the proportion of good
models suggests that sampling more good models can make the qual-
ity estimation easier, which is expected because more good models
lead to higher pairwise similarity scores between good models and
likely higher estimated quality scores for them than bad models. A
very strong negative correlation between PTCC and skewness indi-
cates that the asymmetry distribution of the quality of the models
plays an important role in MULTICOM_qga's estimation of the model
accuracy. A high concentration of below-average-quality models in a
small range in conjunction with a low frequency of above-
average-quality models spread in a wide range of quality (a high posi-
tive skewness) makes the estimation of model accuracy harder. On
the opposite, a very low negative skewness makes the estimation of
model accuracy easier. Overall, the skewness influences the model
accuracy estimation more than the absolute difficulty of a target
(i.e., average TM-score) and the sampling difficulty (i.e., the proportion
of good models).

Figure S3D—F plots PTRL against three factors (average TM-
score, proportion of good models, and skewness). Like PTCC, the simi-
lar relationship has been observed that PTRL has a moderate (nega-
tive) correlation with the average TM-score measuring absolute target
difficulty, stronger (negative) correlation with the proportion of good
models measuring the sampling difficulty, and very strong positive
correlation with the skewness of the distribution of model quality. For
instance, three homomultimers (T11600, T11610, and T11870) with
the highest ranking loss of 0.47203, 0.47772, and 0.49026 also have
the high skewness of 8.114, 2.6317, and 2.3826.

Figure S5 compares MULTICOM_qga with other 22 CASP15 EMA
predictors (excluding APOLLO since it submitted the same global
structure quality scores for all the models for most targets) in terms of
the average PTCC and the average PTRL on 36 CASP15 assembly tar-
gets. MULTICOM_ga has the highest average PTCC of 0.6626, which is
17.67% higher than the second highest PTCC of 0.5631 of Mod-
FOLDdock. MULTICOM_qga has the second lowest average PTRL of
0.1421, only higher than the lowest average PTRL of 0.1107 of

Venclovas.

3.3 | Successful and failed CASP15 cases of
MULTCOM_qga

Figure 3A-D illustrates the four typical good cases in which MULTI-
COM_ga performed well. Figure 3A illustrates a case (a 27-chain het-
eromultimer H1111 with a stoichiometry of A9B9C9) in which
structural models largely fall into two groups: a good group of models
with TM-score higher than 0.90 and a bad group of models with TM-

score lower than 0.25. Because there is a significant portion of good

models and they are highly similar to each other, the average pairwise
similarity for good models is relatively high and thus they can be read-ily
picked up by MULTICOM_ga. Indeed, MULTICOM_qga selected one
model from the bin with TM-scores in (0.95, 1]. The model has a TM-
score of 0.95196, slightly lower than 0.9825 of the best model in the
pool (the ranking loss-PTRL = 0.03054). The -correlation-PTCC
between the predicted quality scores and true TM-scores is 0.62,
which is only moderate. It is worth noting that this PTCC for H1111 is
much lower than that reported in the official CASP15 analysis
because it removed a lot of partial models with different stoichiome-
try from the native structure while our analysis considered all the
models.

Figure 3B is a homodimer (T11230) that has a large portion of
good models with TM-score between 0.85 and 0.9, several high-
quality models with TM-score between 0.9 and 0.95, and many other
models with TM-score widely spanning from 0.15 to 0.85. MULTI-
COM_ga was able to select a model from the bin (red) with the high-est
score range (0.9, 0.95]. The top-1 selected model has a TM-score of
0.9063. The PTRL is very low (0.01671). The PTCC is very high
(0.98), indicating MULTICOM_qga, mostly its PSS component, is good
at estimating the accuracy of the models with this kind of skewed
quality distribution.

Figure 3C is H1137, a very large heteromultimer target (stoichi-
ometry: A1B1C1D1E1F1G2H1I1). The true TM-score of its models
have a wide range of distribution from 0.05 to 0.95. However, the
mode of the distribution lies in the medium quality score range (0.65,
0.7]. MULTICOM_ga was able to select a model from the bin with the
second highest score range (0.85, 0.9]. The model has a TM-score of
0.87644, which is not the best but a reasonable choice. The PTRL is
0.05916, which is reasonably low considering the size and difficulty of
the target. The PTCC is 0.96, indicating that MULTICOM_qga's predic-
tions can have high correlation with true quality scores when the true
quality scores of the models are somewhat evenly distributed in a
large range.

Figure 3D is a case in which combining ICPS with PSS improves
the ranking of the models. T11790 is a homodimer whose models
have TM-scores largely falling into the range (0.75, 0.9], with some
better models on its right side and many worse models on its left side.
The pairwise similarity score (PSS) chose a good model with TM-score
of 0.85378, but MULTICOM_ga combining PSS and ICPS selected a
better model with TM-score of 0.90331. This case indicates that the
single-model quality score—ICPS in MULTICOM_ga can sometimes
improve the selection of the top-1 model by moving it to the higher
quality bin.

Figure 3E is a typical case where MULTICOM_qa failed miserably.
The quality scores of the models of this homodimer target (T11210)
are distributed between 0.45 and 0.85. However, the scores of the
majority of the models fall into a narrow low score bin (0.50, 0.55],
even though there are some better models whose scores are largely
evenly distributed from 0.55 to 0.85. The distribution of the quality
of the models is highly skewed. And because there are too many bad
models that are quite similar to each other (average TM-
score for the bad models in the (0.5-0.55] bin is 0.86), they dominate
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FIGURE 3 Good and bad examples of applying MULTICOM_qga to estimate the accuracy of the models of CASP15 multimer targets. In each
example, the distribution of the true TM-scores of the models for each target is visualized as histogram. The native structure, true top-1 (best)
model, selected top-1 model, and the TM-scores of the latter two are presented. The bin in the histogram from which the top-1 model was
selected by MULTICOM_qa is highlighted in red. (A) H1111: stoichiometry = A9B9C9, PTCC = 0.62, PTRL = 0.03054; (B) T11230:
stoichiometry = A2, PTCC = 0.98, PTRL = 0.01671; (C) H1137: stoichiometry = A1B1C1D1E1F1G2H1I1, PTCC = 0.96, PTRL = 0.05916;

(D) T11790, stoichiometry = A2, PTCC = 0.97, PTRL = 0.06577; (E) T11210: stoichiometry = A2, PTCC = 0.39, PTRL = 0.34683; the correct
interfaces are circled; and the top-1 model selected by MULTICOM_ga contains only one of the two correct interfaces, resulting in a high ranking
loss of 0.34683.

the calculation of PSS, leading to bad models having higher estimated MULTICOM_qga completely failed in this situation and ICPS could not
quality scores. Consequently, MULTICOM_qga chose a bad model from rescue it. This is a typical case in which MULTICOM_qa fails when
the bin (0.5, 0.55]. The ranking loss is very high (PTRL= 0.34683). there is only a small portion of good models and the bad models are
Moreover, the PTCC is negative (0.39), indicating that PSS of similar to each other. In this case, MULTICOM_ga selected a model
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(A) The model similarity graph for H1111. (B) The model similarity graph for T11210. In a model similarity graph, each node

denotes a model. An edge is used to connect two models (nodes) if their structural similarity score—TM-score is greater than a threshold. The
threshold is determined such that only the top 30% of model pairs are connected by edges. The weight of each edge is TM-score between two
nodes (models) calculated by MMalign, which is normalized by the total sequence length of the larger model if the two models have different
sizes. The color of the nodes corresponds to the true TM-scores of the models. For H1111, both the best model (true top-1 model) and selected
top-1 model come from the largest subgraph with the highest quality. For T11210, the selected top-1 model is from the largest subgraph with
mediocre quality, but the best model is in the third largest subgraph. (C) The distribution of TM-scores of the models of H1114 as well as its
native structure, top-1 model selected by PSS, top-1 model selected by ICPS, top-1 model selected by MULTICOM_qa, and the best model in the
model pool. Both ICPS and MULTICOM_qga selected a model that is much better than the model selected by PSS. The four A chains in the good
models form a cube in the center (red), which is a key feature of the structure of H1114. (D) A homo-dimeric interface between two A chains of
the top-1 model selected by ICPS for target H1114. The model is H1114TS119_2. The red lines represent the true inter-chain contacts in the
interface. The numbers are the probabilities for the true contacts predicted by the CDPred. The true contacts have high predicted probabilities,

leading to a high ICPS of 0.44 for the interface.

with one interaction interface that matches with one of the two inter-
action interfaces of the native structure, while the best model in the
pool has the two correct interfaces.

Figure S6 shows eight additional good cases where MULT-
COM_qga performs well, each of which has a significant portion of
good models making ranking easy. Figure S7 shows six additional bad
cases where MULTICOM_qa failed, each of which has a small portion
of good models.

To further analyze how MULTICOM_ga may succeed or fail, we
draw a model similarity graph for a good case H1111 (Figure 4A) and a
bad case T1121o0 (Figure 4B). In each graph, a node denotes a model
and an edge connects two models if their structural similarity is higher
than a threshold. Here, a threshold is chosen so that 30% of model
pairs are connected by edges. The model similarity graph of H1111
has seven subgraphs (clusters), among which the largest subgraph has
higher true quality scores and high within-subgraph similarity. Both
the best model and the top-1 model selected by MULTICOM_qga are

from the largest subgraph that contains a lot of good and similar
models. In contrast, the model similarity graph of T1121o has five
subgraphs (clusters). The best model resides in the third large sub-
graph, while MULTICOM_qga selected one model from the largest sub-
graph containing a lot of bad models that are similar to each other.
This example clearly demonstrates that the high similarity between
bad/mediocre models in a large cluster makes model ranking difficult

for MULTICOM_ga, mostly its PSS component.

3.4 | Quantification of the difficulty of structural
models for model accuracy estimation

The results in Section 3.2 show that the absolute difficulty of a target
(average true TM-score of the models of the target), the sampling dif-
ficulty (the proportion of good models), and the skewness of the dis-

tribution of quality of the models affect the EMA performance (PTCC
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TABLE 1

Pearson's correlation between PTCC (or PTRL) of MULTICOM_qa and each of the five factors (average TM-score, proportion of

good models, skewness, mean pairwise similarity score between all the models, and difficulty index).

Pearson's Avg true TM-score Proportion of good models
correlation of models (TM-score > 0.8)
PTCC of 0.5852 0.6150
MULTICOM _ga
PTRL of 0.6662 0.7266
MULTICOM _ga

Note: Bold numbers denote the strongest correlation.

and PTRL) of MULTICOM_ga moderately or strongly. We also calcu-
late the correlation between PTCC and the mean pairwise similarity
between all the models in a model pool of a target (i.e., equal to the
average of PSS of the models in the pool) for the CASP15 targets
(Table 1). The correlation between MULTICOM_ga's PTCC and the
mean pairwise similarity score of all the models of a target is only
0.1220, which is much weaker than the correlation between PTCC
and the other three factors (0.5852 for average TM-score; 0.6150 for
the proportion of good models, and 0.7314 for the skewness), indi-
cating that the mean pairwise similarity between all the models in a
model pool is not a good indicator of the difficulty of estimating the
accuracy of the models. The reason is that, even though high similarity
between good models makes the model accuracy estimation easier,
high similarity between bad models makes it harder. To treat the neg-
ative and positive impact of the similarity between good/bad models
differently, we design a new metric called Difficulty Index to quantify
the difficulty of estimating the accuracy of the models for a target.

The difficulty index for the models of a target is defined as
‘" PSS' G TMscore' TMscore migaie P
2n
score of model i, TM-score' is the true quality score of model i, n is the

PSS’ is the average pairwise similarity

number of models. TMscoremiddie % TMsceremax bTMscorenn  denotes the
middle value between the minimum and maximum TM-scores of the
models. The difficulty index ranges from 1 to 1. Lower the difficulty
index, more difficult the models are for accuracy estimation. In this
definition, the PSS of the below-average-quality (bad) models whose
TM-score is less than the middle value (TM—score‘<TM—scoremidd|E)
contributes negatively to the difficulty index, while the above-
average-quality (good) models (TM-score' > TM-scoremaie) contribute
positively. The correlation between the difficulty index and PTCC
(or PTRL) of MULTICOM_qa is 0.7723 (or 0.8359), which is even
stronger than the correlation between the skewness and PTCC (or
PTRL) and several times stronger than the mean pairwise similarity
score between all the models (Table 1). The results show that the diffi-
culty index considering the different impacts of the similarity between
bad/good models is a very effective measure of the difficulty of esti-
mating the accuracy of the models in a model pool, which is more
effective than only considering the skewness of the distribution of the
model quality. The correlation for the difficulty index is much higher
than for the mean pairwise model similarity confirms the importance
of treating the pairwise similarity between good or bad models differ-
ently for EMA. The difficulty index can be used to select hard targets

for testing EMA methods to improve their performance on them.

Mean pairwise similarity score Difficulty
Skewness  between all models Index
0.7314 0.1220 0.7723
0.7778 0.1477 0.8359

Moreover, there is a strong correlation (0.8078) between the dif-
ficulty index and the average true TM-score of the models (absolute
difficulty) of a target (Figure S8). This indicates that the difficulty
index of the models for a target can also quantify the difficulty of pre-

dicting structures for the target.

3.5 | Analysis of the properties and contributions
of PSS and ICPS

We compare how the EMA performance (PTCC and PTRL) of the two
components of MULTICOM_qga (i.e.,, PSS and ICPS) is influenced by
the four factors (Table 2): (1) the average true TM-score of the models
of a target, (2) the proportion of good models, (3) the skewness of the
distribution of the quality of models, and (4) the difficulty index of the
models. The PTCC of PSS has the strongest correlation with the four
factors (Table 2A), the PTCC of MULTICOM_ga has the second stron-
gest correlation with them (see Table 1), and the PTCC of ICPS has a
much weaker correlation with them than PSS and MULTICOM_qa
(Table 2A). This indicates that the performance of the single-model
method—ICPS is much less influenced by the four factors than the
multi-model method—PSS. The stronger correlation between MULTI-
COM_ga with the four factors mostly comes from PSS as they have
similar correlation coefficients and trends. The largely similar results
are observed in terms of PTRL (see the PTRL's correlation for PSS and
ICPS in Table 2B and for MULTICOM_ga in Table 1). Finally, PTCC/
PTRL of PSS has the strongest correlation with the difficulty index,
but PTCC/PTRL of ICPS has the strongest correlation with the
skewness.

We also investigate how the two components (PSS and ICPS) of
MULTICOM_ga contribute to its EMA performance on the 36 CASP15
multimer targets. Because MULTICOM_qga was not able to generate
PSS for a very large multimer H1114 (stoichiometry: A4B8C8) within
the two-day limit, it used ICPS scores alone as the final predicted
quality scores for the models of H1114 during the CASP15 experi-
ment. Here, to fairly compare the performance of PSS and ICPS of
MULTICOM_ga, we use MMalign (version 2021/8/16) to regenerate
PSS for the models of H1114 and calculate the weighted average of
the PSS and ICPS as the final predicted scores.

Table 3 reports the average PTCC and the average PTRL of the
three methods on the 36 CASP15 multimer targets. MULTICOM_qa
has the lowest average PTRL, while PSS has the highest average
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TABLE 2

The correlation between the performance (PTCC or PTRL) of two components (PSS and ICPS) of MULTICOM_ga and the four

factors (average true TM-scores of the models of a target, the proportion of good models, the skewness of the quality of the models, and the
difficulty index of the models). (A) The correlation between PTCC and the four factors; and (B) the correlation between PTRL and the four factors.

A. Correlation of PTCC Average TM-score of models Proportion of good models (TM-score > 0.8) Skewness Difficulty index
PTCC of PSS 0.6694 0.6514 0.7467 0.7838
PTCC of ICPS 0.2207 0.3163 0.3669 0.3101
B. Correlation of PTRL Average TM-score of models Proportion of good models (TM-score > 0.8) Skewness Difficulty index
PTRL of PSS 0.6900 0.7360 0.7740 0.8351
PTRL of ICPS 0.2778 0.2609 0.3204 0.2809

TABLE 3 ThePTCC and PTRL of PSS, ICPS and MULTICOM_qga
(correction) on 36 CASP15 multimer targets. MULITICOM_qga
(correction) differs from the CASP15 MULTICOM_qga only on one
target—H1114.

Method Average PTCC" Average PTRL#
PSS 0.6737 0.1454
ICPS 0.3138 0.2942
MULTICOM_ga (correction) 0.6645 0.1414

Note: Bold number denotes the best PTCC or PTRL.

PTCC, indicating that combining PSS and ICPS in MULTICOM_qa
reduces the average per-target ranking loss, but slightly decreases the
average per-target correlation coefficient. Both MULTICOM_ga and
PSS perform much better than ICPS, suggesting that the multi-model
method PSS still works much better than the single-model based
interface contact score—ICPS on average. However, PSS and ICPS are
complementary. H1114 (stoichiometry: A4B8C8) is a notable example
showing that combining ICPS and PSS reduces the ranking loss.
Figure 4C illustrates how ICPS and MULTICOM_ga selected a model
for H1114 that is much better than PSS. The reason is that CDPred
predicted high probabilities for some true contacts in an interface of
some good models, leading to a higher ICPS for them to be selected
(Figure 4D).

3.6 | Optimization of the weights of ICPS and PSS
in MULTICOM_qa

When we developed MULTICOM_qa for the CASP15 experiment, the
weights for its two components (0.4 for ICPS and 0.6 for PSS) were
not optimized due to the time constraint. After the CASP15 experi-
ment, we tested different weights for them on the 36 multimer tar-
gets to see if better results can be obtained. As in Section 3.5, the
incorrect PSS of the models of H1114 was corrected for this analysis.
Figure S9 shows how the average per-target ranking loss (PTRL) of
MULTICOM_ga changes with respect to the weight of ICPS. The low-
est average PTRL of 0.1382 is achieved at the ICPS weight of 0.48,
which is better than the loss of 0.1414 for the weight 0.4 used in the
CASP15 experiment and the loss of 0.1454 of using PSS alone
(i.e., ICPS weight = 0). The results show that the performance of

combining PSS and ICPS may be further improved if their weights are

optimized.

3.7 | The performance of estimating the global
interface accuracy of assembly models

During CASP15, ICPS, the single-model quality score component of
MULTICOM_ga was used as the estimation of the global interface
accuracy of the assembly models (QSCORE). Figure S10 compared
MULTICOM_ga with other 17 CASP15 EMA predictors in terms of
the average PTCC and average PTRL of the global interface accuracy
(QSCORE) on 39 CASP15 assembly targets. The global interface accu-
racy scores (QSCORE) were downloaded from CASP15 and used to
evaluate the EMA methods. MULTICOM_qga only ranked 11th in
terms of the PTCC (0.2634) and 10th in terms of the PTRL (0.5037),
indicating that the single-model quality score (ICPS) alone is not com-
petitive in estimating the global interface accuracy. However, if the
same weighted average score of PSS and ICPS (i.e., 0.4 ICPS+0.6
PSS) used for estimating the global structure accuracy were applied to
estimate the global interface accuracy, the PTCC of MULTI-COM_qga
would be 0.6328, higher than 0.5706 of ModFOLDdockR that had
the highest PTCC in CASP15, and the PTRL of MULTI-COM_qga
would be 0.2543, only higher than 0.2261 of VorolF and 0.2278 of
VoroMQA-select-2020. The result shows that combining the multi-
model PSS score and the single-model ICPS score works better than
using ICPS alone in estimating the global interface

accuracy.

4 | DISCUSSION

Calculating the similarity between two multimers depends on multi-
mer structure alignment tools such as MMalign. The existing multimer
alignment tools require a good (or optimal) mapping between the
chains of one multimer and those of another multimer to accurately
calculate their similarity. However, finding an optimal mapping for
two large homomultimers or large heteromultimers containing multi-
ple copies of the same chain is extremely hard and time consuming.
Therefore, even though the empirical approach adopted by MMalign

can calculate multimer similarity well in most cases, sometimes it
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severely underestimates the similarity between the models of some
large multimers consisting of many chains or yields different similarity
scores when the order of the two multimer models is changed, which
negatively affects the performance of MULTICOM_ga. Moreover, the
speed of calculating similarity between large multimer models consist-
ing of dozens of chains is slow, which prevents the pairwise similarity
calculation from being applied to a large number of models. However, it
appears that a new, efficient algorithm of finding the optimal chain
mapping between large multimers had been designed by CASP15
EMA assessors and was presented in the CASP15 meeting,*® which is
expected to alleviate the problem. Given an optimal chain mapping as
input, some complex alignment tools such as DockQ that requires a
chain mapping as input, can be more readily applied to aligning muti-
mers consisting of more than two chains to calculate their similarity.

As demonstrated in our CASP15 experiment, the multi-model
pairwise similarity approach (PSS) works well when the quality scores
of the models for a target are either shifted toward the high score
range or evenly distributed across the score range. On average PSS
still works much better than single-model approach (ICPS) of estimat-
ing the quality of quaternary structural model. This is not surprising
because the multi-model pairwise similarity measures the frequency
of models sampled by the underlying prediction methods. If the
underlying prediction methods do a reasonable job, it is expected to
produce good models with high probability. Because good models
must be similar to the same native/true structure, they must also be
similar to each other, leading to a higher average pairwise similarity
score for them. Another implicit assumption for the pairwise similarity
method to work well is that bad models have different ways to be
wrong and therefore are likely different to each other. This is true if
the underlying prediction methods do not make the same mistake fre-
quently. However, this assumption can be violated, reflected in that
the pairwise similarity approach often fails when there is a large por-
tion of bad models that are similar to each other, which dominates the
average pairwise similarity calculation so that bad models are assigned
higher scores than good models. This happened for some hard targets
in CASP15 when the underlying structure prediction methods gener-
ate similar bad models for them (Figure 4B). This is a key issue to be
addressed to further advance the pairwise similarity approach. The
difficulty of structural models for such hard targets can be measured
well by the difficulty index introduced in this work.

One way to correct the weakness of the pairwise similarity
approach is to combine it with the complementary single-model EMA
methods such as the deep learning predicted interface contact proba-
bility score (ICPS) that do not depend on the comparison between
models. This direction may be important for advancing the state of
the art of estimating model accuracy because it is unlikely single-
model EMA methods alone can catch up with the performance of the
pairwise model similarity approach in a short period of time. However,
although this direction is promising, the combination of the two is not
trivial. A simple weighted average of the scores of the two can correct
some mistakes but may not significantly improve the model accuracy
estimation. Therefore, more sophisticated approaches of integrating

the strengths of the two complementary approaches need to be

developed. For instance, a deep learning method can be trained to
combine the pairwise similarity scores with multiple single-model
EMA methods to estimate model accuracy. Moreover, for AlphaFold2
predicted multimer models, the AlphaFold-Multimer's confidence
score and predicted TM-score/pIDDT score for each model can
potentially be combined with the pairwise similarity approach (PSS) if
they are available. Indeed, we have found that AlphaFold-Multimer's
confidence score and PSS are complementary in ranking the in-house
server models generated for CASP15 assembly targets by our MULTI-
COM server built on top of AlphaFold-Multimer during CASP15.
Combining PSS and AlphaFold-Multimer's confidence score slightly
reduced the average per-target ranking loss (data not shown). For
some targets (e.g., T11790), the ranking loss (e.g., 0.03) of PSS is much
lower than that (e.g., 0.414) of AlphaFold-Multimer's confidence
score. The results indicate that PSS is not only useful for ranking
models generated by many predictors in the CASP experiment, but
also useful for ranking assembly models generated by one predictor in
the real-world prediction situation. However, the search for the best
approach of combining PSS and AlphaFold-Multimer's scores is still
challenging and ongoing. Moreover, to further advance the combina-
tion, more sophisticated and accurate deep learning single-model
EMA methods for quaternary structure models need to be developed
as what happened in estimating the accuracy of tertiary structure

models.>°

5 | CONCLUSION

In this work, we developed a hybrid method of combining the pair-
wise model similarity score and the interface residue—residue con-
tact prediction to estimate the accuracy of protein assembly models
and blindly tested it in the CASP15 experiment. The method is
effective in ranking protein assembly models and predicting their
global quality scores as demonstrated by its outstanding perfor-
mance in the CASP15 experiment. Our experiment demonstrates
that the average pairwise similarity score (PSS) can estimate the
accuracy of models well in most cases, but it fails when a hard target
has a large portion of bad models that are similar to each other. The
single-model based interface contact probability score (ICPS)
derived from the deep learning-based inter-chain contact prediction
can provide some valuable information complementary with PSS to
evaluate the quality of the inter-chain interaction interface in multi-
mer models. A simple weighted combination of PSS and ICPS can
correct some model ranking errors of PSS but does not systemati-
cally improve its ranking, suggesting that a more sophisticated
(e.g., deep learning-based) integration of the pairwise similarity
scores and single-model quality scores is needed to significantly
improve the estimation of quaternary model accuracy. More accu-
rate single-model EMA methods are also needed to improve the
combination. Finally, it is useful to consider several important fac-
tors such as the target difficulty, model sampling difficulty, skew-
ness of model quality, and model difficulty index for designing and

evaluating EMA methods.
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