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Abstract
Estimating the accuracy of quaternary structural models of protein complexes and

assemblies (EMA) is important for predicting quaternary structures and applying them to

studying protein function and interaction. The pairwise similarity between structural

models is proven useful for estimating the quality of protein tertiary structural models,

but it has been rarely applied to predicting the quality of quaternary structural models.

Moreover, the pairwise similarity approach often fails when many structural models are

of low quality and similar to each other. To address the gap, we developed a hybrid

method (MULTICOM_qa) combining a pairwise similarity score (PSS) and an interface

contact probability score (ICPS) based on the deep learning inter-chain contact predic-

tion for estimating protein complex model accuracy. It blindly participated in the 15th

Critical Assessment of Techniques for Protein Structure Prediction (CASP15) in 2022

and performed very well in estimating the global structure accuracy of assembly models.

The average per-target correlation coefficient between the model quality scores pre-

dicted by MULTICOM_qa and the true quality scores of the models of CASP15 assem-

bly targets is 0.66. The average per-target ranking loss in using the predicted quality

scores to rank the models is 0.14. It was able to select good models for most targets.

Moreover, several key factors (i.e., target difficulty, model sampling difficulty, skewness

of model quality, and similarity between good/bad models) for EMA are identified and

analyzed. The results demonstrate that combining the multi-model method (PSS) with

the complementary single-model method (ICPS) is a promising approach to EMA.
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1      |      I N T R O D U C T I O N                                                               complex or assembly to collaboratively perform a complicated biologi-

cal function such as transduction of an extracellular signal into a cell

Most proteins must fold into some specific 3D shape called tertiary

structures to carry out their biological function. Two or more proteins

(more precisely protein chains) often interact to form a protein

to trigger gene expression. Therefore, predicting the tertiary structure

of a single protein (monomer) and the quaternary structure of a pro-

tein complex/assembly (multimer) from its sequence has been a major
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pursuit of the scientific community for the last few decades because

the experimental methods of determining protein structures are

expensive and time-consuming and therefore can only be applied to a

small fraction of proteins.

To rigorously and objectively assess the progress in protein struc-

ture prediction, the Critical Assessment of Techniques for Protein

Structure Prediction (CASP) was launched in 1994 and continued to be

held every 2 years,1–5  with the latest CASP15 experiment concluded in

2022. Stimulated by the CASP experiments, significant progress has

been made in protein tertiary structure prediction. Particularly, with the

development of deep learning-based methods over the last decade,6–1 6

the prediction of protein tertiary structures had steadily improved from

one CASP experiment to another until a deep learning method—Alpha-

Fold29 drastically advanced the field with its outstanding capability of

predicting tertiary structures with the quality close to that of the exper-

imental techniques such as x-ray crystallography in the 2020 CASP14

experiment. The success of AlphaFold2 and other deep learning

methods has revolutionized the prediction and application of protein

tertiary structures in various biological research.

As the tertiary structure prediction problem has been largely

solved, the field started to focus more on predicting the quaternary

structures of protein complexes and assemblies, which also had a long

history of development but did not progress as fast as the tertiary

structure prediction. 1 7 –1 9  However, the situation started to change as

more and more deep learning methods were developed to predict

inter-protein contacts and quaternary structures.2 0 –2 5      Particularly,

adapting AlphaFold2 for protein quaternary structure prediction

(i.e., AlphaFold-Multimer20) substantially improved the accuracy of

protein complex/assembly structure prediction.

In parallel to the development of the methods for sampling pro-

tein quaternary structures, numerous methods have been developed

for estimating the accuracy of predicted quaternary structural models

(EMA) in order to select the best predicted structures and use them

ROY E T  AL.

ways to be incorrect and are therefore often much less similar to each

other, leading to a relatively higher average pairwise similarity score

for good models. The approach generally works well when there is a

significant or relatively high proportion of good models in a model

pool that dominate over the bad models. However, the model consen-

sus approach was rarely used in estimating the accuracy of protein

quaternary structures until the 2022 CASP15 experiment.

To prepare for the CASP15 experiment, we extended our pair-

wise model similarity method for tertiary structure quality assess-

ment4 1      to estimate the quality of protein quaternary structural

models. However, the pairwise similarity between models cannot

work well when many models in a model pool have low quality and

are also similar to each other (e.g., structure predictors making the

same rather than different folding mistakes), leading to bad models

having high pairwise similarity scores (i.e., higher estimated quality

scores) to be ranked higher. To address the weakness, we developed a

hybrid method (MULTICOM_qa) combining the pairwise similarity

score between a multimer model and other models (PSS) with a

single-model-based interface contact probability score (ICPS) that

does not depend on the similarity between models to estimate the

accuracy of the model. ICPS is calculated from the inter-chain contact

map predicted by inter-chain residue–residue contact/distance pre-

dictors2 1 , 2 3 , 2 4  such as CDPred.2 1  MULTICOM_qa uses a weighted

average of PSS and ICPS to predict the global accuracy (quality) of a

quaternary structural model. We first benchmarked MULTICOM_qa

on the CASP14 dataset internally and then blindly tested it in the

2022 CASP15 experiment. It ranked first out of 24 EMA predictors in

estimating the global fold accuracy of protein quaternary structural

models in CASP15. Our post-CASP15 analysis investigates several

important factors influencing MULTICOM_qa's performance and iden-

tifies its strengths and weaknesses for further improvement.

effectively in biological research.2 6  The EMA methods can be classi- 2 | M E T H O D S
fied into four categories: (1) single-model energy/statistical potential-

based methods; (2) single-model machine learning methods; (3) multi-

model consensus methods; and (4) hybrid methods of combining (1),

To prepare for CASP15, we developed several individual EMA methods

to measure the pairwise similarity between multiple quaternary struc-

(2)     and/or     (3).     Single-model     energy/statistical     potential-based tural models and predict the quality of the contact interfaces of a single

methods2 7 – 3 0       calculates the physical energy (e.g., electrostatics, structural model, which are described in Section 2.1. We then com-

hydrophobic      interactions,      solvation)      or      statistical      potential3 1                  bined them to design a hybrid method of estimating model accuracy for

(e.g., residue–residue contact potentials) of a model to estimate its the CASP15 experiment, which is described in Sections 2.2 and 2.3

quality.     Machine     learning     methods     including     deep     learning

methods3 2 – 3 6  use expert-curated or automatically extracted features

of a model as input to predict its quality. For instance, DProQA3 2  uses 2.1 | Individual EMA methods
a gated-graph transformer to take a protein quaternary structure

represented as a graph (nodes: residues and edges: residue–residue 2.1.1 | Average pairwise similarity score (PSS)
interactions) as input to predict its quality score. The multi-model con-

sensus methods leverage the similarity between structural models to

evaluate their quality, which have been extensively used in assessing

the quality of protein tertiary structures3 7 –4 2  and are considered one

of the most effective methods for tertiary structure quality assess-

ment.4 3  The reason that the model consensus methods work well in

many situations is that the good models similar to the native struc-

tures must be similar to each other, while bad models can have many

A complex structure alignment tool—MMAlign4 4—is used to calculate

the structural similarity score (i.e., TM-score4 5) between a multimer

model and each of the other multimer models in a model pool for a

multimer target. The average TM-score between a model and all other

models is the average pairwise similarity score (PSS) for the model

(i.e., PSSi ¼       1,j ≠  i
TMscoreij, PSSi is PSS of model i, j is the index of any

model other than i, TM-scoreij is the TM-score between model i and
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model j, and n is the total number of models in the pool). PSS is consid-

ered an estimation of the true quality of a model. As a comparison with

the PSS, the average similarity between the monomer structural units of

one multimer model and their counterparts of each of the other multi-

mer models (called monomer_pss) and the average similarity between

the pairs of chains (dimers) of one multimer model and their counter-

parts of each of the other multimer models (called dimer_pss) are also

calculated. monomer_pss and dimer_pss are calculated by TM-score4 5

and DockQ,4 6  respectively. Different from monomer_pss considering

only tertiary structure similarity but not inter-chain interactions and

dimer_pss considering both tertiary structure similarity and dimeric

interactions, PSS takes into account the overall fold and interface sim-

ilarity between a multimer model and all the other multimer models

and therefore is expected to be more informative about the quality of

the model than mnomer_pss and dimer_pss. It is worth noting that

PSS, monomer_pss and dimer_pss are all multi-model EMA methods

because multiple structural models for the same target are required to

compute them.

2.1.2 | Average interface contact probability
score (ICPS)

3

multimer models in.4 7  In this study, this method serves as a baseline to

measure the performance of PSS, monomer_pss, dimer_pss and ICPS.

We evaluated the five methods above in terms of average ranking

loss on the CASP14 dataset. The CASP14 multimer dataset consists of

21 multimer targets, each of which has about 100 structural models pre-

dicted by CASP14 assembly predictors. Each method was used to rank the

models for each target. The ranking loss is the true TM-score of the best

model for a target minus the true TM-score of the no. 1 model ranked by

a method. If a method ranks the truly best model of a target no. 1, the

ranking loss for the target is 0. The average per-target ranking loss of each

method over all the CASP14 targets was computed (Figure S1).

PSS has the lowest loss of 0.118, which is much lower than the

other methods, indicating it is quite effective in ranking CASP14 mul-

timer models. interface_size has the highest loss of 0.319. The loss of

dimer_pss is 0.147, lower than 0.199 of monomer_pss and 0.204 of

ICPS. dimer_pss performs better than monomer_pss because the for-

mer considers the interactions between protein chains but the latter

does not. It is also interesting to see that the single-model score—ICPS

performs similarly to a multi-model score—monomer_pss and much

better than the interface_size, indicating that ICPS contains valuable

information for ranking multimer structural models.

The inter-chain residue–residue contacts in a multimer model are first 2.2 | Combination of EMA methods
identified. Two residues are considered in contact if their Ca–Ca atom

distance is less than 8 Å. The interaction interfaces between two chains

that interact in at least 20% of multimers are selected for the ICPS cal-

culation. The inter-chain residue–residue contact probability map for

every two chains forming a selected interaction interface are then pre-

dicted by an inter-chain residue–residue contact predictor—CDPred.2 1

CDPred is a deep learning-based tool that can predict the inter-chain

distance map for homodimers and heterodimers. It leverages the 2D

attention mechanism and deep residual network to capture the interac-

tion between different chains to increase the accuracy of inter-chain

distance prediction. The inter-chain distance map predicted by CDPred

is converted into an inter-chain contact probability map. The predicted

probabilities for the inter-chain residue–residue contacts in each

selected interaction interface in a multimer model are extracted from

the inter-chain contact probability maps predicted by CDPred. The

average probability of the inter-chain residue–residue contacts in the

interaction interfaces is called the average interface contact probability

score (ICPS), measuring the likelihood of the interaction interfaces in a

multimer model. For example, Figure 1A illustrates how ICPS is calcu-

lated for an interface. ICPS is a single-model quality score because it

only needs the information of a single model to be computed, which is

different from PSS that depends on the comparison between models.

2.1.3 | Number of interface contacts
(interface_size)

A simple metric—the number of inter-chain contacts in a multimer,

which measures the size of the interaction interfaces of a multimer

model, was shown to have some discriminative power of ranking

After establishing PSS as the best individual model ranking method on

the CASP14 dataset, we tried to combine the different methods (mul-

timer_pss, dimer_pss, monomer_pss, and ICPS) to further improve the

model ranking performance. In one experiment, we used the average

of the four methods ((PSS +  dimer_pss +  monomer_pss +  ICPS)/4) to

rank the models of the CASP14 targets. However, the average ranking

loss of this combination is 0.156, higher than 0.118 of using PSS

alone. The reason for the worse performance is that the dimer_pss

and monomer_pss are redundant and inferior to PSS and therefore

combining them with PSS does not help.

In another experiment, we tested the combination of the multi-

model method—PSS and the single-model method—ICPS. We used

each of them to rank the models for each CASP14 target. The

weighted average of the two ranks for each model (i.e., 0.4  rank

based on ICPS +0.6  rank based on PSS) from the two rankings is

used as the final rank for the model. The ranking loss of this average

ranking approach is 0.105, lower than 0.118 of using only PSS, indicat-

ing that ICPS and PSS are complementary and combining them can

improve model ranking. Therefore, we chose to combine PSS and ICPS

to develop an EMA predictor for the CASP15 experiment. However,

the weights of combining them were not fully optimized prior to

CASP15 due to the time constraint.

2.3 | MULTICOM_qa for estimating assembly
model accuracy in CASP15

Because CASP15 required an estimated global quality score for each

model instead of its predicted rank, MULTICOM_qa used the
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F I G U R E 1
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(A) A simplified illustration of the ICPS calculation. (i) A dimer model with chain A in red and chain B in blue. (ii) All the inter-chain
contacts from a dimeric interface of the model are identified, which are colored in red and blue. (iii) The green lines highlight some inter-chain
contacts present in the interface. (iv) The predicted probability scores for the inter-chain contacts are extracted from the inter-chain contact map
predicted by a deep learning predictor (CDPred). (v) The probability scores of the contacts in the interface are averaged as ICPS for the model.
(B) The pipeline of MULTICOM_qa for estimating CASP15 assembly model accuracy. The input is a pool of assembly models for a target and
other related information such as the stoichiometry of the target, protein sequences, predicted tertiary structures for each unit in the target, and
the number of CPU cores. Multiple CPU cores can be used to speed up the calculation of the pairwise similarity scores between assembly models.
PSS and ICPS for each model are computed and then averaged as the predicted global fold accuracy score for the model. The ICPS score is also
used as the predicted interface score for each model.

weighted average of PSS and ICPS (i.e., 0.4  ICPS +0.6  PSS) as the

predicted global fold accuracy score for each model. ICPS was also used

as the predicted interface score for each model. CDPred was used to

predict inter-chain contact maps for the ICPS calculation. The

prediction pipeline of MULTICOM_qa is illustrated in Figure 1B.

Given a pool of models for an assembly target, MULTICOM_qa

extracts their backbone structures by filtering out their side chain

atoms. The pairwise similarity score (i.e., TM-score) between any

two models is calculated by MMalign. To speed up the calculation,

multiple CPU cores can be used to compute the scores in parallel.

The average pairwise similarity score between one model and all

considered as an acceptable interaction and is taken into account in

the calculation of the ICPS if it is present in at least 20% of the

models in the pool. The tertiary structure for each chain of the target

predicted by AlphaFold2 is provided for CDPred to predict the inter-

chain residue–residue contact map for any two interacting chains

containing an acceptable interaction, from which the ICPS for the

interfaces of each assembly model is computed. The weighted aver-

age of ICPS and PSS for each model is used as the predicted global

structure accuracy score of the model, while ICPS is used as the pre-

dicted global interface score.

MULTICOM_qa was internally benchmarked on the CASP14

other models (PSS) is computed for each model. The stoichiometry dataset     with     four     existing     methods:     ZRANK,2 9          ZRANK2,3 0

and sequence information are used to find all the acceptable interac-

tions for a target. A dimeric interaction between two chains is

GNN_DOVE,3 5  and DProQA3 2  (Table S1). MULTICOM_qa clearly per-

formed better than the other four methods. After being briefly tested,
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ROY E T  AL.

MULTICOM_qa blindly participated in the CASP15 experiment from

May to August 2022.

5

with a stoichiometry of A1B1C1D1E1F1G2H1I1. Almost all the

models for these targets were generated by the customized

AlphaFold-Multimer used by the CASP15 assembly predictors, and

most targets have some models of good or reasonable quality. How-

3 | RESU L T S ever, quite a few targets are very hard and have few good models,

posing a significant challenge for EMA.

3.1 | Evaluation metrics and CASP15 assembly
targets and models

The CASP15 assessors of the EMA category used a comprehensive

evaluation metric composed of Pearson's correlation, Spearman's cor-

relation, ranking loss, and area under ROC curve in terms of both TM-

score4 5  and GDT-TS score4 8  to compare the performance of CASP15

EMA predictors in estimating the global fold accuracy (called SCORE)

of CASP15 assembly models.4 9  Based on this metric, MULTICOM_qa

ranks No. 1 in estimating the global structure accuracy of the CASP15

assembly models (see the CASP15 official ranking in terms of SCORE:

https://predictioncenter.org/casp15/zscores_EMA.cgi for details).

To complement the CASP15 official assessment, in this study, we

mainly use two individual, complementary metrics (i.e., per-target cor-

relation coefficient (PTCC) and per-target ranking loss (PTRL)) to evalu-

ate the CASP15 global model structure accuracy prediction results of

MULTICOM_qa and analyze its strengths and weaknesses. PTCC is

the Pearson's correlation coefficient between model quality scores

predicted by an EMA method (e.g., MULTICOM_qa) and true TM-

scores (global structure quality) of the models of a target. Higher

PTCC, the better the estimation of the global structure accuracy of

the models for the target. PTRL for a target is the difference between

TM-score of the truly best model in a model pool and TM-score of

the no. 1 model selected by an EMA method for a target. Smaller

PTRL, the better the ranking for the target. The true TM-score of a

model is obtained by using MMalign to compare it with the native

structure and is normalized with respect to the length of the native

structure. It is worth noting that the TM-scores obtained by MMalign

may be somewhat different from those obtained by USalign used in

the CASP15 official assessment, even though they correlate well.

PTCC and PTRL measures how well an EMA method performs on one

target from the two complementary perspectives. PTCC (or PTRL) can

be averaged over all the targets to assess the overall performance of

an EMA method on a dataset.

We evaluate MULTICOM_qa's EMA predictions for the assembly

models of all the CASP15 assembly targets except H1171, H1172,

T1115o, T1192o, and H1185 (i.e., 36 targets in total). H1171 and

H1172 with multiple native conformations and T1115o, T1192o, and

H1185 whose native structures were not available to us are excluded.

The assembly models for the targets were predicted by CASP15

assembly predictors and were released for CASP15 EMA predictors

including MULTICOM_qa to estimate their accuracy from May to

August 2022. Each target has about 275 structural models. The 36

assembly (multimer) targets include 13 homodimers, 10 heterodi-mers,

6 homomultimers with more than two chains, and 7 heteromulti-mers

with more than two chains. Some targets (e.g., H1111, H1114,

T1115o, and H1137) are very large. For instance, H1137 has 10 chains

3.2 | The overall performance of estimating the
accuracy of CASP15 assembly models and the factors
influencing the performance

Figure 2A shows the distribution of PTCC between MULTICOM_qa

predicted global quality scores and the true TM-scores of the models

for the 36 CASP15 assembly targets. Higher PTCC indicates the more

linear consistency between the predicted global accuracy and the true

global accuracy of the models of a target. Twenty-six targets have a

relatively high PTCC ≥0.7, indicating MULTICOM_qa can estimate the

relative global quality of the models of most targets reasonably well.

The average PTCC on the 36 CASP15 targets is 0.6626. Two targets

(H1141 and H1111) have a moderate correlation between 0.35 and

0.65, while another three targets (T1160o, H1144, and T1176o) have a

low positive correlation between 0 and 0.2. MULTICOM_qa

completely failed on five targets (T1121o, T1187o, H1142, H1140,

and T1161o) as the PTCCs for them are negative.

Figure 2B illustrates the distribution of PTRL for the models of

36 CASP15 multimers. The average PTRL is 0.1421. Most targets

have a low or acceptable ranking loss less than 0.15, indicating that

MULTICOM_qa can select a reasonable model for most targets as

no. 1 model. However, 12 targets (H1142, T1174o, T1176o, H1141,

T1173o, H1135, T1121o, H1140, H1144, T1160o, T1161o, and

T1187o) have a high ranking loss (PTRL > 0.15), indicating MULTI-

COM_qa failed to rank good or acceptable models of these targets at

the top. Interestingly, 9 out of the 12 targets (i.e., H1142, T1176o,

H1141, T1121o, H1140, H1144, T1160o, T1161o, and T1187o) also

have a low or negative correlation coefficient (PTCC < 0.4), indicating

poorly predicted quality scores often lead to a high ranking loss.

Indeed, there is a highly negative correlation of 0.84 between PTRL

and PTCC (Figure 2C). Most of the targets that have high PTCC (>0.7)

have a relatively low ranking loss (PTRL < 0.15) as expected. But there

are three pronounced exceptions (T1174o, T1173o, and H1135) that

have high PTCC and high PTRL. Figure S2 plots MULTICOM_qa pre-

dicted quality scores against the true quality scores of the models of

the three targets, respectively. Interestingly, even though there is an

overall strong positive correlation between the predicted quality

scores and true quality scores across the entire quality score range,

their correlation for good models (true TM-score > 0.6 or 0.7) are neg-

ative, indicating that MULTICOM_qa was not able to select better

models among the good models and instead it chose some mediocre

ones from them as no. 1. There are no targets that have both low

PTCC (<0.6) and low PTRL (<0.1).

To analyze what factors influence the PTCC of MULTI-

COM_qa, we plot PTCC against the average true TM-score of the

https://predictioncenter.org/casp15/zscores_EMA.cgi
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(A) Distribution of Per-Target Correlation Coefficient (PTCC) of Global Quality on CASP15 Models of 36 Multimers
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F I G U R E 2

PTRL

The overall performance of MULTICOM_qa on the models of 36 CASP15 multimer targets. (A) Distribution of the per-target
correlation coefficient between MULTICOM_qa predicted and true global quality scores (PTCC). The green area contains targets with high PTCC
>0.75. Several targets with low/moderate correlation coefficients are labeled. The average PTCC on the 36 targets is 0.6626. (B) Distribution of
the per-target ranking loss (PTRL). The green area contains targets with low PTRL <0.1. Several targets with high ranking loss are labeled. The red
color highlights nine targets with both high ranking loss and low correlation. The average PTRL on the 36 targets is 0.1421. (C) PTCC is plotted
against PTRL on the 36 multimer targets. The general trend is that a higher PTCC corresponds to a lower PTRL (correlation between
them =  0.84). However, there are three pronounced exceptions (T1174o, T1173o, and H1135) with both high correlation and high ranking loss.

models for each target (i.e., a measure of the absolute difficulty of a

target; higher, less difficult), the proportion of good models (i.e.,

a measure of the sampling difficulty of a target; higher, less

difficult to sample a good model by a method such as AlphaFold-

Multimer), and the skewness of the distribution of the quality (true

TM-scores) of the models for each target (Figure S3A–C). The
skewness is a measure of the asymmetry of model quality distribu-

tion, which is equal to      ðn1Þσ3
Þ3

, where n is the number of the

models for a target, Xi is the TM-score of model i, X is the mean TM-

score and σ is the standard deviation. A high positive skewness indi-

cates that there are more highly concentrated below-average models

within a narrow range and there is a wide spread (a long tail) of low-

frequency above-average models (Figure S4A). A low negative skew-

ness indicates that there are more highly concentrated above-average

models within a narrow range and there is a wide spread (a long tail) of

low-frequency below-average models (Figure S4B). A zero skew-ness

means the above-average and below-average models are sym-

metrically distributed.
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ROY E T  AL.

The Pearson's correlation between PTCC and each of the three

factors (average TM-score, proportion of good models, skewness) is

0.5852, 0.615, and 0.7314, respectively (Figure S3A–C). A moderate

positive correlation between PTCC and the average TM-score indi-

cates that the absolute difficulty of a target plays a moderate role in

estimating the accuracy of the models of the target. A slightly stronger

positive correlation between PTCC and the proportion of good

models suggests that sampling more good models can make the qual-

ity estimation easier, which is expected because more good models

lead to higher pairwise similarity scores between good models and

likely higher estimated quality scores for them than bad models. A

very strong negative correlation between PTCC and skewness indi-

cates that the asymmetry distribution of the quality of the models

plays an important role in MULTICOM_qa's estimation of the model

accuracy. A high concentration of below-average-quality models in a

small range in conjunction with a low frequency of above-

average-quality models spread in a wide range of quality (a high posi-

tive skewness) makes the estimation of model accuracy harder. On

the opposite, a very low negative skewness makes the estimation of

model accuracy easier. Overall, the skewness influences the model

accuracy estimation more than the absolute difficulty of a target

(i.e., average TM-score) and the sampling difficulty (i.e., the proportion

of good models).

Figure S3D–F plots PTRL against three factors (average TM-

score, proportion of good models, and skewness). Like PTCC, the simi-

lar relationship has been observed that PTRL has a moderate (nega-

tive) correlation with the average TM-score measuring absolute target

difficulty, stronger (negative) correlation with the proportion of good

models measuring the sampling difficulty, and very strong positive

correlation with the skewness of the distribution of model quality. For

instance, three homomultimers (T1160o, T1161o, and T1187o) with

the highest ranking loss of 0.47203, 0.47772, and 0.49026 also have

the high skewness of 8.114, 2.6317, and 2.3826.

Figure S5 compares MULTICOM_qa with other 22 CASP15 EMA

predictors (excluding APOLLO since it submitted the same global

structure quality scores for all the models for most targets) in terms of

the average PTCC and the average PTRL on 36 CASP15 assembly tar-

gets. MULTICOM_qa has the highest average PTCC of 0.6626, which is

17.67% higher than the second highest PTCC of 0.5631 of Mod-

FOLDdock. MULTICOM_qa has the second lowest average PTRL of

0.1421, only higher than the lowest average PTRL of 0.1107 of

Venclovas.

3.3 | Successful and failed CASP15 cases of
MULTCOM_qa

Figure 3A–D illustrates the four typical good cases in which MULTI-

COM_qa performed well. Figure 3A illustrates a case (a 27-chain het-

eromultimer H1111 with a stoichiometry of A9B9C9) in which

structural models largely fall into two groups: a good group of models

with TM-score higher than 0.90 and a bad group of models with TM-

score lower than 0.25. Because there is a significant portion of good

7

models and they are highly similar to each other, the average pairwise

similarity for good models is relatively high and thus they can be read-ily

picked up by MULTICOM_qa. Indeed, MULTICOM_qa selected one

model from the bin with TM-scores in (0.95, 1]. The model has a TM-

score of 0.95196, slightly lower than 0.9825 of the best model in the

pool (the ranking loss-PTRL =  0.03054). The correlation-PTCC

between the predicted quality scores and true TM-scores is 0.62,

which is only moderate. It is worth noting that this PTCC for H1111 is

much lower than that reported in the official CASP15 analysis

because it removed a lot of partial models with different stoichiome-

try from the native structure while our analysis considered all the

models.

Figure 3B is a homodimer (T1123o) that has a large portion of

good models with TM-score between 0.85 and 0.9, several high-

quality models with TM-score between 0.9 and 0.95, and many other

models with TM-score widely spanning from 0.15 to 0.85. MULTI-

COM_qa was able to select a model from the bin (red) with the high-est

score range (0.9, 0.95]. The top-1 selected model has a TM-score of

0.9063. The PTRL is very low (0.01671). The PTCC is very high

(0.98), indicating MULTICOM_qa, mostly its PSS component, is good

at estimating the accuracy of the models with this kind of skewed

quality distribution.

Figure 3C is H1137, a very large heteromultimer target (stoichi-

ometry: A1B1C1D1E1F1G2H1I1). The true TM-score of its models

have a wide range of distribution from 0.05 to 0.95. However, the

mode of the distribution lies in the medium quality score range (0.65,

0.7]. MULTICOM_qa was able to select a model from the bin with the

second highest score range (0.85, 0.9]. The model has a TM-score of

0.87644, which is not the best but a reasonable choice. The PTRL is

0.05916, which is reasonably low considering the size and difficulty of

the target. The PTCC is 0.96, indicating that MULTICOM_qa's predic-

tions can have high correlation with true quality scores when the true

quality scores of the models are somewhat evenly distributed in a

large range.

Figure 3D is a case in which combining ICPS with PSS improves

the ranking of the models. T1179o is a homodimer whose models

have TM-scores largely falling into the range (0.75, 0.9], with some

better models on its right side and many worse models on its left side.

The pairwise similarity score (PSS) chose a good model with TM-score

of 0.85378, but MULTICOM_qa combining PSS and ICPS selected a

better model with TM-score of 0.90331. This case indicates that the

single-model quality score—ICPS in MULTICOM_qa can sometimes

improve the selection of the top-1 model by moving it to the higher

quality bin.

Figure 3E is a typical case where MULTICOM_qa failed miserably.

The quality scores of the models of this homodimer target (T1121o)

are distributed between 0.45 and 0.85. However, the scores of the

majority of the models fall into a narrow low score bin (0.50, 0.55],

even though there are some better models whose scores are largely

evenly distributed from 0.55 to 0.85. The distribution of the quality

of the models is highly skewed. And because there are too many bad

models that are quite similar to each other (average TM-

score for the bad models in the (0.5–0.55] bin is 0.86), they dominate
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F I G U R E 3

ROY E T  AL.

Good and bad examples of applying MULTICOM_qa to estimate the accuracy of the models of CASP15 multimer targets. In each
example, the distribution of the true TM-scores of the models for each target is visualized as histogram. The native structure, true top-1 (best)
model, selected top-1 model, and the TM-scores of the latter two are presented. The bin in the histogram from which the top-1 model was
selected by MULTICOM_qa is highlighted in red. (A) H1111: stoichiometry =  A9B9C9, PTCC =  0.62, PTRL =  0.03054; (B) T1123o:
stoichiometry =  A2, PTCC =  0.98, PTRL =  0.01671; (C) H1137: stoichiometry =  A1B1C1D1E1F1G2H1I1, PTCC =  0.96, PTRL =  0.05916;
(D) T1179o, stoichiometry =  A2, PTCC =  0.97, PTRL =  0.06577; (E) T1121o: stoichiometry =  A2, PTCC =  0.39, PTRL =  0.34683; the correct
interfaces are circled; and the top-1 model selected by MULTICOM_qa contains only one of the two correct interfaces, resulting in a high ranking
loss of 0.34683.

the calculation of PSS, leading to bad models having higher estimated

quality scores. Consequently, MULTICOM_qa chose a bad model from

the bin (0.5, 0.55]. The ranking loss is very high (PTRL =  0.34683).

Moreover, the PTCC is negative (0.39), indicating that PSS of

MULTICOM_qa completely failed in this situation and ICPS could not

rescue it. This is a typical case in which MULTICOM_qa fails when

there is only a small portion of good models and the bad models are

similar to each other. In this case, MULTICOM_qa selected a model
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ROY E T  AL. 9

F I G U R E 4 (A) The model similarity graph for H1111. (B) The model similarity graph for T1121o. In a model similarity graph, each node
denotes a model. An edge is used to connect two models (nodes) if their structural similarity score—TM-score is greater than a threshold. The
threshold is determined such that only the top 30% of model pairs are connected by edges. The weight of each edge is TM-score between two
nodes (models) calculated by MMalign, which is normalized by the total sequence length of the larger model if the two models have different
sizes. The color of the nodes corresponds to the true TM-scores of the models. For H1111, both the best model (true top-1 model) and selected
top-1 model come from the largest subgraph with the highest quality. For T1121o, the selected top-1 model is from the largest subgraph with
mediocre quality, but the best model is in the third largest subgraph. (C) The distribution of TM-scores of the models of H1114 as well as its
native structure, top-1 model selected by PSS, top-1 model selected by ICPS, top-1 model selected by MULTICOM_qa, and the best model in the
model pool. Both ICPS and MULTICOM_qa selected a model that is much better than the model selected by PSS. The four A chains in the good
models form a cube in the center (red), which is a key feature of the structure of H1114. (D) A homo-dimeric interface between two A chains of
the top-1 model selected by ICPS for target H1114. The model is H1114TS119_2. The red lines represent the true inter-chain contacts in the
interface. The numbers are the probabilities for the true contacts predicted by the CDPred. The true contacts have high predicted probabilities,
leading to a high ICPS of 0.44 for the interface.

with one interaction interface that matches with one of the two inter-

action interfaces of the native structure, while the best model in the

pool has the two correct interfaces.

Figure S6 shows eight additional good cases where MULT-

COM_qa performs well, each of which has a significant portion of

good models making ranking easy. Figure S7 shows six additional bad

cases where MULTICOM_qa failed, each of which has a small portion

of good models.

To further analyze how MULTICOM_qa may succeed or fail, we

draw a model similarity graph for a good case H1111 (Figure 4A) and a

bad case T1121o (Figure 4B). In each graph, a node denotes a model

and an edge connects two models if their structural similarity is higher

than a threshold. Here, a threshold is chosen so that 30% of model

pairs are connected by edges. The model similarity graph of H1111

has seven subgraphs (clusters), among which the largest subgraph has

higher true quality scores and high within-subgraph similarity. Both

the best model and the top-1 model selected by MULTICOM_qa are

from the largest subgraph that contains a lot of good and similar

models. In contrast, the model similarity graph of T1121o has five

subgraphs (clusters). The best model resides in the third large sub-

graph, while MULTICOM_qa selected one model from the largest sub-

graph containing a lot of bad models that are similar to each other.

This example clearly demonstrates that the high similarity between

bad/mediocre models in a large cluster makes model ranking difficult

for MULTICOM_qa, mostly its PSS component.

3.4 | Quantification of the difficulty of structural
models for model accuracy estimation

The results in Section 3.2 show that the absolute difficulty of a target

(average true TM-score of the models of the target), the sampling dif-

ficulty (the proportion of good models), and the skewness of the dis-

tribution of quality of the models affect the EMA performance (PTCC
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T A B L E 1 Pearson's correlation between PTCC (or PTRL) of MULTICOM_qa and each of the five factors (average TM-score, proportion of
good models, skewness, mean pairwise similarity score between all the models, and difficulty index).

Pearson's
correlation

PTCC of
MULTICOM_qa

PTRL of
MULTICOM_qa

Avg true TM-score
of models

0.5852

0.6662

Proportion of good models
(TM-score > 0.8)

0.6150

0.7266

Skewness

0.7314

0.7778

Mean pairwise similarity score
between all models

0.1220

0.1477

Difficulty
Index

0.7723

0.8359

Note: Bold numbers denote the strongest correlation.

and PTRL) of MULTICOM_qa moderately or strongly. We also calcu-

late the correlation between PTCC and the mean pairwise similarity

between all the models in a model pool of a target (i.e., equal to the

average of PSS of the models in the pool) for the CASP15 targets

(Table 1). The correlation between MULTICOM_qa's PTCC and the

mean pairwise similarity score of all the models of a target is only

0.1220, which is much weaker than the correlation between PTCC

and the other three factors (0.5852 for average TM-score; 0.6150 for

the proportion of good models, and 0.7314 for the skewness), indi-

cating that the mean pairwise similarity between all the models in a

model pool is not a good indicator of the difficulty of estimating the

accuracy of the models. The reason is that, even though high similarity

between good models makes the model accuracy estimation easier,

high similarity between bad models makes it harder. To treat the neg-

ative and positive impact of the similarity between good/bad models

differently, we design a new metric called Difficulty Index to quantify

the difficulty of estimating the accuracy of the models for a target.
The difficulty index for the models of a target is defined as

i 
PSSiðTMscoreiTMscoremiddleÞ. PSSi is the average pairwise similarity

score of model i, TM-scorei is the true quality score of model i, n is the

number of models. TM scoremiddle ¼ TMscoremax þTMscoremin  denotes the

middle value between the minimum and maximum TM-scores of the

models. The difficulty index ranges from 1 to 1. Lower the difficulty

index, more difficult the models are for accuracy estimation. In this

definition, the PSS of the below-average-quality (bad) models whose

TM-score is less than the middle value (TM-scorei < TM-scoremiddle)

contributes negatively to the difficulty index, while the above-

average-quality (good) models (TM-scorei > TM-scoremiddle) contribute

positively. The correlation between the difficulty index and PTCC

(or PTRL) of MULTICOM_qa is 0.7723 (or 0.8359), which is even

stronger than the correlation between the skewness and PTCC (or

PTRL) and several times stronger than the mean pairwise similarity

score between all the models (Table 1). The results show that the diffi-

culty index considering the different impacts of the similarity between

bad/good models is a very effective measure of the difficulty of esti-

mating the accuracy of the models in a model pool, which is more

effective than only considering the skewness of the distribution of the

model quality. The correlation for the difficulty index is much higher

than for the mean pairwise model similarity confirms the importance

of treating the pairwise similarity between good or bad models differ-

ently for EMA. The difficulty index can be used to select hard targets

for testing EMA methods to improve their performance on them.

Moreover, there is a strong correlation (0.8078) between the dif-

ficulty index and the average true TM-score of the models (absolute

difficulty) of a target (Figure S8). This indicates that the difficulty

index of the models for a target can also quantify the difficulty of pre-

dicting structures for the target.

3.5 | Analysis of the properties and contributions
of PSS and ICPS

We compare how the EMA performance (PTCC and PTRL) of the two

components of MULTICOM_qa (i.e., PSS and ICPS) is influenced by

the four factors (Table 2): (1) the average true TM-score of the models

of a target, (2) the proportion of good models, (3) the skewness of the

distribution of the quality of models, and (4) the difficulty index of the

models. The PTCC of PSS has the strongest correlation with the four

factors (Table 2A), the PTCC of MULTICOM_qa has the second stron-

gest correlation with them (see Table 1), and the PTCC of ICPS has a

much weaker correlation with them than PSS and MULTICOM_qa

(Table 2A). This indicates that the performance of the single-model

method—ICPS is much less influenced by the four factors than the

multi-model method—PSS. The stronger correlation between MULTI-

COM_qa with the four factors mostly comes from PSS as they have

similar correlation coefficients and trends. The largely similar results

are observed in terms of PTRL (see the PTRL's correlation for PSS and

ICPS in Table 2B and for MULTICOM_qa in Table 1). Finally, PTCC/

PTRL of PSS has the strongest correlation with the difficulty index,

but PTCC/PTRL of ICPS has the strongest correlation with the

skewness.

We also investigate how the two components (PSS and ICPS) of

MULTICOM_qa contribute to its EMA performance on the 36 CASP15

multimer targets. Because MULTICOM_qa was not able to generate

PSS for a very large multimer H1114 (stoichiometry: A4B8C8) within

the two-day limit, it used ICPS scores alone as the final predicted

quality scores for the models of H1114 during the CASP15 experi-

ment. Here, to fairly compare the performance of PSS and ICPS of

MULTICOM_qa, we use MMalign (version 2021/8/16) to regenerate

PSS for the models of H1114 and calculate the weighted average of

the PSS and ICPS as the final predicted scores.

Table 3 reports the average PTCC and the average PTRL of the

three methods on the 36 CASP15 multimer targets. MULTICOM_qa

has the lowest average PTRL, while PSS has the highest average
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ROY E T  AL. 11

T A B L E 2 The correlation between the performance (PTCC or PTRL) of two components (PSS and ICPS) of MULTICOM_qa and the four
factors (average true TM-scores of the models of a target, the proportion of good models, the skewness of the quality of the models, and the
difficulty index of the models). (A) The correlation between PTCC and the four factors; and (B) the correlation between PTRL and the four factors.

A. Correlation of PTCC

PTCC of PSS

PTCC of ICPS

B. Correlation of PTRL

PTRL of PSS

PTRL of ICPS

Average TM-score of models

0.6694

0.2207

Average TM-score of models

0.6900

0.2778

Proportion of good models (TM-score > 0.8)

0.6514

0.3163

Proportion of good models (TM-score > 0.8)

0.7360

0.2609

Skewness

0.7467

0.3669

Skewness

0.7740

0.3204

Difficulty index

0.7838

0.3101

Difficulty index

0.8351

0.2809

T A B L E 3 The PTCC and PTRL of PSS, ICPS and MULTICOM_qa
(correction) on 36 CASP15 multimer targets. MULITICOM_qa
(correction) differs from the CASP15 MULTICOM_qa only on one
target—H1114.

combining PSS and ICPS may be further improved if their weights are

optimized.

Method Average PTCC"

PSS 0.6737

ICPS 0.3138

Average PTRL#

0.1454

0.2942

3.7 | The performance of estimating the global
interface accuracy of assembly models

MULTICOM_qa (correction) 0.6645 0.1414

Note: Bold number denotes the best PTCC or PTRL.
During CASP15, ICPS, the single-model quality score component of

MULTICOM_qa was used as the estimation of the global interface

accuracy of the assembly models (QSCORE). Figure S10 compared

MULTICOM_qa with other 17 CASP15 EMA predictors in terms of

PTCC, indicating that combining PSS and ICPS in MULTICOM_qa

reduces the average per-target ranking loss, but slightly decreases the

average per-target correlation coefficient. Both MULTICOM_qa and

PSS perform much better than ICPS, suggesting that the multi-model

method PSS still works much better than the single-model based

interface contact score—ICPS on average. However, PSS and ICPS are

complementary. H1114 (stoichiometry: A4B8C8) is a notable example

showing that combining ICPS and PSS reduces the ranking loss.

Figure 4C illustrates how ICPS and MULTICOM_qa selected a model

for H1114 that is much better than PSS. The reason is that CDPred

predicted high probabilities for some true contacts in an interface of

some good models, leading to a higher ICPS for them to be selected

(Figure 4D).

3.6 | Optimization of the weights of ICPS and PSS
in MULTICOM_qa

the average PTCC and average PTRL of the global interface accuracy

(QSCORE) on 39 CASP15 assembly targets. The global interface accu-

racy scores (QSCORE) were downloaded from CASP15 and used to

evaluate the EMA methods. MULTICOM_qa only ranked 11th in

terms of the PTCC (0.2634) and 10th in terms of the PTRL (0.5037),

indicating that the single-model quality score (ICPS) alone is not com-

petitive in estimating the global interface accuracy. However, if the

same weighted average score of PSS and ICPS (i.e., 0.4  ICPS +0.6

PSS) used for estimating the global structure accuracy were applied to

estimate the global interface accuracy, the PTCC of MULTI-COM_qa

would be 0.6328, higher than 0.5706 of ModFOLDdockR that had

the highest PTCC in CASP15, and the PTRL of MULTI-COM_qa

would be 0.2543, only higher than 0.2261 of VorolF and 0.2278 of

VoroMQA-select-2020. The result shows that combining the multi-

model PSS score and the single-model ICPS score works better than

using ICPS alone in estimating the global interface

accuracy.

When we developed MULTICOM_qa for the CASP15 experiment, the

weights for its two components (0.4 for ICPS and 0.6 for PSS) were 4 | D I S C U S S I O N
not optimized due to the time constraint. After the CASP15 experi-

ment, we tested different weights for them on the 36 multimer tar-

gets to see if better results can be obtained. As in Section 3.5, the

incorrect PSS of the models of H1114 was corrected for this analysis.

Figure S9 shows how the average per-target ranking loss (PTRL) of

MULTICOM_qa changes with respect to the weight of ICPS. The low-

est average PTRL of 0.1382 is achieved at the ICPS weight of 0.48,

which is better than the loss of 0.1414 for the weight 0.4 used in the

CASP15 experiment and the loss of 0.1454 of using PSS alone

(i.e., ICPS weight =  0). The results show that the performance of

Calculating the similarity between two multimers depends on multi-

mer structure alignment tools such as MMalign. The existing multimer

alignment tools require a good (or optimal) mapping between the

chains of one multimer and those of another multimer to accurately

calculate their similarity. However, finding an optimal mapping for

two large homomultimers or large heteromultimers containing multi-

ple copies of the same chain is extremely hard and time consuming.

Therefore, even though the empirical approach adopted by MMalign

can calculate multimer similarity well in most cases, sometimes it
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severely underestimates the similarity between the models of some

large multimers consisting of many chains or yields different similarity

scores when the order of the two multimer models is changed, which

negatively affects the performance of MULTICOM_qa. Moreover, the

speed of calculating similarity between large multimer models consist-

ing of dozens of chains is slow, which prevents the pairwise similarity

calculation from being applied to a large number of models. However, it

appears that a new, efficient algorithm of finding the optimal chain

mapping between large multimers had been designed by CASP15

EMA assessors and was presented in the CASP15 meeting,4 9  which is

expected to alleviate the problem. Given an optimal chain mapping as

input, some complex alignment tools such as DockQ that requires a

chain mapping as input, can be more readily applied to aligning muti-

mers consisting of more than two chains to calculate their similarity.

As demonstrated in our CASP15 experiment, the multi-model

pairwise similarity approach (PSS) works well when the quality scores

of the models for a target are either shifted toward the high score

range or evenly distributed across the score range. On average PSS

still works much better than single-model approach (ICPS) of estimat-

ing the quality of quaternary structural model. This is not surprising

because the multi-model pairwise similarity measures the frequency

of models sampled by the underlying prediction methods. If the

underlying prediction methods do a reasonable job, it is expected to

produce good models with high probability. Because good models

must be similar to the same native/true structure, they must also be

similar to each other, leading to a higher average pairwise similarity

ROY E T  AL.

developed. For instance, a deep learning method can be trained to

combine the pairwise similarity scores with multiple single-model

EMA methods to estimate model accuracy. Moreover, for AlphaFold2

predicted multimer models, the AlphaFold-Multimer's confidence

score and predicted TM-score/plDDT score for each model can

potentially be combined with the pairwise similarity approach (PSS) if

they are available. Indeed, we have found that AlphaFold-Multimer's

confidence score and PSS are complementary in ranking the in-house

server models generated for CASP15 assembly targets by our MULTI-

COM server built on top of AlphaFold-Multimer during CASP15.

Combining PSS and AlphaFold-Multimer's confidence score slightly

reduced the average per-target ranking loss (data not shown). For

some targets (e.g., T1179o), the ranking loss (e.g., 0.03) of PSS is much

lower than that (e.g., 0.414) of AlphaFold-Multimer's confidence

score. The results indicate that PSS is not only useful for ranking

models generated by many predictors in the CASP experiment, but

also useful for ranking assembly models generated by one predictor in

the real-world prediction situation. However, the search for the best

approach of combining PSS and AlphaFold-Multimer's scores is still

challenging and ongoing. Moreover, to further advance the combina-

tion, more sophisticated and accurate deep learning single-model

EMA methods for quaternary structure models need to be developed

as what happened in estimating the accuracy of tertiary structure

models.5 0

score for them. Another implicit assumption for the pairwise similarity 5 | C O N C L U S I O N
method to work well is that bad models have different ways to be

wrong and therefore are likely different to each other. This is true if

the underlying prediction methods do not make the same mistake fre-

quently. However, this assumption can be violated, reflected in that

the pairwise similarity approach often fails when there is a large por-

tion of bad models that are similar to each other, which dominates the

average pairwise similarity calculation so that bad models are assigned

higher scores than good models. This happened for some hard targets

in CASP15 when the underlying structure prediction methods gener-

ate similar bad models for them (Figure 4B). This is a key issue to be

addressed to further advance the pairwise similarity approach. The

difficulty of structural models for such hard targets can be measured

well by the difficulty index introduced in this work.

One way to correct the weakness of the pairwise similarity

approach is to combine it with the complementary single-model EMA

methods such as the deep learning predicted interface contact proba-

bility score (ICPS) that do not depend on the comparison between

models. This direction may be important for advancing the state of

the art of estimating model accuracy because it is unlikely single-

model EMA methods alone can catch up with the performance of the

pairwise model similarity approach in a short period of time. However,

although this direction is promising, the combination of the two is not

trivial. A simple weighted average of the scores of the two can correct

some mistakes but may not significantly improve the model accuracy

estimation. Therefore, more sophisticated approaches of integrating

the strengths of the two complementary approaches need to be

In this work, we developed a hybrid method of combining the pair-

wise model similarity score and the interface residue–residue con-

tact prediction to estimate the accuracy of protein assembly models

and blindly tested it in the CASP15 experiment. The method is

effective in ranking protein assembly models and predicting their

global quality scores as demonstrated by its outstanding perfor-

mance in the CASP15 experiment. Our experiment demonstrates

that the average pairwise similarity score (PSS) can estimate the

accuracy of models well in most cases, but it fails when a hard target

has a large portion of bad models that are similar to each other. The

single-model based interface contact probability score (ICPS)

derived from the deep learning-based inter-chain contact prediction

can provide some valuable information complementary with PSS to

evaluate the quality of the inter-chain interaction interface in multi-

mer models. A simple weighted combination of PSS and ICPS can

correct some model ranking errors of PSS but does not systemati-

cally improve its ranking, suggesting that a more sophisticated

(e.g., deep learning-based) integration of the pairwise similarity

scores and single-model quality scores is needed to significantly

improve the estimation of quaternary model accuracy. More accu-

rate single-model EMA methods are also needed to improve the

combination. Finally, it is useful to consider several important fac-

tors such as the target difficulty, model sampling difficulty, skew-

ness of model quality, and model difficulty index for designing and

evaluating EMA methods.
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