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Abstract

Motivation: Proteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer
have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex
structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding na-
tive structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as
protein function analysis and drug discovery.

Results: In this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex struc-
tures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We
trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of
Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd
among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous in-

ternal and external experiments demonstrate that DProQA is effective in ranking protein complex structures.

Availability and implementation: The source code, data, and pre-trained models are available at https:/github.com/jianlin-cheng/DProQA.

1 Introduction

Proteins perform a broad range of biological functions.
Protein—protein interactions (PPI) play a key role in many bio-
logical processes. Understanding the mechanisms and func-
tions of PPIs may benefit many areas such as drug discovery
(Scott et al. 2016; Athanasios et al. 2017; Macalino et al.
2018) and protein design (Kortemme and Baker 2004; Baker
2006; Lippow and Tidor 2007). Typically, high-resolution
3D structures of protein complexes can be determined using
experimental solutions (e.g. X-ray crystallography and cryo-
electron microscopy). However, due to the high costs associ-
ated with them, these methods cannot meet all the increasing
demand of protein complex structures in modern biological
research and technology development. In the context of this
practical challenge, computational methods for protein com-
plex structure prediction have recently been receiving an in-
creasing amount of attention.

Recently, AlphaFold2-Multimer (Evans et al. 2021), an
end-to-end system for protein complex structure prediction
system, improves the accuracy of predicting multimer (quater-
nary) structures considerably. However, compared to
AlphaFold2’s outstanding performance for monomer (ter-
tiary) structure prediction (Jumper et al. 2021), the accuracy
level for protein quaternary structure prediction still has
much room for progress. One specific problem of predicting
quaternary structures is the estimation of model accuracy
(EMA) [also called quality assessment (QA)], which plays a
significant role in ranking and selecting predicted quaternary
structural models of good quality (Kinch et al. 2021).

However, unlike the tertiary structure quality assessment
with many machine learning, particularly deep learning meth-
ods developed for evaluating the quality of tertiary structural
models over many years, there are few deep learning methods
for evaluating the quality of quaternary structural models.
Existing EMA methods have not leveraged cutting-edge atten-
tion-based transformer-like deep learning architectures
(Vaswani et al. 2017) to enhance the quaternary structure
quality assessment. The structural models in most existing
datasets for training quaternary structure quality assessment
methods (Liu et al. 2008; Lensink and Wodak 2014; Kotthoff
et al. 2021) were generated by traditional protein docking
methods (Tovchigrechko and Vakser 2006; Pierce et al.
2011), whose quality is much lower than the structural mod-
els predicted by the state-of-the-art protein complex structure
predictors such as AlphaFold-multimer (Jumper et al. 2021;
Bryant et al. 2022). Consequently, EMA methods trained us-
ing these datasets may not work well on the structural models
generated by the latest, more accurate protein complex struc-
ture predictors.

In general, EMA methods for predicted structures can be di-
vided into two categories: multi-model methods and single-
model methods. Multi-model methods take a pool of protein
structural models as input and may use a comparison between
the models to evaluate their quality, such as in the procedure
performed by Pcons (Lundstréom et al. 2001), ModFOLDClust
(McGuffin 2007), and DeepRank2 (Chen et al. 2021). In con-
trast, single-model methods give a certain quality score for each
protein structural model without considering other models’ in-
formation, such as in the procedure performed by ProQ2
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(Uziela and Wallner 2016), ProQ3 (Uziela et al. 2016),
DISTEMA (Chen and Cheng 2022), and GNN_DOVE (Wang
et al. 2021). In this work, we develop a single-model Deep
Protein Quality Assessment method (DProQA) for predicting
the quality of protein complex structural models. In particular,
DProQA introduces a Gated Graph Transformer, a novel
graph neural network (GNN) that learns to modulate its input
information to better guide its structure quality predictions.
DProQA takes a single protein complex structure as input to
predict its quality via a single forward pass. Moreover, it uses a
multi-task learning strategy to predict the real-valued quality
score of a structural model as well as classify it into multiple
quality categories.

2 Related work

Protein tertiary and quaternary structure prediction.
Predicting protein structures has been an essential problem
for the last several decades. Recently, the problem of protein
tertiary structure prediction has largely been solved by deep
learning methods (e.g. Jumper et al. 2021). Furthermore, new
deep learning methods (e.g. Evans et al. 2021; Bryant et al.
2022; Guo et al. 2022) have begun making advancements in
protein complex (quaternary) structure prediction.

Protein representation learning. Protein structures can be
represented in various ways. Previously, proteins have been
represented as tableau data in the form of hand-crafted fea-
tures (Chen et al. 2020). Along this line, many works (Wu
et al. 2021; Chen and Cheng 2022) have represented proteins
using pairwise information embeddings such as residue-resi-
due distance maps and contact maps. Recently, describing
proteins as graphs has become a popular means of represent-
ing proteins, as such representations can learn and leverage
proteins’ geometric information more naturally. For example,
EnQA (Chen et al. 2023) used 3D-equivariant graph repre-
sentations to estimate the per-residue quality of protein struc-
tures. GVP (Jing et al. 2020) uses directed Euclidean vectors
to represent the positions of atoms of proteins for protein de-
sign and quality assessment tasks.

Machine learning for protein structure quality assessment.
Over the past few decades, various EMA methods for ranking
and scoring protein complex structural models have been de-
veloped (Gray et al. 2003; Huang and Zou 2008; Vreven
et al. 2011; Basu and Wallner 2016b; Geng et al. 2020).
Among these scoring methods, machine learning-based EMA
methods have shown better performance than physics-based
(Dominguez et al. 2003; Moal et al. 2013) and statistics-
based methods (Zhou and Zhou 2002, Pons et al. 2011).

Recent machine learning methods have utilized various
techniques and features to approach the task. For example,
ProQDock (Basu and Wallner 2016b) and iScore (Geng et al.
2020) used protein structural features as the input for a sup-
port vector machine to predict model quality. EGCN (Cao
and Shen 2020) assembled graph pairs to represent protein
complex structures and then employed a graph convolutional
network (GCN) to learn graph structural information. DOVE
(Wang et al. 2020) used a 3D convolutional neural network
(CNN) to extract features from protein—protein interfaces to
predict model quality. In a similar spirit, GNN_DOVE (Wang
et al. 2021), PPDocking (Han et al. 2021), and DeepRank-
GNN (Réau et al. 2023) trained Graph Attention Networks
(Velickovic et al. 2018) to evaluate protein complex decoys.
Moreover, PAUL (Eismann et al. 2021) used a rotation-
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equivariant neural network to identify accurate models of
protein complexes.

Deep transformers. Increasingly more works have applied
transformer-like architectures or multi-head attention (MHA)
mechanisms to achieve state-of-the-art results in different
domains. For example, the Swin-Transformer achieved state-
of-the-art performance in various computer vision tasks (Hu
et al. 2019, 2022). Likewise, the MSA Transformer (Rao
et al. 2021) used tied row and column MHA to extract fea-
tures from multiple sequence alignments of proteins.
Moreover, Deeplnteract (Morehead et al. 2021b) introduced
the Geometric Transformer to model protein chains as graphs
for protein interface contact prediction.

Contributions. Our work builds upon prior works by mak-
ing the following contributions:

1) We provide the first example of applying transformer
representation learning to the task of protein complex
structure quality assessment, by introducing the new
gated graph transformer architecture to iteratively up-
date node and edge representations using the adaptive
feature modulation.

2) The DProQA method was trained using the newly-
developed protein complex datasets in which all struc-
tural decoys were generated using AlphaFold2 (Jumper
et al. 2021) and AlphaFold-Multimer (Evans et al.
2021).

3) Using the newly-developed Docking Benchmark 5.5-AF2
(DMB55-AF2), we demonstrate the state-of-the-art per-
formance of DProQA in comparison with the existing
methods such as ZRANK?2 (Pierce and Weng 2008),
GOAP (Zhou and Skolnick 2011) and GNN_DOVE
(Wang et al. 2021).

4) DProQA was blindly tested in the 15th community-wide
Critical Assessment of protein Structure Prediction
(CASP15) in 2022, where it ranked 3rd among all single-
model EMA methods in terms of ranking loss of struc-
tural models’ TM-score.

3 Methods and materials

[lustrated from left to right in Fig. 1, DProQA first receives a
3D protein complex structure as input and represents it as a K-
NN graph. Notably, all chains in the complex are represented
within the same graph, where pairs of atoms from the same
chain are distinguished using a binary edge feature (i.e. in the
same chain or not). Therefore, it can uniformly deal with a com-
plex consisting of any number of chains. Moreover, it only
requires a single protein complex structure as input without us-
ing any extra information such as multiple sequence alignments
(MSAs) and residue-residue co-evolutionary features extracted
from MSAs. Its output includes a real-valued quality score of the
structure as well as a quality class it is assigned to.

3.1 K-NN graph representation of protein complex
structure

K-NN graph representation. K-nearest neighbors (K-NN) has
been used in many previous studies for protein structure
analysis and molecular representation learning (Ingraham
et al. 2019). Moreover, using other graph construction techni-
ques (e.g.distance-based definitions of edges) may introduce
inherent graph-structural biases (Jing et al. 2020) within a
network’s learning process. Subsequently, in this work,
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Figure 1. An overview of the DProQA pipeline for quality assessment of protein complexes. The input is a protein complex structure. The output includes the
predicted quality score of the input structure (e.g. DockQ score) and the probability of the quality class (i.e. incorrect topology, acceptable quality, medium

quality, and high quality) which the structure is classified into.

Table 1. Summary of DProQA’s node and edge features.”

Feature Type Shape
Node features
One-hot encoding of residue type Categorical N21
Three types of secondary structure Categorical N3
Relative accessible surface area Numeric N1/
angle Numeric N1
w angle Numeric N1
Graph Laplacian positional encoding Numeric N8
Edge features
Ca-Ca distance Numeric E1l
Cb-Cb distance Numeric E1l
N-O distance Numeric E1l
Inter-chain contact encoding Categorical El
Permutation-invariant chain encoding Categorical E1l
Edge positional encoding Numeric E1l
Total
Node features N35
Edge features E6

? Here, N and E denote the number of nodes and edges in a protein

graph, respectively.

DProQA represents each input protein complex structure as a
spatial k-nearest neighbors (k-NN) graph G % &8V; Eb, where
the protein’s Ca atoms serve as V (i.e. the nodes of G). After
constructing G by connecting each node to its 10 closest
neighbors in R?, we denote its initial node features as h and
its initial edge features as e.

Node and edge featurization. Table 1 describes DProQA’s
node and edge features. Each node has 35 features and each
edge has 6 features. For each graph G, the shape of node fea-

tures is N 35, and the shape of the edge features is E 6,
where N is the number of nodes and E is the number of edges.

The node features for a node include the one-hot encoding
of 20 residue types as well as the 3-type secondary structures,
relative solvent accessible surface area, and two torsion angles
(/ and W) computed by BioPython 1.79 (Cock et al. 2009).
The / and W angle values are normalized by the min-max
normalization to scale their value range from [-180, 180] to
[0, 1]. The graph Laplacian positional encoding (Dwivedi and
Bresson 2020) is added to each node.

The edge features for an edge include the distances between
Ca atoms, between Cb atoms, and between backbone

nitrogen and oxygen atoms of two residues. A binary feature
indicating if two resjdues is in contact (i.e. if their Cy-Cy, dis-
tance is less than 8 A) is added for each edge. To encode the
chain information, a binary feature indicating if two residues
associated with an edge are two adjacent (consecutive) resi-
dues in the same chain is used. In addition, an edgewise posi-
tional encoding (Morehead et al. 2021b) is used for each
edge.

Node and edge embeddings. After receiving a protein com-
plex graph G as input, DProQA applies initial node and edge
embedding modules to each node and edge, respectively. We
define such embedding modules as u, and u, respectively,
where each u function is represented as a shallow neural net-
work consisting of a linear layer, batch normalization, and
LeakyReLU activation function (Xu et al. 2015). Such node
and edge embeddings are then fed as an updated input graph
to the Gated Graph Transformer.

3.2 Gated graph transformer architecture

Unlike other graph neural network (GNN)-based structure
scoring methods (Han et al. 2021, Wang et al. 2021), which
define edges using a fixed distance threshold so that each
graph node may have a different number of incoming and
outgoing edges, DProQA constructs and operates on k-NN
graphs where all nodes are connected to the same number of
neighbors. However, in the context of k-NN graphs, each
neighbor’s information is, by default, given equal priority dur-
ing information updates. Here, we may desire to imbue our
graph neural network with the ability to automatically set the
priority of different nodes and edges during the graph mes-
sage passing. Consequently, we design GGT, a gated
neighborhood-modulating graph transformer inspired by
Velickovic et al. (2017), Dwivedi and Bresson (2020), and
Morehead et al. (2021b) to update the features of the nodes
and edges. Formally, to update the network’s node embed-
dings h; and edge embeddings ejj, we define a single layer of
the GGT as:

‘

k;* ko
k;* Q'hK 'h~ o
Wy % ——plEE— ENe, )
dk
b1, ‘H k;*
b % e b Ofiyy, 0W; P 2)
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In particular, the GGT adds on top of the standard graph
transformer architecture (Dwivedi and Bresson 2020) two in-
formation gates through which the network can modulate
node and edge information flow, as shown in Fig. 2. Several
main operations in Fig. 2 are described by the following equa-
tions. Equation (1) computes the intermediate attention coeffi-

cient W:j;’ for node pair i and j in the graph. Q%" and K*" are
learnable parameters, while h; and hj’ are the node feature
vectors at layer ‘. The dot product measures the s&aﬁilarity be-
tween the two nodes, and it is normalized by = dy, where dy
is the dimension of the attention head. Finally, the result is
element-wise multiplied with E*e;, where ¢ is the edge fea-
ture vector and E' is a learnable parameter. Equation (2)
updates the intermediate edge feature vector bi}bl at layer
“b 1. O, is a learnable parameter, and the concatenation op-

eration jjil,,; combines the intermediate attention coefficients
k! . .
L8 from each attention head k. The original edge feature

vector e;j is added to this linear combination via a residual

connection. Equation (3) computes the attention coefficients

lwl;j;' by multiplying the intermediate attention coefficients

k;*
LB with the edge gate. The edge gate is a sigmoid activation

of a linear transformation of the edge features, where G:;' isa
learnable parameter. Equation (4) applies the softmax func-

tion to normalize the attention coefficients hi'};', resulting in

the final attention weights w:jf'. Equation (5) updates the
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intermediate node feature vector Hibl at layer ‘ p 1. The con-
catenation operation jji,,;, combines the updated node fea-
tures from each attention head k. Specifically, for each
attention head k, the attention coefficients wi;(;' are multiplied
by the weight matrix V%' and the feature vector hj‘ of the
neighboring node j. These values are then multiplied with a
sigmoid output of the gated features of the neighboring node
j, after which all these values are summed up over the neigh-
bors of node i. N; denotes the set of neighbors of node i in-
cluding itself. The resulting vector is transformed by a
learnable matrix O}',. The raw node feature vector h,-l is added
to this linear combination via a residual connection. Equation
(6) updates the node i feature vector at level ‘ b 1, i.e. hilbl. It
is obtained by applying batch normalization (BN) to sum of

. . ‘b1
the intermediate node feature vector hi and the output of

the feed-forward network (FFN) with BN applied to the hi bt .
Equation (7) updates e;p ! with the same logic as Equation (6).
The FFN uses the same structure as described in Dwivedi and
Bresson (2020).

3.3 Multi-task graph property prediction

To obtain graph-level predictions for each input protein cpm-
plex graph, we apply a graph sum-pooling operator on If; to
get the graph embedding p. This graph embedding p is then
fed as input to DProQA’s two read-out modules, where each
read-out module consists of a series of linear layers, batch
normalization layers, LeakyReLU activation, and dropout
layers (Hinton et al. 2012), respectively. The output from the
read-out modules is used by a softmax function in the classifi-
cation output layer to classify the input into the four different
quality classes (i.e. Incorrect, Acceptable, Medium, and
High). The output from the read-out modules is also used by
the regression output layer with a sigmoid activation function
to y to obtain a single scalar output representing the predicted
DockQ score (Basu and Wallner 2016a) for the protein com-
plex input.

Structural quality score prediction loss. To train DProQA’s
graph r%gression head, we used the mean squared error loss

Lr % 1

A i’\"/djjq?v qjjz. Here, ¢°;is the model’s predicted

Norm _L{héﬂ}

X H heads XL layers
Ly_|
{h} FFN}
IO~ [sum}-{eancat |+ 0] }+D~ Af** ~ Norm
{ri}—
0D~ el -~ o
fel ) FFNL
it
Norm -+{e{}*

— : Node Gate

@ : Softmax

* : Edge Gate @ : Elementwise add@: Elementwise multiply @  Matrix dot product (7): Sigmoid
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Figure 2. The gated graph transformer (GGT) model architecture for updating the features of nodes of a protein complex graph.
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DockQ score, e.g. i, q; is the ground truth DockQ score, e.g.
i, and N represents the number of examples in a given mini-
batch.

Structural quality classification loss. To train DProQA’s
graph claf,mﬁcatllg)n head, we used the cross-entropy loss

Le %yt |/41c1 a0y, logdy®b. Here, y¢ is the predicted
probability of the model’s quality belonging to class j, e.g. i,
and y; is the ground truth DockQ quality class j (e.g.
Incorrect), e.g. i. N denotes the number of examples in a given
mini-batch and C for the number of classes.

Overall loss. DProQA’s overall loss is the weighted sum of
the two losses above: L % wi Lc b wi, Lr. Theweights
for each constituent loss (e.g. wi, ) were determined either by
performing a grid search or using a lowest-
validation-loss criterion for parameter selection. In this proj-
ect, we set wi % 0:1 and w, % 0:9. Supplementary Section
Implementation and Training Details and Supplementary
Table S1 describe how we implemented, trained, and tuned
the DProQA.

3.4 Training and test data

Multimer-AF2 training dataset. Similar to Morehead et al.
(2021a), we created a new Multimer-AF2 (MAF2) dataset
comprised of multimeric structures predicted by AlphaFold 2
(Jumper et al. 2021) and AlphaFold-Multimer (Evans et al.
2021) structure prediction pipeline on the Summit supercom-
puter (Gao et al. 2021, 2022). The protein multimer targets
for which we predicted structures were obtained from the
EVCoupling (Hopf et al. 2019) and DeepHomo (Yan and
Huang 2021) datasets, which consist of both heteromers and
homomers. In summary, the MAF2 dataset contains a total of
9, 251 decoys. According to DockQ scores, 20.44% of them
are of Incorrect quality, 14.34% of them are of Acceptable
quality, 30.00% of them are of Medium quality, and the
remaining 35.22% of them are of High quality.

Docking Decoy Set for training. The Docking Decoy data-
set (Kundrotas et al. 2018), contains 58 protein complex tar-
gets. Each target includes approximately 100 incorrect decoys
and at least one near-native decoy.

The Docking Decoy set and MAF2 set were used together
as the training data to train and validate the DProQA, which
together include 12, 040 decoys in total. To split the data into
training and validation sets, we applied MMseq2 (Mirdita
et al. 2021) to cluster all targets’ sequences with 30% se-
quence identity. Then we selected 70% of the clusters’ decoys
as the training set and the rest as the validation set. The com-
bined training set contains 8, 733 decoys, and the validation
set contains 3, 407 decoys.

Docking Benchmark5.5 AF2 test dataset. The Docking
Benchmark 5.5 AF2 (DBMS55-AF2) dataset is the first test
dataset. We applied AlphaFold-Multimer (Evans et al. 2021)
to predict the structures of Docking Benchmark 5.5 targets
(Vreven et al. 2015). To avoid the overestimation of the per-
formance of DProQA, we performed 30% sequence identity
filtering w.r.t the training and validation data to remove simi-
lar targets with >30% sequence identity. Overall, this test
dataset contains a total of 15 protein targets with 449 total
decoy models, 50.78% of these decoys are of Incorrect qual-
ity, 16.70% of them are of Acceptable quality, 30.73% of
them are of Medium quality, and the remaining 1.78% of
them are of High quality.

More details about MAF2 and DBMS55-AF2 generation
and how we conducted sequence filtering and selected targets

Chen et al.

as the blind test set can be found in Supplementary Section
Addition Dataset Information.

CASP15 EMA experiment. We blindly tested DProQA
(Group name: MULTICOM egnn, ID: 120) in 2022 CASP15
EMA category. DProQA was evaluated on 36 protein com-
plex targets whose exprimental structures were available for
us. Each target contains around 350 models from different
CASP15 protein quaternary structure predictors.

Training labels. DProQA performs two learning tasks si-
multaneously. In the regression task, DProQA treats true
DockQ scores (Basu and Wallner 2016a) of decoys as its
labels. As introduced earlier, DockQ scores are continuous
values in the range of [0, 1]. A higher DockQ score indicates a
higher-quality structure. In the classification task, DProQA
predicts the probabilities that the structure of an input protein
complex falls into the Incorrect, Acceptable, Medium, or
High-quality category. Labeling a decoy into such quality cat-
egories was made according to its true DockQ score.

The true DockQ scores of the models in MAF2 and
DBM55-AF2 were calculated by using the DockQ tool (Basu
and Wallner 2016a) to compare them with their correspond-
ing true structures. The Docking Decoy Set provides interface
root mean squared deviations (iIRMSDs), ligand RMSDs
(LRMSs), and fractions of native contacts (f,,;) for each de-
coy. We directly used Equation 1 and 2 in Basu and Wallner
(2016a) to convert these scores to DockQ scores. The DockQ
scores were then converted into four discrete categories:
Incorrect, Acceptable, Medium, or High quality according to
Basu and Wallner (2016a).

3.5 Evaluation setting

Baseline methods. We compared DProQA with three typical
methods: ZRANK?2, GOAP and GNN_DOVE. ZRANK2 is a
method using a linear weight scoring function for evaluating
protein complex structures. GOAP score is composed of all-
atoms level distance-dependent and orientation-dependent
potentials. GNN DOVE is an atom-level graph attention-
based method for protein complex structure evaluation. It
extracts the interface areas of a protein complex structure to
build its input graph.

DProQA variants. Besides the standard DProQA model, we
also report results on the DBM55-AF2 dataset for a selection
of DProQA variants curated in this study. The DProQA var-
iants includes DProQA_GT which employs the original
Graph Transformer architecture (Dwivedi and Bresson 2020);
DProQA_GTE which employs the GGT with only its edge
gate enabled; and DProQA GTN which employs the GGT
with only its node gate enabled.

Evaluation metrics. We evaluated the methods using two
main metrics. The first metric measures how many qualified
decoys are found within a model’s predicted Top-N structure
ranking for a target. Within this framework, a method’s over-
all hit (success) rate is defined as the number of protein com-
plex targets for which it ranks at least one acceptable,
medium or higher-quality decoy within its Top-N ranked
decoys, which is a metric used by the Critical Assessment of
Protein—Protein Interaction (CAPRI) (Lensink and Wodak
2014). In this work, we report the methods’ Top-10 hit rates.
A hit rate is represented by three numbers separated by the
character/. These three numbers, in order, represent how
many decoys with Acceptable or higher-quality, Medium or
higher-quality, and High quality are among the Top-N
ranked decoys. The second metric measures the ranking loss
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Table 2. The DockQ score ranking loss on the DBM55-AF2 dataset.”

Target DProQA DProQA_GT DProQA_GTE DProQA_GTN ZRANK2 GOAP GNN_DOVE
6AL0 0.0 0.156 0.156 0.0 0.345 0.331 0.382

3SE8 0.079 0.041 0.041 0.079 0.735 0.0 0.408

5GRJ 0.024 0.012 0.095 0.012 0.774 0.23 0.595

6A77 0.037 0.062 0.0 0.037 0.583 0.59 0.589

4MS5Z7 0.015 0.026 0.026 0.015 0.221 0.133 0.269

4ETQ 0.0 0.76 0.0 0.748 0.759 0.0 0.748

5CBA 0.052 0.038 0.052 0.058 0.047 0.007 0.047

SWK3 0.114 0.114 0.114 0.186 0.0 0.109 0.109

5Y9] 0.0 0.0 0.0 0.0 0.202 0.0 0.423

6BOS 0.081 0.081 0.0 0.0 0.087 0.09 0.053

SHGG 0.051 0.051 0.121 0.051 0.051 0.051 0.047

6A0Z 0.207 0.207 0.207 0.207 0.218 0.214 0.206

3U7Y 0.0 0.021 0.0 0.0 0.772 0.0 0.021

3WD5 0.011 0.011 0.011 0.0 0.704 0.011 0.666

SKOV 0.065 0.08 0.085 0.087 0.008 0.078 0.083

MEAN 6 STD 0.04960.054 0.11160.182 0.06160.064 0.09960.185 0.37260.3 0.12360.158 0.31060.245

*  DProQA denotes the final Gated Graph Transformer, DProQA_GT denotes the original Graph Transformer architecture, DProQA_GTE denotes the
GGT with only its edge gate enabled, and DProQA_GTN denotes the GGT with only its node gate enabled. The final row reports the mean and standard
deviation (Std) of the ranking loss of the different methods. The Bold values indicate the best performance.

Table 3. Per-target and overall hit rates on the DBM55-AF2 dataset.”

Target DProQA DProQA_GT DProQA_GTE DProQA_GTN ZRANK2 GOAP GNN_DOVE BEST
6AL0 9/2/0 10/0/0 10/0/0 10/2/0 9/0/0 9/0/0 6/0/0 10/2/0
3SES8 8/8/0 9/9/0 8/8/0 8/8/0 2/2/0 8/8/0 4/3/0 10/10/0
SGRJ 10/10/0 9/9/0 10/10/0 9/9/0 5/4/0 10/9/0 6/6/0 10/10/0
6A77 7/7/0 7/7/0 8/8/0 8/8/0 4/4/0 3/3/0 3/3/0 8/8/0
4M5Z 10/10/1 10/10/0 10/10/0 10/10/0 10/10/1 10/10/1 10/10/0 10/10/1
4ETQ 1/1/0 1/1/0 1/1/0 1/1/0 1/1/0 1/1/0 0/0/0 1/1/0
SCBA 10/10/1 10/10/0 10/10/0 10/10/1 10/10/4 10/10/2 10/10/3 10/10/6
SWK3 0/0/0 0/0/0 0/0/0 0/0/0 3/0/0 0/0/0 0/0/0 3/0/0
5Y9J) 4/0/0 6/0/0 5/0/0 4/0/0 5/0/0 5/0/0 2/0/0 8/0/0
6BOS 10/10/0 10/10/0 10/10/0 10/10/0 10/10/0 10/10/0 10/10/0 10/10/0
SHGG 8/0/0 8/0/0 8/0/0 8/0/0 10/0/0 10/0/0 10/0/0 10/0/0
6A0Z 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 1/0/0 3/0/0
3U7Y 2/2/1 2/2/1 2/2/1 2/1/0 1/1/1 2/2/1 2/2/1 2/2/1
3WDs5 10/8/0 9/8/0 9/8/0 9/8/0 6/4/0 10/8/0 8/6/0 10/10/0
SKOV 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 1/0/0 0/0/0 2/0/0
SUMMARY 12/10/3 12/9/1 12/9/1 12/10/1 13/9/3 13/9/3 12/8/2 15/10/3

? The last column represents each target’s best-possible Top-10 result, which is an upper limit of the hit rates. The ’a/b/c’ values for each target represent the
number of top-10 ranked decoys that have the acceptable or higher-quality, medium or higher-quality, and high-quality, respectively. The ’a/b/c’ values in the
summary row reports the number of targets for which each method successfully ranks at least one decoy of the acceptable or higher-quality, medium or higher-
quality, and high-quality within top 10, respectively. Bold values indicate the best performance for each acceptable or higher-quality, medium or higher-

quality, and high-quality, respectively.

for each method. Here, the per-target ranking loss is defined as the
difference between the DockQ score of a target’s best decoy and
the DockQ score of the top decoy selected by the ranking method.
As such, a lower ranking loss indicates a better ranking ability.

4 Results
4.1 Performance on the DBM55-AF2 dataset

Table 2 presents the ranking loss for all methods on the
DBM55-AF2 dataset. DProQA achieves the best ranking loss
of 0.049 which is 86.56% lower than ZRANK?2’s ranking
loss 0.372, 60.16% lower than GOAP’s ranking loss of 0.123
and 84.19% lower than GNN_DOVE’s ranking loss of 0.31.
Furthermore, for 4 targets, DProQA correctly selects the Top-1
model and achieves O ranking loss. Additionally, DProQA
and GOAP achieve the lowest loss on 5 targets, while

ZRANK?2 gets the lowest loss on 2 targets and GNN_DOVE
on 2 targets. Notably, DProQA_GT, DProQA_GTE, and
DProQA_GTN’s losses are also lower than the three baseline
methods, but they are higher than that of DProQA.

Table 3 summarizes all the methods’ hit rates on the
DBMS55-AF2 dataset, which contains 15 targets. Notably,
DProQA excels in achieving the highest hit rate for ranking
medium-quality decoys of all the 10 targets that have at least
one medium- or high-quality decoy. In terms of selecting
high-quality decoys, DProQA, ZRANK2, and GOAP effec-
tively identify high-quality decoys for all the 3 targets that
have high-quality decoys. However, it is ranked behind
ZRANK?2 and GOAP in selecting acceptable-quality decoys,
i.e. it is able to rank at least one acceptable quality model in
the top 10 for 12 out of 15 targets that have at least one ac-
ceptable decoy, one fewer than ZRANK?2 and GOAP.
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4.2 Impact of node and edge gates

The results in Tables 2 and 3 show that using both edge and
node gates (DProQA) performs better than using only the edge
gates (DProQA_GTE) or the node gates (DProQA_GTN),
whose accuracy is better than or equal to not using any gate
(DProQA_GT). Therefore, this ablation study specifically dem-
onstrates that the edge and node gates are useful for predicting
the quality of protein complex structures.

4.3 Performance in 2022 CASP15 EMA experiment

DProQA (team: MULTICOM egnn) participated in the
Estimation Model Accuracy (EMA) category of the CASP15
running from May to August 2022. We collected all EMA pre-
diction results from the CASP15 website (CASP15 2022) and
used MM-align (Mukherjee et al. 2009) to calculate the TM-
score (Zhang and Skolnick 2004) ranking loss for all 36 targets
whose true structures were available for us to perform evalua-
tion. Figure 3 reports all CASP15 single-model EMA methods’
average TM-score ranking loss, where DProQA ranked 3rd.
DProQA achieved a 0.200 ranking loss. All single-model meth-
ods’ average ranking loss is 0.307. The result of TM-score
ranking loss for all the CASP15 multi-model and single-model
EMA methods can be found in the Supplementary Fig. S3.
DProQA performed even better than 3 out of 9 multi-model
EMA methods.

Figure 4 illustrates the distribution of the MULTICOM egnn’s
ranking loss on the 36 CASP15 EMA targets. The vertical dashed
black line is the mark for the mean value. 23 out of 36 data points
are located on the left side of the black line. This loss distribution
is right-skewed, where the skewness value is 0.751.

Figure 5 shows that MULTICOM egnn successfully se-
lected a high-quality model with a very low ranking loss (i.e.
0.0014) for target H1111 (PDB code: 7QIJ) which is a Hetero
27-mer with a sequence length of 8460. Figure Sa is the histo-
gram of all server methods’ model TM-scores for target
H1111. Most models’ TM-scores are low, yet still some are
high-quality prediction models. In Fig. 5b, from left to right,
the three protein complex structures shown are the corre-
sponding native structure, the true TOP-1 model, and the
MULTICOM egnn top selected model, respectively. The top
model selected by MULTICOM egnn has a high TM-score of
0.9816. The ranking loss of MULTICOM_egnn for this target
is the lowest among all the CASP15 EMA methods.

VorolF 0.144

Manifold 0172

MULTICOM_egnn
ChaePred 0.235
GuijunLab-RocketX 0.240
GuijunLab-Assembly 0.253

GuijunLab-Human 0.259

APOLLO 0.286

FoldEver 0.291

MULTICOM_deep 0.311

GuijunLab-Threader
LAW

MASS

Alchemy_QA

Panlab

0.341

0.344

0.346

Chen et al.

5 Discussion

Compared to the general high accuracy of predicted tertiary
structures (Jumper et al. 2021), the average accuracy of quater-
nary structures predicted for protein complexes (multimers) is
still relatively low (Bryant et al. 2022), making the selection of
good models from a pool of decoys harder. We observe this not
only in some popular complex datasets (Lensink and Wodak
2014, Kundrotas et al. 2018), but also in our newly-built
DBMS55-AF2 sets. For instance, some targets like 6A0Z and
3U7Y in the DBM55-AF2 set only have a few decoys with ac-
ceptable or higher quality, while the rest of decoys have very
low quality. If no model of acceptable or higher quality is
ranked at the top, the ranking loss will be very high (see some
examples in Table 2). Therefore, a significant challenge in rank-
ing the models of protein multimers is to identify a few good
models in a large pool of mostly bad models.

0.0 0.2 0.4 0.6
Loss

Figure 4. MULTICOM egnn’s loss histogram for CASP15 targets. The
black dashed vertical line represents the position of the mean value.

0.645

Figure 3. The average TM-score ranking loss for all single-model methods. MULTICOM_egnn ranked 3rd among all single-model methods.
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(a) TM-score distribution of CASP15 models for H1111
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(b) Native structure

True Top-1 model
TM-score = 0.983

/
Selected Top-1 model
TM-score = 0.9816
Loss: 0.0014

Figure 5. Target H1111. (a) TM-score distribution of CASP15 models of H1111. (b). From left to right, the three protein complex structures shown are the
corresponding native structure, the true TOP-1 model, and the MULTICOM_egnn top selected model, respectively. Here, MULTICOM_egnn achieved a

0.0014 TM-score ranking loss.

A more common way to evaluate the ranking ability of the
quality assessment (QA) methods for protein complexes is the
hit rate, a standard method used by CAPRI. However, a hit rate
only measures the number of qualified decoys in the TOP N
ranked models, without measuring the difference between the
best possible model and the top-ranked model. Therefore, in this
work, we also apply the loss metric widely used in evaluating
the quality assessment methods for protein tertiary structures to
the quality assessment for protein quaternary structures.

Considering these two metrics together helps us evaluate a
protein multimeric QA method’s ranking ability more effec-
tively. For example, ZRANK?2 which has slightly better hit-
rate performance than DProQA on the DBMS55-AF2 set,
while its loss is much higher than DProQA'’s loss. Overall,
DProQA demonstrates consistently good performance on our
internal benchmark as well as the most rigorous blind
CASP15 benchmark.

On the DMBS55-AF2 test dataset, DProQ’s average running
time of assessing the quality of the models of each target is
about 12s, which is much faster than GOAP and
GNN_DOVE but slower than ZRANK2—an energy-based
method (see Supplementary Table S4 for the detailed execu-
tion time of the four EMA methods).

It should be emphasized that AlphaFold-multimer has the
capability to assess the quality of a structural model by utiliz-
ing its own ipTM score. Nevertheless, the ipTM score is
heavily influenced by the evolutionary information (e.g. multi-
ple sequence alignments) and templates. In contrast,
DProQA'’s prediction is solely based on a single 3D model
and therefore provides a fast and complementary estimation
of the quality of a structural model.

6 Conclusion

In this work, we present DProQA—a gated graph transformer
for protein complex structure assessment. Our rigorous
experiments and CASP15 results demonstrate that DProQA
performs relatively well in ranking decoy models of protein
complexes and the gated message passing in the transformer
is useful for improving its performance. Both the tool and the
new datasets consisting of multimer models predicted by
AlphaFold2 and AlphaFold-Multimer are made publicly
available for the community to further advance the field.

Supplementary data

Supplementary data is available at Bioinformatics online.
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