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A B S T R A C T

The presence of anthropogenic infrastructure within the ground under cities can act to increase 
the temperature of the subsurface in a phenomenon known as the subsurface urban heat island 
effect. Large city-scale numerical subsurface temperature models accounting for both the heat 
fluxes stemming from human-made structures as well as hydrogeological variation are often 
computationally prohibitive due to the vastly different scales of modelling required. We present a 
novel and scalable methodology for the determination of the subsurface thermal climate beneath 
urban centres at a holistic scale, grouping volumes of ground into archetypes according to 
common thermal behaviours, identified using supervised machine learning algorithms. We apply 
this methodology to two boroughs in the centre of London, UK, with the results showing good 
agreement with a higher-resolution model for one of the boroughs. We further demonstrate the 
scalability of the approach by modelling the boroughs sequentially, where the second borough 
was modelled at little to no additional computation cost at a loss of accuracy in the local depth- 
averaged temperature between 0.10 and 0.23 degrees Celsius. This methodology is an important 
step towards determining large-scale subsurface climate beneath cities, providing insights for 
various applications, such as an improved understanding of geothermal energy potential.   

1. Introduction

1.1. Subsurface urban heat island effect

The ground beneath densely populated urban centres has seen increasing use for residential and commercial spaces (e.g. base
ments, underground parking, etc.), transport networks (e.g. underground transit systems), industrial processes, and energy applica
tions (e.g. ground-source heat pumps, underground district heating networks, etc.). Such structures embedded within the ground act as 
sources and sinks of heat, causing large-scale underground temperature anomalies, a phenomenon known as the Subsurface or Un
derground Urban Heat Island (SUHI/UUHI) effect (Lokoshchenko and Korneva, 2015; Bidarmaghz et al., 2019). The impact of this 
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effect on groundwater temperatures and underground climates has been widely acknowledged (Noethen et al., 2023). Menberg et al. 
(2013a) investigate the impact of anthropogenic heat fluxes on subsurface temperature and its long-term evolution using a statistical 
analytic heat flux model, finding a significant spatial heterogeneity in the heat flux from buildings into the ground beneath the city of 
Karlsruhe, Germany, ranging from −100 to more than 1 × 104 mW/m2, with the heterogeneity in part due to hydrological and surface 
cover variation within the study area. In a further study, comparing measured groundwater temperatures across six German cities, 
Menberg et al. (2013b) identify local hotspots, with temperature increases of up to 20 ◦C, located underneath city centers. Indeed, 
Previati et al. (2022) found that as much as 85% of the annual heat accumulation beneath the metropolitan area of Milan, Italy, was 
contributed by buildings, surface infrastructures and tunnels. Attard et al. (2016) found local temperature increases of up to 4.5 ◦C 
under the city of Lyon, France, and an annual heat flow of 4.5 GWh into the ground from underground structures, concluding that the 
thermal impact of these should be accounted for in geothermal potential mapping. Rotta Loria et al. (2022) illustrate the importance of 
accounting for the presence of and heterogeneity in infrastructure in the subsurface when determining the extent of SUHIs. Through 
deployment of a sensor network within the Chicago Loop district, the study measured temperatures within underground structures 25 
◦C higher than the undisturbed ground temperature, as well as differences of as much as 15 ◦C between different types of structures.
The importance of varying usage of subsurface structures is also emphasised by Becker and Epting (2021), where an increase of up to 2
◦C was measured between the daily temperature averages of commercial underground parking spaces within Basel, Switzerland,
during times of COVID-19 lockdown periods and times of regular usage. Furthermore, the authors found that underground infra
structure can act to absorb heat from the surrounding ground, finding that a monitored freeway tunnel within the studied region
exhibited temperatures below ambient ground temperatures for 52% of the year.

Increased groundwater temperatures can also affect drinking water quality, biodiversity, and the functioning of ecosystems within 
groundwater and those dependent on it (Müller et al., 2014; Brielmann et al., 2011; Koch et al., 2021; Becher et al., 2022). 
Furthermore, elevated subsurface temperatures pose risks to public health by reducing the thermal comfort experienced in under
ground infrastructure, such as on underground public transport, and exacerbating heat related health issues (Jacob et al., 2008). 
Governance and legislative frameworks of subsurface infrastructure as well as heat flux injected into the ground are an important 
safeguard against detrimental utilisation of the subsurface and have been the subject of recent research (Hähnlein et al., 2013; García- 
Gil et al., 2020; Blum et al., 2021). A commonality between these frameworks is, among others, the consideration of temperature 
disturbances resulting from the presence of underground structures. However, at the European level, significant differences exist 
between legislative frameworks as to the tolerable change in temperature caused by, for example, shallow geothermal energy uti
lisation, ranging from 3–11 ◦C (Hähnlein et al., 2013). García-Gil et al. (2020) issued a questionnaire on management policies and 
cycles related to shallow geothermal energy to 13 national geological survey bodies (e.g. the British Geological Survey in the UK, 
Geological Survey of Austria (Geologische Bundesanstalt für Österreich), etc.), and found that the identification of areas at risk of over- 
exploitation scored highly as a management strategy to address the problem of unsustainable shallow geothermal development. Blum 
et al. (2021) propose a policy framework for the sustainable thermal use of shallow groundwater, where temperature limits are based 
on localised background temperature values rather than generalised limits. Mapping the ground temperature under cities enables 
identification of opportunities for better use of geothermal energy as well as enabling the understanding of areas where increased 
temperatures may cause ecological harm. Large-scale temperature maps of the shallow subsurface, particularly beneath urban centres, 
for both the current state as well as for different future ground usage scenarios, accounting for the effect of anthropogenic heat sources, 
can provide the necessary knowledge of the background thermal state upon which limits can be based, as well as enable the deter
mination of problematic ground usage trends that would trigger the requirement of policy interventions. 

1.2. Modelling of the thermal state of the subsurface 

The ground being a continuum, i.e., with heat being transported through conduction and convection, heat sources in the ground, 
such as basements, can significantly increase ground temperatures at considerable distances over long periods of time, as shown by 
Ferguson and Woodbury (2004) who found ground temperatures elevated by up to 2 ◦C at a distance of 50 m (laterally) from a 20 ◦C 
basement structure after a simulation period of 100 years. Consequently, determining the temperature distribution under cities re
quires large-scale models, accounting for hydro-thermal interactions at city scale. The difficulty in this lies in the considerable 
computational cost afforded by models of such scale, having to include heat sources on the order of a few metres laterally, in a model 
that spans several kilometres. Analytical approaches, together with geo-spatial mapping tools, are often employed to overcome this 
computational cost in order to quantify geothermal potential (Ondreka et al., 2007; García-Gil et al., 2015; Schiel et al., 2016; Casasso 
and Sethi, 2016; Tissen et al., 2021; Ramos-Escudero et al., 2021; Walch et al., 2022; Miocic and Krecher, 2022). For example, Ondreka 
et al. (2007) use GIS-supported mapping for an area in south-western Germany based on the German technical guidelines VDI 4640 
(VDI, 2001). These guidelines were also used by Miocic and Krecher (2022) to assess regional shallow geothermal potential for the 
German state of Baden-Württemberg, utilising an existing database of maximum heat extraction rate for this state, while also 
considering the heat demand of building blocks in the assessment. Similarly, García-Gil et al. (2015) incorporate groundwater flow and 
open-loop geothermal systems within an analytical approach combined with GIS-supported mapping to determine the geothermal 
potential for the Metropolitan Area of Barcelona, showing good agreement with a finite element model made for a small portion of the 
domain of interest. A key assumption in this approach, however, is that there is no thermal interference between heat exchangers in the 
ground. A study of Vienna, Austria, by Tissen et al. (2021) identified promising locations for shallow geothermal utilisation, while 
accounting for parameter uncertainty. Recently, Walch et al. (2022) proposed a methodology for identifying shallow geothermal 
potential adopting a district heating and cooling model. Assouline et al. (2019) present a machine learning-based approach to map the 
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geothermal potential of the very shallow (1–2 m) subsurface for the entirety of Switzerland, focusing on identifying the relevant 
properties of the ground. 

By contrast, to avoid some of the restrictions of analytic approaches and to take account of thermal interference, large-scale nu
merical approaches have been implemented. For example, Bidarmaghz et al. (2020) divide the ground into horizontal planes to reduce 
computational cost by neglecting convection heat transport in the z-direction, resulting in a high-resolution thermal map under the 
Royal Borough of Kensington and Chelsea in London, UK. Large-scale evaluation of the subsurface has also been approached by a 
number of studies, specifically for the purposes of quantifying geothermal potential. Epting et al. (2020) combine 3D groundwater flow 
and heat-transport with 2D box models to assess subsurface resources for Basel, Switzerland. Barla et al. (2020) present a preliminary 
investigation of thermal interference between geothermal ground installations at close proximity for the city of Turin, Italy. Previati 
et al. (2022) introduce a city-scale 3D model for the city of Milan, where they investigate the subsurface thermal contribution of 
anthropogenic and natural sources, estimate the geothermal potential of a shallow aquifer, and identify that shallow geothermal 
systems are unlikely to significantly affect the thermal state of the subsurface and thus their utilisation should be supported. These 
studies, together with the global move away from fossil fuels and the drive towards the use of renewable energy sources, showcase the 
need to better understand heat transport within the subsurface and how to utilise it. However, the impact that anthropogenic infra
structure can have on subsurface temperatures, and thereby other aspects of the subsurface, such as groundwater ecosystem biodi
versity and drinking water quality (Brielmann et al., 2011), is often not properly considered. Moreover, large-scale modelling using a 
single model can be restrictive due to computational costs, and increasingly difficult to undertake as the domain of interest grows in 
size. 

1.3. Proposed methodology 

This work proposes a novel methodology for the efficient thermal modelling of the subsurface under large urban centres, ac
counting for the presence of anthropogenic infrastructure in the ground and the associated heat flux, as well as hydrogeological 
variation, in the form of spatially varying ground water table depth and geological and hydraulic characteristics. This methodology is 
both scalable, in that it can be applied to modelling domains of arbitrary size, as well as extendable, i.e. once a given region has been 
modelled, the model may be extended to produce a thermal map of further regions at low additional computational cost, depending on 
the desired accuracy in temperature, with a higher accuracy requiring a greater computational expense. In this methodology, the 
modelling domain is divided into smaller volumes of ground in order to identify common features and thermal behaviours, in terms of 
temperature accumulation, across these. The identified common behaviours, in terms of heat transport processes within the subsur
face, are clustered together into archetypes, which are then modelled at high resolution, instead of the entire domain, allowing for city- 
scale modelling at considerable resolution. Importantly, this methodology may be used to model subsurface temperature at large scale, 
given sufficient similarity in relevant features within the modeled domain, as the developed archetypes may be re-used to give outputs 
for a range of conditions. That is, conditions covered by the variability in the features considered within an archetype, as well as the 
combinations of features that lead to the same archetypal behaviour, may be represented by a single archetype. This is an important 
step towards holistically capturing the thermal climate underneath urban centres, taking account the impact of human-made structures 
in the ground, so as to better utilise the subsurface as a shallow geothermal resource. 

This paper begins with an overview of the methodology in Section 2 and outlines the finite element approach used for the numerical 
modelling. Section 3 illustrates the proposed methodology through application to two boroughs in central London: the Royal Borough 
of Kensington and Chelsea (RBKC) and the City of Westminster (CoW). The results from the approach are discussed in Section 4 and are 
compared with high resolution results from a previous study based in RBKC. A methodology for efficient re-use of already modelled 
archetypes is proposed, allowing the expansion of the modelled domain at reduced computational cost. Conclusions are drawn in 
Section 5. 

Fig. 1. Framework of proposed methodology.  
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2. Methodology 

2.1. Methodology overview 

The developed methodology for large-scale subsurface modelling consists of the following steps, illustrated in Fig. 1 and further 
detailed in following sections:  

1. Division of the domain into equally-sized blocks; 
2. Identification of relevant features in each block (e.g. thermal and hydrogeological parameters, presence and depth of anthropo

genic heat sources, etc.);  
3. Numerical simulation of blocks at low fidelity, with input values as identified, computing the volumetric temperature of blocks as 

output. Where groundwater flows into a block, the upstream temperature is parameterised and a range of temperatures, as would 
be found in the domain, is applied;  

4. Statistical clustering of feature combinations according to the associated volumetric temperatures and identification of the number 
of archetypes based on similarity within the clusters;  

5. Simulation of archetypes using high-fidelity models with input parameter values given by the average of the parameters of the 
models in each cluster;  

6. Combination of output from high-fidelity modelling using a directed graph based on groundwater flow in the domain. 

Because upstream conditions (in the form of temperature of the groundwater entering the domain) are one of the features used to 
determine archetypal behaviour, the final two steps require iteration between them, as will be expanded on below. Of the steps, 2–4 
pertain to identifying archetypes, i.e. determining which combinations of features return thermal conditions that are suitably similar to 
one another to constitute a single archetype. All steps are presented in greater detail in Section 3, where the method is implemented to 
determine the ground temperature distribution for two boroughs in central London. 

2.2. Numerical modelling 

Detailed finite element modelling is used to simulate heat transfer phenomena within the subsurface blocks, with dimensions of 
200 m × 200 m × 50 m, and obtain temperature distributions. The model is run at two different levels of fidelity, which are defined by 
the detail of the mesh and the number of elements, with the high-fidelity models containing approximately 10 times the number of 
mesh elements of the low-fidelity model, allowing for greater accuracy of output but requiring higher computational costs. The 
equations governing the physical processes in terms of conductive and convective heat transfer are given in Appendix A. 

The models contain several different soil layers as well as anthropogenic structures, such as basements, sewers and tunnels, 
affecting the subsurface temperature distribution. An example configuration of the soil layers and such structures is shown in Fig. 2 
along with lateral boundary conditions applied to the models. For all models, the thermal boundary conditions consist of the following. 
A prescribed temperature, Tupstream, at the upstream yz-plane, outflow at the downstream yz-plane, symmetry at the two xz-planes 
parallel to the groundwater flow, Tfarfield at the bottom xy-plane, and varying temperature at the top xy-plane to account for the 
seasonal variation in air temperature at the surface. The latter is applied as a semi-empirical function in time and depth (Beardsmore 
and Cull, 2001; Baggs, 1983), fitted to local conditions, i.e. 

Tg(z, t) = T0,g − 1.07kvTampe−∊zcos[ω(t − t0) + ∊z], (1) 

(a) (b)

Fig. 2. Finite element model schematic showing boundary conditions for heat transfer (orange) and fluid flow (blue), and the built infrastructure 
elements (yellow for tunnel lines and basements and red for the sewers). The left panel shows the boundary conditions for the side surfaces and the 
right panel for the top and bottom surfaces. 
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where T0,g is the mean annual ground temperature (◦C), set to 12.5 ◦C (Price et al., 2018), Tamp the seasonal heating cycle amplitude 
(◦C), found to be 8.3 ◦C (NCAS British Atmospheric Data Centre, 1853), ω = 2π

P is the angular frequency of the heating cycle (rad) with 

period P = 365 days, ∊ =
̅̅̅̅̅̅̅

π
(Pα)

√
, α is the thermal diffusivity of the ground (m2/s), kv is the shade factor coefficient (taking a value 

between 0.3 and 1.3 depending on the conditions present (Popiel and Wojtkowiak, 2013)), and t0 is the day of coldest temperature 
after January 1st, found to be 10 days (NCAS British Atmospheric Data Centre, 1853). The initial temperature throughout the soil 
domains is set to Tfarfield, while the temperatures of the basements are set to T = 18 ◦C (Bidarmaghz et al., 2020) and the sewer to T =

15 ◦C (Hawley and Fenner, 2012). For the underground train lines a time-varying temperature is applied as discussed in Section 3.2.2. 
The hydraulic boundary conditions, also shown in Fig. 2 consist of prescribed hydraulic head values at the upstream and down

stream yz-planes according to the hydraulic gradient of the block, symmetry conditions at the two xz-panes parallel to flow, and a no- 
flow condition at the top and bottom xy-planes (with the top plane in this case defined as the surface of the saturated soil). 

3. Application of methodology 

The proposed methodology is illustrated through application to two boroughs in central London, namely the Royal Borough of 
Kensington and Chelsea (RBKC) and the City of Westminster (CoW), shown in Fig. 3a. 

(a) (b)

Fig. 3. Area of application: the Royal Borough of Kensington and Chelsea and the City of Westminster. Built environment within the ground, i.e. 
basements and train tunnels part of the London Underground Network (panel a). Geological variation within the modelled domain (panel b). Layers 
deeper than 20 m consist only of London Clay (LC). Details on the geologies are given in Table B.5. 

Table 1 
Features and ranges used for low-fidelity simulation (Price et al., 2018; Highways Agency, 2015; Santa et al., 2017; Rollin, 1987; 
McDonnell Cole, 2020; Low et al., 2017; Bloomer, 1981; Waterman Infrastructure & Environment Limited, 2019; Gawecka et al., 
2017; Dalla Santa et al., 2020; ESSO, 2019; Roshankhah et al., 2021). Further detail on the data can be found in Appendix B.  

Feature (Range of) values Unit 

Hydrogeological conditions   
λground 0.50–2.50 [W/(m K)] 
ρground 1.40–2.10 [Mg/m3] 
Cp,ground 0.87–1.50 [kJ/(kg K)] 
kh,ground 1.00 × 10−9 - 3.10 × 10−3 [m/s] 
εground 0.35–0.50 [–] 
GWmbgl 2.00–18.50 [m] 
Hydraulic head difference 0–13.35 [m] 
Upstream groundwater temperature* 12.50–16.50 [◦C] 

Built infrastructure   
Tunnel depth dline1 0.00–37.42 [m] 
Tunnel depth dline2 0.00–35.13 [m] 
Basement percentage 0.0–40.18 [%] 
Buildings percentage 0.0–84.48 [%] 
Shade factor 0.3–1.30 [–] 

*This is the only feature that is parameterised. 
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3.1. Division of domain 

The domain is divided into smaller volumes of 200 m × 200 m in the x and y-directions, and 50 m in depth. This size is adopted to 
showcase the methodology and is the result of a compromise between computational demands and output resolution, and taking into 
account the resolution of available data, depth of heat sources, and extent of heat propagation. However, the block size can easily be 
adjusted depending on application demands. 

3.2. Identification of relevant features 

An essential step in the creation of subsurface archetypes is the identification of features that impact subsurface temperature, 
thereby constituting descriptors for an archetype. These features relate to both the natural and built environments and their selection is 
based on existing literature and understanding of subsurface heat transport processes. The importance of hydraulic and thermal 
conductivity values of soils on their temperatures, for example, is well established, as they relate to convection and conduction of heat, 
respectively. Furthermore, several studies have shown the impact of anthropogenic infrastructure on the thermal state of the ground, 
specifically in terms of heated basements (Tissen et al., 2021; Makasis et al., 2021) and train tunnels (Bidarmaghz et al., 2021). The 
features identified as impactful on ground temperature in this work are listed in Table 1, consisting of soil thermal and hydraulic 
properties, hydrogeological conditions, shading factor (a measure of the magnitude of thermal influence from the surface) (Popiel and 
Wojtkowiak, 2013), and the presence and depth of subsurface structures. The ranges presented in Table 1 cover the values identified 
within the domain. For the geological conditions this represents the different ground materials present as detailed in Appendix B. It is 
worth mentioning that data for some of these features, particularly the ground properties, may not be readily available for other cities 
around the world. In such cases, it is expected that using any available information to estimate these values and using lower resolution 
(e.g., homogeneous soil instead of multiple layers) can still provide valuable insights on the subsurface thermal processes. Moreover, 
some of the features, such as building footprints, can be easily obtained using software such as QGIS. 

3.2.1. Hydrogeology within domain 
The type of soil material present within a given block is crucial to the heat transport phenomena taking place, as the properties of 

the material determine the rate at which heat is conducted or convected. Soil properties therefore constitute key features in the 
identification of block archetypes. Data from the British Geological Survey (BGS), illustrated as geological layers in Fig. 3b, are used to 
identify the ground lithologies and distributions present in each block in the modelled domain. The hydraulic and thermal properties of 
the soil types present in the domain are listed in Appendix B, determined based on existing literature, including relevant studies from 
the area. The resolution of the geological data has informed the geometry of the block, resulting in a total of 8 layers, with changes at 
depths of 1 m, 2 m, 3 m, 4 m, 5 m, 7.5 m, 12.5 m, and 17.5 m. Groundwater level data are also provided by the BGS, and used to 
determine the hydraulic head difference in the dominant flow direction for each block and, in combination with the local hydraulic 
conductivity, the groundwater velocity in within a block. For the blocks with significant groundwater flow present, i.e. with a 
groundwater velocity of greater than 1 × 10−7 m/s, determined using the hydraulic conductivity and hydraulic head, the temperature 
of the water entering the domain needs to be specified. However, the upstream groundwater temperature is not known before 

(a) (b)

Fig. 4. Number of underground transit lines present per block in the domain (panel a) and average depth of lines in block for blocks with only one 
line (top of panel b) and two lines (bottom of panel b). 
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modelling is completed. Consequently, the upstream groundwater temperature is parameterised such that for each block with 
groundwater flow, five possible values of upstream temperature are considered, from 12.5 ◦C to 16.5 ◦C, in 1 ◦C increments. These 
values represent a low to high influence from heat sources upstream, with 12.5 ◦C being the far-field temperature (Busby et al., 2011) 
and subsequent modelling confirming that 16.5 ◦C is not exceeded. A more detailed breakdown of the hydrogeology within the 
domain, including distributions of materials, can be found in Appendix B. 

3.2.2. Built infrastructure within domain 
Subsurface infrastructure can act as heat sources within the ground, raising the temperature and changing ambient conditions. 

Because this study focuses on the city of London, incorporating the underground tunnel lines is an important step, as it has been 
documented that some of these lines, especially those in London Clay, have accumulated significant amounts of heat in the surrounding 
soil, causing decline of passenger comfort during hot days (Stephen, 2016). The train lines present in the domain are shown in Fig. 3a, 
plotted from OpenStreetMap (OSM) data (OpenStreetMap contributors, 2017), and the distribution of the number of train lines falling 
within a block is shown in Fig. 4a. Three or more train lines occur in less than 2% of the blocks in the domain and therefore only up to 
two tunnel lines are included in the analyses, each consisting of a set of twin tunnels, 4 m in diameter. Fig. 4b shows the distribution of 
average line depths within a block of the domain, determined from linearly interpolating station depths (WhatDoTheyKnow, 2011) 
along the path of the train line, where one line is termed shallow and the other deep. Within a numerical representation of a block, 
tunnels are placed parallel to the y-axis, and centrally along the x-axis. The single/shallow tunnels are spaced 8 m apart, while the deep 
line tunnels are 24 m apart to be able to facilitate cases where the two lines are at similar depths. A temperature fluctuation based on a 
documented linear relationship between outside air temperature and tunnel/platform temperature is implemented (Gilbey et al., 
2011). The derived platform temperatures have been fitted with a sinusoidal function Ttunnel = 23 + 4sin(2πt/365 −2.044187)◦C, 
where time t is in days, and, for simplicity, is subsequently used as tunnel temperature boundary condition for all lines. 

Further sources of significant anthropogenic heat flux in the ground are basements and sewers. Basements in the area are identified 
using an OSM database (OpenStreetMap contributors, 2017) and a depth of 3 m is assumed (typical for the area (RBKC, 2021)) in the 
numerical representation. The (right-skewed) distribution of basements, as a percentage of surface area, included in Fig. B.19 in 
Appendix B, shows that most blocks contain few to no basements, with a notable number around the 20% value and a sharp decline 
beyond that value. While varying the basement density in the modelling, each basement is assumed to have dimensions of 5 × 10 × 3 
metres, and a mostly central configuration is adopted such that margins of 25 m remain between the model domain edges and 
basements. This geometric configuration was chosen after testing several options, including random placement of basements, and 
concluding that this one best captures the widest range of potential distributions. Other test configurations are not included in this 
work for brevity. Where more detailed information is available on the building types, these can be incorporated as an additional 
feature for higher resolution results, e.g., distinguishing factories from other buildings, which can have a different thermal footprint 
(Tissen et al., 2019). Placement of sewers is linked to the number of buildings within a block (the higher the total building area per 
block, the higher the number of sewers per block), as little information exists on the in situ location of sewers, hence requiring as
sumptions. The sewers are oriented along the y direction, in between rows of basements, at a depth of 3 metres below the surface. A 
diameter of 2 m is assumed for the sewers, estimated based on the limited available information on London’s sewage network, and an 
average temperature of 15 ◦C (Hawley and Fenner, 2012; Hart and Halden, 2020). 

The final feature considered, though somewhat less directly related to built infrastructure, is the shade factor. This factor represents 
how shading affects subsurface temperature fluctuations and takes a value between 0.3 and 1.3 (Popiel and Wojtkowiak, 2013). In this 
work, available land cover OSM data were used to estimate the shade factor value for each block, with lower values for highly shaded 

Fig. 5. Volumetric temperature distribution of the ground for a typical low-fidelity simulation.  
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areas, such as woodland, and higher values for areas such as bare roads. The shade factor distribution and further information on the 
built infrastructure within the domain can be found in Appendix B. It should be noted that built infrastructure can change over time, 
when considering a period of decades. While in this work these features remain constant over time, city expansion or densification 
could be incorporated in the methodology, by splitting simulations in separate parts, at the expense of computational costs. 

3.3. Low-fidelity simulations 

Identification of the archetypes requires data on the thermal state of a block resulting from various combinations of key input 
features discussed above, in order for the similarity between these to be assessed. Because a large number of simulations are needed to 
generate the input–output relationships, low-fidelity models are used as computational speed takes priority over model output res
olution at this stage. To this end, low-fidelity simulations for each block have been computed, in each case using the respective feature 
values from the ranges in Table 1. A total of 2086 simulations are run, one for each of the 631 blocks in the two boroughs that do not 
have significant groundwater flow and five for each of the 291 blocks that do and for which the upstream groundwater temperature is 
parameterised. Each simulation requires a few minutes to compute and extract the results. The key output of the models is the 
volumetric temperature of the ground within each block, from a depth of 2 metres downwards. The first 2 metres of subsurface are 
disregarded so as to reduce any potential noise in the data due to surface fluctuations. While this measure is not capable of presenting a 
detailed image of the heat transfer, the volumetric temperature is nonetheless a good representation of the thermal state of the ground 
and suitable for determining the thermal impact of the input features. A typical response of ground volumetric temperature over time is 
shown in Fig. 5. To compute a single metric to use in the archetype training stage, the average of the last (in this case, 10th) year of 

Table 2 
Training features for decision tree.  

Feature Description Unit 

λground,av Ground thermal conductivity averaged over depth [W/(m K)] 
ρground,av Ground density averaged over depth [Mg/m3] 
Cp,ground,av Ground thermal capacity averaged over depth [kJ/(kg K)] 
kh,ground,av Ground hydraulic conductivity averaged over depth [m/s] 
εground,av Ground porosity averaged over depth [–] 
GWmbgl Groundwater level - below surface [m] 
dHH Hydraulic head difference at dominant direction [m] 
kv Shade factor [–] 
Tupstream Upstream groundwater temperature [◦C] 
Abasements Percentage of basements over surface area [%] 
Abuildings Percentage of buildings over surface area (used to determine number of sewers) [%] 
Tunnel count Number of tunnel lines within domain [–] 
dtunnelline1 Depth of centreline of first tunnel line [m] 
dtunnelline2 Depth of centreline of second tunnel line [m] 
Tunnel In Aq Number indicating how many tunnels are within an aquifer (in increments of 0.5) [–]  

Fig. 6. Optimal tolerance to minimise the total number of archetypes generated (and thus computational costs) and node impurity, computed as 
MSE within a node of the decision tree and averaged over all nodes. 
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simulation is computed, Tvol - also indicated on the figure, to ensure that thermal accumulation effects over time are accounted for. It is 
worth noting that different simulation durations and appropriate metrics have been investigated, to ensure the applicability of the 
chosen values. While 10 years have been used herein, to limit computational time costs, another suitable approach can be running each 
low-fidelity simulation until a thermal equilibrium has been reached. 

3.4. Identification of archetypes 

Having run the low-fidelity simulation batch and having computed Tvol for each feature combination, archetypes are then identified 
through clustering together feature combinations that produce similar output, i.e. volumetric temperature values. To this end, a 
regression-based decision tree is trained using the low-fidelity data, i.e. the relevant features outlined in Section 3.2 as well as further 
features, such as Tunnel Count, that provide additional information to the algorithm, shown in Table 2, and the corresponding Tvol. 
Decision trees divide the data from an initial node, or set, according to the feature that minimises the impurity, or discrepancy, of a 
quantity of interest within a node, in this case Tvol. This discrepancy may be evaluated in different ways. The most common, and the 
one used in this analysis, being by using the mean squared error (MSE). At each branching point, a node is chosen to be split along a 
feature value such that the impurity metric (i.e. the MSE) for all nodes combined (the global impurity) is minimised. More details on 
decision tree formulation and splitting can be found in (Breiman et al., 1984; Hastie et al., 2009). In the approach used herein, the data 
are split repeatedly, using different features at each branch point, until an appropriately low global impurity is reached, equal to a 
desired set tolerance, resulting in a collection of node branches, or a tree, where the leaf nodes, i.e. nodes without any further outgoing 
connections, designate archetypes. By setting different values for the desired tolerance, the size of the tree, and thus the number of 
archetypes, can be altered, with a lower tolerance requiring greater similarity within a node, hence resulting in more archetypes. 

Fig. 7. Decision tree for the examined domain for the chosen tolerance of 3.5 × 10−4. The root node (left-most) includes labels, and all nodes show 
the impurity (MSE), number of samples in the node out of the 2086 data points used to train it, and the mean value of the used metric Tvol. 
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Through adjustment of the tolerance, a balance is struck between generality of the nodes and a number of archetypes that is feasible 
(and practical) to simulate through high-fidelity models. That is, not having so many archetypes that the number of high-fidelity 
simulations becomes computationally infeasible, nor so few that distinct behaviours are merged and archetypes suffer a loss of ac
curacy. Fig. 6 shows how the change in the value of the recession tolerance (x-axis) affects node impurity (mean over all leaf nodes) 
(right y-axis) as well as the associated number of archetypes (left y-axis). A value of 3.5 × 10−4 is selected, resulting in a total of 31 
archetypes that fit the data ranges that were used for the low-fidelity simulation and a mean impurity of under 0.02 ◦C, noting that the 
Tvol values from the low-fidelity simulations ranged from 12.537 ◦C to 15.610 ◦C. 

The regression tree resulting from this fine-tuning is shown in Fig. 7, where the root node is on the left and each branch node gives 
the feature and value used for the branching, the impurity (i.e. squared error) of the volumetric temperature of the models within that 
node, the number of samples (of the 2086 low-fidelity combinations) contained within the node, and the average value of Tvol. Leaf 
nodes, i.e. the resulting archetypes, only show the final three of these as they are not further split. Using the tree, each block can be 
associated with an archetype, which can represent the thermal behaviour of the block, by starting from the root of the tree and 
following the branches until a leaf node is reached. 

The algorithm determines which feature is most suitable to use to split a node into two others. Therefore, the features are assigned a 
different score according to their importance, with a higher score indicating that the feature play a greater role in defining the ar
chetypes. These scores can be seen in Fig. 8a, showing that a key identifying factor for the archetypes are the presence of heat sources, 
especially the presence of tunnel lines. The significance of convection is also highlighted, as both the hydraulic conductivity and the 
temperature of groundwater entering the domain rank relatively highly. The thermal conductivity and specific heat capacity, relating 
to heat conduction, are also shown to play a role on determining the archetypes. On the other hand, the remaining ground properties as 
well as the shade factor are shown to have little influence over the archetypes of the examined domain, for the chosen tolerance. The 
Tunnels in Aquifer metric was the least influential, due to the fact that most tunnels in this domain are within the clay and therefore 
most values for this parameter are (close to) 0. However, it is expected that in other regions with different ground/tunnel conditions its 
importance can be high. It is important to acknowledge that, given the nature of the data, there can be correlations between the 
features and these correlations are shown in Fig. 8b. Some correlations can be seen between the different ground properties, which is 
expected since these properties all relate to certain materials. Strong correlation is also observed between the groundwater level and 
the ground thermal properties, since the depth and amount of saturated soil can affect these values. 

3.5. High-fidelity simulations & production of temperature map 

The final steps of the methodology are the simulation of the identified archetypes at high fidelity and the combination of their 
outputs, i.e. the area-averaged temperatures at specific depths, into a large-scale thermal map. The high-fidelity simulations consist of 
a comparatively larger number of mesh elements (about 10 times), allowing for higher resolution of outputs, but requiring higher 

(a) (b)

Fig. 8. Feature importance rankings (panel a), showing which features are most influential on the creation of archetypes using the decision tree, and 
correlation coefficient for each pair of features (b), noting that the correlation matrix is symmetrical and the y-axis is the same as the x-axis with left 
to right being bottom to top. The abbreviations used are introduced in Table 2. 
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computational cost, in this case on the order of several hours. Because one of the features used to identify archetypes is the temperature 
of the groundwater flowing into a block, Tupstream, which is unknown prior to high-fidelity model simulations and therefore para
meterised during the low-fidelity simulation step (see Section 3.2.1), some of the archetypes generated may not be allocated to blocks 
within the modelled domain and hence do not require high-fidelity simulation. 

To identify which archetypes need to be simulated, a groundwater connectivity directed graph is created, determined from data on 
the groundwater level, hydraulic gradient, and the hydraulic conductivity within the domain, shown in Fig. 9. Two blocks are 
considered to be connected by groundwater flow if the groundwater velocity, calculated using vGW =

kh,ground
(dHH/Lblock)

, exceeds a threshold of 
1 × 10−7 m/s (equivalent to less than 1 cm per day). This graph informs which blocks have significant groundwater flow into them and 
thus the order in which blocks are associated with archetypes, to ensure that when a block passes through the tree its Tupstream value is 
known. Blocks that do not have flow into them, i.e. do not have an arrow connecting into them, are examined first and the corre
sponding archetypes are simulated at high fidelity. The temperature of the groundwater exiting their domain is computed as one of the 
outputs of the simulation, which then serves as Tupstream input for blocks they connect to in the graph. For blocks with multiple sources 
of groundwater flow, the Tupstream values are averaged. Following this process, all nodes in the domain are iteratively associated with an 
archetype and, where needed, new high-fidelity simulations are computed until all nodes belong to an archetype and all required 
archetypes have been simulated. Finally, from the solved archetype simulations the desired outputs can be computed, such as (but not 
limited to) area-averaged temperatures at different depths to create temperature maps of the subsurface. 

4. Results and discussion 

4.1. Results and archetype differences 

A complete list of the archetypes for the investigated domain, the Royal Borough of Kensington and Chelsea (RBKC) and the City of 
Westminster, in London, is provided in Table 3, giving the average feature values for the blocks assigned to each archetype. Since the 
values of the features for each archetype are defined as an average over all the blocks that are characterised by the archetype, there can 
be cases where discrete features take a non-integer value. This can happen because, for that archetype, these discrete features are not 
key in the branching of the path from the root of the tree to the leaf for the specific archetype. In these cases the discrete features values 
are rounded to the nearest integer. For example, for Archetype 16 the average value of Tunnel Count is taken to be 1.00 instead of the 
computed 1.10 and a single train line is modelled in the high-fidelity model corresponding to this archetype. The degree of influence of 
the features defining each archetype varies, as shown in Section 3.4 and Fig. 8a. To showcase some of the more influential archetype 
features, such as the presence of tunnels in the subsurface, it is worth exploring some archetype feature breakdowns in more detail. 

The presence of anthropogenic influences is shown to be the strongest predictor of ground temperature. Particularly regarding 
tunnel lines, it is apparent from Table 3 (and perhaps intuitive) that ground temperature tends to be higher, the more tunnel lines are 
present in the domain. Similarly, a greater presence of basements and sewers (the latter being indicated by a higher value of Area 
building percentage) are associated with higher temperatures with other factors being held the same. For example, comparing arche
types 0 and 9, both of which have no tunnels and very similar upstream temperatures but the latter has a 28% coverage of buildings, 
with the associated greater number of sewage pipes extending through the block, increasing the volumetric temperature by 0.44 ◦C. 
Furthermore, the temperature of the groundwater entering the block also acts as a source of heat, highlighted in comparing archetypes 

Fig. 9. Connected graph of the groundwater flow in the modelled region, indicating direction of influence of upstream groundwater temperatures 
and defining boundary conditions for downstream blocks. 
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Table 3 
List of the 24 archetypes found in domain.  

Archetype 
No. 

Tunnel 
count 

Tunnel 1 
depth  
[m] 

Tunnel 2 
depth  
[m] 

Hydraulic 
head 
difference, 
dHH [m] 

Shade 
coeff. 
kv, [–] 

Upstream GW 
temperature, 
Tupstream [◦C] 

Area 
basement 
percentage 
[%] 

Area 
building 
percentage 
[%] 

Avg. thermal 
conductivity 
λ [W/(m ⋅ K)] 

Avg. 
density 
ρ [kg/ 
m3] 

Avg. 
specific 
heat 
capacity, 
Cp [J/ 
(kg⋅K)] 

Avg. hydraulic 
conductivity 
kh [m/s] 

Avg. 
porosity 
ε [–] 

GW 
level 
[mbgl] 

No. of 
tunnels in 
aquifer 
[–] 

Volumetric 
temperature 
[◦C] 

0 0.00 – – 3.34 0.59 13.07 0.07 1.23 1.64 1970.16 886.33 8.21 × 10−8 0.49 3.35 0.00 12.60 
1 0.00 – – 2.63 0.55 13.50 0.15 1.33 1.69 1963.38 932.35 1.07 × 10−4 0.49 3.08 0.00 12.75 
3 0.00 – – 2.95 0.76 12.74 0.22 15.91 1.66 1977.03 883.78 2.05 × 10−8 0.50 2.75 0.00 12.80 
5 0.00 – – 2.66 0.74 13.76 0.18 26.91 1.75 1971.14 964.17 4.81 × 10−5 0.49 2.01 0.00 12.91 
4 0.00 – – 2.50 0.74 12.85 0.42 39.37 1.63 1965.81 884.88 4.31 × 10−8 0.49 4.07 0.00 12.96 
9 0.00 – – 2.43 0.73 13.05 4.28 28.26 1.69 1969.27 913.14 4.26 × 10−7 0.49 3.09 0.00 13.04 
2 0.00 – – 4.02 0.42 14.50 0.04 1.58 1.73 1974.87 938.96 5.91 × 10−5 0.49 2.01 0.00 13.10 
10 0.00 – – 1.34 0.71 13.34 15.99 36.73 1.73 1952.60 961.05 1.41 × 10−5 0.48 3.67 0.00 13.10 
12 0.00 – – 2.64 0.78 14.50 13.72 39.73 1.64 1961.31 912.00 1.37 × 10−5 0.48 4.12 0.00 13.16 
11 0.00 – – 2.63 0.74 13.07 17.47 32.64 1.70 1978.60 902.49 4.93 × 10−7 0.49 2.06 0.00 13.22 
7 0.00 – – 2.57 0.72 14.50 0.14 30.45 1.77 1962.60 989.85 9.61 × 10−5 0.49 2.01 0.00 13.24 
13 0.00 – – 1.52 0.76 14.50 15.22 37.05 1.73 1975.00 939.09 2.04 × 10−5 0.48 2.02 0.00 13.33 
14 0.00 – – 1.04 0.76 14.50 15.37 35.53 1.78 1966.10 975.77 1.09 × 10−4 0.48 2.00 0.00 13.35 
16 1.10 7.31 0.88 3.47 0.89 12.82 1.96 23.55 1.67 1981.70 876.11 5.71 × 10−8 0.50 2.20 0.03 13.39 
21 1.00 26.75 – 4.52 0.63 13.50 0.00 2.32 1.76 1973.93 950.05 2.01 × 10−5 0.48 2.00 0.00 13.57 
18 1.00 23.27 – 2.54 0.62 14.00 0.61 3.10 1.68 1976.71 903.03 3.96 × 10−6 0.49 2.23 0.00 13.58 
17 1.25 8.06 1.80 2.49 0.77 12.83 16.65 34.13 1.65 1975.43 879.02 1.79 × 10−7 0.50 2.92 0.03 13.64 
20 1.14 9.72 1.07 2.36 0.72 13.55 10.12 37.42 1.75 1967.62 961.84 4.57 × 10−5 0.48 2.04 0.72 13.77 
23 1.20 6.74 1.83 2.98 0.67 14.50 6.72 40.11 1.73 1967.59 948.25 3.23 × 10−5 0.49 2.07 0.80 13.83 
19 1.00 24.68 – 2.30 0.77 12.97 6.25 43.70 1.60 1955.07 889.39 1.26 × 10−6 0.49 5.18 0.00 13.95 
22 1.00 25.08 – 2.22 0.80 13.80 6.41 50.87 1.63 1951.99 936.07 1.51 × 10−5 0.48 4.76 0.00 13.97 
25 1.00 23.13 – 1.94 0.75 14.50 15.54 48.10 1.67 1954.81 952.41 2.66 × 10−5 0.48 3.44 0.00 14.18 
26 1.06 13.01 0.35 1.78 0.74 14.50 10.78 35.91 1.77 1969.64 965.02 7.80 × 10−5 0.48 2.00 0.59 14.23 
28 2.00 11.09 20.29 2.00 0.76 13.17 5.93 37.70 1.66 1961.00 905.77 3.50 × 10−7 0.49 4.30 0.17 14.41 
29 2.00 20.60 30.79 1.63 0.76 13.58 4.41 51.24 1.57 1941.66 896.84 1.65 × 10−5 0.49 6.68 0.08 14.62 
30 2.00 7.18 24.25 1.96 0.85 13.00 5.59 29.25 1.77 1957.83 992.02 7.87 × 10−5 0.48 2.00 0.75 14.86 
27 2.00 6.58 20.32 6.72 0.83 13.83 0.50 3.51 1.73 1965.57 961.64 4.90 × 10−5 0.49 2.00 1.00 15.14  
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27 with 30. The former exhibits a volumetric temperature of that is 0.27 ◦C higher than that of 30, despite the latter having a 26 % 
greater building ratio. The impact of this increase on volumetric temperature is (more than) counteracted by the upstream ground
water temperature, which is 0.83 ◦C less, giving rise to the discrepancy in Tvol that is observed between the two archetypes. 

Another important feature is the groundwater flow velocity, which is given by a combination of hydraulic head difference and the 
hydraulic conductivity within a block. Generally speaking, faster groundwater flow will act to distribute heat from heat sources and 
‘flush’ them further downstream out of the block, thereby preventing accumulation of heat and reducing the volumetric temperature. 
This effect is illustrated in the comparison between archetypes 19 and 22 which exhibit almost identical volumetric temperatures, 
despite a difference in the upstream temperature of 0.83 ◦C. This is due to a factor of magnitude difference in the average hydraulic 
conductivity in the blocks, resulting in a similar difference in the groundwater flow velocities in the permeable layers (given the 
similarity in the hydraulic head difference). Hence, the groundwater entering the block at a (relatively higher) temperature of 13.80 ◦C 
for archetype 22, is carried through the block quicker than for archetype 19, resulting in less accumulation and thereby roughly the 
same Tvol. Importantly, the comparison of these two archetypes shows that the nature of the decision tree algorithm, where branches 
are created and each node is split into two sequentially, enables the creation of archetypes that have similar volumetric temperatures, 
but different thermal processes (since the paths from the root node of the tree to the archetype leaf for archetypes 19 and 22 are 
significantly different). 

A good understanding of the archetypes and the features that comprise and differentiate them can provide confidence in their 
combined use to obtain large-scale information. Importantly, the above methodology can be used to provide detailed temperature 
distributions within the domain. Results from this work, namely area-averaged temperature outputs at different depths of the domain, 
are presented in Fig. 10, where temperature distributions are shown for 10, 20 and 35 m below ground level under the modelled 
domain, as an example. In these subsurface temperature maps, the underground tunnel lines are clearly visible, as regions of higher 

Fig. 10. Output of the archetypes-based methodology: area-averaged temperature distribution averaged over the last year of simulation, shown at 
10 m, 20 m, and 35 m below ground level. 

(a) (b)

Fig. 11. Comparison of thermal map produced from a high resolution model (panel a) and archetypes-based model output (b) at a depth of 20 m 
below ground level, averaged over the 25th year of simulation. 
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temperatures crossing the area. Moreover, the presence of Hyde Park, being devoid of heated infrastructure, can be seen as an area of 
relatively cool ground in the centre of the domain. Residential areas with heated basements, such as the west of the domain, also show 
increased temperatures compared to, for example, Hyde Park. These observations provide confidence in the results. 

4.2. Comparison to high resolution model 

The accuracy of the proposed methodology in generating subsurface temperatures is examined through comparison of the 
archetype-based ground temperatures against those from a high-resolution model developed by Bidarmaghz et al. (2020). In this 
model of RBKC, the domain is divided vertically into a series of thermally coupled planes within which conduction and convection are 
modelled. Heat sources, specifically basements and underground tunnel lines, are abstracted for computational tractability and certain 
ground properties are homogenised. The temperature at a depth of 20 metres below ground level, averaged over the last year of the 25- 
year simulation, is shown in Fig. 11a. The presence of the underground train tunnels is clearly visible as lines of elevated temperature, 
i.e. the Central Line running almost horizontally across the northern part of the domain, and the Circle, District, and Piccadilly Lines 
crossing and branching in the southern part. Additionally, the southern regions of the domain exhibit areas of higher temperature 
(approximately 14.5 ◦C) due to the heat convected by groundwater flow from the basements present just below the surface. 

For comparison, a thermal map generated using the archetypes-based method for the same region and year is shown in Fig. 11b. 
The area-averaged temperatures in the 200 m × 200 m blocks show good agreement with the results from the high resolution model, 
with the effect of underground train tunnels captured as blocks with higher area-averaged temperatures, and with over 50% of the 
blocks being within 0.6 ◦C of the block-averaged temperatures obtained from the high-resolution results. The distribution of basements 
is also reproduced in the archetypes results, showing an area of lower temperature where basements are absent at the north end of the 
borough, as is the case in the high resolution results. The apparently higher temperature in the northern part of the domain is likely due 
to the inclusion of sewer networks in the arechetypes-based methodology, which are implemented in blocks containing buildings, even 
in the absence of basements (see Section 3.2.2), a heat source that is not incorporated in the high resolution modelling. 

It is apparent that the results of the archetype methodology are of lower resolution and capture less of the spatial variability, 
reflecting the chosen grid-size. However, the key features of the domain are represented well. It is worth noting that this grid-size, and 
thereby the resolution of the archetypes-based results, can be varied based on the region modelled and the resolution of the data 
available. While modelling an entire domain within one model can provide more detailed results, the results from the proposed 
methodology are at a resolution that is useful for a range of applications such as large-scale geothermal resource assessment and large- 
scale future scenario forecasting. Moreover, this methodology allows for full 3D element modelling and reduces potential scaling 
issues, present when a numerical model has large differences in scale of its modelled features. It is also significantly less computa
tionally restrictive without the requirement for large computers, and can be a scalable approach which reduces in computational 
requirements as more and more domains are modelled, data is gathered, and archetypes are created. 

4.3. Extendability of the methodology 

4.3.1. Overview & extendability options 
The proposed methodology regards large-scale thermal mapping, for which the regions to be mapped can be incorporated in stages, 

due to data availability, administrative reasons, or project timelines among others reasons. Therefore, while having the entire dataset 
to begin with can lead to a more complete outcome, with a single large decision tree, it is important to assess how extension of an 
already mapped region can be achieved. To assess this aspect of the methodology, in Section 4.3 the two boroughs modelled in this 
work, RBKC and CoW, are examined in sequence, instead of computing the thermal map for the combined RBKC and CoW region as 
done in the previous sections, identifying and comparing ways to thermally map CoW, given that the thermal map of RBKC is 
completed. 

No tree approach. The first and lowest cost option is to use the decision tree created for the already mapped region, i.e. RBKC, as well 
as the respective archetype outputs. The block data for the new domain, CoW, are passed through the decision tree for RBKC and each 
block is associated with an archetype which has already been simulated, the outputs of which can then be used to populate the thermal 
map for CoW. While no additional numerical modelling is required for high-fidelity simulations of the archetypes, this approach relies 
on features that determine the thermal state of the ground, i.e. hydro-geology and built infrastructure features, having similar value 
ranges across the two regions. That is, the archetypes for RBKC must also be representative for the blocks in CoW. This can be a valid 
assumption in certain cases, especially when the dataset of the already mapped region is large enough. However, if discrepancies occur 
in the features present within the two regions, then this approach to the domain extension runs the risk of reducing computational cost 
and time at the expense of accuracy. 

Fully modelled approach. The second option comes at the greatest computational cost, and entails generating a new separate 
regression tree for CoW only and running an additional set of high-fidelity models for the identified archetypes in the new region. As 
part of this option, the datasets for RBKC and CoW are treated individually, with the exception of values for Tupstream from blocks at the 
border of the two regions, i.e. for blocks in CoW that have groundwater flow coming from blocks in RBKC the Tupstream is known after 
RBKC is thermally mapped. Whilst being the most computationally expensive, this approach contains the least inaccuracies, as the 
archetypes result from a decision tree trained with data from the relevant region. For this approach, the decision trees of both regions, 
when mapped separately, can be found in Appendix C. 
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Dissimilarity approach. The third and final option presented is a compromise between the previous two. After the decision tree for 
the new region (CoW) is created, the determined archetypes (for CoW) are compared to those of the already modelled region (RBKC), 
and the pairs that are sufficiently similar are identified, for which the already computed archetypes are used for both regions removing 
the need to simulate the new ones. The remaining archetypes for CoW are simulated as in option two, meaning that overall fewer high- 
fidelity simulations are needed for this option compared to the fully modelled approach - but more than in option 1 (for which no 
additional archetypes need to be simulated). Due to the steps involved in this option, it is presented in detail in Section 4.3.2. The 
choice of option for extension depends on several factors, particularly the similarity of the feature combinations within the new 
domain to those of the already generated one, the computational resources available, and the size of the additional domain among 
others. 

4.3.2. Extendability: dissimilarity approach 
In cases where some regions have been computed and mapped and nearby regions are selected for subsequent mapping (and the 

features of the two regions are somewhat similar), information from the computed regions can be used to reduce the computational 
costs of modelling the subsequent region. This reduction relates to the last part of the methodology, where high-fidelity models are 

Table 4 
Training features and weighting, representing the expected 
magnitude of impact of a given feature on archetype analysis 
output.  

Feature Weight 

λground,av 0.50 
ρground,av 0.25 
Cp,ground,av 0.15 
kh,ground,av 0.25 
εground,av 0.10 
GWmbgl 0.10 
dHH 0.50 
kv 0.15 
Tupstream 0.60 
Abasements 0.50 
Abuildings 0.50 
Tunnel Count 0.20 
dtunnelline1 0.75 
dtunnelline2 0.25 
Tunnel In Aq 0.20 
Archetype Tvol (from lo-fi data) 1.00  

Fig. 12. Dissimilarity score against average temperature difference between each pair of archetypes from the two boroughs investigated in 
this work. 
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created, after the archetype features have been identified. By examining the features of the archetypes from both computed and non- 
computed regions, archetypes of sufficient similarity can be identified such that simulation outputs from the already computed ar
chetypes can be used instead of requiring new computations. The measure of similarity is done using a dissimilarity score, computed as 
the Mean Absolute Error for all weighted features, after normalisation, where a low score suggests high similarity between two ar
chetypes. The weights used represent each feature’s impact on the archetype output and are determined based on engineering 
judgement, as illustrated in Table 4, noting that different values could be used depending on the scenario. A good understanding of the 
physical processes is essential in determining these values, as the outputs can be sensitive to the weights, particularly the order of 
importance for features, and inconsistencies can lead to incorrect characterisation of archetypes. Further work is expected to 
streamline this process. 

RBKC and CoW are considered separately and new separate regression trees are created for each of them (see Appendix C), 

Fig. 13. Average Tdiff , computed for each block in CoW, and the percentage of archetypes that need computing (representing computational 
savings), for different values of dissimilarity score threshold (below which archetypes from CoW are not solved but the equivalent similar archetype 
output from RBKC is used). 

(a) (b)

Fig. 14. Frequency of (number of blocks associated with) computed archetypes for the expanded region of CoW (panel a), and a scatter plot of the 
Tdiff between computing an archetype from CoW and using a similar one from RBKC, including only the most similar archetype from RBKC for each 
archetype of CoW (b). The colours of the archetypes correspond to the archetype id and the size of the markers to the frequency of blocks for each 
archetype. The dashed gray line represents a dissimilarity score threshold of 0.008. 
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identifying the archetypes in each borough. The archetypes for both boroughs are simulated, for the purpose of this analysis, enabling 
the calculation of not only the dissimilarity score between two archetypes from different boroughs, but also the difference in the 
temperature output, Tdiff . Here, Tdiff is defined as the mean absolute error in the computed depth-averaged temperature over the last 
year of simulation. Fig. 12 shows the plot of Tdiff , calculated for every possible pairing of the 18 archetypes identified in RBKC and the 
18 archetypes identified in CoW, against the dissimilarity score determined for the same pair. The scatter shows that there exists some 
correlation between the two quantities, with a higher variance in Tdiff at higher values of dissimilarity score. Importantly, at low values 
of dissimilarity score, the variance of Tdiff is small and the values are relatively low, suggesting that a low value for dissimilarity could 
indicate suitably similar archetypes in terms of their output. 

To identify a suitable dissimilarity score threshold, i.e. one below which archetypes for CoW are sufficiently similar so as not to 
require computation but rather the output from the most similar archetype from RBKC, the average Tdiff over the entire domain 
(computed for each block within the domain and averaged) as well as the computational costs (in terms of the percentage of archetypes 
from CoW that need to be computed) are plotted for different values of a dissimilarity score threshold. This is shown in Fig. 13, 
indicating that a threshold of 0.008 results in an average Tdiff of about 0.11 and would require less than half (44%) of the created 
archetypes for CoW to be computed. Fig. 14 further examines this scenario, showing that the archetypes that have the lowest 
dissimilarity score are also the ones representing the greatest number of blocks in the region. Therefore, the archetypes that require 
computing (i.e. those with a dissimilarity score higher than the threshold) are ones that only have a few blocks associated with them, 
which is reasonable as they comprise more rare cases with potentially multiple elements affecting the thermal state of the ground. 

4.3.3. Comparison of extendability options 
The three extendability options introduced above are now examined in their applicability for the region of CoW, after having 

thermally mapped RBKC. Depth-averaged temperature results for each option are illustrated in Fig. 15(a–c), showing similar patterns, 
with the areas close to tunnel lines being hotter and a colder area in the South West, which is Hyde Park. However, discrepancies 
between them are apparent, illustrated in plots (d) and (e), comparing Option 1 and 3, respectively, with Option 2, which is considered 
the most accurate since it computes archetypes specific to CoW. As expected, Option 1 shows the greatest discrepancy (compared to 
Option 2), with a mean depth-averaged temperature difference of 0.224 ◦C and maximum differences for a handful of blocks of around 
1 ◦C. Option 3 shows a lower difference to Option 2, with a mean depth-averaged temperature difference of 0.107 ◦C and maximum 
differences of around only 0.6 ◦C (as can also be seen in Fig. 14b). For a practical interpretation of these results, a study on the city of 
Cardiff showed that an inaccurate estimation of the subsurface volumetric temperature between 0.9 and 1.1 ◦C can result in an error in 
the shallow geothermal potential estimation between 8.5 and 11% (Makasis et al., 2021). 

(a) Option 1: No tree (b) Option 2: Fully modelled (c) Option 3: Dissimilarity

(d) Option 1 vs. Option 2 (e) Option 2 vs. Option 3

Fig. 15. Extendability results: Panels (a), (b), and (c) show the (depth-averaged) heat map produced for CoW when following extendability options 
1, 2, and 3, respectively. The temperatures shown are for the last year of simulations, in this case 50th year. Panels (d) and (e) show the temperature 
difference for each block in CoW between the different approaches, assuming that option 2 is the most reliable one, since it generates archetypes 
using the specific data from the area. 
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Fig. B.16. Soil types within the area of application in terms of the material volume (panel a) and number of unique layers/soil types per block (b).  

Table B.5 
Thermal and hydraulic properties of geological materials present in the modelled domain and concrete material used for heat sources (Price et al., 
2018; Highways Agency, 2015; Santa et al., 2017; Rollin, 1987; McDonnell Cole, 2020; Low et al., 2017; Bloomer, 1981; Waterman Infrastructure & 
Environment Limited, 2019; Gawecka et al., 2017; Dalla Santa et al., 2020; ESSO, 2019; Roshankhah et al., 2021). Thermal diffusivity was calculated 

according to α =
λ

(ρCp)
. Where appropriate, top values in a row represent partially saturated conditions and bottom values fully saturated conditions.  

Geology/Material Average depth 
range 
[m] 

Thermal 
conductivity, λ 
[W/(m K)] 

Density, 
ρ 
[Mg/m3] 

Specific heat 
capacity, Cp 

[kJ/(kg K)] 

Effective 
porosity, ε 
[–] 

Hydraulic 
conductivity, kh 
[m/s] 

Thermal 
diffusivity, α 
[m2/s] 

Alluvium, ALV 0.32–3.50 0.91 1.40 1.40 0.50 1.09 × 10−3 4.64 × 10−7 

1.70 1.70 1.50 6.67 × 10−7 

Boyn Hill Gravel, 
BHT 

0.05–3.00 0.77 1.60 1.10 0.35 7.65 × 10−5 4.38 × 10−7 

2.50 1.90 1.44 9.14 × 10−7 

Hackney Gravel, 
HAGR 

0.32–3.66 0.77 1.60 1.10 0.35 3.10 × 10−3 4.38 × 10−7 

2.50 1.90 1.40 9.14 × 10−7 

Kempton Park 
Gravel, KPGR 

0.72–5.47 0.77 1.60 1.10 0.35 5.66 × 10−4 4.38 × 10−7 

2.50 1.90 1.44 9.14 × 10−7 

Langley Silt, LASI 0.15–2.00 1.00 1.81 1.00 0.5 1.00 × 10−9 5.52 × 10−7 

1.70 2.10 1.20 6.75 × 10−7 

London Clay, LC 5.47–50.00 1.00 1.60 0.87 0.50 1.00 × 10−9 7.18 × 10−7 

1.70 2.00 0.87 9.77 × 10−7 

Lynch Hill Gravel, 
LHGR 

0.19–5.26 0.50 1.60 1.10 0.35 7.51 × 10−5 2.84 × 10−7 

2.40 1.90 1.44 8.77 × 10−7 

Made Ground, MGR 0.03–2.45 1.40 1.61 1.20 0.35 2.10 × 10−7 7.25 × 10−7 

2.20 2.10 1.20 8.73 × 10−6 

River Terrace 
deposits, RTDU 

7.05–8.05 0.50 1.70 0.70 0.50 2.03 × 10−4 4.20 × 10−7 

2.50 2.10 1.30 9.16 × 10−7 

Taplow Gravel, 
TPGR 

0.23–1.55 0.77 1.60 1.10 0.35 3.26 × 10−4 4.38 × 10−7 

2.50 1.90 1.44 9.14 × 10−7 

Worked Ground, 
WGR 

0.01–0.60 1.40 1.61 1.20 0.35 2.10 × 10−7 7.25 × 10−7 

2.20 2.10 1.20 8.73 × 10−7 

Infilled Ground, 
WMGR 

0.00–0.70 1.40 1.61 1.20 0.35 2.10 × 10−7 7.25 × 10−7 

2.20 2.10 1.20 8.73 × 10−7  
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In contrast to accuracy, Option 1 is the most favourable approach in terms of computational requirements. This option required a 
computational time of a few minutes and can be undertaken on any average personal computer. Option 2 necessitated generation of 18 
archetypes, each requiring about 3 h to run on a computer with two 2.10 GHz processors (Intel(R) Xeon(R) Silver 4116 CPU, 12 cores), 
for a total of about 54 h of computation. Option 3 only required the computation of 8 of the generated archetypes for CoW, resulting in 
a total of 24 h of computation. In this case, any of these options could be considered suitable, depending on the application, project 
timelines and resources available, noting that these values scale with a larger area and therefore the savings can be more significant, 
depending on the scenario. If accuracy is needed and Option 1 is not suitable as the chosen method, it can still be a good first 
approximation, given its very low computational cost. Option 2 is the safest approach, while Option 3 requires engineering judgement 
and understanding of the problem context, in this case being able to reduce the computational time by over 50% but resulting in some 
small differences in the output. 

4.4. Limitations and future work 

The presented methodology can be used to create subsurface thermal maps of large regions. While there is potential for diminishing 

Fig. B.17. Hydrology in the area of application showing the groundwater level with respect to the Ordinance Datum (panel a), and histograms of 
the groundwater level with respect to the surface level (c), and of the magnitude of the hydraulic head difference (c) for all blocks. 

Fig. B.18. Histogram of shade factor values within domain.  
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computational costs as the database of existing simulated archetypes increases, the computational cost to produce a thermal map for a 
region is still significant. A substantial portion of those computational requirements, with regards to time, is due to obtaining the data 
required to build the decision tree, done in step 3 via low-fidelity simulations of the blocks in the area. These simulations required a few 
minutes in this work, however a large amount of blocks needed simulating (over 2000), which could be a potential barrier to the use of 
the methodology. One potential solution to this problem could be the use of machine learning approaches to create a numerical 
emulator for the low-fidelity FE model, able to predict the output of interest, in this case Tvol, in a matter of seconds instead of minutes. 
This would significantly reduce the necessary time for step 3 of the methodology and would enable the creation of the decision tree 
without requiring numerical simulations. The creation of this emulator, however, requires a large dataset for it to be trained on, since 
the training data need to cover a wide range of feature inputs to be representative. While outside the scope of the presented work 
introducing the methodology, using emulators instead of numerical modelling for step 3 of the methodology is expected to be 
investigated in future work. 

The other significant computational cost comes in step 5, where the archetypes are simulated in high fidelity. For this step, 
computational savings could be obtained by mapping a smaller region first and then extending the map, using some of the knowledge 
obtained for the first region, as showcased in Section 4.3. 

Finally, potential improvements of this methodology could be achieved by introducing more output variables in the regression 
decision tree creation. This would mean using more variables than the Tvol to split the tree nodes, such as, for example, annual thermal 
accumulation, which could capture the thermal processes in more detail. While feasible, this approach introduces additional com
plexities, e.g. identifying the weight each of the outputs should have on the splitting of a node, and therefore is also expected to be 
investigated in future work. 

5. Conclusion 

This work proposes a flexible, scalable, extendable, and efficient methodology for large-scale subsurface modelling. In this 
methodology the entire domain is split into smaller, computationally manageable blocks of chosen dimensions - depending on the 
requirements of the application, which are used to identify common thermal patterns within the domain. This is done by modelling 
blocks at low fidelity, using numerical modelling with a relatively coarse mesh but sufficient to capture the main thermal processes 
taking place and creating regression trees with the generated output. The creation of the regression tree produces the feature com
binations (i.e. the values for the natural and anthropogenic characteristics) that result in distinct subsurface thermal behaviour, or 
archetypes. These archetypes can therefore be used to represent a large number of subsurface blocks and determining the main ar
chetypes within a large domain means that the entirety of that domain can be modelled by only a few small-scale models, enabling 
modelling at high fidelity and resolution. Importantly, the groundwater conditions and the continuity between the blocks is incor
porated in the methodology, by parameterising the temperature of the groundwater entering the blocks and following an iterative 
approach to combining the final results. The methodology is not restricted by the size of the domain to be modelled, unlike current 

Fig. B.19. Histogram of the basement to block area fraction values within domain. Only non-zero values are included, due to a large number of 
blocks having no basements. 
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numerical modelling approaches, and can be used in stages, producing a thermal map of a region and then extending to more regions 
when required. Moreover, the framework encourages a large collaborative approach to modelling the subsurface, where simulated 
archetypes can be stored in a database and used by others when identifying locations with similar archetype features, reducing 
computational requirements with an increasing database (and use of the methodology). 

The proposed methodology is applied to two boroughs in central London, the Royal Borough of Kensington and Chelsea and the 
City of Westminster, for which access to subsurface data, such as hydro-geological conditions, is made available through collaboration 
with the British Geological Survey. The application results in 27 unique archetypes, utilising the volumetric temperature as the metric 
of interest. Differences in the volumetric temperature of up to 2.5 ◦C are found between the archetypes, which is significant considering 
the size of the blocks, suggesting that significantly different subsurface thermal states exist within these boroughs. Since the thermal 
state of the subsurface can impact areas such as groundwater ecosystems, biodiversity, drinking water quality, and shallow geothermal 
energy applications, this methodology can lead to better monitored, safer subsurface conditions, as well as better-informed designs and 
better performance for shallow geothermal systems. The analysis identified that the main features distinguishing subsurface thermal 
processes (and thus comprising the archetypes) were the anthropogenic influences, such as the presence of train tunnels and base
ments, as well as the hydrogeological conditions, noting that train tunnels in the deeper layers of the model (consisting of London Clay) 
resulted in the archetypes with the hottest subsurface. The temperature results of one of the boroughs (RBKC) are compared to those of 
a single large-scale subsurface model of the area, exhibiting reasonable agreement. 

A key feature of the methodology is its extendability, i.e. the option to extend the modelled domain, and the resulting subsurface 
heat map, from an already modelled region. For this purpose, three approaches are presented, with different degrees of computational 
cost traded off against accuracy. Testing of these approaches by extension of the thermal map from the borough of Kensington and 
Chelsea to the City of Westminster indicated that the approach utilising a dissimilarity metric for comparing the blocks in the extension 
domain to those in the domain already modelled offers a good option to extend the modelling cheaply and with reasonable accuracy. 
Further possible avenues for improving the methodology and making it more accessible have been briefly discussed and will be 
investigated in detail in future work. 
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Appendix A. Numerical modelling: governing equations 

Physical processes are incorporated using the conductive and convective heat transfer equation and Darcy’s law, i.e., 

(ρCp)eff
∂Tg

∂t
+ ρf Cp,f vf ⋅ ∇Tg + ∇ ⋅

(
− λeff∇Tg

)
= 0, (A.1)  

vf = −
K
μf

(
∇pf − ρf g

)
, (A.2)  
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∇ ⋅ ρf

[

−
K
μf

(
∇pf − ρf g

)
]

= 0. (A.3) 

where ρeff is the effective density (kg/m3), Cp,eff the effective specific heat capacity (J/(kg K)), t is time (s), ρf is the fluid (groundwater) 
density (kg/m3), Cp,f is the specific heat capacity of the fluid (J/(kg K)), vf is the Darcy velocity of the fluid (m/s), λeff is the effective 
thermal conductivity (W/(m K)), the permeability K (m2) of the material is related to the hydraulic conductivity kh (m/s) by Kμf

=
kh

(ρf g)
, μ 

is the dynamic viscosity of water (Pa ⋅ s), and pf is the pressure of water (Pa). 

Appendix B. Data engineering for low-fidelity analysis: soil types within domain, geological variations, shade factor, 
basement distribution 

This section presents details on the data used for the low-fidelity analysis and the distributions found within the domain. The type of 
soil present within a block is crucial to the heat transport phenomena, as the material properties determine how well heat is conducted 
or convected. Soil properties therefore constitute key features for identifying the block archetypes. Fig. B.16a shows the volumetric 
density distribution across soil types within the domain and Fig. B.16b the number of unique layers that exist within a block. London 
clay (LC) is the most common soil material, present throughout the domain below a depth of 20 m. In fact, just over 35% of all blocks 
within the domain consist solely of LC. About 50% of the blocks contain two soil types, most of which are either Kempton Park gravels 
(KPGR) or Lynch Hill gravels (LHGR), both overlaying LC. Less than 15% of the blocks contain three different soil types, the majority of 
which consist of a first layer of either Alluvium (ALV) or Langley Silt, overlaying gravel (KPGR or LHGR) and LC. Finally, only about 
1% of the blocks consist of 4 separate soil types. The soil types and materials within the modelled domain and the assumed thermal and 
hydraulic properties for each are presented in Table B.5. These values were obtained from literature including publications and 
technical reports, however, it is worth noting that reasonable assumptions were made where little information was available, such as 
assuming that the different types of gravel layers will have similar thermal properties. It is also worth noting that to determine the 
thermal and hydraulic properties of the ground for the different layers in each block, the values are averaged along the horizontal 
directions for a 200 × 200 m block from the original data which was on a 50 × 50 m grid (Jones and Hulbert, 2017) - noting that the 
hydraulic conductivity was averaged using a logarithmic mean (Jang et al., 2011). 

The groundwater distribution within the domain is shown in Fig. B.17. The groundwater is naturally shallow along the river (i.e. 
the south eastern boundary of the domain), as well as to the western side of the boroughs, while levels are higher at the north-eastern 
side, driving groundwater flow mostly in a southern direction. Within individual blocks, the combination of groundwater level and 
elevation (averaged within each 200 × 200 m block) results in the majority of the blocks being saturated, with the groundwater level 
sitting at roughly 2 m below the surface. To determine the hydraulic gradients that are to be applied across block edges, the hydraulic 
head distribution is computed within each block, calculating the dominant flow direction and the average hydraulic head difference 
between block edges. The results shown in Fig. B.17c are in the form of a histogram showing the frequency of the hydraulic head 
difference within a block across the modelled domain. 

The shade factor data are presented in Fig. B.18, in the form of a histogram showing the most frequent values within the two 
boroughs used in this work. The distribution of the fraction of basements to the area of each block, representing the density of 
basements, is shown in Fig. B.19.     
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Appendix C. Extendability: regression trees for separate regions

Fig. C.20. Decision tree for the RBKC domain for a chosen tolerance of 6.0 × 10−4. The root node (left-most) includes labels, and all nodes show the impurity (MSE), number of samples in the node out 
of the 786 data points used to train it, and the mean value of the used metric Tvol.  
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Fig. C.21. Decision tree for the CoW domain with a chosen tolerance of 6.0 × 10−4. The root node (left-most) includes labels, and all nodes show the impurity (MSE), number of samples in the node out 
of the 1300 data points used to train it, and the mean value of the used metric Tvol.  
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