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Abstract. Probabilistic graphical models are a fundamental tool in probabilistic modeling, machine learning,
and artificial intelligence. They allow us to integrate in a natural way expert knowledge, physical
modeling, heterogeneous and correlated data, and quantities of interest. For exactly this reason,
multiple sources of model uncertainty are inherent within the modular structure of the graphical
model. In this paper we develop information-theoretic, robust uncertainty quantification methods
and nonparametric stress tests for directed graphical models to assess the effect and the propagation
through the graph of multisourced model uncertainties to quantities of interest. These methods allow
us to rank the different sources of uncertainty and correct the graphical model by targeting its most
impactful components with respect to the quantities of interest. Thus, from a machine learning
perspective, we provide a mathematically rigorous approach to correctability that guarantees a
systematic selection for improvement of components of a graphical model while controlling potential
new errors created in the process in other parts of the model. We demonstrate our methods in
two physicochemical examples, namely, quantum scale-informed chemical kinetics and materials
screening to improve the efficiency of fuel cells.
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1. Introduction. Data-informed, structured probability models are typically constructed
by combining expert-based mathematical models with available data, the latter often being
heterogeneous, i.e., from multiple sources and scales, and possibly sparse or imperfect. Typi-
cally such structured models are formulated as probabilistic graphical models (PGMs), which
in turn are generally classified into Markov random fields (MRFs) over undirected graphs and
Bayesian networks over a directed acyclic graph (DAG) [58, 48], as well as mixtures of those
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two classes [31]. In this paper we focus on Bayesian networks. DAGs are graphs with directed
edges and without cycles, where individual vertices correspond to different model components
or data inputs, while the directed edges encode conditional dependencies between vertices.
Formally, a Bayesian network over a DAG is defined as a pair {G, P} consisting of the fol-
lowing ingredients: G = {V, E'} is a DAG with n vertices denoted by V ={1,...,n},n € N,
along with directed, connecting edges E € V x V. In addition, we define a set of random
variables Xy = {X1,..., X, } over V with probability distribution P with density

n

(1.1) p(x) = [[ p(xilas,),

=1

where xr, = {x;,,...,x;, } C {x1,...,2n} denotes the values of parents m; of each vertex i
(see Figure 1), and p(z;|x,) is the conditional probability density (CPD) for the conditional
distribution P;,, with parents 7;. In such models we are typically interested in quantities of
interest (Qols) f(X4) that involve one or more vertices A C V and the corresponding random
variables X4 C Xy.

The general mathematical formulation of PGMs was developed in foundational works in
[58, 59] and are widely used in many real-world applications of artificial intelligence, like
medical diagnostics, natural language processing, computer vision, robotics, computational
biology, and cognitive science, to name a few; see, e.g., [26, 42, 3, 51, 50, 27]. Recently PGMs
were built as computationally tractable surrogates for multiscale/multiphysics models (e.g.,
from quantum to molecular to engineering scales), such as in porous media and energy storage
[69, 40]. Such models often have hidden correlations in data used in their construction [68]
or include physical constraints in parameters [69], necessitating conditional relations between
model components and thus giving rise to CPDs such as the ones in (1.1). Finally, PGMs
can be used as the mathematical foundation for building digital twins used for control and
optimization tasks of real systems [61]. Some examples include Bayesian networks for fuel
cells [25] and hidden Markov models (a time-dependent special case of Bayesian networks) for
unmanned aerial vehicles [46]. The structured probabilistic nature of such models allows them
to be continuously improved, e.g., based on available real-time data [46] or through targeted
data acquisition [25].

A. Model uncertainty in Bayesian networks. Bayesian networks will typically have
multiple sources of uncertainty due to modeling choices or learning from imperfect data in
the process of building the graph G and each one of the CPDs in (1.1). These uncertainties
will propagate (and occasionally not propagate—see section 7) through the directed graph
structure to the targeted Qols. Uncertainties in probabilistic models are broadly classified
in two categories: aleatoric, due to the inherent stochasticity of probabilistic models such as
(1.1) and model uncertainties (also known as “epistemic”) [21, 65]. In this paper we primarily
focus on model uncertainties which stem from the inability to accurately model one or more
of the components of a Bayesian network {G, P}: omitting or simplifying model components
as is often the case in multiscale systems, learning from sparse data, or using approximate
inference methods to build CPDs in (1.1). Next, we discuss more concretely these challenges in
the context of two physicochemical examples that we analyze further using model uncertainty
methods developed here.
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First, we consider a Langmuir bimolecular adsorption model (see section 6) that describes
the chemical kinetics with competitive dissociative adsorption of hydrogen and oxygen on
a catalyst surface [62]. It is a multiscale system of random differential equations with cor-
related dependencies in their parameters (kinetic coefficients), arising from quantum-scale
computational data calculated using density functional theory (DFT) (i.e., quantum compu-
tations) for actual metals. The combination of chemical kinetics with parameter dependencies,
correlations, and DFT data gives rise naturally to a Bayesian network. The Qols are the equi-
librium hydrogen and oxygen coverages computed as the stationary solutions of a system of
mean-field differential equations. Here the Bayesian network allows us to incorporate data
and correlations from a different scale to the parameters of an established chemical kinetics
(differential equations) model. However, the limited availability of the quantum-scale data
creates significant model uncertainties in the distributions of kinetic coefficients (see, for ex-
ample, Figure 5(a)) and the need to be accounted towards obtaining reliable predictions for
the Qol.

In a second example analyzed in section 7 we build suitable Bayesian networks for trust-
worthy screening of materials to increase the efficiency of chemical reactions. Here we consider
the oxygen reduction reaction (ORR), which is a known performance bottleneck in fuel cells
[63]. This electrochemistry mechanism involves two reactions which are typically slow. Thus,
we seek new materials that speed up these two slowest reactions. For this reason here we focus
only on the thermodynamics of these reactions described by the volcano curve of Sabatier’s
principle [62]. Based on Sabatier’s principle, the optimal oxygen binding energy is the natural
descriptor for discovering new materials, and hence it has to be our Qol. Starting from this
Qol we build a Bayesian network that includes expert knowledge (volcano curves), as well as
various available experimental and computational data and their correlations or conditional
independence. Model uncertainties enter in the construction of the Bayesian network due
to lack of complete knowledge of physics and sparse, expensive, multisourced experimental
and/or computational data; see, for example, Figure 7(c)—(g).

Both these examples illustrate how PGMs (here Bayesian networks) allow us to (a) or-
ganize in a natural way expert knowledge, modeling, heterogeneous and correlated data, and
Qols; and (b) study the propagation of all related model uncertainties to the Qol through
the graph. Practically these PGMs are built around the Qol so that it contains all available
sources of information that may influence Qol predictions.

B. Mathematical results. In this article, we focus on quantifying the impact of model
uncertainties on Qols in Bayesian networks. Our analysis builds on earlier uncertainty quati-
fication (UQ) information inequalities for Qols of high-dimensional probabilistic models and
stochastic processes [15, 21, 39, 9, 8] (see also Appendix A). However here we demonstrate
that, due to the directed nature of the graph structure of Bayesian networks as well as the fac-
torization into CPDs of the joint density given by (1.1), we can obtain a highly detailed and
computationally feasible understanding of model uncertainty. First, by defining structured
localized ambiguity sets and by using the chain rule of the Kullback—Leibler (KL) divergence,
uncertainties can be localized on the graph, while we can quantify their propagation across the
graph to the Qols by (1.1) developing corresponding model uncertainty and model sensitivity
indices. Also given a baseline Bayesian network, our uncertainty bounds are proven to be
tight within this family of graphical models in the sense that Q¥ given by (2.6) and (3.9),
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respectively, are Bayesian networks as well. The latter finding shows that these worst-case
scenarios are “realistic” in the sense that they can materialize by a feasible alternative model
that is still a Bayesian network.

First, we refer to an already constructed Bayesian network {G, P} as the baseline model.
We will describe mathematically the model uncertainty of the baseline by considering al-
ternative models @ in a suitably defined neighborhood of P referred to as the ambiguity
set,

(1.2) D" := {all Bayesian networks @ : d(Q, P) < n}.

The two primary ingredients for constructing ambiguity sets are the choice of a divergence or
probabilistic metric d between the baseline Bayesian network P and an alternative model ()
and its size n called model misspecification, which essentially describes the level of uncertainty
in the model. Next, given an ambiguity set D", we define the model uncertainty indices for
our Qol f as

(1.3) I*(f, ;D7) = sup/inf {Eq [f] - Ep[f]}.
QeDn

We view these indices as a nonparametric stress test on the baseline P for the Qol f within the
ambiguity set D", since they provide the corresponding worst-case scenarios. Furthermore,
the ambiguity set is nonparametric, allowing us to test the robustness of the baseline against
a broader set of scenarios than just a fixed parametric family.

Here we will define ambiguity sets using the KL divergence as it allows us to obtain easily
computable and scalable model uncertainty indices I i( f, P;D"). Indeed, the KL chain rule
allows us to break down the calculation of any KL distance between different Bayesian network
components, i.e., in terms of conditional KL divergences between distinct CPDs, as well as
to isolate the uncertainty impact on Qols from multiple Bayesian network components and
data sources. A discussion on other natural choices of divergences and metrics can be found
in section 8. On the other hand, the model misspecification 1 can be selected in two ways.
First, by the user adjusting the stress test on the Qol, for example, when available data are
too sparse or absent. Otherwise, n7 can be estimated as the KL divergence between the model
and the available data. Thus, we can consider user-determined or data-informed stress tests,
respectively.

Next, we design different stress tests by adjusting the ambiguity set (1.2) to account for
global or local perturbations/uncertainties of the baseline model (1.1).

Model uncertainty indices (perturbing the entire model). Let f(X4) be a Qol
defined on any set of random variables X 4 C Xy. The ambiguity set (1.2) in this case contains
all the possible alternative Bayesian networks ) n-close to the baseline Bayesian network P in
the KL divergence for some model misspecification 7. In Theorem 2.1, we demonstrate that
the model uncertainty indices for f(X4) (1.3) can be rewritten only in terms of the baseline
P through the one-dimensional optimization

(14)  IF(f(Xa), PyD") = & inf F logEp, |0 4 Z} = Eq: [f] - Ep[f],
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where P4 is the marginal distribution of X4 and f(X,) is the centered Qol with respect
to P. Furthermore, there exist optimizers Q* (last equality in (1.4)) that are Bayesian
networks that can be computed explicitly. We note that although the optimization in (1.3) is
infinite-dimensional and thus essentially computationally intractable, formula (1.4) gives rise
to a computable one-dimensional optimization involving only the baseline Bayesian network
P. This significant advantage will be exploited throughout the paper to provide practical
quantification of model uncertainty and model sensitivity for PGMs.

Next we quantify the robustness of the baseline against perturbations of individual com-
ponents of (1.1). We intend to use these methods to explore the relative sensitivity of the
baseline on different Bayesian network components; hence we will refer to the corresponding
indices as model sensitivity indices.

Model sensitivity indices (perturbing a model component). Let f(X}) be a Qol
with k € V. We examine two ambiguity sets depending on the manner in which individual
model components are perturbed. The first ambiguity set consists of all Bayesian networks
(1.1) with the same CPDs except for the CPD at a specific vertex [ € V; the structure/parents
of the component [ can be different; however, the alternative CPDs are n;-“close” to P at the
{th component in KL divergence for some model misspecification 7;; see Figure 2. The second
ambiguity set consists of all Bayesian networks with the parents of the vertex [ being fixed
and only the CPD of [ varying. Even if the latter set is a subset of the first ambiguity set,
such graph-based constraints allow us to focus on uncertainties arising from a given CPD
of the network. For these ambiguity sets, we derive explicit formulas for the corresponding
sensitivity indices that are tight and practically computable similarly to (1.4); see Theorems
3.2 and 3.3.

C. Model sensitivity for ranking and correctability. Model sensitivity indices are
used here to rank the impact of different sources of uncertainty, from least to most influen-
tial, in the prediction of Qols for Bayesian networks. From a machine learning perspective,
such rankings are a systematic form of interpretability, i.e., the ability to identify cause and
effect in a model, [19, 52, 13|, and explainability, i.e., the ability to explain model outputs
through the modeling and data choices made in the construction of the baseline predictive
model; see [1] and references therein. In the ORR model discussed earlier, we compute model
misspecification parameters 7; from data, we implement the ranking procedure for each graph
component of the ORR Bayesian network (i.e., solvation, DFT, experiment and parameter
correlation), and we reveal the least and the most influential parts of the Bayesian network
in the prediction of the optimal oxygen binding energy Qol; see Figure 9 and section 7.

Lastly we leverage model uncertainty and model sensitivity indices to improve the baseline
with either targeted data acquisition or improved modeling of CPDs and graph G in (1.1).
We target for correction underperforming components of the baseline, i.e., those inducing the
most uncertainty on the Qol in the ranking above. Again from a machine learning perspective
such a strategy is a step towards the correctability of PGMs, namely, the ability to correct
targeted components of a (baseline) model without creating new errors in other parts of
the model in the process [1]. Indeed, in the ORR model, we correct the baseline Bayesian
network in two distinct ways: by including targeted high quality data and by increasing the
model complexity, e.g., considering richer CPD classes or more complex PGMs, as discussed
in section 7. This is an example of closing the “data-model-predictions loop” by iteratively
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improving the model while taking into account trade-offs between model complexity, data,
and predictive guarantees on Qols.

D. Related work. The robust perspective in (1.3) for general probabilistic models is
known in the operations research literature as distributionally robust optimization (DRO) and
includes different choices for divergences or metrics in (1.2); see, for example, [17, 33, 74, 44,
28, 49, 53, 75, 12]. Related work is also encountered in macroeconomics; we refer the reader
to the book by Hansen and Sargent [41]. Stress testing via a DRO perspective was devel-
oped in the context of insurance risk analysis in [11]. Finally, [57] and [37] developed robust
uncertainty quantification methods using different combinations of concentration inequalities
and/or information divergences. Regarding sensitivity analysis, we note that existing meth-
ods, e.g., gradient and ANOVA-based methods [65], are suitable for parametric uncertainties,
and thus cannot handle model uncertainty. Furthermore, it is not immediately obvious how
they can take advantage of the graphical structure in Bayesian networks such as conditional
independence. Here, our mathematical methods broadly rely on UQ information inequalities
for Qols of high-dimensional probabilistic models and stochastic processes [15, 21, 39, 9, §]
(see also Appendix A). The mathematical novelty of our results lies in extending these earlier
works on directed graphs by developing the proper model uncertainty and model sensitivity
framework for general Bayesian networks and studying the propagation of multiple uncertain-
ties through the network to the Qols. Earlier work on building a predictive chemistry-based
PGM with quantified model uncertainty for the resulting Gaussian Bayesian network was car-
ried out in [25] and demonstrated in materials design for speeding up the oxygen reduction
reaction in fuel cells. Model uncertainty for PGMs over undirected graphs, also known as
Markov random fields (MRFs), was recently studied in [5]. An MRF is a unifying model for
statistical mechanics (Gibbs measures) and machine learning (Boltzmann machines), while
the special case of Gibbs measures was studied earlier in [47]. We note that for MRFs the
robust perspective is less flexible as we cannot fully take advantage of the KL chain rule due
to the undirected structure of the graphs.

E. Organization. The main mathematical results are presented in section 2 (model
uncertainty) and section 3 (model sensitivity). In sections 4 and section 5, we discuss ranking
and correctability for Bayesian networks. In section 6 we discuss a DFT-informed Langmuir
model, while in section 7 we analyze the ORR model arising in fuel cells. In section 8 we discuss
some outstanding issues and directions. Supporting material is included in the appendices.

2. Model uncertainty indices for Bayesian networks. In this section, we develop model
uncertainty methods and associated indices for Bayesian networks. We start with the key
ingredients needed to state and prove the main result (Theorem 2.1), namely, the ambiguity
set, Qols, and the definition of the model uncertainty indices. First we define the ambiguity
set with model misspecification 1 by

(2.1) D" :={all PGMs Q : R(Q||P) < n},
where R(Q||P) =Eq [log % denotes the KL divergence, i.e., we perturb the baseline model
P to any alternative model ) € D", altering both the structure of the graph and the CPDs.

Examples of models ) included in D" can be Bayesian networks defined on a smaller number
of vertices than P, or same number of vertices with some of them having extra parents, or
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Figure 1. (a) Ezample of the graph structure of a baseline Bayesian network P and the corresponding
random vamables X = {X1,...,Xs}. (b) Ezample of the graph structure of a Bayesian network Q € D"
defined on a set with one verte:v less than the baseline Bayesian network P. (c) An example of an alternative
Bayesian network @@ € D" with the same number of vertices while Xo and Xs have extra new parents (in
yellow). (d) An ezample of a PGM @ € D" with a new undirected edge (in blue).

same number of vertices and parents but different CPDs; see Figure 1(b)—(c). Furthermore,
D" can include PGMs which are not necessarily Bayesian networks, for example, when some of
the edges between vertices are not directed [31]; see Figure 1(d). In particular, in Appendix C,
we construct an example of a mized graphical model, i.e., with both directed and undirected
edges; cf. Figure 1(d), which belongs to ambiguity set (2.1) when P is a Gaussian Bayesian
network (see the definition in section 2.1). For a baseline Bayesian network P we define the
model uncertainty indices as

(2.2) I*(f(Xa),P;D") = sg;ggf EQ [f(Xa)] = Ep [f(Xa)]

for a Qol f, which is a function of some subset of A vertices in the graph, i.e.,
(2.3) for f(XA) = f(Xi,,.-- ,Xim), with A = {il, e ,im} cVv.

In the next theorem, we characterize the optimizers QF in (2.2), which turn out to be Bayesian
networks of the form (1.1), and we provide their CPDs explicitly.

Notation. Before we state our results let us fix some notation. For a Bayesian network,
{G, P} denotes the set of indices of all the parents of vertex i and p! denotes the set of
indices of all the ancestors for i (we may omit the superscript “P” if only one Bayesian network
is involved). Without loss of generality we assume that all Bayesian networks are topologically
ordered as we can always relabel the DAG so that j < ¢ for all j € m; by topological sorting
[48].

The random vector X = (Xi,...,X,), indexed by the vertices V' = {1,...,n}, takes
values X = = = (x1,...,2,) € X. The joint probability distribution of X is denoted by
P with density p(z); the results are presented when the joint probability distribution P is
continuous, but all results hold when p is a discrete distribution as well. For any subset
A = {i1,...,im} C V we denote X4 = (X;,,...,X;,, ), which takes values X4 = x4 =
(Ziyy- -, xi, ) € X4 and we denote by Py its marginal distribution.

We denote by Pj.r the conditional distribution of X; given parent values X r = wr,,
ie., Bjr(dr;) = P(dzi|zs,) with corresponding CPD p(zi[zr,). In the Bayes1an network
literature it is always implicitly assumed that all joints and marginals exist. Thus, we con-
sider the next marginals. The marginal distribution P4 of X4 has the form Ps(dxa) =
prA [Lica Pijxr (dz:) HiEpﬁ jixr (d;), where ph is the set of indices of all the ancestors of A,
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p(zilrr,)dz,, . Two special cases are the marginals of Xy, Py (dvy) =

i.e., pli = Uicapl. Furthermore the density pa of P4 is pa(za) fX [Lica p(i|n, )Hie/ﬂj
x H’LG{kUpk}P(dxi|x7ﬂ:)

I3

and the marginal of X,,, Py, (dzp,) = [I;c,, P(dzi|zx,).
Finally for I; < --- <[} and any Qol f and for j € {1,...,k} we define the notation

(24) B e )= B (B [ B 1]

Theorem 2.1. Let {G, P} be a Bayesian network with density defined as in (1.1), and
let f(X4) be a Qol given in (2.3), f(Xa) = f(X4y,-..,X;, ). Let also f(Xa) = f(Xa) —
Ep [f(Xa)] be the centered QoI with finite moment generating function (MGF), Ep [ecf(XA)],
i a neighborhood of the origin.

(a) Tightness. For the model uncertainty indices defined in (2.2), there exist 0 <
Nt < 00, such that for any n < n4,

1 _
Ii(f(XA),P; D") = +inf [ logEp, |::l:ecf(XA)i| + "7]
¢ c

c>0

(2.5) = Eq= [f(Xa)] - Ep [f(Xa)],

where Py is the marginal distribution of X4 with respect to P and is defined in the
notation above, and QF(-) = QF(- ;+cy) € D" are Bayesian networks (1.1) that
depend on n and are given by

dQ* etesf(wa)
dP " Ep [exesf K]’

(2.6)

where cx = cx(n) are the unique solutions of the equation

(2.7) R(Q*||P) = 1.

(b) Graph Structure of Q*. Let L be all vertices that include A and all its ancestors,
e, L = UjeAp UA={l1,...,lg+1}, where Iy < -+ <lg41 and lp41 = iym. Then the
C’PDs of Q* are given by

p('xi‘xﬂf)? i ¢ La

ey f(X Q)
28 q:l: T | + ) = ]EPZ. \WP_ ,,,,, Py | [ ] ) )
( ) ( z’ o ) 41" k [lziCif(XA)} p(fElj |.’E7rl1;), 1= lj7 JE A’

E
Plj\w ,,,,, Py Inf,

where l; € L and IEPZ P, |x 15 given by (2.4). The parents/structure is given by
Uk

79 = i ¢ L, and s CﬂlcfiCWl};U(wl?i \ ).

)

Remark 2.2.  Theorem 2.1 readily implies that we can severely restrict the ambiguity set
(2.1) to a subclass of Bayesian networks, yielding the exact same index,

(2.9) I*(f(Xa), PiD") = I'*(f(X4), P; D),
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where a set of Bayesian networks D), is defined as

all Bayesian networks @ : R(Qaup, || Paup,) <1 }

2.1 Dl =
(2.10) pa { and q(x|@,1) = p(@;]a.r) with 77 = 7f for alli ¢ AU py

This follows from the formula

Brlf(X0] = [ fan [[wleryis= [ j@n) T] seiden)deadon,.
=1

Xavps r,€EAUpa

which implies that only the perturbation of Pay,, affects the prediction of the Qol. A similar
calculation for the MGF of f implies that the optimal Q% has the same CPDs as P for all
Xi, 1 ¢ {A} U pa, as shown in Theorem 2.1.

Remark 2.3. We illustrate Theorem 2.1 in the special case A = {k}, i.e., Qols defined on
one vertex through the example in Figure 2; see also Appendix D for more details.

Remark 2.4. We note that given a Qol f, there is a natural parametric family within the
nonparametric ambiguity set (2.1), given by dP°¢ o« e/ dP, that contains the baseline and the
extreme probability distributions QF; see the blue curve in Figure 12 (left).

Proof of Theorem 2.1.

(a.) The existence of Q* and (2.6) is a direct consequence of (A.3) with f(X) = f(Xa).
For p(x) = [[;-, p(zi|zx,), we further compute

. . 1 oF
sup/inf Bq [f(X4)] ~ Ep[f(Xa)] = £ inf |~ logEp [¢*/(X2)] 4 ”]
QeDn c>0 | c c

n

=+ inf 1log/ eicf(XA)HP(da:Azfi) + 1
X

c>0 | ¢ " c
L =1

_1 ~
(& C

>0 |

where p4 is given in the notation before the theorem.

(a) (b) (c)

Figure 2. (a) Exzample of graph structure of a baseline Bayesian network P. (b) The structure of the
optimizers QT in Theorem 2.1 (b) with Qol f(Xe) is highlighted (in green). In contrast to the CPDs of the
vertices involved in the Qol and their ancestors, the CPD of any other vertex does not change. The new
parents of Xa, X2 are connected (in yellow), i.e., X3 is a new parent for X4 and X1 is a new parent for Xs.
(¢) Structure of the optimizers QF in Theorem 2.1 (b) for a QoI of the type f(X3, Xs, X7); see (B.6)~(B.13).
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(b.) We use (2.6) and factorize ¢* as follows:

+ei f(xa) n
+,N_ ¢ N b
@) =g (e TCXA)] I_Ilp (@ifaxy)

1 C A
=z [eicif(XA)] H p(zi|zar) - eEexf( )p(xim|$nfm)
pa 1€ {l1 . lky1}

(2.12) x I pl@iles),
i€{ly,..,ln}
where +cy are the unique solutions of R(P*°+||P) = 5. Formula (2.12) is not fac-
torized yet into CPDs as in (1.1) due to the normalization factor at the denominator.
The following analysis provides the steps for expressing (2.12) in a product of certain
CPDs: Assuming that i1 < ... < i,,, we start with the CPD of X; as its index is the
largest among the elements of A. Based on (2.12),

(2.13) qi(m¢m|azﬂ_qi) x eicif(“)p(:nim|x7rfm).
We normalize the left-hand side (LHS) of (2.12) by dividing by
(2.14) Ep [e:tcif(XA)]

mlel

and by conditioning to z,r and w4;,. Therefore, the CPD of X;  and its parents

Q* :
m;  are given by

eicif(IA)
Ep P [eicif(XA)]

i |7
m Ty

i( -p(azz-m\xﬁf ) and 7r5n C WQi = 7riPm U (AN im)-

.%'im|x7r?j:) = @
Such a consideration provides the new edges in the graph of Q*. In particular, X,
has the same parents as in the P model and possibly new parents specified by x 4\;,,,
e.g., if A\ iy, # 771-11. Next, we compute the CPD of X, since Iy < lp+1 = im: As we
divided by (2.14) to normalize the LHS of (2.12), we keep (2.12) the same if we also
multiple ¢*(x) by (2.14). Hence, we pair (2.12) and p(l‘lk‘xﬂ.l}Z) so that

, [eiCif(XA)}p(xlk,mﬁi)_

(2.15) ¢ (w, |z o2) <Ep,
I im

As before, we normalize the LHS of (2.15) by dividing by
(2.16) Er,., [Er, .. [¢5=/09]].

and by conditioning to z,r and T_ok we obtain
k im

\li?
EP . [eicif(XA)]

i ki
ml tm

q (ﬂflk‘fﬂwgi) =
t lzk\ﬂf’ [ limw’
k im

and Wl]; C Wfii = Wll,j U (Wff \ /). The latter shows the new edges that the associated
graph to Q* may have. In this way, we obtain the remaining CPDs given by the second
part of (2.8). It is straightforward that the random variables indexed differently than

{li,...,l4+1} inherent the corresponding CPDs of P, and thus (2.8) is obtained. M

[eiCif(xA)” (i |7 )
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2.1. Gaussian Bayesian networks. In this subsection, we focus on Gaussian Bayesian
networks, which is a special class of Bayesian networks commonly used in natural and social
sciences with the CPDs as in (1.1) being linear and Gaussian [48, 64, 36, 34, 35]. More
specifically, for a Gaussian Bayesian network consisting of variables X, each vertex X; is a
linear Gaussian of its parents, i.e.,

(2.17) p(xi|zs) = N(Bio + Bl zx,,02), equivalently
Xi = Bio + @TXM +e€;, with ¢ ~ N(0, 02-2)
for some By, 0i, and B; = [Bii,, - - -, ,Bz'z",,i‘]- By the conjugacy properties of Gaussians, the joint

distribution P becomes p(x) = N (i, C), i.e., it is also a Gaussian with parameters u, C, which
can be calculated from S, B;, and o; [10].

Theorem 2.5.  Let P be a Gaussian Bayesian network that satisfies (2.17), and let f(X) =
aXy 4+ b be a Qol that depends only on X linearly.

(a) Then for the model uncertainty indices defined in (2.2), we have
(2.18) I*(f(Xk), Py D") = 4+/20°Cpen,

where Cyy, is the variance for the marginal distribution of Xj.
(b) Furthermore, the optimizers Q* = Q¥ (n) € D" are given by (2.8) in Theorem 2.1
and are also Gaussian Bayesian networks with the same graph structure as P.

Proof.
(a.) The distribution of X} denoted by Py is Gaussian with variance

Ckk‘ - O—Iz + ﬁgcpkﬂk’

where C,, is the variance of the joint distribution of the random variables {X; : i € py}
[49, Theorem 7.3]. By a straightforward computation, the MGF of f(X}) is given by

Epy, |57 = exp(ae?81C,. 61,

1 —
(2.19)  I*(f(Xy), P;D") = + inf [ logEp,,, [eﬂf(Xk)] + ”} — +inf [a%ckk + ﬂ} .
>0 c c >0 c
Then the optimal ¢ is given by ¢ = |/ -34—, which in turn proves (2.18).
(b.) Next, we show that the graph structure of Q% is the same as that of P. For any j > k,
by Theorem 2.1, q(xj]z_o+) = p(x;|z,r). For j =k, we compute

2200 o) = — o p(aylan)
) g (wplz o) = EPM - [eicif(Xk)] p(wg|z r
Tk
(xx—Bro—BFx pFcraot)?
exp {— 57 4 cia(ﬂ,?xﬂg)}

(Zk*ﬁko*ﬁgifwf Feraoj)?

ka exp {— 557 + cia(ﬂ,za:m}:)} dzp,

=N (ﬁko + ﬁ,{xm}: + ciaai, 0',3) )
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+ . .
Thus W]? = 7T]I; since cia(ﬂgxm) of the numerator and denominator are canceled out.

Let k,, be the maximum element of Trf: =A{ki,... km k1 < ... <kp_1 < kp} and
an = [Bkkzla ce ,6kkm71]. Then
(2.21)

EPM P [eiCif(Xk)]

=

q Tk

T ) = ’ - P(Th,, |[Trp )
km EPklﬂ;:

Ep

P
km|7\'km [

[ei%ﬂxk)]]

7 @k =Brmo=Bi, Tep )?
exp { kexafy xpp — 557

T ('Ik'm_ﬂlﬂno_ﬁgm,xwl}: )2
T, ex0 {secafa - o T g

(Zkpy =Brmo—BL, x. P FexaBrr,or )?
m—1 T m m mYwT i m m
exp {iCia(ﬁk ) TP\ — 507

(@, —Br 0*5;? x p Fcrafrk Uﬁ )?
m—1 T o m m m ‘Nkm m m
Jr, o0 {esaap o, i,

T 2 2
=N <5kmo + Br, Trp, E cxaBrk,, 0k Uk:) :

s )
km m

+
Again, ﬂ,?m = ﬂfm as the factor exp {:l:cia(ﬁzl_l)Txmf\km} in the numerator and

denominator are canceled out. The CPD of the remaining vertices in 7r,1: are computed
in the same way, which further implies that their parents do not change. Therefore, the
factors in CPDs of Q% that could create new directed edges appear in both numerator
and denominator and are finally canceled out. We demonstrate (2.20) and (2.21) as it

applies in Example D.1 in Appendix D. |

3. Model sensitivity indices for Bayesian networks. In this section, we develop a non-
parametric sensitivity analysis for Bayesian networks by refining the concepts of model un-
certainty indices introduced in section 2. This is accomplished through designing localized
ambiguity sets suitable for model uncertainty/perturbations in specific components of the
graphical model such as a single CPD.

Notation. For the notation of this section, we refer the reader to section 2. Moreover, we
denote pf := pf’ U {k}.

Let f = f(Xx) be a Qol depending only on vertex k € V, and let [ € V be another vertex.
The first ambiguity set Dlm consists of all Bayesian networks ) that differ from the baseline P
only in the CPD at the vertex [ while also allowing for the parents 7rlP at [ to change. Namely,

(3.1) Dy — { all Bayesian networks Q : R(Q,¢ || Pyjp) < m for all z,p Uz e, }

Qjjjx; = Pjjr, for all j #1

where the parents 7rlQ in model @ may differ from the parents 7TZP in model P.

The second ambiguity set D}, consists of all Bayesian networks @ that differ from the

baseline P only in the CPD at the vertex [; however, here we require that m° = 7rlP =T, i.e.,
parents are not allowed to change:
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(3.2)

DZLP = {all Bayesian networks Q : R(Qum, | Pyjr,) < my for all vz, Qjir, = Py, for all j # l}.
Note that

(3.3) DZ’P c D

We accordingly define the model sensitivity indices of the Qol f(X}) as

(3.4) IF(f(Xk), P Q) = Sg};/ginf Eq [f(Xw)] = Ep [f(Xp)],

where Q,, = D} or D", given by (3.1) and (3.2), respectively.

The evaluation of these model sensitivity indices will necessarily depend on the relative
graph position of vertices k,l € V' and in particular if [ is an ancestor of k. In particular we
have the following:

Lemma 3.1. Let Q € Q,,, where Q,, = Dlm or D?ZP. Then

(35)  Eqlf(Xe)]~Ep[f(Xy)] = { Er,p [Ba,.o IF1~Erp 7] L€ 0L,
0, L¢ py,

where

(3.6) F::F(ml,a:plp):/X fay JI  Pldwilz.r)

PE\nP U} iepp \pfU{1}
- EP{k)IﬁlP (X

and the last expectation is with respect to the conditional distribution of Xy given by Xzr =

xﬁlP.

The proof of Lemma 3.1 is a direct calculation of the difference between the expectations
of f(Xj) and is based on a rearrangement between the CPDs of X,r 1y, X,r, and X; with
respect to P and @ (see Appendix F), while a concrete computation of F' is given in Appendix
D.2 for the Bayesian network of Example D.1.

Next, following the structure of Theorem 2.1 and using Lemma 3.1, we present our results
on tightness and optimal distributions over D;" and D”’P as stated in Theorems 3.2 and 3.3,
respectively. Theorem 3.3 could be thought of as a subcase of Theorem 3.2 due to (3.3);
however, tightness on D}, cannot be accomplished unless the additional condition (3.19) is
assumed. All these results are summarized in a schematic in Figure 15.

Theorem 3.2 (model sensitivity indices-vary graph structure and CPD). Let P be a Bayesian
network with density defined as in (1.1), and let f(Xy) be a Qol that only depends on Xy. Let
also f(X3) be the centered Qol with finite moment generating function (MGF), Ep [ecﬂX’“)],
in a neighborhood of the origin.
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(a) Tightness. For the model sensitivity indices defined in (3.4), there exist 0 < ny <
00, such that for any n < ni,

(3.7)  I*(f(Xy),P;D}") = sup/inf Eq [f(Xi)] — Ep [f(X)]

QeD;"
_ { LEp, [infc>o [% logEp, , [eicF] n "—H , leph,
0, L ¢ Py

= Eq= [f(Xk)] — Ep [f(Xx)],

where F' is the centered function of F defined in (3.6), ;; = n, and Q*(-) = Q*(- ; £cu)
€ D" are Bayesian networks of the form (1.1) that depend on m with f(Xj) and
c+ = ci(:nplp;m) being functions of x,r, depending on m, and determined by the
equations

(3.8) R(Qli‘ﬂ?i | Byrr) = mi-

(b) Graph Structure of Q*. The optimal distributions QT are the probability mea-
sures with densities given by

p(.ﬁi‘xﬂp), { 7& la

teg F(ag,z p)
1

=0 — )
(3.9) q (xllxﬂ?i) B Tor F(X @ P)} p($l|$7rlp)7 i =1
1

E e
PuwlP

The structure of the first and second parts of (3.9) satisfies 79 = 7P and ﬂ'lP C

Q* ~ p_ QF 4 ' '
¢ Cp; =pS , respectively.

Proof. The proofs of (a) and (b) are worked together and split into two main steps.
Step 1: Model sensitivity indices. For [ € ﬁkp , we denote m := 7TZQ U 7rlP , and

pi = p? U p! for all i. We define

(3.10) Q(dzi|zr,) = Q(dxi|we) for all zx, P(dx)|zy,) == P(dx)|z,r) for all z,.

We now use Lemma 3.1 and further bound the right-hand side of the first part of (3.7) as
follows:

(3.11) sup Ep, [EQHm [F] — Ep,,, [F]] <Ep, [ sup Eq, ., [F] —Ep,,, [F]
QeD)" QeD)"

)

=Ep, [ sup Eq,., [F] —Ep,,, [F]
Qieg"

where 5;” is the ambiguity set for CPDs at [ defined as

(3.12) &" :={all CPD Qyjr, : R(Qyjr, | Pyjm,) < mu for all z, = xfl U :E?l}
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By using Lemma A.1, for any given X, = x,,, we have

1 —
(3.13) sup Eq,, [F]—Ep, [F]<inf { logEp, [ecF(Xz,,Xpl)} + 77’} ]
Qe ! ! c>0 ¢ ! c
Hence (3.11) implies that
el 3
(3.14) sup Eq [f(Xy)] — Ep [f(Xy)] < Ep, [mf { logEx, . [ecF(Xz,Xpl)} n WH '
QeD} c>0 | c c

Step 2: Tightness of the bounds. As in Theorem 2.1, for any given x

consider the conditional measure PZT;P defined by
1
dPC+ ech(:l:plp)F(l‘l,:Dpr)

(3.15) el _
dP”ﬂ.lp EP” N €C+(zplP)F(Xz7:cplP)}

pP, We can

where ¢4 (z,r) is a function of x,» determined by R(Pﬁ;lp | Pyrr) = mi. By using Lemma A.2,
we define

(3.16) G (il o) = Pty oc eSO EDD (e 0) for all g
™ [ ™

Note that 77{“24r depends on 7} and F(zy, z,r ), hence il 7rlQ+ C pf’ and plQ+ = pP’. Therefore,

using the same notation as in Step 1, for m; = 7rlQ+, o= plQJr, we have

1 —
—logEp, [eCF] + 771] .
C C

(3.17) EQ+ [F] - Ep”m [F] = inf |:

e c>0
Furthermore, R(Q;‘“m | Pyjz,) < my for all 27, and hence Q € &". Let ¢t (z) = ¢ (m]wx,) [Tis
p(zilzy,). Then QT € D}, and

Bo+ [/(X0)] - Bp LF(X0)] =B, [inf | logB,, [e] + 2|

and thus (3.7) is proved. The calculations for infoepn Eq [f(Xk)] — Ep [f(Xg)] are
similar. '

We turn next to the ambiguity set D}", defined as in (3.2) and its corresponding index.
Due to Theorem 3.2 and (3.3), the following uncertainty bound holds for D}",:

I (f(Xk), P; D) = QS%Igl Eq [f(Xi)] — Ep [f(Xk)]

1 _
(3.18) <Ep {inf [ log Ep, . [eCF(Xth)} . 77!”
Pl C>0 I 1 c

for any [ € ﬁf ; see also Figure 15. A similar bound holds for I~ (f(Xy), P; D}'s). However,
the next theorem provides a condition on the Bayesian network P that implies equality in
(3.18); see (3.19) and Figure 4.

Theorem 3.3 (model sensitivity indices-only vary CPD). Let P be a Bayesian network with
density defined as in (1.1), and let f(Xx) be a Qol that only depends on Xy, with its centered

Qol f(Xy) having finite MGF, Ep [ecf(X’“)}, in a neighborhood of the origin.
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(a) For 1 ¢ py, Eq [f(X3)] — Ep [f(X})] = 0 for any Q € D.
(b) Forl € ﬁf satisfying the condition

(3.19) X, L X

pz\m’Xﬂm

i.e., X} is independent of all the ancestors of X; given the parents of X, there exist
probability measures QF = Q% (n) € D}, given by (3.8)-(3.9) such that

(3.20) Eq+ [f(Xk)] — Ep [f(Xk)] = sgp/}nf Eq [f(Xk)] —Ep [f(Xk)] -
€D/,

(c) For | € pL such that (3.19) is not satisfied, (3.18) holds.

Proof.  Parts (a) and (c) are straightforward consequences of Lemma 3.1 and (3.18),
respectively. The proof of part (b) is as follows: For [ € p!’ with X L X pi\m | X, we have
F(xy, .I'plP) = F(z1,2r,). Then the proof is the same as the proof of Theorem 3.2. Indeed, let

F
EerFana,p)

|: CiF(Xl,LZ?ﬂ,LP):|

p(zi|zgr)  for all z o+ and 7rlQ+ =7,

(3.21) q (@il o+) =

1 }E’F)”WLP
where cy = ¢y (z,r;m) are functions of zr, (since I only depends on z; and zr,), depend on
1, and are determined by the equations R(Q" | Pjjzr) = m. Therefore, the density of Q™

l\ﬂlQJr
is given by ¢*(z) = ql+(1:l|x7rlQ+) [Tz p(xilzs,). Thus, Q € D)"p makes (3.21) an equality.
Therefore we can conclude that

1 _
(322)  sup Eqlf(Xy)] —Ep[f(Xi)] =Ep, [inf [ logEp,,, [eFX)] 4 WH .
QEDZZP c>0 | c } C

The case of infgepn Eq [f(Xk)] — Ep [f(Xg)] is treated similarly. By Lemma 3.1, for [ ¢ pr
and Q € D]'p, Eq [f(Xk)] — Ep [f(Xg)] = 0. u

Remark 3.4.  The condition Xj, L X\ [Xx can be satisfied when p; N p; C m for all
i € pr \ pi, i.e., any path from Xpnm to Xg must go through X7 , for instance, all Markov
chains, tree/polytree structure model, etc. Two simple examples where the assumption is
satisfied or violated are shown in Figure 4. This condition is also satisfied by the baseline

Bayesian network discussed in section 7.

Remark 3.5. Note that for the model sensitivity indices shown in (3.7) in Theorem 3.2
or the uncertainty bounds shown in (3.18) in Theorem 3.3, sometimes it might be practically
difficult to find the infimum for every conditioning p;. However, we can use an alternative
looser bound by Jensen’s inequality, i.e.,

1 _
I (f(Xy), P; D) <Ep, {H;g { log Ep, _ [ecF(Xl,Xpl)} n m”
I L c IS 1

C

1 _
(3'23) < inf |:Epp |: log EPz\ﬂ [GCF(XZ’XPZ)}:| + m:| ,
c>0 e l
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ST R

Figure 3. Example of the structure of a Bayesian network baseline model. The Qol is given by f(X7) = X~
(blue). We fix X7 and perturb one vertez at a time, e.g., X3 (left) and X¢ (right) in green. The vertices involved
in the graph can be classified into | € pt = pf U{7} = {1,2,3,4,5,6,7} (vertices in the dashed area) and {8,9}
which are not in pr (vertices outside of the dashed area); see left and right figures. Based on these figures and
Lemma 3.1, the model sensitivity indices (3.4) over D} and DZLP is 0 for I = 8,9, meaning that perturbations

on vertices which are not ancestors of 7 do not affect the Qol, while perturbations on those vertices in pt affect
the Qol.

Q*e 2 and not in QZZfP

Figure 4. (Left) Two examples of the structure of a baseline Bayesian network. The Qol is f(X7) in yellow

(thus k = 7) and | = 6 in purple. (Right) Schematic of relationships between the ambiguity sets Dg°®, D’.

They share the same boundary, and thus we represent DJ® as a sphere in blue, while Dgfp is shown as an
embedded disc in brown. The yellow curve in both figures demonstrates the parametric family of Bayesian
networks P¢ with dPyj, = dPyy, for | # 6 and dFg,, o exp{cF(xs,xpév)}dP6|,r6. The top graph does not
satisfy condition (3.19) since X1 is not conditionally independent of X7 given Xr,. This is illustrated through
the path X1 — X5 — X7 in black. The function F given by (3.6) depends on x1 and x¢, which makes the parents
of Xe in the optimizers QY different from its parents in P and thus Q% ¢ Dgfp (in general), as illustrated
in the top left picture. The bottom graph could achieve the equality in (3.7) since it satisfies condition (3.19)
(Xpe\ms = {X1, X2} are connected with X7 only through X3 € Xxs). The function F depends on x3 and xe

and 78 = {3,4} = 7, which makes QF € DI, see bottom right picture.
6 6,P gnt p

and the model sensitivity index I~ (f(X}), P;D}",) can be treated analogously. Moreover,
the corresponding bounds for I*(f (Xk), P; D) are similar. In addition, if pf = (), then
expectation Ep ,, [-] does not enter into the overall calculations, and hence

Pl
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I*(f(Xy), P; D) = inf

c>0

1 —
|:C log]EP”,rP |:€iCF:| + zl:| ’ [ € ﬁkPa

e.g., for 1 € {1,2,4} and k = 7 as illustrated in Figure 3. This is a special case, however; it is
used in the computation of the model sensitivity indices for the materials design problem in
section 7.

3.1. Gaussian Bayesian networks. Next, we develop model sensitivity indices I*(f(Xy), P;
D"), when P is a Gaussian Bayesian network, and f(X}) depends on X}, linearly. We first
use Theorem 3.6, along with the fact that each model component is a linear Gaussian of its
parents, and compute F' and F explicitly. We show that F depends only on the /th compo-
nent and its parents 7TZP . Then, to implement Theorem 3.2, we calculate the MGF of F with

respect to Py». We prove that it no longer depends on 7rlP , due to cancellations between the

terms involving 7rlP . Thus, the expectation Eppp does not enter the overall computation of
!

(3.7). Finally, we prove that Q* € D'y, ie., Q7 are Gaussian Bayesian networks with the
same structure as P, without requiring condition (3.19) be satisfied, as explained in the proof
of the theorem.

Theorem 3.6 (model sensitivity indices for Gaussian Bayesian networks). Let P be a Gaussian
Bayesian network satisfying (2.17), and let f(Xy) = aXy + b be a Qol that depends only on
Xy linearly. Then the following hold:

(a.) For the model sensitivity indices defined in (3.4), we have that
(3.24) IH(f(Xp), P D) = IH(f(Xx), P; D)

and the optimizer QT = Q*(n) € D", C D} given by (3.9)—(3.8) are also Gaussian
Bayesian networks with the same graph structure as P. Furthermore, for [ € 77,1; and
l gépf:j for all j € m, j # [, we have

(3.25) IE(f(Xy), P; D) = £|Bul\/2a20 70
(b.) Moreover, for any [ € pt, we also have
(3.26) IF(f(Xk), P; D) = £|Bul\ /20207,

for a computable constant Bkl-

Proof. Let f(Xk) =aXy +bandl € pr. Then by a straightforward calculation, F' given
by (3.6) can be expressed as

(3.27) F(Xl, XPz) = aBko +a Z /Bijj + aﬂNlel +b
JEM

for some computable B, Bk:j with j € p; (see Example D.3, where we compute By and @d)
Furthermore, by using (2.17), we obtain the centered F' denoted by F',
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(3.28) F(Xp, Xr,) = Bra(X; — Bio — B X)),

and thus the MGF of F with respect to Pjjr, in the second equality of (3.7) is

(3.29) EPllwl [eicF(XL,Xﬂl)] — / e:tcinza:cleqiciﬁkla(ﬁw-i-ﬁfxﬂ)dxl
X,

(3.30) _ ichla(Bl0+ﬁlTx7rl V232,03 %eﬂFC@za(ﬁerB,wa,)
Zﬁua Ty

We compute the minimization problem of (3.7) by following the steps given in the proof
of Theorem 2.5.

Regarding the structure of Q*, Q* € Dl by 1.e., the graph of QT is the same as P, as
proved in Theorem 2.5 (see also Example D. 1) where we showed that due to cancellations
that may occur in the derivation of CPDs ¢* the graph remains the same. |

4. Stress tests, ranking, and correctability. Based on the model sensitivity indices dis-
cussed in section 3 we build an iterative approach that ranks the Bayesian network components
of the baseline P according to their model sensitivity indices and subsequently improve its
predictive ability for specific Qols. The model misspecification 7; of the ambiguity sets can
be either set up by the user, e.g., when the data for component [ are very sparse or absent,
or estimated from data, building a data-informed ambiguity set. Once 1;’s are specified, we
rank the sensitivity indices I*(f(Xy), P;D;") for all vertices | based on their relative size.
Here the largest indices correspond to the most “sensitive” CPDs in the sense that they have
the largest effect on the uncertainty of the Qol. From a machine learning perspective, such a
ranking procedure is a form of interpretability, i.e., the ability to identify the cause and effect
in a model [19, 52, 13], and explainability, i.e., the ability to explain model outputs based on
modeling and data choices made during the learning of the baseline [1].

Once the ranking is completed, we turn to correcting the most influential components
of a baseline Bayesian network, a task also referred to as correctability in machine learning,
namely, the ability to correct predictive errors without introducing or (tightly) controlling
any newly created errors (see Theorem 5.1 for Gaussian Bayesian networks) [1, 38, 13]. To
this end we need to assess the impact of limited data, seek additional data targeting spe-
cific model components, or update some of the CPDs or the graph of the baseline Bayesian
{G, P}. All these elements can be organized in a 4-step strategy discussed next, while they
are implemented in an example in materials design for fuel cells in section 7.

Notation. We recall that Py, is the conditional distribution of X; with the given parent
values Xr, = xr,. However, we write Pyx_, when X7, is still a random variable and Py x_—;
when we snnply emphasize the dependence on given parents; see Step 1 below and the KL
chain rule in Appendix G. Finally, for each vertex [ € V we use the notation 7} := 7TlQ U 771
when we consider simultaneously the parents for both models.

Step 1: Stress tests and model sensitivity. In this step, we determine the level of
model misspecification 7; for each component [ € V of the baseline using data-informed or
user-determined stress tests.
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A. Data-informed stress tests. For Bayesian networks (or parts thereof) for which there
is a reasonable amount of data, here we construct data-informed ambiguity sets (2.1), (3.1),
and (3.2), respectively. The corresponding levels of model misspecification 7, 7; are computed
as distances between the baseline P and the data distribution @Q; the latter can be selected
as a histogram or a Kernel density estimation (KDE). In that sense, we provide surrogate
values for the model misspecifications 7 or 7;, taking into account the “real” model which is
accessible only through the available data. In these calculations we are taking full advantage
of the graph structure of the models. First, we discuss the model uncertainty ambiguity set
D" in (2.1). Using the chain rule of KL divergence for Bayesian networks (Appendix G) we
define a data-informed misspecification 7 as

(4.1) n:=RQIP)=> Eq[n'], QeD,
=1
where 7" is a function of X, given by
_ Quix o
(4.2) i = Eq | RQux g 1Pix, )| = [ 0w 5 Qo
i ! X, I1X_p ™

Second, for the case of model sensitivity, definition (4.1) reduces to

(43) m = R(QHP) - EQ [7717”} ) Q € QT]L?

where Q,, is given by (3.1) or (3.2); to obtain this simplification of (4.1) we used the structure
of the ambiguity sets Q,, where all CPDs are identical except for the one on the [th vertex.

We now turn to the estimation of (4.1) and (4.3). We note that due to the graphical
structure of Bayesian networks their estimation reduces to focusing on individual model com-
ponents. Related recent ideas using subadditivity for divergences or probability metrics of
PGMs, instead of a full chain rule, were explored for statistical learning in [18]; such an ap-
proach could be also used here in an uncertainty quantification context. Lastly, we can simplify
the estimation of (4.1) or (4.3) by using an upper bound, 7; < sup, R(Ql\xﬂl:xﬂ HPl|Xﬂ:zm ).
Under certain conditions we can also show that using KDE gives rise to consistent statistical
estimator; see (I.1)-(1.4) for a Gaussian Bayesian network baseline. Finally, we note that
significant literature on statistical estimators for divergences includes nonparametric estima-
tors [H4], statistical estimators based on variational representations of divergences [56, 4],
density-estimator-based methods for estimating divergences in low dimensions [45], estima-
tors of divergence based on nearest-neighbor distances [71, 70, 60], and statistical estimators
for Rényi divergences [7].

B. User-determined stress tests. Here we use 1; > 0 as a parameter to be tuned by hand
to explore how different levels of uncertainty will affect the Qol; for instance, when we have
very sparse or missing data and ;’s are set by a user. This is a form of nonparametric sen-
sitivity analysis and in spirit is reminiscent of the stress tests used in finance and actuarial
science (see, e.g., [11]) to protect against sudden changes and extreme uncertainty under var-
ious scenarios. In our Bayesian network context, individual model misspecification n;, [ € V,
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for the model sensitivity indices I*(f(Xy), P; Qy,) can take arbitrary fixed values that cor-
respond to model perturbations associated with local sensitivity analysis (small 7;) or global
sensitivity analysis (larger 7;). Both local and global sensitivity analyses are conducted in
the same mathematical framework, and therefore we have the flexibility to explore combina-
tions of small/large model perturbations at different vertices of the Bayesian network. From
a practical point of view, these sensitivity computations can be done using only one fixed
constructed Bayesian network (the baseline), yielding guarantees for entire neighborhoods of
models.

Step 2: Ranking of model sensitivities. Once n;’s are specified in Step 1 for each
vertex [, we calculate the model sensitivity indices I=(f(Xy), P; Qp,) using Theorems 3.2 and
3.3, where Q,, = D" or D", are defined in (3.1) and (3.2). Subsequently we rank them
according to their relative contributions

I+(f<Xk)7P7 Qm)

(4.4) 2o THF(Xk), P Q)

See also the example in Figure 9.

Step 3: Assessing the baseline. After we have ranked the model sensitivities in
Step 2, we focus on the most impactful model components and assess their impact on the Qol
Ep [f(Xk)]. Specifically, if the relative model uncertainty is less than an application-dependent
tolerance TOL,

(4'5) I+(f(Xk)7 P; Q”h) < TOL7

then we decide to “trust” the model component [. If there are model components that do not
satisfy (4.5), we proceed to the next step in order to correct the baseline model P. This is
a form of interpretability, since we can systematically identify underperforming parts of the
model. A related quantity that can also be used in (4.5) is the relative model sensitivity

I+(f(Xk)7Pa Qm) .

(4.6) Ep[f(X0)]

see, for example, Figure 10.

Step 4: Model correctability. Once Steps 2 and 3 are completed, we turn to correcting
the most influential components of the baseline Bayesian network P, a task also referred to
as correctability in machine learning. We formulate mathematically this procedure in section
5; however, practically we aim at reducing the index It (f(Xy), P; D}") for each vertex [ € V
that violates (4.5). This can be accomplished, for instance, by either acquiring additional
data or updating the CPD of these specific vertices. However, as we correct these targeted
model components of the baseline, we also need to guarantee that we do not introduce new,
bigger errors in the remaining components of the Bayesian network that would violate (4.5).
Section 5 provides both theory and related practical implementation strategies to this end.

5. Mathematical analysis of correctability in Bayesian networks. In this section, we
focus on the mathematical formulation of correctability in Bayesian networks outlined in Step
4 of section 4. Our methods are motivated by “correcting” a baseline model by either acquiring
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targeted high-quality data, or updating the CPDs of the most underperforming components
(see Step 3 of section 4), or correcting the graph G itself. We demonstrate these scenarios,
their combinations, and our mathematical methods on a materials screening problem for fuel
cells in section 7.

The intuition behind our correctability analysis lies in the model sensitivity results for the
Gaussian case. By Theorem 3.6, the model sensitivity indices of a baseline P for a targeted

{*th CPD component are given by
\/2012* M- -

Therefore, additional/better data or an improved CPD for the [*th vertex could allow [*th
CPD with mean zero with a corresponding new Gaussian Bayesian model P that is otherwise
identical to P. Indeed, if we could guarantee a combination of

(5.1) I=(f(Xx), P; D p) = +|Bra-

62 < of and/or i < -

for the new model P, then we can quantify the improvement of the baseline P using (5.1) and
show that the indices of P at * would decrease.

In general, we seek to correct the targeted [*th vertex of the baseline P to obtain a new
Bayesian network P such that

(5.2) IE(f(Xy), P;D) < TE(f(Xy), P; D)) forall 141"
and
(5.3) IH(f(Xr), Py D) < TH(f(X2), Py D) -

In particular, (5.2) and (5.3) would imply that we can improve the CPD of the I* vertex, and
at the same time we do not decrease the performance of the rest of the Bayesian network. The
next theorem demonstrates that we can achieve (5.2) when P is a Gaussian Bayesian network.
Moreover, when P is a general Bayesian network, we prove that new errors that may violate
(5.2) can only be created in the descendant components of I*; see also Remark 5.2.

Theorem 5.1.

(a) (Gaussian Bayesian network) Consider f(Xj) = aXy+b to be a Qol that only
depends on Xy, linearly. Let also P be a Gaussian Bayesian network satisfying (2.17).
Suppose now that we construct a new Bayesian network P by only updating the CPD
p(zy+|xn,. ) for some I* € pi as follows: we change the distribution of e in (2.17)
from Gaussian to another mean zero distribution denoted by p(z+|xy,.). Note that the
graph structure of P is the same as P. Then

(5.4) I*(f(Xg), ;D) = I*(f(Xy), ;D) forall 1 # 17,

where T*(f(Xy), P;D}") is given by (3.25)~(3.26). Moreover, for the relative model
sensitivity (4.6) the following holds:
FE(f(Xe), P5D) _ TE(f(Xa), P D))

(5.5) E, [ = Ep (/] for all [ # [*.
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(b) (Non-Gaussian Bayesian network) Let f(X%) be a Qol that only depends on
Xi. Let also P be a non-Gaussian Bayesian network. Let us suppose that we construct
a new Bayesian network P with the same structure as P by only updating the CPD
p(xp|Tr,. ) for some I* € pl'. Then

(5.6) I (f(Xx), P; D'p) = T (f(Xi), P;D'p)  for all 1€ py with I <17,

while the model sensitivity indices for any | € pf with I > 1* (descendant components)
change and are given by Theorem 3.3.

Proof.

(a.) First, updating p(x;«|xy,.) with I* € py does not affect the computation of F' defined
n (3.6). This is straightforward by (3.6). In the case of a Gaussian Bayesian network,
F is given by (3.27). Second, if [ # I*, by (3.27), the MGF of F with respect to ]5”m is
always the same with the MGF computed with respect to Py, (since ]5”,” = Py, ); see
(3.29). However, it only changes when [ = [*. Moreover, the relative model sensitivity
with respect to model P satisfies (5.5), since ]51*|m* : Xp- = Beo + Blj:Xm* + €+, with
€~ another mean zero distribution. Thus the expected values of f(X}) with respect
to P and P are equal.

(b.) It is enough to observe that for any | € pf with [ < I*, the MGF in Theorem 3.2
computed with the respect to ﬁ)lﬁr = P)l};r . and PZP are equal and both depend on the

|

ancestors of pf’, where I* & pf’. Hence, (3.7) for both models is the same. Similarly,
we prove the case | € pf’ with [ > [* (descendant components). Note that this time
I* € pP, and thus (3.7) is different for the two Bayesian networks. [ |

Both developed approaches are implemented in section 7.3. For example, Theorem 5.1
(a) is applied when we update a CPD of the baseline Gaussian Bayesian network by using a
kernel-based (KDE) method; see Figure 10. We refer the reader to section 7.3 for full details.

Remark 5.2. Even if the conditions of Theorem 5.1 are not applicable, the ranking
procedure of Steps 2 and 3 in section 4 can always identify the best candidates among the
components of the graphical model for improvement relative to a Qol. Once we correct the
component [* selected through ranking we need to recompute the relative model uncertainties
in (4.5) for all vertices | € V and then determine the suitability of the corrected model. In
fact, due to Theorem 5.1 (b) we only need to compute (4.5) for just the vertices [ in the
descendants of [* since all the remaining ones are not affected by the model correction.

6. DFT-informed Langmuir model. In this section, we consider the Langmuir bimolec-
ular adsorption model that describes the chemical kinetics with competitive dissociative ad-
sorption of hydrogen and oxygen on a catalyst surface [62]. It is a multiscale system of random
differential equations with correlated dependencies in their parameters (kinetic coefficients),
arising from quantum-scale computational data calculated using density functional theory
(DFT) (i.e., quantum computations) for actual metals. The combination of chemical kinetics
with parameter dependencies, correlations, and DFT data gives rise naturally to a Bayesian
network. However, the limited availability of the quantum-scale data creates significant model
uncertainties in both the distributions of kinetic coefficients and their correlations; see, for ex-
ample, Figure 5(a). Thus, we will quantify the ensuing model uncertainties by implementing
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Figure 5. (a) Correlation between oxygen and hydrogen adsorption energies on metal surfaces as defined in
(6.6), (b) Fit of w in (6.6) with various parametric distributions.

our analysis in sections 2 and 3. Here, the equilibrium hydrogen and oxygen coverages are
our Qols and can be calculated by the dynamics of the chemical reaction network described
by the following system of random ODEs with random (correlated) coefficients:

dCy-
(6.1) df — k¥ Py, (1 — Cy- — Cox)? — k§5C.,  CO%. = C-(0),
dCo-
(6.2) dto — k& Po,(1 — Cy — Co-)? — kE5C3.,  CY. = Co-(0),

where C'y- and Co-represent the hydrogen and oxygen coverages. Py, and Pp, are the partial
pressures of the gas phase species and are fixed.
Then the steady state solution of (6.1)—(6.2), which constitute our Qols, is given by

. K, Pi,)? A Ko,Po,)?
(63)  Cu- = W, P -, Co = o To.)
+ (Kn,Pp,)? + (Ko, Po,)? + (Kg,Pp,)? + (Ko, Po,)?

Here K; = kd“ for i = Hs, 09, and for each species they are related to electronic structure
(DFT) calculations through an Arrhenius law [24]:

GH2
(6.4) Ky, =¢ "7 (Py, + Po,)™", Gpu, x —2AEq,

Goy
(6.5) Ko, = e_’%ﬁ(PH2 + POZ)fl, G02 x —2AFEp.

The constants kg and T are the Boltzmann constant and the temperature, respectively. In the
above formulas, G, and G02 are the hydrogen and oxygen Gibbs free energies of adsorption.
Therefore, the coverages Cy- and Co* are nonlinear functions of AEy and AFEp. We refer
the reader to for the chemistry background and analysis of the model. In, the authors have
estimated the two binding energies for various metal catalyst surfaces via DFT calculations
as illustrated in Figure 5(a). Furthermore, correlations between AEp and AEy are captured
by a statistical linear model

(6.6) AEp = aAEy +b+w,
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Figure 6. (a) Graph structure of the baseline Bayesian network P in (6.9) built by data (6.7) and (6.8),
physics knowledge (6.4), (6.5), (6.8), and the steady state of the ODEs given by (6.3). (b) We consider the Qols
(6.3) of (6.9); the blue line represents the model uncertainty index I*(f, P;D") as a function of n (Theorem
2.1); the red and yellow lines are, respectively, the model sensitivity indices It (f, P; DY) and I*(f, p; D7)
(Theorem 3.2) for p(AEw) and p(AEo|AFEw), where DY indicates the perturbation on p(AFEw) and Dj for
p(AEo|AEH).

where w is a random variable. The distribution of w can be determined by fitting the residual
data from linear regression using maximum likelihood estimation (MLE); see Figure 5(b). In
(6.6) we select a Gaussian distribution for w (red line in Figure 5(b)) as the baseline CPD for
the correlation in Figure 5:

(6.7) P(AEo|AEy) = N(aAEg +b,07).

Next we model the distribution of the prior p(AFEf). Based on physical constraints (e.g.,
positivity of the random variable without physical upper bound), in the distribution of AFEy
was selected to be a gamma distribution with mean x g with standard deviation given by the
difference between experiment and DFT, (zg — yg),

1
) AEy)= —— AE 1 —
(6.8) p(AEy) b T () Je exp <

AFEg

) for AFEpx >0,
by

where ag = l’%{/(l’H —wyr)? and by = (g — yu)?/xy. This is a case with very little data
(g, yrr) and only some reasonable physical constraints without any further knowledge on the
model, and therefore model uncertainty in (6.8) is evident.

We now build the baseline Bayesian network P by combining the following ingredients:
data through (6.7) and (6.8), physics and expert knowledge in (6.4), (6.5), (6.8), and the
steady state of the ODEs (Qol) given by (6.3); see also Figure 6. We obtain the following
Bayesian network and the corresponding CPDs:

(6.9)  p()=p(Cu-,Co-|Kn,, Ko,) [[ pUKIAE:)p(AEo|AER) p(AER).
(6.3) i=H>,0,

(6.4),(6.5) (6.7) (6.8)

In the above formula, p(C’H .Co-|K i,, Ko,) and p(K;|AE;) are deterministic, while the only
random parts in P are p(AEg|AFEy) and p(AEg).
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In the process of building the baseline model P above, the sparse data in Figure 5 for (6.7)
and the lack of both knowledge and (almost any) data in (6.8) create model uncertainties
for the prediction of the Qols in (6.3). We quantify these uncertainties by implementing
the model uncertainty index of Theorem 2.1 and the model sensitivity indices of Theorem
3.2; see Figure 6(b), where we readily see how the indices change for different values 7; the
implementation of the indices was carried out through Monte Carlo simulation of the moment
generating functions. Moreover, we observe that for the Qols (6.3) the impact of uncertainties
in the prior p(AFEp) are significantly higher than in the correlation p(AEo|AEy) when we
perturb with same model misspecification 7. Finally, we note that, due to the lack of data in
(6.8), we elected to perform the user-determined stress tests of Step 1.B of section 4 where
the user selects various levels of model misspecification 7.

7. Model uncertainty for Sabatier’s principle. We study Bayesian networks built for
trustworthy prediction of materials screening to increase the efficiency of chemical reactions
in catalysis. Our starting point is Sabatier’s principle, which describes the efficiency of a
catalyst [62] through the so-called “volcano curve,” e.g., the black curve in Figure 7(c). The
volcano curve suggests that high catalytic activity is exhibited when the binding interaction
between reactants and catalysts is neither too strong nor too weak, i.e., the peak of the volcano
marked by a star in Figure 7(c). For this reason Sabatier’s principle is widely viewed as an
important criterion for screening materials for increased efficiency in catalysis. Our ultimate
goal here is to understand how various uncertainties can affect the shape and position of the
volcano curve and its peak.

Here we consider the oxygen reduction reaction (ORR), which is a known performance
bottleneck in fuel cells [63]. The ORR depends on the formation of surface hydroperoxyl
(OOH™) from molecular oxygen (Oz), and water (H20) from surface hydroxide (OH*) [67].
The complete mechanism [14, 2, 43] involves four electron exchange steps with reactions (R1)
and (R4) being slow; see Figure 7(a). Therefore, the discovery of new materials will have to
rely on speeding up the two slowest reactions in order to accelerate the entire ORR mechanism.
Furthermore, such a physicochemical system has hidden correlations between variables which
have emerged after statistical analysis of data [25]. In particular, the corresponding Gibbs
energies of reactions (1) and (4) denoted by —AG4 = y; and —AG; = y2 are computed as
linear combinations of free energies of species and are regressed versus the oxygen binding
energy AGo = z calculated by DFT calculations. The oxygen binding energy x is chosen
as a descriptor in [25] since it is the natural coordinate arising from Sabatier’s principle.
The principle is graphically represented by the volcano curve, i.e., the solid black lines in
Figure 7(c), which is a function of the descriptor. Therefore, the Qol considered here is the
optimal oxygen binding energy AGp denoted by xg* and identified as the maximum of the
volcano curve:

(7.1) :cg* := argmax, [min{Ep [yi|zo], Ep [y2|20]}] .

Starting from this Qol we build a Bayesian network in Figure 7(b) that includes expert
knowledge (volcano curves), as well as various available experimental and computational data
and their correlations or conditional independence.
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Figure 7. (a) ORR steps (R1 to R4) in hydrogen fuel cells, and (b) Bayesian network for ORR. The
construction of the Bayesian network (section 7.1) is based on expert knowledge, physicochemical modeling,
and statistical analysis of data. We include these random wvariables into the Bayesian network and build the

directional relationships (connection/arrows) between corresponding random variable x or ys.

We build a

Gaussian Bayesian network, i.e., all CPDs are Gaussians, which are fitted to available data using MLE (see
histogram approzimations in (d)—(g). Note the conditional independence between the y-variables, assumed based
on expert knowledge. (c) The QoI of the ORR model is the optimal ozygen binding energy x5« and is identified
when the two reaction energies are equal by physical modeling (marked with a star). (d)—(f) Here we model
different kinds of errors in x and yi, given expert knowledge.

7.1. Construction of the ORR Bayesian network for the Qol (7.1). First, we relate the
Qol with the y;’s and then we include errors from different sources in xz and y;’s.

1. [Graph] We first build the directed graph for the Bayesian network. The first selected
vertices in the graph are the Qols :cg*, T'g*, as well as y;’s and x; see gray vertices in
Figure 7(b). Subsequently, we have the following:

(1a) Through the statistical independence test [73], we learn that y; and y2 depend

on x and are conditionally independent given z as illustrated in Figure 7(b).

(1b) The construction of x comes from the DFT data (using quantum calculations)
for the oxygen binding energy given the real unknown value xy. As mentioned in the
beginning of the section, x is also selected to be the descriptor by expert knowledge
(see also the supplementary material of [25]) and justifies the conditional relationships
between x and y;’s.
(1c) The evaluations of the Qols depend on the values of y;’s for each zg due to the
volcano curve of Sabatier’s principle.
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Overall, in (1) we built part of the network structure for x, y1, y2, and the Qol using
a constraint-based method [66], which selects a desired structure based on constraints
of dependency among variables.

2. [CPD] Next, we build the individual CPDs on the graph constructed above.

(2a) We include statistical correlations between DFT (quantum calculation) data for
x and y;; see data in [25]. We model the residual using a linear model with a random
correlation error denoted by we;; see (7.3).
(2b) We model as random variables and incorporate in the Bayesian network different
kinds of errors in x and y;’s from the following sources: we; is the error in experimental
data, wy; is the error between quantum and experimental values, and ws; is the error
due to solvation effects; all are calculated by DFT; see the corresponding data in [25].
See (7.3).
More specifically, after conducting independence tests on the corresponding data, and
also based on expert knowledge or intuition [25], we assume that the random variables w are
independent. Based on the graph construction above we obtain the Bayesian network

(7.2) p(x|wo) = H P(Yil @, wei, wai, wsi, wei) - P(x|weo, wao, wso, To) - H p(wj),
i=1,2 J=ex,dk,Sk,C1,C2
k=0,1,2

where X = (2, Y1, Y2, We0d, Wd0, Ws0s Wel , Wl s Wsl s Wel , We2, W2, Ws2, We2). The baseline CPDs in
(7.2) are constructed as linear Gaussian models, namely, for i = 1,2,

(7.3) Yi = Byi0 + Byia® + Wei + Wai + wsi + Wi and & = T + Weo + Wao + Wso -

The CPDs for each vertex are selected as

(7.4) P(Yi| T, Wei, Wiy Wsi, Wei) = N (By,,0 + Bys 2@ + Wei + wai + wsi + wes, 0),
(7.5) P(2|weo, Wdo, wso, o) = N (20 4+ weo + wdo + wso, 0),
(7.6) p(w;) = N(Bj0,073),

where ¢ = 1,2, and j = €0, d0, s0, el,d1, s1,cl, e2,d2, s2,c2. Then the resulting baseline model
(7.2) is a Gaussian Bayesian network. Subsequently we use the global likelihood decomposition
method [48] to learn the parameters 3, o, 8y, 2, and o;. The outcomes are given in Table 1.
This approach is essentially a maximum likelihood estimation (MLE) on PGMs (see [48],
Chapter 17.2), which exploits a fundamental scalability property that allows us to “divide
and conquer” the parameter inference problem on the graph. We can also employ a Bayesian
approach instead of MLE; see, for instance, [48] for the case of PGMs.

7.2. Model sensitivity, stress tests and ranking. Here, we implement the four-step strat-
egy of section 4 to the ORR model by using data-informed stress tests or user-determined stress
tests (Steps 1.A and 1.B of section 4). The primary goal is to quantify and rank the impact
of model uncertainties from each component of the Bayesian network through the model sen-
sitivity indices in section 3. Next, we compute these model sensitivity indices for the Qol acg*
in (7.1), namely,

(7.7) sup/inf {xg - xg*}
QeD
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Figure 8. Typical model uncertainty bounds I* (y;, P; DZ’P) ,t = 1,2, computed by (7.8). The model un-

certainty for the QoI x5+ (see Figure 7(c)) is computed by (7.9)~(7.10) and demonstrated in yellow for model
misspecification m; in P(w): (a) for | = el,dl,sl,cl, I*(y1, P; DZ’P) = £/207m; (b) for | = €2,d2,s2,¢2,

Ii(yg,P; Dzlp) = ++/20%n; (c) for I = €0, dO0, s0, Ii(yi,P; DZLP) = %|By; 2|/ 207, i = 1,2.

for I € {ei, di, si, ci, €0, d0, sO} with i = 1,2. To this end, we first use Theorem 3.6 for i = 1,2
to obtain

(7.8) I*(yi, P D'p) = By, ]\ 207w

with o; and Byi,wl given in (7.4) and Table 2, respectively. Subsequently we solve the opti-
mization problem for zp = acg* and obtain the bounds for l‘g* — a:g* as shown in Figure 8

and given by

— 2012771 2012771
(7.9) _VTIE e g VTR
Byl,x - 5?;2,33 o o ﬂyh% - Byz,x

for [ = ei, di, si,ci and 7 = 1, 2; note that the model uncertainty of w; only affects y; according
to the ORR Bayesian network. Furthermore,

—(1By. 2l + 1By )/ 207 Wi 1By, x| + 1By )/ 207 mi
(7.10) Y Y th_ q P Y Y l

S T — l’o* ~
Byl,x - Byz,-’ﬂ o Byl,r - 6?!2:35

for I = €0, d0, s0 as the model uncertainty of w; affects both y; and y2. Here 3, , are the
coefficients given by the first CPD in (7.4). The complete algebraic calculation of (7.9) and
(7.10) is given in Appendix J.1. Then by implementing Step 2 of section 4, we rank the model
components as demonstrated in Figure 9. There we plot (4.4) as a pie chart, where the most
impactful components are depicted.

Remark 7.1 (propagation/non-propagation of uncertainties to the Qols). The discrep-
ancies in the propagation of model misspecification to the Qol between different Bayesian
network components is depicted in Figure 9. In particular, in Figure 9 (left) the same user-
selected model misspecification 7; is applied on all ORR Bayesian network vertices. However,
not all propagate and affect the same Qol. See also the example in Figure 16.

Remark 7.2. The construction of the ORR Bayesian network and its model uncertainty
was carried out in [25] for the optimal oxygen binding energy defined differently than (7.1), that

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 10/14/23 to 128.119.201.53 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1490 BIRMPA, FENG, KATSOULAKIS, AND REY-BELLET

Solvation: AG1 Solvation: AG4
Solvation: AGO 5% 4%

DFT: AGO
22%

[ error by solvation w,,
[ Jexp.emorcy,

[ error btw exp. and DFT w
[ eror of corrin

[ oo by solvation in
[ exp. error inw,

I o btw exp. and DFT w,
I oo of corr

[ oo by solvation
. e eror

I <o btw exp. and DFT w,

Correlation: AG1
12% DFT: AG1
12%

Experiment: AG4
5%

Experiment: AG1
5%

Experiment: AGO
12%

Figure 9. Relative model sensitivities (4.4) for the Qol x5+ in each ORR Bayesian network mechanism
in Figure 7(b). (Left) User-determined stress test (Step 1.B in section 4); m has a fixed value for all I; the
particular value does not matter since it is canceled out by the ratio in (4.4). (Right) Data-informed stress test
(Step 1.A in section 4); mi = R(data||P;) selected as a distance of each CPD from the available data.

is, as argmax, Ep [y|zo] with y|zg = min{yi|zo, y2|zo}. This is an alternative mathematical
description of the same concept; however, (7.1) allows us to explicitly calculate the model
sensitivity indices given by (7.8)—(7.10) and provide clear insights into what model elements
and uncertainties affect them the most. On the other hand, in [25] the model sensitivity
indices provided by Theorem 3.2 can only be calculated computationally.

7.3. Correctability of the ORR Bayesian network. Here we use the earlier model uncer-
tainty /sensitivity analysis to first identify and then correct the most impactful components in
several ways as discussed in Step 4 of section 4 and in the theoretical results on correctability
in section 5.

1. Including targeted high-quality data. We seek data that lead to the reduction of the
variance o2 for some [* € L (see Step 3 of section 4), while the model misspecifi-
cation 7+ does not increase or the increment is much smaller than the reduction of
o2. Notice that in this case the model remains a Gaussian Bayesian network. For

the ORR Bayesian network, it turns out that we can add more data using DFT cal-

culations for bimetallics to reduce the relative error for the correlation errors we;, 032-;
see the bimetallics data set in [25]. Then the model sensitivity indices of y; on we,
I*(y;, P; DZ’P), | = wei, given by (7.8) and the model misspecification 7, , are reduced.
Consequently, the model sensitivity indices of xg* do so as well; see (7.9). The relative
predictive uncertainty (4.6) of such an updated model is demonstrated in Figure 10
(center), updated model 2.

2. Increasing the complexity of CPDs. We reduce the model misspecification n; by
picking a better model Py. than the baseline model P, for the [* component. The

new model should represent the (fixed) available data more accurately by using a
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Figure 10. (Left) DFT-computed data for reaction energies with respect to different metals/ozygen binding
energies. Here bimetallics data are also included in addition to the single metals in Figure 7(c). (Center)
Different relative model sensitivities (4.6) when we only perturb the model of we1 by new = R(data||Pe1) when
P.1 is Gaussian with the original single-metal data; or using a KDE given by (1.3) with the original data (updated
model 1); or using a Gaussian with the additional bimetallics data (updated model 2); or using both KDE and
bimetallics data (updated model 3). (Right) Baseline model (Gaussian) of wei (red curve) and the updated
model (normal-kernel density estimation, blue curve) and additional bimetallics data in this figure (Left).

kernel-based method. In this case the new model is a mixture of Gaussian and kernel-
based networks [48]. For example, we replace the linear, Gaussian model for w.
demonstrated in Figure 7(g) with a linear, kernel-based model as shown in Figure 10
(right). Then we can reduce the model sensitivity indices by decreasing the model
misspecification 7+ without introducing new errors into the remaining components of
the Bayesian network as proved in Theorem 5.1 (a). Moreover, we can combine the
approaches above to reduce the model sensitivity indices. For example, after adding
more bimetallics data, we first reduce the model sensitivity indices for the correlation
errors we;. Then we further reduce the indices of w.; by replacing the corresponding
component of the baseline model for w.; (Gaussian model) by normal kernel density
estimator without increasing the indices of the remaining nodes (see Theorem 5.1 (a)).
The new model is the updated model 3 in Figure 10 (center). We can compute the
model sensitivity indices for the updated mixed model, where P, could be KDE or

another distribution, using Theorem 3.3 and in particular (3.18).

3. Increasing the complexity of the graph. Here, we discuss how model sensitivity indices
can investigate the change in graph structure. The available data for solvation energies
in Figure 11 (left) indicate that there might be a linear dependence between wg; and
wso. We represent such a connection as a directed edge ws; — ws2, and thus the new
graph has an extra edge, illustrated in orange in Figure 11 (right). The CPDs of the

new Bayesian Network @) are given by

(7.11) ¢(ws1) = p(ws1) = N (Bsr0,02),

(712) Q(ws2|wsl) = N(Wsl + 552,07 0-32)7

and all the remaining ones (i.e., z,y1,y2 and all w; with j # s2) are the same and

given by (7.4)—(7.6). The correlation parameters (10,3520 as well as o

2 2
s1:0gp are
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Figure 11. (left) DFT data for solvation energies wso and ws; of x and ys, respectively, with different water
layers. (right) Based on the left figure, a potential correlation between ws; is found. We incorporate such a
correlation into the graph by adding a new edge between ws; (orange edge) into the existing graph in Figure 7
(b). The two energies y1 and y2 are now not conditionally independent given x. However, by using (4.6), the
model sensitivity indices I (x5« , P; D'52) are very small compared to the QoI Ep[z5.] (here the index in (4.5)
is normalized by the Qol), implying that we can ignore the proposed graph connection.

learned by using the global likelihood decomposition method mentioned earlier. The
KL divergence between the Gaussian Bayesian networks P and @ of Figures 7(b) and
Figure 11, respectively, is given by

(7.13) R(Q||P) = /log Mq(wsg\wsl)q(wsl)d@dsl
p(WSQ)
and serves as a surrogate for the model misspecification 7. Using Gaussianity
ns2 = 0.9173, and by Theorem 3.2, I*(z5., P;D%?) = £0.0928. The latter value
is very small compared to the Qol Ep [a:g*] = 2.0434. Thus, we may safely ignore
the correlation between wg and wgo. Therefore, no further model improvement is
necessary, and we can retain the (simpler) baseline Bayesian network of Figure 7(b).

8. Other divergences and probabilistic metrics. A question that arises naturally is the
selection of the probabilistic metric or divergence in the formulation of robust uncertainty
quantification, e.g., in the definition of model uncertainty indices (1.3). In this paper we
selected the KL divergence to define the ambiguity sets (1.2) as well as structured localized
ambiguity sets given by (3.1) and (3.2) since they allowed us to obtain easily computable
and scalable model uncertainty indices. In fact, we developed UQ methods that build on
UQ information inequalities for Qols of high-dimensional probabilistic models and stochastic
processes [15, 21, 39, 9, 8], taking advantage of the directed nature of the graph structure of
Bayesian networks as well as the factorization into CPDs of the joint density given by (1.1).
Furthermore, the chain rule of KL divergence allowed us to break down the calculation of KL
divergence in terms of conditional KL divergences and thus isolate the uncertainty impact
on Qols from multiple model components as well as to quantify their propagation across the
graph to the Qols.

However, for Bayesian networks with vastly different graphical structures, e.g., an alter-
native model with more vertices than the baseline, the choice of KL is not suitable due to the
lack of absolute continuity between the baseline and the alternative model. In such cases, new
divergences could be considered, e.g., Wasserstein metrics already studied in the DRO litera-
ture [53, 12] or their integral probability metrics (IPM) generalization [55]; alternatively we
can consider various interpolations of divergences and IPMs studied recently in the machine
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learning literature such as [29, 23, 6, 32, 30] and references therein. For instance, the recently
introduced (f,T')-divergences [6] are interpolations of f-divergences and IPMs that combine
advantageous features of both, such as the capability to handle heavy-tailed data (property in-
herited from f-divergences) and to compare nonabsolutely continuous distributions (inherited
from IPMs). Also, in [32] they propose an interpolation between KL divergence and maximum
mean discrepancy (MMD) termed KALE which inherits the sensitivity to mismatch in the
support of the distributions from KL and is well-defined for mutually singular distributions,
while in [30] an interpolation between p-Wasserstein and MMD has been proposed. Even
though these new divergences seem promising for the reasons we mentioned above, the cor-
responding UQ methods have not been developed yet, with the exception of the Wasserstein
DRO methods [53, 12].

An additional issue that we touched upon here when we discussed model sensitivity indices
is the need for divergences to be able to isolate sources of uncertainty on localized parts of
the graphical model in the spirit of “divide and conquer.” In that respect concepts of subad-
ditivity of divergences, e.g., subadditivity of f-divergences, total variation, Jensen—Shannon
divergence, and Wasserstein, for PGMs [18, 23] could also prove useful.

Appendix A. Background on model uncertainty.

A.1. Mathematical formulation of model uncertainty. We can formulate mathematically
model uncertainty by constructing (nonparametric) families Q of alternative models @ to
compare to a baseline model P which is computationally tractable and inferred from data,
and believed to be a good approximation for the physical model of X, while the “true,”
intractable, partially unknown model Q* should belong to Q; for this reason we refer to Q as
the ambiguity set, typically defined as a neighborhood of models around the baseline P:

(A1) Q=D"={Q:d(Q,P) <n},

where 1 > 0 corresponds to the size of the ambiguity set and d = d(Q, P) denotes a probability
metric or divergence (see Figure 12 (left) for the schematic depiction where d is the KL
divergence (a.k.a. relative entropy) R(Q|/P) [16]). The next natural mathematical goal is to
assess the baseline model and understand the resulting biases for Qols f when we use P for
predictions instead of the true model Q* € Q. As we see later, the free energies f = —AG;
are considered as Qols for the ORR PGM (see section 7).

We define the predictive uncertainty (or bias) for the Qol f when using the baseline model
P instead of any alternative model ) € Q as the two worst-case scenarios:

(A.2) I(f,P;Q) = suge/ignf {Eq [f] —Ep[f]},

where Eg [f] denotes the expected value of the Qol f. Therefore, (A.2) provides a robust
performance guarantee for the predictions of the baseline model P for the Qol f within the
ambiguity set Q. This robust perspective for general probabilistic models P is also known in
operations research as distributionally robust optimization (DRO); see, e.g., [17, 33, 74, 44,
28, 49, 53, 75, 12], where optimal-transport (Wasserstein) metrics were recently proposed for
(A.1). Note that the predictive uncertainty represents the robustness of the model P with
respect to @, i.e., all the biases between the predictions of f with () € @ and P are bounded
by the predictive uncertainty.
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Figure 12. (Left) The schematic illustration of the ambiguity set (nonparametric family of models) given
by (A.1) with d being the KL Divergence R(Q||P); the blue line represents a parametric family; QF are the
probability measures that the UQ indices/bounds I* with respect to Qol f are attained and are provided by
(A4), i.c., tightness of the bounds. (Right) Three probabilistic models with different CPDs for sparse data of
an ORR PGM vertex wqo: the red curve is used to build a baseline Gaussian model denoted by P, the gray
curve is another parametric model (generalized extreme value (GEV) distribution) which fits the data better,
and the yellow curve is a nonparametric model (kernel density estimation (KDE) with normal kernel).

A.2. Existing results on model uncertainty. While the definition (A.2) is rather natural
and intuitive, at least based on the model uncertainty challenge depicted in Figure 12 (left),
it is not obvious that it is computable in practice. However, it becomes tractable if we use for
metric d in (A.1) the KL divergence R(Q||P). Accordingly, n is a measure of the confidence
we put in the baseline model P measured using KL divergence. In recent work [15, 21, 37,
47], it has been shown that I*(f, P; D") (an infinite-dimensional optimization problem) can
be directly computable by a one-dimensional optimization problem:

(A:3) I*(f,P;D") = & inf [1 log / et Erl)P(de) + 2 | = Eqs [f] ~Ep [f]

which is derived by using the Gibbs variational principle [21] for KL divergence. In the first
equality of this formula we recognize two ingredients: 7 is model uncertainty from (A.1),
while the moment generating function (MGF) [ e*¢/ P(dz) encodes the Qol f at the baseline
model P. In [21, 37, 47] techniques were developed to compute (exactly or approximately
via asymptotics [21]) as well as provide explicitly upper and lower bounds on I*(f, P; D") in
terms of concentration inequalities [37]. A key point in (A.3) is that the parameter 7 is not
necessarily small, allowing global and nonparametric sensitivity analysis.

Moreover, in [37] the authors have proven that the second equality of (A.3) holds. In fact,
this shows that I*(f, P;D") is also tight, i.e., when the sup and inf in (A.2) are attained by
appropriate measures Q. Formally, the authors have shown that there exist 0 < 7+ < oo,
such that for any n < n+, Q*(-) = Q*(- ; £c+) depend on 7 and are given by

etesf

+ _
(A.4) 1Q* = oy AP

where ¢y = ¢4 (n) are the unique solutions of

(A-5) R(QF|IP) = 1.
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A.3. Some fundamental lemmas. In this subsection, we include Lemmas A.1 and A.2 for
completeness of the background presentation. These results were proved in [21, 22, 37], and
we present them here for the convenience of the reader.

Lemma A.1. Let P be a probability measure, and let f(X) be such that its MGF is finite
in a neighborhood of the origin. Then for any @ with R(Q||P) < oo, we have

(A.6)
~inf [1 log Ep [~/ + Z] < Eof(X)] - Ep [f(X)] < inf [1 log Ep [¢F] + ”] |

c>0 | c (&

Proof of Lemma A.1. For any general Qol f(X) which has finite MGF, Ep [eicf(X)} =

Ep [ec(f(X)*EP[f(X)D], in a neighborhood of the origin, there is a known fact in statistics and
large deviation theory [20, 21] that

(A7) log B [¢/09] = sup {Eq /()] - R(@IIP)}

Changing f(X) to cf(X) = c(f(X) — Ep [f(X)]), we get

(A.8) B [T = sup {e(lg /(0] — Er [f(X))) = RQIIP)}

which gives us the following upper and lower bounds with ¢ > 0:

(A.9)
~inf [1 log Ep [e7)] 4 Z] < Eq [f(X)] ~ Ep [/(X)] < inf [1 log Ep [e/0)] 4 Z] ,
where n = R(Q||P). [ ]

Lemma A.2.  Suppose (d_,dy) is the largest open set such that the cumulant generating
function A(c) =logEp [ecf(X)] < oo forall ¢ € (d—,d4).
1. For any n > 0 the optimization problems
inf A(xc)+n
c>0 C

have unique minimizers cy € [0,+dy]. Let ny be defined by

— 7 ' _
Ny = c/l‘lgli +eN (£e) — A(£c) .

Then the minimizers c+ = c+(n) are finite for n < ny and c+(n) = £d+ if 1> nt.
2. If cx(n) < £dx, then

A(£er) +1 _inf A(xe) +1n

Al
( 0) C4 c>0 c

= £ (dex) = (B, [f)  Erlf]) .
where c4(n) is strictly increasing in n and is determined by the equation

(A.11) R (Pic, || P) = 1.
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3. m+ is finite in two distinct cases.

(a) If £d+ < oo (in which case g must be unbounded above/below), ni is finite if
limey1q, A(Ee) := A(dy) < 0o and lime, 14, £A'(+c) := £A(d1) < oo, and for
n > n+ we have

(A.12) g AEDF1_ Alde) 0
c>0 C :i:d:t

=+ (IEPdi [f] - EP[f]) t ni_dzi '

(b) If £dy+ = oo and ny is finite, then f is P-a.s. bounded above/below and for n > ny
we have

(A.13) inf 2V osup, e (£ (@) — Bn [F(X))}

c>0 C

Proof of the Lemma A.2. For notational ease, in the proof, let us set A(c) = logEp [ecf(X)}
so that the UQ indices are

IE(f(X),P;D") = inf{A(ic)Jr”}.

c>0 C

Note that A(c) is a convex function which we assume to be finite on an interval (d_,d;) with
d_ < 0 < d+. On that interval A(c) is infinitely differentiable and strictly convex. Since we
centered the Qol we have A(0) = A’(0) = 0 and A”(0) = Varp(f).
First note that it is enough to prove the result for A(c) since the result for A(—c) is
obtained by replacing f by —f. We also use the notation fi = ess sup{f(z) — Ep [f(X)]}.
We first claim that automatically

Ads) = lim A(),

where A(dy) may be infinite. By monotone convergence

Ep[1{f20}ecf] 2 EP[l{fzo}edJ]

as ¢ /dy. By dominated convergence

Ep [1{f<o}ecf] N EP[l{f<o}€d+f]

as ¢ /' dy, and the claim follows. A very similar argument shows that A’(¢) also has a limit

as ¢ /dg.
Let
(A.14) Bl = 2O+

We divide this into cases.
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1. fy < oo. In this case A'(c) 7 fy < oo as ¢ — oo and A/(0) < fy. If n = 0, then
the infimum is A’(0) and attained at ¢y = 0 since A(c)/c is an increasing function. If
1 > 0, then

cN(e) = Ae) —n

B/(C; n) = 2

for ¢ > 0. The function cA’(c) — A(c) strictly increases from 0 at ¢ = 0 to some limit
N+ > 0 at ¢ = 0o, and the minimizer is at the unique finite root of cA’(c) — A(c) =7
for n < ny and ¢y = oo for n > n4.

2. fi = co. In this case there are two subcases.

(a) dy = oo. In this case since f, = oo we have A’(c) 7 oo as ¢ — 0o and cA’(c)—A(c) —
o0 as ¢ — 0o. Since 0A’(0) — A(0) = 0, in all cases of 7 > 0 there is a unique root to
c¢N'(¢) — A(c) = n and hence a unique minimizer.

(b) dy < oo. We know that A’(c) converges as ¢  dy to a well-defined left-hand
limit which we call A’(dy) (note that this value could be co). Thus we have that
cN'(¢) — A(c) ranges from 0 at ¢ = 0 to ny = d+A'(dy) — A(dy). For nn € [0,74) there
is a unique minimizer in [0,d ). For n > n; the unique minimizer is at ¢4 = d.

To conclude the proof we note that if ¢4 < d4, then an easy computation shows that

e+ N (ey) = Ales) = R(P., || P) =7,
and thus
B(cq,n) = N(cy) =Ep, [f] - Ep[f(X)],

which proves (A.10) and (A.5). Finally if dy = oo and f is P-a.s. bounded above, then the
infimum is equal to lim. (©) and this establishes (A.13). If dy < oo and N4 < oo, then
the bound takes the form (A.12). [ ]

Appendix B. A simple example for Bayesian networks.

Example B.1. In this example, we focus on the construction of the graph structure and
CPDs of the optimal distributions provided by Theorem 2.1 (b) following the strategy of its
proof. Note that in the next subsection by assuming that each X; is linear Gaussian of its
parents, we also compute the model uncertainty indices given by (2.5) in Theorem 2.1 (a).
Let us consider a Bayesian network as shown in Figure 2(a), with density given by

(B.1) p(z) = p(@1)p(w2)p(x3|wa, 1)p(v4)p(w5|73)p (76|74, ¥3)P(27| 76, T5) (8] T6)-

For a QoI f(Xg), the optimizers in Theorem 2.1 (b) are obtained when the CPDs of X5, X7,
and Xg are the same with the corresponding CPDs of P as these vertices are not ancestors of
Xg while

eicif (ws)

]EP6|{4,3} [eicif(x6):|

(B.2) qi(a:6|x7r(?i) = - p(xgla, 3),
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where ’R’éQi = nl = {4,3}, then for i € ps = {1,2,3,4}

EP [eic:tf(xs)]
B.3 (gl = SHes) T
( ) I ( 4’ ﬂ-fi) IE:P4 [EP6|(4,3} [eiCif(XG):Hp( 4)
since both normalization fiactors on the numerator and denominator depend on X, = { X4, X3}.
So in general we have TrE2 =P U {3} = {3}, i.e., there is a new connection X3 — X, in Q¥,
and

EP4 [EPG\{AI,S} [eiCif(Xa)]]

B4 + — 9 )
(B.4) ¢ (w3]z o+) Eryn [Er [Eroro, [eﬁ:cif(XG)]”p(LU3|$2 1)

where w?i = nf’ = {2,1} since the normalization factors do not contain other variables. We
can similarly do the same for X, and X; to get the entire structure of @* which has another
new connection X; — Xy, and the results are shown in Figure 2(b).

For A ={3,6,7}, we consider a Qol f(X4) = f(X3, X¢, X7), and by Theorem 2.1 (a) the

following holds:

c>0 | ¢ C

(B.5) = Eq+ [f(Xa)l - Ep [f(Xa)],

1 —
I*(f(X3, X6, X7), P; D) = =+ inf [ logEp, [eﬂf(XA)} + "]

where QT are the optimizers with CPDs given by (B.6)—(B.13) and

7
Ep, [e:tcf(XA)] _ / exef@aown) [T plailws, )ds.

i=1

We recall (2.8) of Theorem 2.1 (b), and we obtain the CPDs of Q* and the new parents of
each vertex as follows:

(B.6) qi(l'g’%ﬂ_?i) = p(.%'g‘l'ﬂ_gi) = p(zs|zs),

eﬂ:Cj: fzr,z6,23)
[eFesF (X X0 Xo)] plarls, z5)

(B.7) qi(xﬂwﬁgi) =%

P71{6,5}
with 8 ¢ 79" = 7P U {3} = {6,5,3}. Let {I1,...,l¢} = pL Upl UpE U {3,6} =
{1,2,3,4,5,6}. We start with X as it is indexed by the max{l;: j € 1,...,6}

]EP7| [eicif(XA)]
= w7
B EP()‘MS,P”W? [€icif(X7,X6,X3)]

(B.8) gt (:1?6|1‘7T§;d:) - p(xe|za, x3)
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with 7" C W?i c 7l U {5} = {3,4,5}. Similarly, the CPDs of X1,..., X5 are given by

Ep, p [eicif(XA)]
+ _ 6|mg L 7|7y .
(Bg) q (x5|$ﬂ-?i) - EPs\w57P6|1r5,P7\7r7 [eicif(X7’X6’X3)] p<x5|x3)’
Ep, .. Pojg,Prye, 56 )]
B.10 (4|2 = 2lms” Blme Ty -p(xg),
( ) q ( 4’ 7r4Qi) EP4‘W47P5|,‘.57P6‘,,6,P7‘,,7[eiCif(X7’X6’X3):| p( 4)

EP4|7r4"" Prirn [eiCif(XA)]

+ — .
(B‘ll) q ($3|xﬂ—gi) - EP3‘7737"~’P7|7\'7 I:e:l:cj:f(X77X67X3):| p(x3|x2’x1)7

]EP3| Pﬂ [eicif(XA):l

B.12 x|z o) = " P{T2|r1),
( ) ( | T ) EPz\w27-.-,P7I7r7[eicif(XWXG’XS)] ( | )

]EP2|7r21"' Priry [eiCif(XA)]

+ _ .
(Blg) q (.’Bll.’l?ﬂ_g:t) - EPMW P [eicif(X71X61X3)] p($1),

where the expectations involved in the above formulas are given by (2.4). The corresponding
structures are

(B.14) 7l ca® cal U4} = (3,4},
(B.15) P cx® calu{3} =13},
(B.16) P cad cal ={1,2},
(B.17) P cad calu{i} =1},
(B.18) 79" =P =g

As a result, the structure of the associated graph to Q* may change and, in particu-
lar, the vertices—with potentially extra parents—are Xo, Xy, X5, Xg, and X7 as illustrated in
Figure 2(c).

Appendix C. A simple example on nondirected graphical model which belongs to
ambiguity set (2.1). Let us assume that P is a Gaussian Bayesian network defined on X =
{X1,...,Xg} with graph structure given in Figure 13(a) and CPDs denoted by p(z;|z,r)
defined in section 2.1. An alternative mixed graphical model ) with structure as shown in
Figure 13(b) with joint density given by

8
(C.1) g(x) = q(z1,22) [ [ p(wilzr,)
=3
is considered here. In (C.1), we keep the CPDs p(x;|z,) for i = 3,...,8 the same as the base-
line Gaussian Bayesian network, while p(x1|xr, )p(z2|zy,) is replaced by a bivariate Gaussian
q(x1,x2), with p # 0 being the correlation between X; and Xj, and corresponds to this new
nondirected part of the graph, i.e.,

(C.2) a(z1,22) = Z(l) (21 ) 4 (m22) —2pmg e ma iz,
701,02

where (f1;)i=12 is the mean vector and &; > 0 for i = 1,2. Also Z(61,02) = 2n5102+/1 — p>.
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(a) (b)

Undirected part of
the graph

Figure 13. (a) Ezample of the graph structure of a baseline Gaussian Bayesian network P and the corre-
sponding random variables X = {X1,...,Xg}. The CPDs p(z;|z,p) are defined in section 2.1. (b) An example

of a PGM Q € D" with a new undirected edge is highlighted in orange. The joint probability density between X1
and Xs, q(x1,x2), is a bivariate Gaussian with correlation p # 0. Note that the correlation in the corresponding
part of p(x) of the baseline model is 0.

We now compute the likelihood ratio between the models, i.e.,

dQ _ q(z1,22)
dP p(‘fl"l|:B7"'1)p(‘fz"2|xﬁ2)7

and thus the KL divergence between the models is given by

RIQIP) = B flog (00

b x1|$ﬂ'1)p(m2|$ﬂ'2)

-\ 2 <\ 2 - 2 - 2

01 1 (02 1 (fin — Bio 1 ( iz — B2o

=) +o (2] 5 () 5 (R -1

o1 2 \ o9 2 o1 2 09

1 o1 1 09 1 9
(C.3) “Clog () — Z1og [ 22) - Z1og(1 - p?).
o1 o9
Given a small n > 0, we choose 6; = 04, i = 1,2, and thus (C.3) takes the form

(C.4) r@QIP) = (™ m&ﬂ +2C”‘&ﬁ )

02

Additionally, an appropriately small perturbation around (;y resulting in a small fi; — 8;p can
lead to R(Q||P) < n under a suitable choice of oy, p, i = 1,2. Therefore, we constructed an
example where for small 7’s an ambiguity set can include a model with nondirected structure,
i.e., with both directed and undirected edges.

Appendix D. A simple example for Gaussian Bayesian networks.

Example D.1 (continuation of Example B.1). We assume that CPDs of Example B.1 with
graph structure as in Figure 2(a) are given by

p(as|zg) = N(Bso + Bses, 03), p(z4) = N (Bio, 03),
p(z7|ze, 25) = N (Bro + Brexe + Brsas, 07), plas|ze,x1) = N(Bso + Bsawa + Bs121,03),
p(x6|wa, 23) = N (Boo + Beazs + Boszs, og), p(x2) = N (B2, 03),

p(xs|zs) = N (Bso + Bssws, 03), p(z1) = N (Bio, 7).
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Then p(x) = N (u,C) [49, Theorem 7.3]. As before, the Qol depends on Xg, and for simplicity
we consider f(Xg) = Xg. For ¢ > 0, we compute the MGF of f with respect to P:

2

Ep |5/ — exp {2 (08 + Ba0 + Bis03 + B350 + BaBiot) } =7,

where Cos = 08 + 83,07 + 82303 + 52385503 + 533 85,0% since Ep [Xg] = Boo + BoaBao + Be3 B30 +
BesB32820 + Be331010- We minimize (2.5) in Theorem 2.1 with respect to c:

1 _
Ii(f(XG)’ P§Dn) =+ inf |: long [eicf(Xﬁ):| + 77] — +inf [CCGG + Q] ,
c>0 | ¢ C >0 c

which in turn gives us the optimizer ¢ = , /& and thus

(D.1)
I*(f(Xg), P; D) = +£1/2Co6m = i\/z(ag + 82403 + 2303 + B358%,03 + +B2383,07)n.

By (2.8), the optimizers in Theorem 2.1 are obtained when
(D.2) ¢ (ilr o+ ) = plailer) = N(Bio + 8] 2, 07)

for i = 5,7,8, since they are not ancestors of Xg, and by recalling (B.2)—(B.4) we further
compute the CPDs of the remaining vertices as follows: Since f(Xg) = Xg is linear and all
random variables are depend linearly on their parents, we appropriately pair the factor e*¢+%s
with the exponential of the Gaussian CPD p(l‘g]xﬁg) and get a new quadratic term in the
exponential as well as a term which linearly depends on the parents of Xg. The latter term
is canceled out with the corresponding one in the normalizing factor Epﬁ‘ﬂé; [eiCiX‘i] as the

parents of Xg are given. Precisely,

. e
q ($6|ﬂfﬂgi) = W - p(zlTap)
exp {— (x‘"’_560_’8‘"’”24;;63“;%”‘5)2 + e+ (Boaza + ﬁ63$3)}
B [, exp {_ (xs_/BGO_56473240-_gﬁ63€02:|:0i0'(23)2 + ¢y (Boaza + 563$3)} dag
Thus,
(D.3) qi(x6|x7r?i) = N (Bso + Beawa + Besrs + ctog, U(Zs) ) 7T6Qi =75 ={4,3}.

Similarly, for 4 € pg = {4,3,2,1}

e X _(razBaoFesBasoD? teu(s
g (zalz_ot) = Eryq (] p(xs) = € e eFex (Boszs)
ﬂ4 Ep, [EPGH4,3} [eiCiXGH

_ (wa—BaoFexBazod)?

o2 PV
fX4 e 203 d.q;4 eicj:(ﬁGsl's)
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Using same the same argument as before, we get

+
(D.4) F(2alrgs) = N (Buo £ exof,0f),  af =xf =0.
Furthermore,
+
(D.5) qi(xzs\xﬂ?i) =N (B30 + Bsawa + Bs1a1 £ c403,03) ¢ =xl ={1,2},
+
(D.6) F(w2lrgs) = N (B £ ex03,03),  wf =mp =0,
+
(D.7) qi(:v1|:vﬁ?i) =N (510 + cyof, 0%) , W? =l =9.

:th:Xg]

By using the equation +c1Eqg+[Xg| — logEp[e = 7, the parameters c4+ are given by

2n 2n
(D.8) cy =4/l =+ .
Cet 08 + 8407 + 8303 + 83303205 + B8385,07

Example D.2 (computation of F' for Example D.1). For Example D.1, we compute F'(z3, p3)
with f(Xg) = X¢ and [ = 3 (and thus pg = {1,2,3,4} and p3 = {1,2}) as

F(x3,z))) = F(xs,22,21) = / z6p(x6|ra, 23)p(T4)dredrs

(D.g) Xia,6)

= B0 + Beafao + Bezrs = F(x3).

Example D.3 (computation of 3 and B for Example D.1). Let us now revisit Example D.1
and compute S8y and By of Theorem 3.6 when [ € 77,};, e.g., I =3, and when [ € pi \ m, e.g.,
[ = 2, respectively. In the first case, 3., is perturbed under the constraint R(Q3|7r§z | P3)m,) <

13 or R(Q3r, || Pajr,) < 13, ie., consider Q € D3* or DY, and f(Xg) = Xg. F(x3,,,) is given
by (D.9) and by Theorems 3.2 and 3.3 and (3.7), we can conclude that

(D.10) I*(f(Xe), P; DY) = I*(f(Xe), P D¥p) = £|Bssly/ 2030,

In the second case, P, is perturbed under the constraint R(QQWQ | Pojr,) < m2 or
R(Qar, || P3jz,) < 2. We compute F'(x2,),) = Be0 + P64 310 + P63 330 + Be3 3222 + Be3 P31 510 =
F(x2) and ez = B332-

Appendix E. Model uncertainty for inhomogeneous Markov chains. We consider the
Markov chain models shown in Figure 14 and the Qol f(Xj). Then we only perturb Py;_;
with [ < k, under the constraint R(QllﬂlQHP”l,l) < m. The function F(x;,z,r) defined in
(3.6) depends only on z;, and by Theorem 3.2 we have

, o1 2 Ul
(B1) IGO0 PDY) = 4Bp L |inf [logBa, [ Ok] 1 2]
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Figure 14. An inhomogeneous Markov chain consists of X = {X1,Xo,..., Xn} with p(x) =[], p(xi|zi—1).

Since F(z,z,r) = F(x;) the condition on Theorem 3.3 is satisfied, and therefore we have
I*(f(Xy), P; Dlmp) = I*(f(Xy), P;D;"). To obtain the optimizers in both Theorem 3.2 and
Theorem 3.3, we use (3.8)—(3.9) and thus

(E.2) qF (xilzimy) = plai|xi—1) for all i #1
and
n eici(xl,l)F(xl)
(E.3) g (zi|zi—1) = zy|T-1),

Ep [eici (z1-1)F(Xy) |$l—1] o

where cy(x;_1) are the unique solutions of R(
perturbing Fy;_1, [ > k, with the constraint

i 1HPl|l_1) = 1 for all z;_y. Moreover, by

R(Qyppe | Py=1) < m or R(Quu—1[Pyp-1) < m,

and by Theorems 3.2 and 3.3, we have I*(f(Xy), P;D}") = I=(f(Xy), P;D}'s) = 0. Note
that when the ambiguity set is given by (2.1), it includes also @’s that are non-Markovian.
However, the optimizers are inhomogeneous Markov chains and are provided by Theorem 2.1.

Appendix F. Proof of Lemma 3.1. Since for any @ € D?l, we have 7er = ] = 7j and
Qj|x, = Pjjx, for all j # [, therefore, we can rewrite the bias Eq [f(Xz)] — Ep [f(X)] as

(F.1) :/ f(xk) Q(dxi|x, Q / Flay) ﬁp dl’i‘xwf)
i=1
/Xk XQfIEk H Q(dzi|z, o) // flxr) H P(das|z,r)

Epk U{k} i€pf ULk}
= EQ{k} [f(Xk)] - EP{k} [f(Xk)] ’

If I ¢ pt’, we have 7er =7l = 7 and Q(dz;|zx,) = P(dzi|zy,) for all i € py; therefore Qi =
Py, and thus Eq [f(X)] — Ep [f(X)] = 0. Based on this calculation for @ € D", we stress
that our indices capture the graph structure correctly, e.g., perturbations on disconnected
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vertices do not affect the Qol f = f(X}). Since Q(dxj|zr,) = P(dxj|zy,) for all j # 1, (F.1)
equals

(F2)  Eqlf(X0)] - Ep [f(X0)] = Eqq, [F(X0)] — Epy, [F(X1)
—[ @ I Quslee)Qaleg) SICITEER

Yo2un iep2ULkP\p2U1} iep?
_/ f(zr) H (dxz]:nf) d:vl|x H P( dxz\x
Xopuoa iepf \pf U{1} iepf

—/X f(zy) H P(dzi|z.r) - Qdz|z,0) H P(dwi|z.r)

Pf Lk} i€py \p{ U{1} i€pf

—/X far)  [I  Pldwilzer) - Pldzlz.r) - [ Pldasla.r)

Pk ULk} iepf \pf {1} iepl
:/ [/ F(xy,z,r)Q(dz|z,, Q / F(x,2,0)P(do|2,r ] HP dzi|T,r)
prv X, 1€

=Ep, [Eq, o [F(X0X,p)] —Er, , [F(X0, X,p)]]

Appendix G. KL divergence chain rule for Bayesian networks. In this subsection,
we discuss the KL chain rule [16] in the context of Bayesian networks as it paves the way
for considering suitable ambiguity sets (different from (2.1)) and applying model sensitivity
analysis to each component on a baseline Bayesian network. We recall that Fj,r is the
conditional distribution of X; with given parents X r = zr,, i.e., Pyrr(dz;) = P(dzi|zs,),
and for purposes of clarity and to stress the given values, we write Fjx_ p=t, (dz;) instead.

Definition G.1. Let P and @ be two PGMs with densities p and q, respectively, defined
as in (1.1). For each i € {1,...,n}, we define the conditional KL divergence between Q“X,r‘?

and Py , with given Xﬂ? =T and Xpp = x.r as

(1) ROQix ms 1P, pmap) = [ Tom s Q).

Lemma G.2 (chain rule of relative entropy for PGMs). For any two PGMs P and Q with den-
sities p(x) = [ ;2 p(zilzr) and q(x) = [[i; q(wi|2 @), the KL divergence can be expressed
as

(GQ) Q”P ZEQ QunP |: Qz|X Q”PIX P) )

where R(Qi‘X o ||PZ-|X P) is the conditional KL divergence given in Definition G.1 and Eq oL p

s the expectation with respect to Q 4 defined in section 2 with A = 7er U TI'Z-P .
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Proof.
n Q(dmzlazm@) n
(G.3) R(Q”P)ZAZIOgJWHQ(dx]|x7rQ)
=1 i/ g=1
° Q(dazz\xﬂ?)
:Zl/x Q/X logWQ(dmﬂxm@). H Q(dzj|va)
L e e ' JE{pPUpl}

Appendix H. Schematic for model sensitivity indices. The schematic in Figure 15 refers
to the main theorems of section 3.

Appendix |. Data-informed stress tests for Gaussian Bayesian networks. In this sec-
tion, we explain in detail data-informed stress test analysis when the baseline model P is a
Gaussian Bayesian network. Let P be a Gaussian Bayesian network with conditional prob-
ability densities p(z;|xr,) satisfying p(xi|zx,) = N (Bio + BL xr,, 0?) for some Bio, B, and o2,
i.e., P, is the conditional distribution of X; = ;o + ,BZ.T X, + €. The random variable ¢; has
density pc,(z) = N(0,0?) and comes from fitting data with maximum likelihood estimation.
Let us consider alternative models to P such as

(I.1) Qilm, = Xi = Bio + B} Xn, + &,

where ¢; follows another approximate distributionof the data with density g¢, (). For instance,
we can consider ()¢, with density ¢, as the histogram, that is,

m
hist _ Vk
(L.2) @ (x) = Z Ef(x € B),
k=1
where By, ..., By, are the histogram bins, h is the bin width, n is the number of observations,

and vy is the number of observations in Bj. Alternatively, we can consider the model Q¢,
given by a KDE viewed here as a high-resolution but smooth approximation of the histogram,

namely,
"1 T — X
L3 KDE() =Y — K d
(13 P =3 o (T
k=1
where K (+) is the normal kernel smoothing function with bin width h, and (z1,...,z,) are the

samples of ¢;. Other KDE kernels can be considered here (see [72]) or any other probabilistic
representations of the data in the histogram. Therefore, for given x,,, we have
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X)), X, eX
Ambiguity sets
considering E_::$> (A Pulk
perturbations only w €pp UL
on node I: \
X, NOT L X\ |X FE(f(X), P;6,) =0
o R
K/ | 1 R XX ). M
F(fX), P; 6,) < Ep { inf {7 logEp [e* % |+iJ
1 ——r v >0 L¢ & c
FF(fX), P;Q,) = E, { inf [*I(\g Ep [('7’/ Ko ] +l”
‘ "l e>0le g C

= Egel X)) — EpLf(X)]

Figure 15. A schematic representation of how the set of vertices of a graph can be decomposed according
to the relative position of vertex k that corresponds to the Qol f(Xy), and a vertex | such that perturbations of
Py, are considered. By Lemma 3.1 and Theorems 3.2 and 3.3, the predictive uncertainty given by (3.4) with I
being in different parts of the decomposition varies: The set of vertices is first split as X = (p5) U (p%)¢. The
predictive uncertainty I (f(Xy,), P; D)) over models with only perturbed Py, when 1 € py, is given by (3.7) and
is tight in D}', while perturbation on Py, when | ¢ ot does not affect the QoI and thus I (f(X4), P; Q) =0.
We then decompose the set of vertices pi into {l+ Xp L X,p\n, | X} and its complement. The predictive
uncertainty over DZ’P with 1 in the former set is the same as the one for | € Y., with the difference that it is
tight on DZLP, contrary to the one in the latter set where the bound is not attained and is also not tight.

LR — lo —Zq ;| T, dx;
771 / g ( z‘ 7r,-> ( 1’ z) ?

=/logq$z—ﬁz‘o—5?$m
p(xi — Bio — B an,

(L.4) = /log 4, (7) ¢z, (z)dx .

pei (‘T;)
s —

Based on the above computation, n;" is independent of 7; and hence 1" = ;.

xﬂ—i)
:I:Wi)

q(x; — Bio — BT 2,

Tr,)dx;

Appendix J. Model sensitivity indices for the ORR Bayesian network.

J.1. Calculation of model sensitivity indices. We recall that the optimal oxygen binding
energy is defined as

:cg* = argmax, [min{Ep [yi|zo],Ep [y2|xo]}] .

Copyright (©) by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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We compute Ep [y;|xo] for i = 1,2 by using (7.3) and (7.6) as follows:

Ep [yilzo] = By..0 + Byix(xo + Bs0,0 + Beo,o + Bdo,o)
+ Beio + Bsi0 + Beio + Baio-

Then
(Jl) xg* :/Byz,ﬂ_"ﬁZ_ﬁyhO—/Bl’
ﬁyl,x - Bymx
where
(J.2) Bi = By,.x(Bs0,0 + Beo,0 + Bao,0) + Beio + Bsio + Beio + Baio-

It is a straightforward calculation that for ¢ = 1,2 and [ = €0, d0, s0,el,d1, s1, cl, e2, d2, s2,
and c2,

By.o+ Bi = Ep, [F1] for any 7 and [,
where Fj; = Ep, |, [yilzo] and p(yi|wi, v0) = N(By,0 + Bthlwl,ézi). Hence (J.1) equals

o Ep, [Fial —Ep, [Fi1]
Tox = .
Byhl' - /By2,w

Note that since we compute the model sensitivity indices over DZ”P for any [ € {e0,d0, s0,el, d1,
sl,cl,e2,d2, s2}, the alternative Bayesian networks @) have the same structure as that given
by (7.3), and the same CPDs as the Bayesian network P except from the CPD of w;. Let us
denote its conditional distribution by Q,, (since p,, = 7, = 0) and its CPD by ¢,,. Then

(1.3) 08—l — Eq., [Fi2] — Ep, [Fi2] — (Eq,, [Fi2] —Ep, [Fz,l])’
/Byl,ac - Byrz,;c

which further gives us
I:F(y%PaDZLP)_Ii(yl,P’DlT{LP) Q P Ii(y%P?DZlP)_Iq:(y17P7DZlP)
— S JIO* —Tox > _
/Byl,z Byz,x Byl,x By2,x

In the above inequality, by combining Theorem 3.6 and Table 2 we get (7.9) and (7.10).

Table 1
Outcomes of MLE for the parameters involved in (7.4)—(7.6) for the ORR Bayesian network in section 7.

By1,0 = 0.0595 Be0,0, Beio =0
02y = 0.0329 o2, = 0.0065
Byz,0 = 1.8231 530,0 = —0.0754
Bai,o = —0.0222 og; = 0.0354
Byy.zo = 0.5111 aéo =0.1032
ﬂsl,O = —0.2967 Og1 = 0.0046
Bys.eo = —0.5564 Bs0,0 = 0.0067
Bs2,0 = —0.1209 02, = 0.0054
Beio =0 o2y = 0.0010
0% =0.0347 o2 = 0.0204
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Table 2
The values of By, w, iwolved in p(yilwi, ©0) = N (By,;.0 + Bys oy wis &2.). They are used to evaluate the model
sensitivity indices I (yi, P; DZ’ID), i = 1,2, provided by Theorem 3.6.

Wl = We0, Wdo, Ws0 W) = Wel, Wd1,Ws1,Wecl W) = We2, Wd2, Ws2, Wc2
f=wn @ylvwl = Byi e @ylywz =1 ﬁ:yl,wz =0
f=y Byz,wi = Bys,e Byz,w, =0 Byz,w; =1

2 N T T
Sso —'A(E1
- —-AG
1.5¢ Sel It Wiy Pim) 4+
=
9,
<+
CNE ]
<
2
S 05" ot 0 B
(D‘_ 1 : ' e
1 1 )
b P e Pin)
O o Pl v )
DN/
i ! 1 : !
-0.5 - | | ! 1 1 &= J |
0 0.5 1 1.5 2 2.5

f
AGE, [eV]

Figure 16. Propagation vs. nonpropagation of model misspecification of the Bayesian network vertices wdo
and we1, respectively, to the predictions of the QoI x5+ ; model misspecification is set to n = 1 for both Bayesian
network vertices. First, note that I (y2, P;DI,,) = 0, i.e., the model misspecification of we1 only affects the
prediction of y1, but not ya2 (see Figure 8); therefore the uncertainty of wei only propagates to x5+« through
y1, while I (y1, P;DY,,) is small since wer has a lower variance which is associated with more informative
available data. Thus, it results in a small corresponding uncertainty in x5«. Meanwhile, the uncertainty of wao
propagates to x5« through both y1 and y2, (i.e., the model misspecification of wao affects the predictions of both
y1 and y2), and I (yi, Py DY) is larger since wao has a higher variance (due to insufficient informative data
available). Therefore we have a larger corresponding uncertainty in x5+ predictions, as shown in the figure.

J.2. Propagation of model uncertainties to the Qols. We note the discrepancies in
the propagation of model misspecification to the Qol between different Bayesian network
components, as demonstrated in Figure 9. In particular, in Figure 9 (left) the same uncertainty
(described by model misspecification 7;) is applied on all ORR Bayesian network vertices.
However, not all propagate and affect the same Qol; see Figure 16 for examples of propagation
(22%) and nonpropagation (5% and 0%) of model misspecification to the Qol.
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