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ABSTRACT

We study the problem of single-channel source separation
(SCSS), and focus on cyclostationary signals, which are par-
ticularly suitable in a variety of application domains. Unlike
classical SCSS approaches, we consider a setting where only
examples of the sources are available rather than their mod-
els, inspiring a data-driven approach. For source models with
underlying cyclostationary Gaussian constituents, we estab-
lish a lower bound on the attainable mean-square-error (MSE)
for any separation method, model-based or data-driven. Our
analysis further reveals the operation for optimal separation
and the associated implementation challenges. As a computa-
tionally attractive alternative, we propose a deep learning ap-
proach using a U-Net architecture, which is competitive with
the minimum MSE estimator. We demonstrate in simulation
that, with suitable domain-informed architectural choices, our
U-Net method can approach the optimal performance with
substantially reduced computational burden.

Index Terms— Source separation, cyclostationary signal
processing, deep neural network, supervised learning.

1. INTRODUCTION

Source separation is a well-studied problem with many im-
portant applications in radio-frequency systems, wireless
communication and biomedical signal monitoring [1-4], to
name a few. A common formulation is the blind source sepa-
ration problem, for which perhaps the most popular frame-
work is independent component analysis [5]. Many ap-
proaches rely on some degree of spatial diversity present in
multi-channel observations. In contrast, a particularly chal-
lenging problem of interest is the single-channel (or single-
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sensor) source separation (SCSS). The goal in SCSS is to sep-
arate the latent sources from a single-channel observed mix-
ture. In this regime, the aforementioned algorithms are irrel-
evant due to the absence of spatial diversity. Instead, other
characteristics of the latent sources must be exploited.

Recent efforts demonstrate that machine learning (ML)
techniques can serve as powerful tools for source separation,
even in the single-channel regime, in image and audio coun-
terparts [6-9]. Solutions typically exploit the inherent struc-
ture specific to the signal type. For example, natural im-
ages may be separable by color features and local dependen-
cies [8], whereas speech signals are commonly addressed by
time-frequency spectrogram masking [10-12]. Furthermore,
for time series (1-dimensional) data, if the sources are separa-
ble in time and/or frequency, appropriate spectrogram-based
masking and classical filtering methods can be adopted, e.g.
[13,14]. In contrast, the key challenge is the separation of sig-
nals that overlap (partially/fully) in both time and frequency;
such a setting is not addressed in aforementioned works. Fur-
ther, in such a regime, it is no longer trivial to identify the
properties that are helpful in separating the signals, and what
separation performance is attainable.

One particular type of time series data is the class of cy-
clostationary signals, a relevant model adopted in many of
the earlier mentioned applications (e.g. [15]). Interestingly,
under some conditions, perfect separation of cyclostationary
signals could be achieved despite having components with
overlapping time-frequency spectra [16, 17]. The challenge,
however, is in modeling such cyclostationarities in a way that
properly describes the true statistics of the observed mixtures.
A more realistic scenario is one where the signal model is
unknown, but examples of the signals (by measurements or
generation') are available. Further, despite cyclostationarity
properties, the available examples are usually finite unsyn-
chronized time segments, meaning that they were extracted at
possibly random different “start times”, relative to an arbitrar-
ily chosen time instance. In other words, there are additional
latent variables—the random time shifts—that are unobserv-
able, adding a layer of difficulty to the problem.

In this paper, we study the SCSS problem involving mix-
tures of two signals. Specifically, we focus on the scenario

I'Note that the ability to generate a signal (with some device) does not neces-
sarily mean that one can also analytically characterize its true statistics.



where each component is a randomly time-shifted and scaled
segment from a cyclostationary complex Gaussian process,
a regime in which an analytical form of the optimal estima-
tor, in the sense of minimum mean-square-error (MMSE), can
be derived. Nonetheless, we also highlight the challenges in
implementing the optimal estimator, thereby motivating less
computationally demanding alternatives. We propose a deep
learning (DL) approach to the SCSS problem, and demon-
strate its performance in two representative examples—one
of which is based on real applications in wireless communi-
cations. Our simulations show that the performance of our
proposed DL strategy is competitive to the optimal estimator.

We recognize that many signals of practical relevance
generally depart from the complex Gaussian (otherwise, sim-
ply referred to as Gaussian in this work) model. However, the
analysis involving cyclostationary Gaussian signals allows us
to better understand and characterize the performance of DL-
based methods. In particular, it focuses our attention to the
exploitation of temporal correlation structures of the latent
source components, so as to accurately assess the ability of
ML approaches in capturing such structures. This would shed
light as to how far we are from the optimal performance, and
how to close that performance gap.

2. SCSS PROBLEM FORMULATION

We consider the following model of an observed signal of
length N, which is a noisy mixture of two latent sources,

y=58,+ Kb, Houz e CV, €Y
‘interference’ 2

where s, ,b;, are the (unobservable) independent compo-
nents, k € R is distributed according to some unknown (and
for simplicity, discrete) distribution on K C R, and w is an
additive white Gaussian noise, namely z ~ CN(0, I), such
that o2 corresponds to the variance of the additive noise com-
ponent, w, where 0 denotes the all zeros-vector and I denotes
the identity matrix (with context-dependent dimensions).

Without loss of generality, for the purposes of our discus-
sion, s, is termed the “reference” signal and b,, the inter-
ference. Additionally, we assume that s, and b, have unit
average power; hence, k is related to the inverse square-root
of the signal-to-interference ratio (SIR). The goal in SCSS is
to produce an estimate S,, based on y so that given some
metric d, the value E [d(S,,, s;,)] is minimized. We focus
our attention on the conventional metric d(u, v) = ||u —v||3,
leading to the minimum mean square error (MMSE) criterion.

We focus our discussion on signal components be-
ing segments extracted from cyclostationary Gaussian pro-
cesses. We consider two independent, discrete-time, zero-
mean circularly-symmetric complex Gaussian processes §[-],
b[], with autocovariance functions satisfying

Cs[n, 1] 2 E[5[n] §[n +1]], Csln,l] = Cs[n+ Ny, 1,
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i.e., cyclostationary with fundamental periods N, N, > 1.
We denote the temporal offsets by 7, 7. Hence,

Sr, = [8:.]0],..., 8- [N — 1]]T e CV, sr.[n] £ 3[n+ 74,

and similarly for b,, and b. We consider the case where tem-
poral offsets are random, drawn from a discrete uniform dis-
tribution, i.e., 7, ~ U[0, Ny — 1] and 7, ~ U[0, Ny, — 1], and
assume 75, Tp, §[-], D[] and k are statistically independent.
Consequently, note that s, and b,, are Gaussian mixtures.

As mentioned in Section 1, we are particularly inter-
ested in the case where we do not have full knowledge of
the signal models—the distributions of s and b (and thereby
s;, and b;,) are unknown. Nevertheless, we assume we
have a dataset of M independent, identically distributed (iid)
copies of {(y®,s")}M  allowing for a data-driven ap-
proach. Note that this dataset contains unsynchronized ex-
amples, wherein the corresponding time offsets Téi) and Tb(i)
are unknown. At test time, we assume that given the mixture
y, we may know the type of components s and b present (but
not their signal models); hence, the mixture can be associ-
ated with a corresponding dataset, and in turn, its estimated
statistics and/or learned model.

Under this formulation, an ML approach is to learn a re-
gressor, i.e. to estimate s,, from y. Note that the dimension
of the regression output is the same as that of the input. Thus,
it can be thought of as a transformation or filtering (through
some parametric model) of y to obtain s,_, which is gener-
ally more challenging than a conventional single-output re-
gression problem [18]. We will thus investigate the use of
deep neural networks (DNNs) to learn such a regressor from
data. However, we begin with an in-depth examination of the
SCSS problem through approaches to optimal estimation.

3. OPTIMAL MODEL-BASED ESTIMATORS

We now derive, for several cases, optimal estimators that
achieve the lower bounds for their respective cases. Specif-
ically, the simplified expression of the MMSE estimator re-
veals the challenges in attaining it, but also provides valuable
intuition that informs and justifies our proposed data-driven
methodology for the SCSS problem.

A possible “classical signal processing” approach for this
setting, is a two-step process, where one first estimates the
model parameters, and then adopts MMSE estimation based
on the empirical model. However, estimation of these param-
eters requires synchronization of the given dataset, which can
be a very challenging task in itself. Nevertheless, in this sec-
tion we assume access to an oracle regarding the signal model,
so as to establish a lower bound on MMSE for our problem.

Specifically, in the following we assume oracle knowl-
edge of the signal models—the first and second-order statis-
tics (SOSs) of s and b, and the marginal distributions of 75, 73.
We denote the conditional covariance of s, given 75 by

Cs(1s) £E [s,, 87 |7,] € CVN,



which we highlight that it is a function of 7; likewise, Cp(73)
denotes the conditional covariance of b,,. We denote the en-
tries of C(75) by (Cs(7s))i; = Cs[i + 75,0 — j].

3.1. Case 1: The Optimal Linear MMSE Solution

To obtain the SOS of s, one must account for the uniform
randomness in 7,. Hence, the covariance of s,_ is given by

ZCTS
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Cs=E (s, s8] =E,, [E[s,s"] ] =
Note that this corresponds to a Toeplitz covariance structure,
which is due to the fact that s, [] is a wide-sense stationary
process (unlike §[-]). The same applies for the SOS of b, .
The SOSs of s, and b;, are sufficient for optimal linear
estimation. For the sake of practicality, if we restrict our at-
tention to linear operators, the optimal estimator is given by
Sromise = Cs [Coa+E[52] - Co+ 020 'y, ()
This would indeed correspond to the estimator that achieves
the MMSE among the family of linear estimators. Further,
given a sufficiently large dataset, one can implement an accu-
rate approximation of (2) by replacing the covariance matri-
ces with empirical estimates from the datasets. However, due
to the random time offsets, s,, and b,, are not Gaussian (but
rather, are Gaussian mixtures), and hence the optimal linear
estimator is not the MMSE estimator.

3.2. Case 2: The Oracle MMSE Solution

In this subsection, we develop the optimal solution for the
case in which (7,7, k) are known (or, observable). This
would have been the case if we would have at our disposal
an oracle that provides side information of perfect synchro-
nization to both the reference and interference signals, and the
SIR level . Under this setting, y and s, are jointly Gaus-
sian, hence the optimal solution is given by

Sr, (Ts,Tp,0) = E (s, |y, s, 7, k] = H(7s, T, k)Y, (3)
where
H(rs, 7, k) 2 Cs(7s) [CS(TS) + HQCb(Tb) + U?UI} - 4

is the optimal linear (generally) time-varying filter. Since (4)
is a function of (7, 7y, k), we subsequently refer to (3) as an
oracle-synchronized MMSE solution. Nevertheless, it should
be noted that (3) is not a realizable estimator, as it is a function
of latent, unobservable variables. Also, note that for cyclosta-
tionary signals, (3) can also be represented as a frequency-
shift filter or a cyclic Wiener filter, i.e., expressed as a linear
function of frequency shifted copies of the observation [2,17].

3.3. Case 3: The Optimal MMSE Estimator

In general, the temporal offsets 75, and 73, and the SIR pa-
rameter k, are not known at inference time, and a realizable
estimator must account for these random variables, by ex-
plicit/implicit (non-linear) estimation. However, upon con-
ditioning on these quantities, i.e., considering (4) as fixed (as
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Fig. 1: The U-Net architecture used for SCSS in our simulations.

if it were not a function of y), the resulting optimal MMSE
estimator would also be the linear. With this observation in
mind, the true, realizable MMSE estimator is expressed as

§757MMSE =E [STg ] = E(Tsﬂ'b,ﬁ”y [E [ng Y, Ts, Th, HH
Ny—1 Ny—1
= Z Z Zp TsaTbv"i|y) Stil(rs,mp,5)5 (5)
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which essentially corresponds to the sum of oracle-
synchronized MMSE solutions (3) for each set of parameters,
weighted by the corresponding posterior probabilities given
the observation y. We emphasize that (5), unlike (3), is a le-
gitimate estimator, i.e., a function of the observed data only.
However, the MMSE achieved by (3) serves as a lower bound
of that by (5), by data procecessing inequality of MMSE.

It should be noted that, in cases when the true posterior is
a (Kronecker) delta function, (5) in fact coincides with (3),

p(Ts, To, k|lYy) = O[1s — 72,7 — T, 6 — K] (6)

= Sn MMSE — 37—s

(T35 R )

namely the performance of the oracle-aided solution is
achievable. Indeed, for the noiseless case (0120 = 0), it is easy
to construct examples, where perfect separation is attained.

4. METHODOLOGIES FOR DATA-DRIVEN SCSS

The methods discussed thus far provide an understanding of
the functional structure for the MMSE estimator, in terms of
the (unknown) time offsets and SIR parameters. Nevertheless,
implementing the MMSE estimator may not be possible in
practice, due to the challenges outlined below.

4.1. Challenges with the MMSE Estimator

First, as seen in (5), the MMSE estimator involves the compu-
tation of a posterior term over the latent variables (75, 7p, k).
However, obtaining this posterior becomes computationally
intensive as the space of parameters increases.

Second, (5) also involves a sum of different (condition-
ally) linear operators, each corresponding to a set of parame-
ter values. However, each of these operators involves an in-
version of a large covariance matrix, which is infeasible in
regimes of signals from long observation periods (large V).

NX2



Lastly, and importantly, in practice we do not have ora-
cle knowledge of the signal model, corresponding to the first
and second-order statistics in the case of the Gaussian models.
Instead, we are given many examples, through which we can
obtain empirical estimates of the statistics. However, as men-
tioned, the dataset of the signals is not synchronized. Thus,
obtaining the SOSs of the underlying cyclostationary signal,
C5 and Cj, requires the estimation of the latent variable 7,
and 7, for each example in the dataset, corresponding to the
synchronization of the entire dataset, which is generally an
extremely challenging task of independent interest in itself.

We now show that ML methods can be successfully used
to circumvent the aforementioned issues. Specifically, we
propose the use of DNNSs, trained on unsynchronized datasets,
to solve the SCSS problem. We use two representative exam-
ples to demonstrate our approach, and compare it with the
performance of an optimal MMSE solution that utilizes ora-
cle knowledge. The goal henceforth is to establish a practical
pipeline, and benchmark it against a theoretical lower bound.

4.2. Supervised Separation with U-Net

Given the formulation in Section 2, a natural approach is to
use a DNN to learn a regression model with multivariate out-
put for source separation. We propose to use the so-called “U-
Net” architecture for SCSS (architecture shown in Fig. 1).2
Such DNN was first proposed for biomedical image segmen-
tation [19], but has found its use in other applications, includ-
ing spectrogram-based RF interference cancellation [1] and
audio source separation [6,12]—all of which also correspond-
ing to a multivariate regression setup with the same dimen-
sions on the input and output. Similar to the latter works, we
use 1D-convolutional layers to capture features relating to the
time series data. The U-Net architecture contains downsam-
pling blocks that operate on successively coarser timescales,
and possesses skip connections that combine features at these
various timescales with the upsampling blocks.

To technically handle complex-valued signals, borrowing
inspiration from widely linear estimation [20], we stack the
real and imaginary parts as separate channels to the U-Net.

As these methods are applied to time series signals in
practice, the use of domain knowledge to craft an appropri-
ate neural network architecture may be crucial in attaining
performance gain, as evident in our experiments and architec-
tural choices. For example, we made the intentional choice
of longer kernel sizes on the first convolutional layers. This
further reinforces the relevance of this work, that is in identi-
fying and characterizing DNN architectures under study rela-
tive to the best possible performance. In our experiments, we
observe that kernel sizes that match the effective correlation
length (i.e., timescales in which the covariance magnitudes
are non-negligible) were required to attain the best perfor-
mance. This may be an indication to how some partial, though

2https://github.com/RFChallenge/SCSS_CSGaussian

important, information about the signal model is helpful (or
even essential) in seeking the appropriate DNN architecture.

5. SIMULATION RESULTS

We now consider two examples for SCSS. For each setting,
we train a U-Net to estimate the corresponding signal s,
from the mixture y in an end-to-end fashion, and with no su-
pervision regarding the time-shifts 7, and 7, and the gain &.

In the examples below, we describe how long (but fi-
nite) segments of the processes 3[-], b[-] were generated, from
which N-length segments are extracted to create the datasets.
The training set is processed as such to yield a labeled
dataset of iid copies—mixture and ground-truth reference sig-
nal, {(y@, s))}M, —as is done in the supervised learning
framework. Our training set comprises 10* x |C| pairs of mix-
tures y and ground-truth s, and the validation set comprises
500 x |K| pairs, where the cardinality || is the total number
of levels for x under consideration. Subsequently, we test the
performance across 1000 examples per « level, reporting the
average mean square error (MSE) in dB. Note that varying s
results in different levels of SIR. In our simulations, we as-
sess the separation performance across different SIR levels.
We also compare the performance of using such a neural net-
work against that of the optimal model-based estimators. For
these optimal estimators, « is assumed to be known.

Implementation Details: Keras and Tensorflow 2 are used
to implement and train the U-Net [21, 22]. For training, we
use empirical MSE as the loss function. We also use Adam
optimizer [23] and an exponentially decaying learning rate
schedule, batch size of 32 with shuffled training samples, and
trained for 2000 epochs with early stopping if there is no im-
provement for 100 epochs on the validation set. We train the
neural networks on a computing cluster with Intel Xeon Gold
6248, 192 GB RAM, and a NVidia Volta V100 GPU.

5.1. Signals with Randomly Generated Covariances

We consider (1) with N = 256, Ny, = 11, N, = 5, K cor-
responding to 5 equidistant SIR levels, [—6, 6] dB (|XC| = 5).
The reference and interference signals were generated as

s= Gsa17 b= Gba27

where a;,as ~ CN(0,1), and G, Gy € CN*V, with N =
550, are block-diagonal matrices with repeating N, x Ny and
Ny, x Ny blocks respectively. Each entry in the blocks is drawn
(once) independently from the Gaussian distribution, and is
fixed for the rest of this experiment. Full details on the signal
generation are provided in our Github repository.” Fig. 2(a)
shows the covariance structures of the resulting sources.

Fig. 3 compares the MSE achieved by the U-Net against
that obtained by the linear and the “global” MMSE estima-
tors. We also include the oracle-synchronized MMSE (3),
which, as evident from the figure, is indistinguishable (in
terms of its MSE) from the true, nonoracle MMSE estimator



(a) Simple Cyclostationary Example
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Fig. 2: Visualization of (a sub-matrix of) the covariance matrices for
the signals used in the respective examples.

(5). This occurs when all the mass of the posterior is (ap-
proximately) concentrated at the point of the true values of
(Ts, Tb, K), as in (6).

We observe that a U-Net trained on an unsynchronized
dataset of signals is capable of obtaining results close to the
MMSE performance. This means that the U-Net necessarily
learned a significant part of the model, which enables high-
quality estimation of the reference signal. We reiterate that
the U-Net did not have access to the true statistics of the signal
model or any form of synchronization of the signals during
training and inference. The slight deterioration performance
could be attributed to approximation errors introduced from a
DL-based function approximator, or due to the trade-off from
lack of access to synchronized dataset. Future work entails
identifying factors to close the performance gap.

5.2. Communication-like Waveforms

The problem of SCSS is particularly relevant in the applica-
tion of wireless communications, where we may be interested
in separating multiplex of signals, or extracting a signal-of-
interest while mitigating interference [3,24]. In this example,
we consider two types of signals with SOSs properties iden-
tical to a single-carrier communication waveform and an or-
thogonal frequency division multiplexed (OFDM) waveform,
respectively. The single-carrier signal is modeled as,
o0

> apgln—pNy, (7)

p=—00

3[n] =

where a, ~ CN(0,1), N, is the symbol period, and g[n] is
the root-raised cosine (RRC) filter. Here, we consider a RRC
filter that corresponds to 16 samples per symbol—i.e., Ny =
16—and spans 8 symbols, with roll-off factor of 0.5. This also
corresponds to an example where a cyclostationary signal’s
covariance (Fig. 2(b)) is not block-diagonal, which leads to
additional computational challenges in the matrix inversion.

LMMSE
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Fig. 3: Separation performance of U-Net separator vs. optimal

model-based estimators for waveforms with randomly generated co-
variance structures.
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Fig. 4: Separation performance of the U-Net separator vs. optimal

model-based estimators for communication-like waveforms.

The second source, an OFDM waveform, is modeled as,

[e'e) Nee—1
. 1 sc
bln] = ﬁp;w Zz ape qln — pNy, 1], (8)
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where a, o ~ CN(0,1) for ¢ € L., where L, refers to
the set of nonzero subcarrier indices, and a, = 0 other-
wise, N is the number of subcarriers per OFDM symbol,
Ny, is the cyclic prefix (CP) length, and N, is the OFDM
symbol period, i.e., Ny = N, + Ngp. In our specific ex-
ample, N, = 64, N, = 16, and thus N, = 80. More
details on the signal specifications are provided in our Github
repository.? Fig. 2(b) shows the covariance structures of the
resulting sources, whose cyclostationarity is evident.

We consider segments of length N = 1280, and K corre-
sponding to SIR levels [—30, 3] dB at 1.5 dB steps (|/K| = 23),
namely we focus on the more challenging low SIR regime.
We emphasize that the models (7) and (8) are assumed to be
unknown once we have generated the dataset. Rather, we only
have access to a dataset of unsynchronized samples.

Fig. 4 compares the MSE achieved by the linear MMSE
and the oracle-synchronized MMSE. We note that, for this ex-
ample, the true MMSE curve could not be obtained in practice
due to the size of parameter space, rendering the computa-
tion of the posterior infeasible. Nevertheless, the MSE of the
oracle-synchronized MMSE solution—albeit not a realizable
estimator, as established earlier—serves as a lower bound.

As observed from Fig. 4, the best performing U-Net,
which was trained on unsynchronized data, outperforms the
linear MMSE estimator, and is close to the performance of
the oracle MMSE (e.g., about 1.2 dB away at SIR levels be-



tween —9 and —30 dB). We also highlight that the choice
of U-Net architecture to achieve such a performance benefits
from specific domain knowledge. For example, capturing the
temporal structures on the order of the signals’ effective cor-
relation length yielded significantly improved performance—
for which long kernels on the first layer is a way of doing so.

6. CONCLUSION

We studied the SCSS problem when signal models of the un-
derlying latent sources are unknown, and developed a data-
driven, DL approach as a prospective solution. Further, we
characterized the setup for signals corresponding to segments
extracted from cyclostationary Gaussian processes, and pre-
sented optimal MMSE estimators. We then outlined practical
challenges associated with implementing the MMSE estima-
tor, and through two examples, demonstrate how a trained U-
Net with a careful choice of first-layer kernel size was able
to achieve comparable performance, motivating DNNs as a
competitive, computationally attractive approach.

We reiterate that in this work, the Gaussianity assump-
tion allowed us to have a simplified closed-form expres-
sion for the MMSE estimator (5), and in turn a theoretical
benchmark to compare against. In practice, signals depart
from Gaussianity—for example, digital communication sig-
nals possess symbols from discrete sets. In these cases, the
MMSE estimator is no longer linear that solely depends on
(up to) second-order statistics and higher- statistics can be ex-
ploited to attain performance better than what is attained by
(5). However, an analytical form of the optimal estimator is
less obvious. This strongly motivates learning-based methods
that hold the promise of improving upon implementable, op-
timal model-based estimators by learning those higher-order
structures. Characterization and exploration of such perfor-
mance gains via DL are of high interest for future work.
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