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Abstract—We study the potential of data-driven deep learning
methods for separation of two communication signals from an
observation of their mixture. In particular, we assume knowledge
on the generation process of one of the signals, dubbed signal of
interest (SOI), and no knowledge on the generation process of
the second signal, referred to as interference. This form of the
single-channel source separation problem is also referred to as
interference rejection. We show that capturing high-resolution
temporal structures (nonstationarities), which enables accurate
synchronization to both the SOI and the interference, leads to
substantial performance gains. With this key insight, we propose
a domain-informed neural network (NN) design that is able to
improve upon both “off-the-shelf” NNs and classical detection
and interference rejection methods, as demonstrated in our
simulations. Our findings highlight the key role communication-
specific domain knowledge plays in the development of data-
driven approaches that hold the promise of unprecedented gains.

Index Terms—Blind synchronization, source separation, inter-
ference rejection, deep neural network, supervised learning.

I. INTRODUCTION

The proliferation of wireless devices is leading to an in-
creasingly crowded radio spectrum, and consequently, spec-
trum sharing will be unavoidable [1], [2]. Thus, different wire-
less communication systems will coexist in the same frequency
bands, thereby generating unintentional interferences among
them. In order to maintain high reliability, separation of the
overlapping signals from the received mixture will become an
essential building block in such communication systems.

In the image and audio domains, machine learning tech-
niques have been successfully applied for source separation,
e.g., [3]. These methods usually exploit domain knowledge
relating to the signals’ structures. For example, color features
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and local dependencies are useful for separating natural im-
ages [4], whereas time-frequency spectrogram masking meth-
ods are typically adopted for separating audio signals [5].

For communication signals, if the sources are separable in
time and/or frequency, one can separate them via appropriate
masking and classical filtering methods (see, e.g., [6]). The
key challenge in this domain is the separation of signals
overlapping in both time and frequency when the receiver
is equipped with a single antenna, which inherently implies
there is no spatial diversity to be exploited. This problem is
also referred to as single-channel source separation (SCSS).
In this case, standard approaches exploiting spatial diversity
for blind source separation, such as [7], [8], are irrelevant.

Various methods are available in the literature to perform
SCSS of digital communication signals. A common approach
is maximum likelihood sequence estimation of the target
signal, for which algorithms such as particle filtering [9]
and per-surviving processing algorithms [10] can be used.
However, such methods require prior knowledge of the signal
models, which in practice may not be known or available.

Perhaps a more realistic approach is to assume that only a
dataset of the underlying communication signals is available.
This can be obtained, for example, through direct/background
recordings, or using high fidelity simulators (e.g., [11]), al-
lowing for a data-driven approach. In this setup, deep neural
networks (DNNs) arise as a natural choice. This problem has
been recently promoted by the “RF Challenge” [12].

In this paper, we study the data-driven SCSS problem where
two communication signals overlap in time and frequency, and
the receiver is equipped with one single antenna. We consider
a signal of interest (SOI) whose generation process is known,
and an interference signal with cyclic statistical properties that
are unknown a priori—as is the case in standard protocols.1

This problem is also referred to as interference rejection. As
a performance measure, we consider the bit error rate (BER).

Contributions: We show that temporal nonstationarities
of the signals constitute strong regularities that translate to
better separation conditions. In particular, when such temporal
structures exist, the notion of (time-)synchronization becomes
not only sensible, but advantageous for separation. Based on

1We only assume the cyclic period is known. In practice, provided a dataset
of the respective signal, this parameter can be consistently estimated [13].
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our theoretical results that bind synchronization with MMSE
optimal separation, we propose a data-driven DNN approach
that is BER-superior to the classical methods of demodula-
tion with matched filtering (MF) and interference rejection
with linear minimum mean-square error (LMMSE) estimation
of the SOI. Our proposed DNNs architectures, which can
incorporate explicit synchronization, are inspired by specific
domain knowledge, relevant to digital communication signals.

Notation: We use lowercase letters with standard font
and sans-serif font, e.g., x and x, to denote deterministic and
random scalars, respectively. Similarly, we use x and x for
deterministic and random vectors, respectively; and X and
X for deterministic and random matrices, respectively. The
uniform distribution over a set S is denoted as Unif(S), and
for K ∈ N, we denote SK , {1, . . . ,K}. For brevity, we refer
to the complex normal distribution as Gaussian. We denote
Czw , E

[
zwH

]
∈ CNz×Nw as the covariance matrix of

z ∈ CNz×1 and w ∈ CNw×1 (specializing to Czz for z = w).

II. PROBLEM FORMULATION

We consider the single-channel, baseband signal model of
a noisy mixture of two sources, given by

y[n] = s[n− ks] + ρ
−1/2
SIR b[n− kb] + ρ

−1/2
SNR w[n], n ∈ Z, (1)

where s[n], b[n] ∈ C are assumed to be cyclostationary
processes with known fundamental cyclic periods Ks,Kb ∈ N,
respectively; w[n] ∈ C denotes additive white Gaussian noise,
statistically independent of s[n] and b[n]; and ρSIR, ρSNR ∈ R+.
We refer to the signal s[n] as the SOI, and to b[n] as inter-
ference. The variables ks, kb ∈ Z denote unknown (discrete)
time-shifts with respect to the start of the cyclic periods of s[n]
and b[n], respectively, where the start of the cyclic periods are
chosen arbitrarily to be at n = 0 without loss of generality.
Hence, we assume that ks ∼ Unif (SKs) and kb ∼ Unif (SKb).

Let y , [y[1] · · · y[N ]]T, s(ks) , [s[1− ks] · · · s[N − ks]]
T,

b(kb) , [b[1− kb] · · · b[N − kb]]
T, and w , [w[1] · · ·w[N ]]T.

Then, we may compactly write (1) for N samples as

y = s(ks) + ρ
−1/2
SIR b(kb) + ρ

−1/2
SNR w ∈ CN×1. (2)

We further assume that s(ks) and b(kb) are statistically
independent, which is a reasonable assumption in scenarios
of unintentional interference, for which each source is not
actively jamming or adapting to the other signals present in the
environment. For simplicity of the exposition, we assume that
s(ks) and b(kb) are zero-mean, unit-average-power, i.e., their
(possibly time-varying) variance averages to 1. In this case,
the parameters ρSIR, ρSNR represent the signal-to-interference
ratio (SIR) and signal-to-noise ratio (SNR) at the receiver,
respectively.

The goal is to produce an estimate of s(ks) from y, denoted
by ŝ, so that given some metric `, the cost E[`(̂s, s(ks))] is
minimized. This problem is referred to as SCSS.

As mentioned in Section I, we assume we do not have
precise knowledge of the underlying distributions of the SOI
and the interference. However, we assume the availability

of a dataset of the signals and their respective time-shifts
(s(ks), ks) and (b(kb), kb), allowing for a data-driven ap-
proach. Examples of such datasets can be found in [12], [14].

III. THE GAIN IN SYNCHRONIZATION TO INTERFERENCE

Before we present our approach to the SCSS problem
formulated in Section II, we provide an analysis of an asymp-
totically optimal estimator of s(ks) for the metric `(x, z) ,
‖x − z‖22, which will shed light on key aspects in optimal
separation and the role of synchronization to interference.

In this section, we assume that s[n] and b[n] are Gaussian
processes, which is a reasonable assumption to model some
communication signals, e.g., [15]. In this case, we define2

v[n− kb] , ρ
−1/2
SIR b[n− kb] + ρ

−1/2
SNR w[n], n ∈ Z, (3)

such that v(kb) , [v[1− kb] · · · v[N − kb]]
T ∈ CN×1 is

the “equivalent noise”, which, given kb, is distributed as
CN (0,Cvv). Thus, (2) simplifies to

y = s(ks) + v(kb) ∈ CN×1. (4)

Note that, generally, the equivalent noise term v(kb) is not
temporally white (as opposed to w), and exhibits a potentially
informative statistical structure (e.g., in the form of Cvv) that
can be exploited for enhanced separation performance.

A. Linear minimum mean-square error (MMSE) Estimation

A computationally attractive approach, which already ex-
ploits (some of) the underlying statistics of both of the com-
ponents of the mixture (4), is optimal linear estimation. The
LMMSE estimator [16], given by (assuming det(Cyy) 6= 0)

ŝLMMSE , CsyC
−1
yy y = Css (Css + Cvv)

−1 y ∈ CN×1, (5)

is constructed using the statistics of the mixture that inherently
takes into account the potentially non-trivial structure of Cvv ,
i.e., some form of deviation from a scaled identity matrix.

However, while (5) coincides with the MMSE estimator for
jointly Gaussian processes, it is generally suboptimal due to
the linearity constraint. Specifically, in our case, although the
processes s[n], v[n] are jointly Gaussian, s(ks) and v(kb) are
not even marginally Gaussian. Indeed, s(ks) and v(kb) are
Gaussian mixtures due to the random time-shifts ks, kb. It then
follows that (5) is in fact not optimal, as shown next.

B. MMSE Estimation

The optimal estimator in the MMSE sense is known to be
the conditional expectation,

ŝMMSE , E[s(ks)|y] ∈ CN×1, (6)

whose mean-squared error (MSE) is an achievable lower
bound of the MSE of any estimator of s(ks). However,
in most practical cases, (6) is hard to obtain analytically
and computationally. In our case, by using the law of total

2Since w[n] is white (and therefore stationary), w[n − kb] is also white,
hence without loss of generality we may indeed define (3) with the shift kb.



expectation in (6), the MMSE estimator is given by the more
explicit and convenient form

ŝMMSE = E [E[s(ks)|y, ks, kb]|y]
(?)
= E [̂sLMMSE(ks, kb)|y]

=

Ks∑

ms=1

Kb∑

mb=1

P[ks = ms, kb = mb|y] ŝLMMSE(ms,mb), (7)

where in (?) we have used the fact that, given the time-shifts,
s(ks) and y are jointly Gaussian, and where ŝLMMSE(ms,mb) ,
Css(ms) [Css(ms) + Cvv(mb)]

−1 y, with

Css(m) , E[ssH|ks = m], Cvv(m) , E[vvH|kb = m]. (8)

Put simply, (7) is a weighted average of Ks × Kb linear
estimators, with the posterior probabilities—which are non-
linear functions of the data y—serving as the normalized
weights. Even before taking into account the computation
of the posteriors, the sum in (7) scales with the product of
possible time-shifts Ks×Kb, rendering ŝMMSE often impractical.

As can be seen from (7), synchronization (i.e., knowledge of
the time-shifts) already substantially simplifies the computa-
tion, since, in that case, only the (conditional) linear estimator
ŝLMMSE(ms,mb) is required. In other words, eliminating this
type of randomness from the mixture y grants us lower com-
putational complexity and a simple form of a linear estimator.
Fortunately, a two-step “synchronization-separation” estimator
can approach the MMSE estimator, thus enjoying asymptotic
optimality at a substantially reduced computational burden.

To show this rigorously, for simplicity of the exposition, we
assume hereafter (unless stated otherwise) that the receiver
is synchronized to the SOI,3 namely, ks = 0 and known.
However, the result below can be generalized to the case where
the SOI’s time-shift ks is random and unknown. Let

k̂MAP
b , arg max

m∈SKb
P[kb = m|y] (9)

be the maximum a posteriori (MAP) estimator of ks, and
define the (suboptimal) “plug-in”, MAP-based quasi-linear
MMSE estimator

ŝMAP-QLMMSE , ŝLMMSE(k̂
MAP
b ) ∈ CN×1, (10)

where, for brevity, we use ŝLMMSE(m) to denote ŝLMMSE(0,m).
Furthermore, we define the MSEs, as a function of N , as

ε2MMSE(N) , E
[
‖ŝMMSE − s‖22

]
∈ R+, (11)

ε2MAP-QLMMSE(N) , E[‖ŝMAP-QLMMSE − s‖22] ∈ R+. (12)

We now introduce a “temporal-diversity” condition (TDC)
under which optimal synchronization is increasingly accurate.

Definition 1 (TDC): Let ψN (y, k) , 1
N yHC−1yy (k)y−1. The

(sufficient) TDC is satisfied if there does not exist k ∈ SKb\kb
such that limN→∞ |ψN (y, k)| = 0.

Lemma 1: Under the TDC, for any finite α ∈ R+,

P
[
k̂MAP
b 6= kb

]
= o

(
1

Nα

)
. (13)

3This is a reasonable assumption in most communication systems [17].

Conv1D Conv1D Conv1D Dense

p̂kb

...
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y
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Kb
Ncorr/2

Kb/2 Ncorr/4

Kb/4

Fig. 1: Architecture of the proposed CNN for synchronization.

Proof: See Appendix A.
The theorem below shows that the two-step synchronization-
separation approach (10) is asymptotically optimal.

Theorem 1: Under the TDC, we have

lim
N→∞

ε2MMSE(N)

ε2MAP-QLMMSE(N)
= 1. (14)

Proof: See Appendix B.
In words, Theorem 1 tells us that, when the time-shift can
be uniquely detectable, first optimally synchronizing to the
interference, and then using a suboptimal, quasi-linear estima-
tor, is asymptotically equivalent to MMSE estimation. Further
intuition to this type of behaviour, for maximum-likelihood-
based MMSE estimation, is given in [8, Fig. 1].

C. Synchronization via convolutional neural networks (CNNs)

Although the estimator (10) is attractive in terms of its
MSE performance, it nevertheless requires—both for synchro-
nization and separation—precise knowledge of the underlying
statistics, including the SIR and SNR, which can be hard to
obtain in practice. In particular, without these statistics, it is
impossible to obtain k̂MAP

b . However, when by measurement or
generation, sufficiently large datasets with realizations of s(ks)
and b(kb) are available, a data-driven approach can be taken.

To this end, we leverage the strong capabilities of CNNs for
capturing intricate temporal structures, to train a synchronizer
in a data-driven manner. Specifically, we propose the CNN-
based architecture depicted in Fig. 1, which is trained in a
supervised manner based on a labeled dataset of mixtures and
the underlying interference time-shifts, {(y(i), k(i)b ) : i ∈ SIT },
where IT is the size of the training dataset. We use a
sufficiently large kernel size in the convolutional layers, which
is proportional to the “effective correlation length”—denoted
as Ncorr in Fig. 1—so as to be able to capture the strongest,
most informative temporal structures for estimation. Since the
cyclic period Kb is assumed to be known, we train a model
using the cross-entropy loss, which receives as its input the
mixture y and outputs a vector of probabilities, denoted by
p̂kb ∈ [0, 1]Kb×1. At inference time, we synchronize to the
interference via k̂CNN

b , arg maxm∈SKb eT
mp̂kb (cf. k̂MAP

b in (9)),
where em ∈ RKb×1 denotes the m-th standard basis vector.

In Fig. 2, we show the MSE for ŝLMMSE, ŝMMSE and

ŝCNN-QLMMSE , ŝLMMSE(k̂
CNN
b ), (15)
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Fig. 2: MSE as a function of the SIR (ρSIR) for a fixed SNR (ρSNR) of 20 dB.

for the same communication waveforms described in detail in
Section V, but considering here Gaussian alphabets instead
of the discrete and finite alphabets used in Section V. As
seen, the linearity restriction (5) costs a considerable price in
terms of the compromised performance relative to the lower
bound, given by the MMSE. It is also evident that the MSE
of the CNN-based quasilinear MMSE (QLMMSE) estimator
ŝCNN-QLMMSE coincides with (11), which asymptotically coincides
with the MAP-QLMMSE (12) by virtue of Theorem 1.

All the above motivates our solution approach, and provides
the theoretical foundations (as well as intuition) based on
which we develop our system architecture, presented next.

IV. INTERFERENCE REJECTION VIA DNNS

We now present two supervised learning approaches for
SCSS, used in this work as interference rejection methods.
The first DNN architecture, depicted in Fig. 3, consists of two
main building blocks: (i) CNN to perform synchronization
to the interference, (ii) DNN (U-Net) to perform SCSS.4

The key motivation to perform explicit synchronization is
twofold. First, as explained in Section III-B, due to Theorem 1,
explicit consistent synchronization decoupled from separation,
although suboptimal, can asymptotically (as N → ∞) lead
to optimal separation with reduced complexity. Second, al-
though a sufficiently rich DNN might be able to perform
the synchronization and separation tasks jointly, for a given
architecture, acquiring synchronization knowledge explicitly
helps by reducing the complexity of the separation task. In
Section V-A, we show that this decoupled approach can indeed
lead to performance gains. However, Lemma 1 shows that
there exists a realizable synchronization method that becomes
increasingly accurate as the input size grows. While this
can be exploited for explicit synchronization (e.g., Fig. 3),
it could also imply that, under certain conditions, a DNN
architecture would be able to “implicitly synchronize” and
separate, namely superior performance would be achieved
without explicit synchronization. This is shown in Section V-B.

4To separate the communication signals used in this paper, other DNNs
were implemented, yielding worse performance. Details can be found in the
Github repository: https://github.com/RFChallenge/SCSS DNN Comparison.

Synchronization
CNN

Separation
U-Net
(kb)

Re

Im
Re

Im

y
ŝ

p̂kb

Fig. 3: System architecture of the DNN–based approach with an explicit CNN-
based synchronization block prior to the separation block (U-Net).

The synchronization block is based on the CNN described in
Section III-C (Fig. 1). The DNN for separation is based on the
so-called U-Net (see Fig. 4) [18], which has some properties
that makes it suitable to the specific informative features of
digital communication signals. In particular, its CNN building
blocks allow us to input and process long time intervals (e.g.,
N > 104), which cannot be processed using classical methods.
In turn, processing such long signals allows for exploitation of
temporal structures on a different scale, which can (and does)
lead to substantial performance gains.

As shown in Fig. 4, our DNN approach departs from
standard implementations intended to deal with images (2D
signals). To handle 1D complex-valued, time-series communi-
cation signals, we use 1D convolutional layers. Furthermore,
differently from standard CNN-based architectures that are
designed to deal with images and hence use short kernels
of size ∼ 3 in all layers, our U-Net architecture utilizes a
sufficiently long kernel in the first convolutional layer (denoted
by κ in Fig. 4). This enables to capture the most influential
temporal structures of the SOI and interference, which can
lead to an order of magnitude gains, as demonstrated below.

For training, we input the stacked real and imaginary parts
of y as separate channels to both the synchronization-to-
interference CNN and the separation U-Net. For separation,
if explicit synchronization is performed, we mimic a non-
linear version of (10) by using an instance of the DNN
architecture depicted in Fig. 4 for each possible output of the
synchronization-to-interference CNN block. In other words,
we implement a “conditional separation” block for each pos-
sible time-shift of the interference. If explicit synchronization-
to-interference is not used, the raw unprocessed mixture is
(always) fed into to the same DNN separation block.

The training set is processed as such to yield a labeled
dataset (mixture y and ground-truth reference signal s). As
a loss function, we use the empirical MSE. For full imple-
mentation details, see our Github repository.5

V. NUMERICAL RESULTS

We generate synthetic mixtures y where the SOI bears qua-
ternary phase shift keying (QPSK) symbols using a root-raised
cosine pulse-shaping filter with roll-off factor 0.5, spanning
8 QPSK symbols, and with an oversampling factor 16. The
interference is an orthogonal frequency-division multiplexing

5https://github.com/RFChallenge/SCSS Sync

https://github.com/RFChallenge/SCSS_DNN_Comparison
https://github.com/RFChallenge/SCSS_Sync
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Fig. 4: Architecture of the DNN (U-Net) proposed to perform SCSS of the communication signals. The parameter κ denotes the kernel size of the first layer.

(OFDM) signal. We generate an OFDM signal with symbols
of length 80, bearing 16–quadrature amplitude modulation
(QAM) symbols, with a fast Fourier transform (FFT) size of
64, and a cyclic-prefix of length 16. Details on the signals
generation process are provided in the Github repository.5

A. The Potential Gain of Explicit Synchronization with DNNs

We now compare the performance of the DNN approach
illustrated in Fig. 3 with the performance achieved by classical
methods for detection and interference rejection, i.e., MF and
the LMMSE estimator ŝLMMSE given in (5), and by our proposed
“synchronized” QLMMSE estimator ŝCNN-QLMMSE given in (15).
For the CNN-based synchronization-to-interference methods
(Section III-C), we input 640 samples of the mixture y to the
CNN. The input size to the separation U-Net is N = 10240.

In Fig. 5, we compare the performance in terms of BER
as a function of the SIR in a noiseless setting. Specifically,
we depict in gray the MF approach. In blue, we depict the
LMMSE (̂sLMMSE in (5)) computed using blocks of length 320.6

In red, we depict the CNN–QLMMSE approach (̂sCNN-QLMMSE

in (15)), also using blocks of length 320. Here, we explicitly
synchronize to the interference signal, and exploit this to
obtain “aligned statistics” (8) for each possible time-shift kb. In
green, we depict the performance of the U-Net approach when
there is no explicit synchronization, i.e., the “Synchronization
CNN” block in Fig. 3 is removed. Finally, we depict in black
the DNN approach including both the synchronization and
separation blocks, as described in Fig. 3, denoted as CNN–U-
Net. Every described approach includes a last MF step before
hard decoding based on the minimum Euclidean distance rule.

As can be observed, by only applying a MF to the received
signal y, which is optimal under white Gaussian noise, we
do not exploit any temporal structure of the (non-Gaussian)
interference. Hence, as expected, we obtain the worst per-
formance. It is also evident that the LMMSE approach—
optimal for Gaussian signals—without explicit alignment of
the signal statistics via synchronization, is unable to exploit the
underlying temporal nonstationarities, and accordingly yields

6For non-stationary processes, the required inversion of Cyy is computa-
tionally impractical for large N , as it is generally of complexity O(N3).

approximately the performance obtained by only applying a
MF to the received signal y. However, by explicitly synchro-
nizing to the interference signal using the CNN described
in Section III-C, we can now use the conditional covariance
of the interference for each possible time-shift kb to obtain
ŝCNN-QLMMSE, which already leads to a significant performance
gain. For example, for a BER of 10−3, the CNN–QLMMSE
approach requires an SIR of −6 dB, while the MF and the
LMMSE approaches require −4 dB. Even though by explicitly
synchronizing to the interference we can obtain significant
gains, we recall that by using (quasi-)linear processing we
can only exploit up to (conditional) second order statistics.

Since we consider digital communication signals, further
gains can be achieved by exploiting high-order statistics
and the “discrete nature” of these signals. This is precisely
achieved by our proposed DNN-based approaches (green and
black). First, it is observed that a U-Net without prior explicit
synchronization already outperforms the CNN–QLMMSE ap-
proach for most of the considered SIR values. The perfor-
mance of the U-Net is further improved with explicit syn-
chronization, using the block described in Fig. 1, as shown in
Fig. 3. In this case, a BER of 10−2 is obtained at an SIR level
of −17 dB, while the U-Net without explicit synchronization
requires −12 dB, and the CNN–QLMMSE approach requires
−10.5 dB. Thus, for a given architecture with limited capacity
(parametrization power), decoupling synchronization and sep-
aration can lead to considerable gains, which enables reliable
communication in the presence of strong interference.

B. Gains from Explicit-Synchronization-Free Architecture
As mentioned in Section IV, a plausible interpretation of

Lemma 1 is the following. When the input mixtures are suf-
ficiently long, an explicit-synchronization-based architecture
may not be required (or even provide superior performance),
since the data is “very informative” with respect to the under-
lying time-shift. This essentially makes direct separation (i.e.,
an “implicit” synchronization approach) potentially preferable.
Our best result up to date is achieved by directly inputting
mixtures of length N = 40960 to the U-Net depicted in Fig. 4.

Fig. 6 shows the performance of the U-Net scheme de-
scribed in Fig. 4 (U-Net2) where we input two replicas of the
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QLMMSE interference rejection (blocks of length 320); and the data-driven
U-Net approach with and without synchronization to the interference.
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Fig. 6: BER as a function of the SIR for the noiseless case and SNR=
{10, 20} dB, for MF (noiseless only), QLMMSE interference rejection
(blocks of length 320), and the CNN–U-Net approach described in Fig. 3.

mixture y, which provides the first layer with more diversity.
We consider three different SNR levels of white Gaussian
noise: ρSNR ∈ {10, 20,∞} dB. Specifically, we compare the
performance of the DNN solution with the performance of the
CNN–QLMMSE approach (computed using blocks of length
320) and the MF approach, which is only plotted for the
noiseless case for the sake of clarity. Clearly, for all SNR
levels, the U-Net2 approach outperforms the CNN–QLMMSE
and MF approaches. However, as expected, the smaller the
SNR, the smaller the gap between them. For example, for a
BER of 10−3, the gain of the U-Net2 approach compared to
the CNN–QLMMSE is roughly 7 dB in the noiseless case,
4 dB for an SNR= 20dB, and 1.8 dB for an SNR= 10dB.

VI. CONCLUSIONS AND OUTLOOK

We study the SCSS problem with a focus on its application
to interference rejection in digital communication. For Gaus-
sian signals, we prove that a decoupled system architecture
of synchronization followed by separation is asymptotically
optimal in the MMSE sense. Consequently, since the optimal
system can be impractical for implementation purposes, we
propose a computationally attractive alternative with negligible
performance loss relative to the optimal system. For (non-

Gaussian) signals, we demonstrate in simulations that the
proposed DNN-based data-driven approach can exploit the un-
derlying temporal structures of the signals, thus leading to sig-
nificant gains in terms of BER, and in particular, outperforms
classical methods. Extensions of this work should focus on
understanding how and when to use explicit synchronization
in the context of SCSS with DNNs.

APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, we shall use the following lemma.
Lemma 2: For ψN (y, k), in Definition 1 (TDC), we have,

E
[
eτψN (y,kb)

]
=
(
1− τ

N

)−N
· e−τ , ∀τ < N. (16)

Proof of Lemma 2: First, recall y|kb ∼ CN (0,Cyy(kb)),
where Cyy(kb) = Css(0) + Cvv(kb). Using the Cholesky
decomposition, we write Cyy(kb) , Γy(kb)Γ

H
y (kb), where

Γy(kb) ∈ CN×N . Then, conditioned on kb, we have

ψN (y, kb) + 1 =
1

N
yHC−1yy (kb)y (17)

=
1

N
yHΓ−Hy (kb)Γ

−1
y (kb)y (18)

=
1

N

(
Γ−1y (kb)y︸ ︷︷ ︸

,u(kb)

)H
Γ−1y (kb)y︸ ︷︷ ︸

=u(kb)

(19)

=
1

N
‖u(kb)‖22, (20)

where u(kb)|kb ∼ CN (0, I) is a white Gaussian vector. Thus,

E
[
eτψN (y,kb)

]
= E

[
E
[
eτψN (y,kb)|kb

]]
(21)

= E
[
E
[
eτ(

1
N ‖u(kb)‖22−1)|kb

]]
(22)

= E
[
E
[
e
τ
N

∑N
n=1 |un(kb)|2 |kb

]]
e−τ (23)

= E

[
N∏

n=1

E
[
e
τ

2N |
√
2un(kb)|2 |kb

]]
e−τ(24)

∀τ<N
= E

[
N∏

n=1

(
1− τ

N

)−1
]
e−τ (25)

=
(
1− τ

N

)−N
· e−τ , (26)

where we have used the law of total expectation in (21); the
conditional statistical independence of the elements of u(kb)
(given kb) in (24); the fact that {|

√
2un(kb)|2 ∼ χ2

2}Nn=1,
namely all the squared absolute-valued elements of u(kb),
given kb, are chi-squared random variables with two degrees
of freedom; and, accordingly, that the moment generating
function of a random variable q ∼ χ2

2 is E[eτ̃q] = (1−2τ̃)−1,
for all τ̃ < 1

2 , in (25), where in our case τ̃ = τ/2N , hence
the condition on τ in (24)
Equipped with Lemma 2, we now prove Lemma 1.

By definition, the MAP estimator has the lowest error
probability. Therefore, to show (13), it is sufficient to show that



there exists another estimator of kb, whose error probability is
o(N−α) for any finite α ∈ R+, independent of N . For this,
let us consider the estimator,

k̂b , arg min
m∈SKb

|ψN (y,m)| . (27)

In words, as N →∞, the error probability of (27) is governed
by how far is |ψN (y, kb)| from zero, since from the TDC,
@k ∈ SKb\kb : limN→∞ |ψN (y, k)| = 0, whereas

lim
N→∞

ψN (y, kb) = E [ψN (y, kb)] (28)

= E [E [ψN (y, kb)|kb]] (29)

=
1

N
E
[
E
[
‖u(kb)‖22|kb

]]
− 1 = 0, (30)

where we have used (20), u(kb)|kb ∼ CN (0, I), and (28)
follows from the fact that Var(ψN (y, kb)) = 1/N , which can
be shown in a similar fashion to (28)–(30).

Formally, the error probability of this estimator is given by,

P
[
k̂b 6= kb

]
= P

[
|ψN (y, kb)| > min

m∈SKb\kb
|ψN (y,m)|

]
.

(31)
We now show that the probability that ψN (y, kb) is bounded
away from zero decreases in the desired rate. Clearly, for any
a > 0, we have

P[|ψN (y, kb)| > a] = P[ψN (y, kb) > a] (32)
+ P[ψN (y, kb) < −a] . (33)

Using the Chernoff bound, we have

P[ψN (y, kb) > a] ≤ E
[
etψN (y,kb)

]
e−ta , B1(t, a), (34)

P[ψN (y, kb) < −a] ≤ E
[
e−tψN (y,kb)

]
e−ta , B2(t, a). (35)

Using Lemma 2, it follows that

B1(t, a) =

(
1− t

N

)−N
· e−t(1+a), ∀t < N, (36)

B2(t, a) =

(
1 +

t

N

)−N
· et(1−a), ∀t > −N. (37)

Minimizing B1(t, a) and B2(t, a) with respect to t and choos-
ing a = N−(0.5−ε) for some 0 < ε < 0.5, we obtain

min
t<N

B1(t,N
−(0.5−ε)) =

(
1 +

1

N (0.5−ε)

)N
e−N

0.5+ε

(38)

, B∗1 [N ], (39)

min
t>−N

B2(t,N
−(0.5−ε)) =

(
1− 1

N (0.5−ε)

)N
eN

0.5+ε

(40)

, B∗2 [N ]. (41)

Finally, as for any α ∈ R+ and any δ > 0 independent of N ,

lim
N→∞

Nα+δB∗1 [N ] = lim
N→∞

Nα+δB∗2 [N ] = 0, (42)

it follows that for any α ∈ R+ independent of N ,

P
[
|ψN (y, kb)| >

1

N0.5−ε

]
= o

(
1

Nα

)
(43)

=⇒ P
[
k̂b 6= kb

]
= o

(
1

Nα

)
. (44)

APPENDIX B
PROOF OF THEOREM 1

From Lemma 1, we have the following corollary.
Corollary 1: Using (13), we have

E
[
P
[
k̂MAP
b 6= kb|y

]]
= o

(
1

Nα

)
, (45)

E
[
P
[
k̂MAP
b = k|y

]]
= o

(
1

Nα

)
, ∀k ∈ SKb\kb. (46)

The roadmap for the proof of the theorem is as follows:
• Step 1: Express the optimality gap between the MMSE

and MAP-based QLMMSE estimators as a function of
the error probability of the MAP synchronizer k̂MAP

b .
• Step 2: Express the MMSE (11) as a sum of the MAP-

based QLMMSE (12) and the expected squared norm of
the optimality gap, also known as the “regret”.

• Step 3: Show that the regret is upper bounded by terms
that decay polynomially fast, for any fixed polynomial
rate (using Lemma 1).

We now prove Thoerem 1. Let us write the the MMSE
estimator (6), explicitly, using (7), in terms of the MAP-based
QLMMSE estimator (10), as (recall ks = 0, by assumption),

ŝMMSE =

Kb∑

mb=1

P[kb = mb|y] ŝLMMSE(mb)

=

Kb∑

mb=1

mb 6=k̂MAP
b

P[kb = mb|y] ŝLMMSE(mb)

︸ ︷︷ ︸
,δ(y)

+ P
[
kb = k̂MAP

b |y
]
ŝLMMSE(k̂

MAP
b ).

(47)

Using (47), we define the optimality gap (vector),

∆(y) , ŝMMSE − ŝLMMSE(k̂
MAP
b ) = ŝMMSE − ŝMAP-QLMMSE (48)

= δ(y)− P
[
kb 6= k̂MAP

b |y
]
ŝMAP-QLMMSE. (49)

Let us proceed to the second step of the proof. For short-
hand, let eMAP-QLMMSE , ŝMAP-QLMMSE − s, and let us first write
the MMSE in terms of the estimation error eMAP-QLMMSE and the
optimality gap ∆(y) as,

E
[
‖ŝMMSE − s‖22

]
= E

[
‖ŝMMSE − ŝMAP-QLMMSE + ŝMAP-QLMMSE − s‖22

]

(50)

= ε2MAP-QLMMSE(N)− E
[
‖∆(y)‖22

]
, (51)

where we have used (48) in (50), and the well-known orthog-
onality property of the estimation error in MMSE estimation



to any function of the measurements in (51). Expanding the
first term, we have,

E
[
‖∆(y)‖22

]
=

E
[
‖δ(y)‖22

]
+ E

[
P
[
kb 6= k̂MAP

b |y
]2
‖ŝMAP-QLMMSE‖22

]

− 2<
{
E
[
P
[
kb 6= k̂MAP

b |y
]
δH(y)̂sMAP-QLMMSE

]}
.

(52)
We now show that (the magnitude of) each of the terms in
(52) is bounded. It will then follow that the expected squared
norm of the optimality gap, E

[
‖∆(y)‖22

]
, is also bounded.

Starting with the first term in (52), we have,

E
[
‖δ(y)‖22

]
=

N∑

n=1

E
[
δ2n(y)

]
= (53)

N∑

n=1

E







Kb∑

mb=1

mb 6=k̂MAP
b

P[kb = mb|y] ŝLMMSE,n(mb)




2
 . (54)

Focusing on one element of the sum in (54), we have,

E







Kb∑

mb=1

mb 6=k̂MAP
b

P[kb = mb|y] ŝLMMSE,n(mb)




2
 ≤ (55)

Kb∑

m1=1

m1 6=k̂MAP
b

Kb∑

m2=1

m2 6=k̂MAP
b

E
[
P[kb = m1|y]2 P[kb = m2|y]2

] 1
2 ·

E
[
ŝ2LMMSE,n(m1)̂s

2
LMMSE,n(m2)

] 1
2 ≤ (56)

Kb∑

m1=1

m1 6=k̂MAP
b

Kb∑
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m2 6=k̂MAP
b

E
[
P[kb = m1|y]4

] 1
4E
[
P[kb = m2|y]4

] 1
4 ·

E
[
ŝ2LMMSE,n(m1)̂s

2
LMMSE,n(m2)

] 1
2 ≤ (57)

Kb∑

m1=1

m1 6=k̂MAP
b

Kb∑

m2=1

m2 6=k̂MAP
b

E [P[kb = m1|y]]︸ ︷︷ ︸
o( 1
N4α )

1
4E [P[kb = m2|y]]︸ ︷︷ ︸

o( 1
N4α )

1
4 · (58)

E
[
ŝ2LMMSE,n(m1)̂s

2
LMMSE,n(m2)

] 1
2

︸ ︷︷ ︸
O(1)

= (59)

o

(
1

Nα

)
, (60)

where we have used the Cauchy-Schwarz inequality repeatedly
in (55) and (56), the following (almost trivial) observation,

P[z = z]
β ≤ P[z = z] , ∀β ≥ 1, (61)

in (57), and (46) in (58). Since (54) is a sum of N terms as
in (55), we obtain

E
[
‖δ(y)‖22

]
= o

(
1

Nα−1

)
. (62)

Moving to the second term in (52), we have,

E
[
P
[
kb 6= k̂MAP

b |y
]2
‖ŝMAP-QLMMSE‖22

]
≤ (63)

E
[
P
[
kb 6= k̂MAP

b |y
]
‖ŝMAP-QLMMSE‖22

]
≤ (64)

E
[
P
[
kb 6= k̂MAP

b |y
]2] 1

2

E
[
‖ŝMAP-QLMMSE‖42

] 1
2 ≤ (65)

E
[
P
[
kb 6= k̂MAP

b |y
]]

︸ ︷︷ ︸
o( 1
N2α )

1
2E
[
‖ŝMAP-QLMMSE‖42

]
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O(N)

1
2 = o

(
1

Nα−1

)
,

(66)

where we have used (61) in (63) and (65), the Cauchy-Schwarz
inequality in (64), and (45) in (66). As for the magnitude of
the last term in (52), we similarly obtain,

∣∣∣<
{
E
[
P
[
kb 6= k̂MAP

b |y
]
δH(y)̂sMAP-QLMMSE

]}∣∣∣ ≤ (67)
∣∣∣E
[
P
[
kb 6= k̂MAP

b |y
]
δH(y)̂sMAP-QLMMSE

]∣∣∣ ≤ (68)

E
[
P
[
kb 6= k̂MAP

b |y
]2] 1

2

E
[∣∣δH(y)̂sMAP-QLMMSE

∣∣2
] 1

2 ≤ (69)

E
[
P
[
kb 6= k̂MAP

b |y
]]

︸ ︷︷ ︸
o( 1
N2α )

1
2E
[∣∣δH(y)̂sMAP-QLMMSE

∣∣2
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1
2

= (70)

o

(
1
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)
, (71)

where we have used, again, the Cauchy-Schwarz inequality in
(68), (61) in (69), and (45) in (70). We note in passing that
the term on the right in (70) may be bound more tightly, but
this is not necessary for the following steps of this proof.

We have established upper bounds on the magnitudes of the
terms in (52). Hence, using (62), (66) and (71), we now have

E
[
‖∆(y)‖22

]
= o

(
1

Nα−1

)
, (72)

which, together with (51), yields

ε2MMSE(N) = ε2MAP-QLMMSE(N) + o

(
1

Nα−1

)
. (73)

By the definition of the MMSE estimator, the (trivial) upper
bound

ε2MMSE(N) ≤ ε2MAP-QLMMSE(N) =⇒ ε2MMSE(N)

ε2MAP-QLMMSE(N)
≤ 1 (74)

holds for any N ∈ N+. Therefore, and since (73) hold for any
α ∈ R+, we can always choose some α to have

ε2MMSE(N)

ε2MAP-QLMMSE(N)
= 1− o

(
1

Nα

)
, (75)

where we used ε2MAP-QLMMSE(N) = O(N), proving the theorem.
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