2306.16735v1 [cs.IT] 29 Jun 2023

arxiv

Comparing Poisson and Gaussian channels
(extended)

Anzo Teh and Yury Polyanskiy
EECS, MIT
Cambridge, Massachusetts
USA
{anzoteh, yp} @mit.edu

Abstract—Consider a pair of input distributions which after
passing through a Poisson channel become c-close in total varia-
tion. We show that they must necessarily then be 2-5°M) _close
after passing through a Gaussian channel as well. In the opposite
direction, we show that distributions inducing e-close outputs over
the Gaussian channel must induce ¢! 7°()close outputs over the
Poisson. This quantifies a well-known intuition that “smoothing”
induced by Poissonization and Gaussian convolution are similar.
As an application, we improve a recent upper bound of Han-
Miao-Shen’2021 for estimating mixing distribution of a Poisson

mixture in Gaussian optimal transport distance from p 0o
to n—0-25+o(1)

I. INTRODUCTION

Fix three positive parameters a, o,y > 0 and consider fwo
channels with a common input space X = [0, a]. The first
channel, denoted Gsn,, acts on input X = x( by outputting
Yo ~ N(:UO, 02). The second channel, denoted Poi., acts by
outputting Yp ~ (Poi)(yxo). Note that the output spaces
of these two channels are very different. For the first one
Ys € R and for the second one Yp € Z,. When X ~ 7
we denote by Gsn, o 7 and Poi, o 7 the laws of Yz and Yp,
respectively. Despite the fact that these probability measures
live on different spaces, we can view either of them as a
kind of “smoothed” version of m, which destroys small local
variations in 7. One may wonder, thus, whether one can
perturb a fixed 7 in such a way that the perturbation, while
invisible after passing through Poisson channel, is apparent
after passing through the Gaussian one. In this work, we
answer this in the negative and provide quantitive bounds.
Specificially, we show that whenever two measures m; and
w2 have total variation distance e after Poisson smoothing,
they must necessarily also be close after Gaussian smoothing
(within total variation almost O(/€)), and an even better
bound in the opposite direction. Informally speaking, this
demonstrates that the information embedded in local variations
of X is destroyed similarly by both channels.

Besides independent interest, our results have various ap-
plications. One could be in the domain of covert communica-
tion [1], where coded distribution is supposed to have low total
variation distance from a pure noise (our result compares these
tasks over two channels). However, our original motivation lies
in the domain of Gaussian optimal transport (GOT) introduced

in [2]. We recall that a o-GOT distance is defined as

Wi (v, 1)
= gnf {E[|[A—B|]: A~ Gsn, ov,B ~ Gsn, o u}, (1)
A, B

with infimum over all possible joint distributions P4 g with
given marginals. When o = 0 this corresponds to the standard
Wasserstein distance and is denoted by W; without the su-
perscript. It is known that estimating a distribution (supported
on [0,1]%) in Wasserstein distance is rather slow (typically, at
rate n~ /¢ from n iid samples). If, however, one is interested
in only recovering distribution up to features of scale o, then
estimation metric could arguably be replaced by Wl(a). It turns
out that estimating in the latter can be done at much faster
rates.

One example of this phenomena, and a second motivation
for this work, is a result of [3], who showed that estimating 7
from 7 iid samples of Poi, o7 while essentially impossible [4]
in Wy (rate being polylog(n)) can be done in GOT at a
polynomial rate of (almost) n~%1. Our channel comparison
analysis paired with a recent bound of [5] improves the
estimate to (almost) n=1/4,

From the technical side, our innovation is bringing the
complex-analytic tools, previously used for Poisson-type prob-
lems in [6]-[9] to bear on this channel comparison question.
With this brief outline, we proceed to formal statements next.

Notation. < and 2 denote inequalities up to absolute
constants (in particular, these constants do not depend on the
problem parameters a, o). Similarly, Oq (1) and 04,6.~(1)
denote quantity that stays bounded or vanishes, but depends
on a,o,v. log denotes a base-e logarithm. When doing sum-
mation or integral, we will denote 7(¢) as the probability mass
(or density) function of distribution 7 at .

II. MAIN RESULTS

Throughout the paper, we restrict ourselves to priors of
bounded support. That is, we denote P([0, a]) the set of all
probability distributions supported on [0,a]. In addition to
Wl(a), W1 that were already defined, we also recall definition
of TV and Hellinger for two distributions P, () as follows [10,

(7.3), (1.5)].
N dP 1
TV(P,Q) 2 EQH@ - 1H = Q/IdP— dQl, ()
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A. Comparison of Poisson and Gaussian channels
Theorem 1: There exists ¢ = ¢(a,0,) > 0 such that for
any 71,7 € P([0,a]) we have
TV(Poi, o m,Poiyom) < e
= TV(Gsn, o7, Gsn, o m2) < c(a,o,v)Veta,o~(€)
where t(w(e) = ¢°M) as ¢ — 0, and more explicitly, we have
b (0) —
a0~ (€) = e
50, log 65
In the opposite direction, we have the following result.

Theorem 2: There exists ¢ = ¢(a,0,7) > 0 such that for
any 71, T € P([0,a]) we have

1 —1 2y Le
(loga og(g )—log(v) +0(1))1og’£€

TV(Gsn, o1, Gsn, o) < €
— TV(POI.Y ) 1, POi'Y o 7T2) S 666370\/@'

Remark 1: We consider a simple example on how TVs of
Gaussian and Poisson mixtures behave. Let 7 = d; and 79 =
d¢4c for some small ¢ > 0, and 0 < ¢t < a — ¢, where § is
the dirac-delta distribution. Then TV(N(¢,1),N (¢t +¢€,1)) =
€- (\/%7 + o(1)); while

exp(—t)
2
with (a) by comparing the PMF at 0 and (b) by [11, (2.2)].
Since the TV of both channels are of O(e), the exponent of €
in Theorem 1 and Theorem 2 cannot exceed 1.

(1— exp(—€)) 2 TV(Poi(t), Poi(t + ¢)) < ¢

B. Application to Gaussian optimal transport

Next, we discuss statistical applications of the results above.
Consider the problem of estimating the distribution 7 sup-
ported on [0, a] from n iid indirect observations Yp ~ Poi(X),
X ~ . Here we denote the shorthand notation Poi £ Poiy.
One can pose different questions related to estimating 7. For
example, while estimating 7 in TV is impossible, it can be
estimated, for example, in Wasserstein W7 distance, albeit at
a slow rate. Specifically, [3] and [4] show that

log log n)

logn @)

inf sup E[Wi(m, @)= 9,1(
™ 7eP([0,a])

Despite the poor performance of estimation of mixing dis-
tribution 7 in this nonparametric inverse problem, estimation
of the mixture distribution Poi o m can be done at an al-
most parametric rate. Several different estimators 7, including
Non-Parametric Maximum Likelihood Estimator (NPMLE),
minimum Hellinger distance and minimum Xz-distance, were
shown by [5] to achieve an estimation rate (in Hellinger
distance) given by

I
sup E[H?(Poio,Poio )] < Oa(ﬂ) , (5)
<eP((0,a]) nloglogn

1
, be =log —.
€

where the Hellinger squared distance H? was defined above. It
was shown previously in [12, Appendix E] that this estimation
rate cannot be improved. A previous result by [13, Proposition
3.1] also shows convergence of x(Poi o 7||Poio7) at the rate
of faster than n~(*/2=7) for any 7 > 0.

Finally, estimation under the GOT distance (1) was consid-
ered recently. Specifically, [3, Theorem 3.1.] states that for any
0 < ¢ < 0.1, there exists a constant C' = C(o, a,¢) such that
the NPMLE solution 7 satisfies

sup  E[W\(x,#)] < Cnc. (©)
w€P([0,a])

We note that [3] presents results for non-Poisson channels as
well, but for the Poisson channel ¢ = 0.1 — o(1) is the rate
obtained therein, cf. [3, Remark 3.2].

Here we improve this result as follows.

Corollary 2.1: For any 0 < ¢ < i, there exists a constant
C = C(o, a, ¢) such that the NPMLE solution 7 of the Poisson
mixture attains rate

sup E[Wl(g) (m, )] < Cn™°. (7
weP([0,a])
Furthermore, if ¢ < o2+, then the right-hand side can be
replaced with n—'/*Polylog(n).

We only sketch the main steps here; the complete proof is
in Appendix A. First, by the standard bounds, e.g. [10, (7.20)]
we have TV(P,Q) < H(P,Q) and thus by Cauchy-Schwarz
and (5) we have

. . 1 logn
sup E[TV(Poiom,Poio#@)] = Oy —= - 4| —=—
7eP([0,a]) [TV ) Vn loglogn

Next, we leverage Theorem 1 to get:

sup  E[TV(Gsn, o 7, Gsny 0 7)] = Ou.o (n*1/4+°<1>)
w€P([0,a])

(®)
which, in the case where a < o7, n°(!) is actually Polylog(n)
given that ¢4, (€) in Theorem 1 is Polylog(1).

For the next step we need the following estimate, to be
proven in Appendix A.
Lemma 3: There exists ¢; = c¢1(a,0) such that for all

71,72 € P([0,a]) and for all § > 0 we have!

pu 1
TV(Gsnyomy, Gsnyom) < § = W1( )(7r1,7r2) < c¢160log 5

©)
Applying Lemma 3 to (8) we get

sup E[Wl(a) (m,7)] < p =/ Ate()
meP([0,a])
which completes the proof of Corollary 2.1.

Remark 2 (On the level of smoothing): We have obtained
the bound for o-smoothed distance between NPMLE and
truth which is n~¢ for any ¢ < 1/4. This result required a
constant fixed o. However, it turns out that it is sufficient
to set 0 = 1/Polylog(n), while holding a,~ fixed and

'We remark that the bound is likely not tight, as for example when o = 0,
we can easily get a better bound of Wi (71, m2) < %‘5 [14, Theorem 6.15].



letting n — oo. Indeed, 1nspect1ng the proofs the constant

1. Poly( ). On the other
hand, setting 012 to grow with (1og 6)” where 0<v <l
ta,0,(€) becomes e ¥/2. Thus, the overall bound in RHS
of the Theorem becomes e('~)/2Polylog(¢). Recalling that

c(a, 0,7) in Theorem 1 is exp( 75~ y

1 logn
loglogn

€ = \/ﬁ
sufficiently small.

we get the claimed n~¢ bound by taking v

III. COMPLEX-ANALYTIC PRELIMINARIES

The main proof technique for this work is complex analysis.
Here, we remind that the z-transform Z(7)(z) (for priors
7 with discrete support), Laplace transform L(m)(s), and
characteristic function ¥, (¢) of a distribution 7 are defined
as follows.

z) & i PMF(m)(n)z" VzeC (10)
n=0
L(7)(s) £ Exrlexp(sX)] Vs e C (11)
U, (t) 2 Exrlexp(itX)] = L(m)(it) VteR (12)

We now consider the following identities for all bounded
priors 7 € P([0,a]): for Poisson mixtures and Gaussian
mixtures we have

Z(Poi, o) (2) = L(r)
2

In addition, the Plancherel’s theorem [15, Theorem 2]
implies the following:

(v(z—1)) VzeR; (13)
2

)E(ﬁ)(s) VseR. (14)

L(Gsn, o 7)(s) = exp(

Ly(Gsn, o7y, Gshy 0 72)?

/_OO ((Gsny o m1)(t) — (Gsn, o 7o) (t))?dt
— o | ew(-at el 0 -

lI>

o, ()]Pdt  (15)

usin2g2the fact that the Fourier transform of the function f () =
e T WL(t) is f(u) = 2m(Gsn, o )(2mw).

We now describe a main idea that we will be using: the
Hadamard’s three-circle theorem [16, Theorem 12.1] that
states the following. Let zg € C, ryp < r; € R. Consider
a function f that is analytic on the annulus A,,,, = {z :
ro < |z — zp| < r1} and continuous everywhere else. Denote
M$0 (T; f) = SUP|z—zo|<r |f(Z)| Then

log M, (r

; f) is a convex function of logr. (16)

Finally, we will also frequently use the following tail bound
of the Gaussian distribution [17, Theorem 4.7].
VT >0.

P(N(0,0) >T) < \/gaexp(—?/@a?))’
(17)

We will use (16) to bound the difference in characteristic
functions of the Gaussian mixtures. Then the Lo distance can
be bounded via (15) and finally the TV distance via Lemma 4.

IV. PROOF OF THEOREM 1

The following lemma shows that it suffices to bound the Lo
distance in establishing Theorem 1.

Lemma 4: Let €,a > 0 be given, m; and ma € P([0, a]) be
such that

Lo(Gsn, oy, Gsn, oma) < € (18)

Then

1
TV(Gsn, o1, Gsn, o) Se- \4/ c2log—+a (19)
€

The complete proof is established in Appendix A. The proof
idea is to bound the quantity fTT |Gsn, o 1 — Gsng o ma|dt
using Cauchy-Schwarz inequality, and bound this quantity
outside the said interval using (17) and compactness of sup-
port.

Here, we consider the following lemma on transforming
bounds on Laplace transform into the characteristic function,
relying only on the total variation of the Poisson mixtures and
the support bound of the priors.

Lemma 5: Let m,m2 € P([0,a]) be such that

sup |L(m1)(s) — L(m2)(s)] < 2e. (20)
ls+yI<v
Denote R. > 1 a solution of
log(1/€) = a(Re(log Re —logy — 1) +v).  (21)

Then for all t € R we have

. a t2
|, (8) — Uy (8)] < 2m1n(1, €- exp(§R6 log(1 4+ ?))) )

(22)
L(M)(&

Proof of Lemma 5: Denote f(s) = L(”g)(b
For all r > 0, we consider M(r) = sup|,4, <, | f(s)| as per
Fig. 1. Then we have the following estimates for M:

M(v) <e, Vr >~ : M(r) <exp(a(r —7))

where the second one is due to the fact that 71, m2 € P([0, a])
and SUP|, 4~ |<rze0,q | €XP(s7)| = exp(a(r — 7)). Consider,
now, the function g(u) = log(M (ye™)), then we have g(0) <
—log(1/e) and for all u > 0, g(u) < ay(e* —1).

(23)

. Im(s)

=
N

Fig. 1: Bounding |V, —
and black circles.

U, | on red line using M (r) on pink

Given that both 7; and 72 are in P([0,a]), f is analytic on
C. Therefore, g is convex by (16). Consider R, as given in



u

Ue

—ay(e" - 1)

log(e) ¢ —— tangent line

Fig. 2: Bound on g(u) via Hadamard’s 3-circle theorem.

(21). Let u. = log(R.) — log(v), then log(1/¢) = ay((ue —
1) exp(ue) +1). The motivation of this choice of R and u,. is
given in Fig. 2: for any choice of u. we would get an upper
bound on g given by the line joining the endpoints; the tangent
line has the smallest slope, and therefore the best bound.
For each u € [0, u], the convexity of g entails

U ]

() < gO)(1 = =) + glue) - -

€

— 1)+ ay((ue — 1)e" + 1))
= —log(1/e) + ayuexp(ue) . (24)
Now, U, (t) — U, (t) = 2f(it). Since |V, (t)] < 1 for

all 7, |f(it)] < 1. On the other hand, |it + v| = /7% + t2.
Therefore, for all |¢t| < y/R2? —~2, we have

|f(it)] < M (/2 ++2)
1 2
= exp <g(§ log(1 + ?))>

avyexp(u.)log(1l + t—z
gexp<—1og(1/6)+ ( )2 S )>

<aR clog(1 %))
=eexp|l ———— |-

On the other hand, for [t| > +/R?2—~2 we have ¢ -

aRc1 1+% . .
exp(#) > exp(a(R. — 7)) > 1, implying that

the bound is trivially true then. Thus, f(it) < min(1,e€ -
exp(aR. log(1 +t%)/2)) for all t. |

Proof of Theorem 1: We first establish the following
bound via (13).

~log(1/€) + u%(av(eu

(25)

5;|ssf$\<w |L(m1)(s) — L(m2)(s)]
= s‘,u‘gl |Z(POI'Y e} Wl)(z) — Z(POIV o} 7T2)(Z)|

(Poiy o m2)(n)]

<" |(Poiy o m1)(n) —
=0
= 2TV(Poiy o 71, Poiy o mg) < 2¢ (26)

Motivated by (15), we consider R, as per Lemma 5 and
denote E(s) £ —o%s+aR, log(1+-%) forall s > —42. Then

E is concave and attains its global maximum at s =
thus for all ¢ € R we have

E(t*) < Emax
= aRc(log(aR.) — log(c?7?) — 1) + o?+?
— log(1/€) — av + aR. 1og(0%7) o2, @27)

This means we may now bound the squared Lo distance as
follows:

L2(Gsn, oy, Gsn, o 772)2

@ —/ exp(—o t2 MU (¢ )—\I/,T2(t)|2dt

aR.log(1 + &
5/ exp(— 2t2) min(1, € - exp(y))%ﬁ
()
< / € exp(E(t2))dt—|—/ exp(—c?t?)dt

[t|<Re [t|>Re

(d)
< Re€® exp(Bmax) + exp(—0?R?) (28)
where in (a) we used Plancherel (15), in (b) we ap-

plied Lemma 5, in (c) we split the integral into two parts
and applied respective bounds from previous line, in (d) we
used (27) and (17).

To proceed, we notice that the function f(r) = rlogr has
f5s) = y(1 - k’il%) for all y > e, so as y — oo the
solution to f(r) = y has r = (14 o(1)) ;. This, together
with (21), implies that R, = (1+o(1)) £ )< as € — 0.
Then, the second term in (28) is o(€) = 04,4,-(€) and can be
neglected, whereas for the first term we can see from (27) that

1
Zsa,a,fy (6) )

2,2 a log ¢
Saﬁgﬁ(e) = expy o ¥ —ay —+ IOg O’T’y —+ 0(1) @ .

Collecting terms, thus, we have shown that as ¢ — 0 we
have

exp Emax =

Ly(Gsng, oy, Gsn, 0 m3)% < €ReSq,0.~(€) -

Finally, taking the square root and invoking Lemma 4 we
obtain the statement of the theorem. [ |

V. PROOF OF THEOREM 2

For the comparison in the other direction, we need the
following bound on the magnitude of the difference of Laplace
transform.

Lemma 6: Consider the same setting as before, where
71,72 € P([0,a)). Given € > 0 such that

TV(Gsn, 0y, Gsny 0 ma) < €. (29)
Then the Laplace transform satisfies the following:
|L(m1)(s) = L(m2)(s)]
2R 2
5 6eXp(_o-Te(S) + Ea,o’(ea 8)) . (30)



1
E,o(€,8) == 0®Re(s)® + a - |Re(s)| + |Re(s)|{/ 202 log .

(€29
Proof of Lemma 6: We will show that

|£(Gsng o — Gsn, o ma)(s)] < eexp(Ey o€, s)) (32)

with E, (e, s) as per (31), and then the conclusion follows
from (14).
Indeed, we first consider the following:

|£(Gsn, o — Gsn, o m2)(s)]
< / | exp(st) - (Gsn, o mi(t) —

— 00

Gsny o mo(t))|dt

= /OO exp(Re(st))|Gsn, o w1 (t) — Gsn, o ma(t)|dt.(33)

— 00

Consider T > o2|Re(s)| + a, we now split this into three

parts:
=T T 00
[oo /7T /T

First, the term in the middle:

T
/ exp(Re(st))|Gsny o w1 (t) — Gsn, o ma(t)|dt

-T

T
< sup exp(Re(st))/ |Gsn, o my () —
| <T -7

< exp(T - |Re(s)])e.

Next, for each m € P([0, a]), Gsn, om(t) is nonnegative for all
t, while also bounded above by for t <0,

Gsn, o ma(t)|dt

(34)

\/21—7”7 exp(— 202 )
and \/7 exp(— (t “) ) for t > a. Therefore, denoting:

My(T) 2 T + 0?Re(s), My(T) 2 T —a — 0?Re(s),
(35)

the left tail can be computed as

/  exp(Re(st))|Gsny o m (£) — Gsny o ma(t)|dt

7;0 - t2
5 /_OO exp(tRe(s)) ~exp(fﬁ)dt
@ 1 -7 (t —0?Re(s))?  0?Re(s)?
V210 / (= 202 " 2 )t
(b) 02 Re(s)? My(T)?
\/>M1 exp( 5 ) 'eXP(*W)

where (a) is completing the square and (b) follows from (17).
We also have the right tail computed similarly as

/ exp(Re(st))|Gsny o w1 (t) — Geny o 7o (t)]dt
T

217ra /OO exp(tRe(s)) - exp(— (t;gg) )dt
[ s e F 4o Re(s)) - exp(- 2200

Then
0. Therefore, collecting

Denote, now, M3(T) = T — a — o?|Re(s)|.
min{M(T), M2(T)} = Ms(T) =
terms above,

|L£(Gsn, o 1 — Gsn, 0 72)(s)]
Seexp(T - |Re(s)]) (36)
o M3(T)?  o%Re(s)?
+M3(T) exp(— 502 5 + a - |Re(s)]).(37)

Next, we choose T' = 02| Re(s)| + a + (/202 log 1. Thus,

the first term (36) evaluates to

1
cexp(o?Re(s)? + a - |Re(s)| + |Re(s)]{/ 202 log E) .

With this choice of T', we have M3(T) = {/202log . Then,

the second term (37) is bounded as

2 2
o exp(a Re(s)
202log(1)

+a- |Re(s)|)e.

Therefore collecting the two terms together, and taking the
maximum of the exponents, gives us (32).

|

Proof of Theorem 2: As in [7, (33)] we use the standard

fact that for any real 7 > 1, a function f(z) = Y07 a,z"

satisfies
> T
> lan| < — sup [f(2)| (38)
n=0 T= 1z

(as a consequence of Cauchy’s integral formula).

Now if a,, = (Poiomy)(n) — (Poioms)(n), then using (13),
f(z) = L(m)(y(z—1))—L(m2)(v(2—1)). Thus setting = 2,
we have, by Lemma 6,

2TV(Poi o 71, Poi o 3)

< 2|Sl|1<P Lf(2)]

=2 |81|1<P |L(m1)(v(z — 1)) = L(m2)(v(z — 1))
< sup e€ex —M €8

S S p( 5+ Faole ))

1 9 2 2
Seexp<3’yo~\/2log—+ 720
€

< |s] < 3y and |Re(s?)| < |s?] < 972
2

+94%0% + 3'ya>

where we used |Re(s)|
for all s with |s + 7| <
| ]
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APPENDIX A
PROOFS OF AUXILLARY LEMMAS

Proof of Corollary 2.1: We first consider the following
steps: there is a constant ¢; = ¢;(a) such that

sup E[TV(Poio 7, Poio 7)]

weP([0,a])

(a)

< sup E[H
weP([0,a])

(b)

< sup
weP([0,a])

(Poi o 7, Poi o 7)]

VE[H?2(Poi o 7, Poi o )]

(¢) 1 logn
< sup c — (39
reP([0,a] i Vi \loglogn

where (a) is due to TV(P, Q) < H(P,Q) [10, (7.20)],
(b) is (E[H(P,Q)]))? < E[H?*(P,Q)] by Cauchy-Schawrz
inequality, and (c) is by (5).

Combining Theorem 1 and Lemma 3, we see that there is

a constant cy = co(a, o) such that for all m, 7 € P([0, a]) and
X >0,

TV(Poiom, Poio7t) < X = W(U)(Tr 7) < coVXtg o

\./v

L

where for all z with 0 < = < 5 we define uq (v
() log(L), ta,o(x) as per Theorem 1.
Now we have two cases:

A

(X
(40
)

e If a < 02, then limu, ,(z) — 0 as & — 0, (the polylog

factor of 1 is offset by the factor exp((w +
0(1))log)lg—og)) SO g, (2) is bounded in (0, 2) by some

factor C' = C(a,0).
o If a > o2, then there is N N(a,0?) such that
uaﬁg(\/l—) is increasing in n but <1/—ua g(\/l—) is decreas-

ing in n for n > N. This means, when X > ﬁ,
Ug,o(X) < ua(\/—); when X < \/Lﬁ VXUa o (X) <
The first case gives us

sup E[W(U)(
71'673([0 al)

\ / CCQ

where (a) follows from Cauchy-Schwarz inequality and (b)
from (39).
For the second case, we have

)] < CE[VX]

logn )1/4

n loglogn

sup  EV (1, 7)] S BV Rt o (X))
weP([0,a])
E[VX a0 (X 1{X2%}]

E[VXuq o (X 1{X<%}]

ua,g<%)E[\/Y] +

IN

logn

where the (a) follows from (40), and (b) from Cauchy-Schawrz
and (39). Finally,

(—=)

Ua,o \/ﬁ

log(v/n)™/* exp log(+/n)
log log(v/n) log log(y/n)

which is n%<(® as n — oco. Therefore E[W,"(r,#)]
n71/4+0a,0(1)_

)

log a —210g(02) +o(1))

| RZAN

1

1
%“M(%
(2) 1/4 1 "
NCQ(WW) “w(%) @b

)


https://proceedings.mlr.press/v65/polyanskiy17a.html
https://people.lids.mit.edu/yp/homepage/data/itbook-export.pdf
https://doi.org/10.1007/978-0-387-21736-9_4

Proof of Lemma 3: We consider the following statement
in [14, Theorem 6.15] (using p = 1,p’ = o0) : For any point
xo we have

Wi (1, m2) S/

T=—00

[e.°]

|xo — z||dm1(z) — dma(z)| . (42)

Choose zg = % then for every 7' > a we have
W(U)
1 (7T1a772)
< / =5 -|(Gsng 0 1) () -

/ o a|u7g|~|(Gsngo7T1)(u)f(GanOWQ)(u)|du

(Gsn, o m2)(u)|du

<

+/ lu— 2| |(Gsny o 1) () — (Gsny o 72 ) (u)|du
-gl>T-g 2
< 28T~ 2
2
+/ |u—g|-|(Gano7r1)(u)—(Gsngom)(u)|du.
lu—g|>T—2 2
(43)

Because 71 and 7o are supported on [0, al, for 7 € {71, m2}
and for all u with |[u — §| > § we have

(lu—a/2| - a/2)?

0 < Gsn, <
< Gsn, om(u) < 5,2

).

exp(—
2ro p(

Now that the tail bound is symmetric on both sides, we have

/ —g|>T—2 |U B glil(Gan oﬂl)(u) - (GSHU OWQ)(U)ldU

=2 [T peat-L

@ 4PN (0,0%) > T —a] + j;_ﬁ exp(— (T\/_%)Q)

® <ﬁ€aa -+ j;—ﬂ ) exp(— % ) (44)
where (a) is by the expansion of (u — —) exp(— (";Z)Q) into

(u a)

u—a 2
@ exp(—250) + (u — a) exp(~
is due to [17, Theorem 4.7].

Finally, setting T = +/20%log(1/d) + a, (43) is now
bounded by

), and (b) (first term)

2
2 202 1og(1/8) + 2) 5

( \/_aa 20 )5
/202 log( 1/5

< 6(20%log(1/6) + a +a+o)

+

Proof of Lemma 4: According to the definition of L2,
we have

/O;((Gsno o m)(t) —

Consider any T' > a. By Cauchy-Schwarz inequality we have

T
(/.
T T
</ ((Gsny, o m1)(t) — (Gsn, © 7r2)(t))2dt> </ 1dt>
—-T =T
(46)

<oT - €2,

(Gsng o M (t))?dt < €. (45)

|(Gsn, o 71)(t) — (Gsn, o 7r2)(t)|dt>

<

In addition, since both 7; and m, € P([0,al]), we have

P(|Gsn, o | > T) < 2P(N(0,0) > T —a) S
2L exp(— (T;Q) ) for each m € {m,m}, with the last
inequality follows from (17). This means

/t NG o m)(@) — (Gon, o m) o)

< / 1(Gsny o 71)()] + [(Gsny o 2) (1)]dt
[t|>T
20 (T — a)?
S T exp(— ). 47)

Thus collecting (46) and (47) we have
2TV ((Gsn, o 1)(t), (Gsny o m2)(1))

o (T —a)?
< JT. €g=-ar,
SVEet T 207 )

- exp(—
Now choose T' = /202 log(%) + a, we have

1 T — a)?
\/T.EJFT—anp(i%

1
e\/ 0210g( )+a+

4
Se.

)

210g(%)
1

o2log(-)+a
€

where the last inequality we used y/202log(1) +

\/2(202 log(1) + a?).
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