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Abstract—A number of engineering and scientific prob-
lems require representing and manipulating probability
distributions over large alphabets, which we may think
of as long vectors of reals summing to 1. In some cases
it is required to represent such a vector with only b bits
per entry. A natural choice is to partition the interval
[0,1] into 2° uniform bins and quantize entries to each
bin independently. We show that a minor modification
of this procedure — applying an entrywise non-linear
function (compander) f(z) prior to quantization - yields
an extremely effective quantization method. For example,
for b = 8(16) and 10°-sized alphabets, the quality of rep-
resentation improves from a loss (under KL divergence) of
0.5(0.1) bits/entry to 10~4(10~°) bits/entry. Compared to
floating point representations, our compander method im-
proves the loss from 1071(107°) to 107%(10~) bits/entry.
These numbers hold for both real-world data (word
frequencies in books and DNA k-mer counts) and for syn-
thetic randomly generated distributions. Theoretically, we
analyze a minimax optimality criterion and show that the
closed-form compander f(x) oc ArcSinh(y/ck (K log K)x)
is (asymptotically as b — o0) optimal for quantizing
probability distributions over a K-letter alphabet. Non-
asymptotically, such a compander (substituting 1/2 for
ck for simplicity) has KL-quantization loss bounded by
< 8-272|og? K. Interestingly, a similar minimax criterion
for the quadratic loss on the hypercube shows optimality
of the standard uniform quantizer. This suggests that the
ArcSinh quantizer is as fundamental for KL-distortion as
the uniform quantizer for quadratic distortion.
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I. COMPANDER BASICS AND DEFINITIONS

Consider the problem of quantizing the probabil-
ity simplex Ag_ 1 ={xeR* 12 >0,),z; =1}
of alphabet size K,! i.e. of finding a finite subset
Z < Ak to represent the entire simplex. Each
x € Ak _1 is associated with some z = z(x) € Z,
and the objective is to find a set Z and an assign-
ment such that the difference between the values
x € Ak_1 and their representations z € Z are
minimized; while this can be made arbitrarily small
by making Z arbitrarily large, the goal is to do
this efficiently for any given fixed size |Z| = M.
Since x, z € Ak _1, they both represent probability
distributions over a size-/ alphabet. Hence, a nat-
ural way to measure the quality of the quantization
is to use the KL (Kullback-Leibler) divergence
Dy (x| z), which corresponds to the excess code
length for lossless compression and is commonly
used as a way to compare probability distributions.
(Note that we want to minimize the KL divergence.)

While one can consider how to best represent the
vector x as a whole, in this paper we consider only
scalar quantization methods in which each element
x; of x is handled separately, since we showed in
[1] that for Dirichlet priors on the simplex, methods
using scalar quantization perform nearly as well as
optimal vector quantization. Scalar quantization is
also typically simpler and faster to use, and can be
parallelized easily. Our scalar quantizer is based on
companders (portmanteau of ‘compressor’ and ‘ex-
pander’), a simple, powerful and flexible technique
first explored by Bennett in 1948 [2] in which the
value z; is passed through a nonlinear function f
before being uniformly quantized. We discuss the
background in greater depth in Section III.

"While the alphabet has K letters, Ax_1 is (K — 1)-dimensional
due to the constraint that the entries sum to 1.



In what follows, log is always base-e unless
otherwise specified. We denote [N] := {1,..., N}.

1) Encoding: Companders require two things: a
monotonically increasing” function f : [0,1] —
[0, 1] (we denote the set of such functions as F) and
an integer /N representing the number of quantiza-
tion levels, or granularity. To simplify the problem
and algorithm, we use the same f for each element
of the vector © = (z1,...,2x) € Ag_1 (see
Remark 1). To quantize = € [0, 1], the compander
computes f(x) and applies a uniform quantizer with
N levels, i.e. encoding x to ny(z) € [N] if f(x) €
(22, 2]; this is equivalent to ny(z) = [ f(z)N].

This encoding partitions [0, 1] into bins 1(™):

zel™ = f_1<<nN 1, %]) < ny(z)=n
where f~! denotes the preimage under f.

As an example, consider the function f(z) = x*.
Varying s gives a natural class of functions from
[0,1] to [0, 1], which we call the class of power
companders. If we select s = 1/2 and N = 4, then
the 4 bins created by this encoding are

1Y = (0,1/16], 1 = (1/16,1/4],
I® = (1/4,9/16], 1% = (9/16,1].

2) Decoding: To decode n € [N], we pick some
Ym) € 1 (™) to represent all x € I(™; for a given
x (at granularity N), its representation is denoted
Y(%) = Ymy(z))- This is generally either be the
midpoint of the bin or, if x is drawn randomly from
a known prior® p, the centroid (the mean within bin
I (")). The midpoint and centroid of / (") are defined,
respectively, as

1/ 4 (n—1 _1<n)
y(n)—2<f (N)+f i
Uiny = Ex,[X | X e 1M].

We will discuss this in greater detail in Section I-4.
Handling each element of x separately means the

decoded values may not sum to 1, so we normalize

the vector after decoding. Thus, if « is the input,

) = 2 (M

Zj:l y(z;)

>We require increasing functions as a convention, so larger x; map
to larger values in [IV]. Note that f does nor need to be strictly
increasing; if f is flat over interval I < [0, 1] then all z; € I will
always be encoded by the same value. This is useful if no x; in
ever occurs, i.e. I has zero probability mass under the prior.
3Priors on Ax 1 induce priors over [0, 1] for each entry.

the vector z = z(x) = (z1(x),. .., 2x(x)) € Ak
is the output of the compander. This notation reflects
the fact that each entry of the normalized reconstruc-
tion depends on all of  due to the normalization
step. We refer to y = y(x) = (y(x1),...,y(rk))
as the raw reconstruction of x, and z as the
normalized reconstruction. If the raw reconstruction
uses centroid decoding, we likewise denote it using
vy = y(x) = (Y(z1),...,9(xk)). For brevity we
may sometimes drop the x input in the notation,
e.g. z := z(x); if X is random we will sometimes
denote its quantization as Z := z(X).

Thus, any « € Ag_; requires K [log, N| bits to
store; to encode and decode, only f and N need
to be stored (as well as the prior if using centroid
decoding). Another major advantage is that a single
f can work well over many or all choices of N,
making the design more flexible.

3) KL divergence loss: The loss incurred by
representing x as z := z(x) is the KL divergence

K
z;
Dy (z]z) = > a;log —
i=1 v

Although this loss function has some unusual prop-
erties (for instance Dy (x|z) # Dy.(z||x) and
it does not obey the triangle inequality) it mea-
sures the amount of ‘mis-representation’ created by
representing the probability vector = by another
probability vector z, and is hence is a natural
quantity to minimize. In particular, it represents the
excess code length created by trying to encode the
output of x using a code built for 2z, as well as
having connections to hypothesis testing (a natural
setting in which the ‘difference’ between probability
distributions is studied).

4) Distributions from a prior: Much of our work
concerns the case where @ € Ag_; is drawn from
some prior P, (to be commonly denoted as simply
P). Using a single f for each entry means we
can WLOG assume that P is symmetric over the
alphabet, i.e. for any permutation o, if X ~ P then
o(X) ~ P as well. This is because for any prior P
over Ak _1, there is a symmetric prior P’ such that

Ex~p[Di (X[ 2(X))]=Ex'pr[ D (X' 2(X"))]

for all f, where z(X) is the result of quantizing
(to any number of levels) with f as the compander.
To get X' ~ P’, generate X ~ P and a uniformly
random permutation o, and let X' = o(X).



We denote the set of symmetric priors as Pﬁ.
Note that a key property of symmetric priors is that
their marginal distributions are the same across all
entries, and hence we can speak of P € P[% having
a single marginal p.

Remark 1. In principle, given a nonsymmetric
prior P, over Nk _1 with marginals p, ..., pk, we
could quantize each letter’s value with a different
compander fi,..., fk, giving more accuracy than
using a single f (at the cost of higher complexity).
However, the symmetrization of P, over the letters
(by permuting the indices randomly after generating
X ~ P.) yields a prior in 77]% on which any
single f will have the same (overall) performance
and cannot be improved on by using varying f;.
Thus, considering symmetric P, suffices to derive
our minimax compander.

While the random probability vector comes from
aprior P € 73[%, our analysis will rely on decompos-
ing the loss so we can deal with one letter at a time.
Hence, we work with the marginals p of P (which
are identical since P is symmetric), which we refer
to as single-letter distributions and are probability
distributions over [0, 1].

We let P denote the class of probability distri-
butions over [0, 1] that are absolutely continuous
with respect to the Lebesgue measure. We denote
elements of P by their probability density functions
(PDF), e.g. p € P; the cumulative distribution
function (CDF) associated with p is denoted F),
and satisfies F)(x) = p(z) and F,(z) = § p(t)dt
(since [, is monotonic, its derivative exists almost
everywhere). Note that while p € P does not have
to be continuous, its CDF F), must be absolutely
continuous. Following common terminology [3], we
refer to such probability distributions as continuous.

Let Pk = {p € P : Ex.,[X] = 1/K}. Note
that P € 73[% implies its marginals p are in Py /.

5) Expected loss and preliminary results: For
Pe 77?, f € F and granularity N, we define the
expected loss:

Lx(P, f,N) =Ex.p[Di(X|2(X))].
This is the value we want to minimize over f.
Remark 2. While X and z(X) are random, they
are also probability vectors. The KL divergence
Dy (X||z(X)) is the divergence between X and

z(X) themselves, not the prior distributions over
Nk _1 they are drawn from.

2)

Note that L (P, f, N) can almost be decomposed
into a sum of K separate expected values, except
the normalization step (1) depends on the random
vector X as a whole. Hence, we define the raw loss:

Lx(P ¥, N)zIEXNp[ZXZ- log(Xi/g(Xi))] 3)

We also define for p € P, the single-letter loss as

Lip. . N) = Exp[X log(X/§(X))] )

The raw loss is useful because it bounds the (nor-
malized) expected loss and is decomposable into
single-letter losses. Note that both raw and single-
letter loss are defined with centroid decoding.

Proposition 1. For P € 73[% with marginals p,
Li(P, f.N) < Lk(P, f,N) = K L(p, f, N).
Proof. Separating out the normalization term gives

£<P7 f7 N) = EX~P[DKL(XHZ(X))]

= Lx(P, f,N) +Exp [log (2 ;7()@)] .

Since E[j(X;)] = E[X] for all i, SEER(X)] =
Y. E[X;] = 1. Because log is concave, by
Jensen’s Inequality

e s (33500)) | < 10s (£ 3500
: = log(1) 0
and we are done.* D

To derive our results about worst-case priors (for
instgnce, Theorem 1), we will also be interested
in L(p, f,N) even when p is not known to be a
marginal of some P € 73[%.

Remark 3. Though one can define raw and single-
letter loss without centroid decoding (replacing 7
in (3) or (4) with another decoding method 1)), this
removes much of their usefulness. This is because
the resulting expected loss can be dominated by the
difference between E[X| and E|y(X)], potentially
even making it negative; specifically, the Taylor
expansion of X log(X/y(X)) has X — y(X) in its
first term, which can have negative expectation.

*An upper bound similar to Proposition 1 can be found in [4,
Lemma 1].



While this can make the expected ‘raw loss’
negative under general decoding, it cannot be ex-
ploited to make the (normalized) expected loss
negative because the normalization step z;(X) =
Y(Xi)/ 2., Y(X;) cancels out the problematic term.
Centroid decoding avoids this problem by ensuring
E[X] = E[g(X)], removing the issue.

As we will show, when N is large these values
are roughly proportional to N2 (for well-chosen f)
and so we define the asymptotic single-letter loss:

Lip.f) = lm N°L(p.f,.N). ()

We similarly define L (P, f) and L (P, f). While
the limit in (5) does not necessarily exist for every
p, f, we will show that one can ensure it exists by
choosing an appropriate f (which works against any
p € P), and cannot gain much by not doing so.

II. RESULTS

We demonstrate, theoretically and experimentally,
the efficacy of companding for quantizing probabil-
ity distributions with KL divergence loss.

A. Theoretical Results

While we will occasionally give intuition for how
the results here are derived, our primary concern in
this section is to fully state the results and to build
a clear framework for discussing them.

Our main results concern the formulation and
evaluation of a minimax compander [} for alphabet
size K, which satisfies

fi = argmin sup L(p, f). (©)

feF pE'Pl/K

We require p € Pk because if P € 73}% and is
symmetric, its marginals are in Py k.

The natural counterpart of the minimax compan-
der fg is the maximin density py € Pk, satisfying

pj = arg max inf Z(p, f). (7)
pePyx TEF

We call (6) and (7), respectively, the minimax con-

dition and the maximin condition.

In the same way that the minimax compander
gives the best performance guarantee against an
unknown single-letter prior p € Py/x (asymptotic as
N — o0), the maximin density is the most difficult

prior to quantize effectively as N — oo. Since they
are highly related, we will define them together:

Proposition 2. For alphabet size K > 4, there

is a unique cg € [%‘,%] such that if ax =

(4/(ck K log K +1))'/3 and by = 4/a% — ak, then
the following density is in Py/k:

P () = (aKx1/3 + bK:r4/3)_3/2

)
Furthermore, limg o, cgr = 1/2.

Note that this is both a result and a definition:
we show that ag,bg,cx exist which make the
definition of pj. possible. With the constant cx, we
define the minimax compander:

Definition 1. Given the constant cyx as shown to
exist in Proposition 2, the minimax compander is
the function f3: : [0,1] — [0, 1] where
() ArcSinh(y/cx (K log K) z)
) =
K ArcSinh(v/cx K log K)

The approximate minimax compander f;* is
() ArcSinh(4/(1/2)(K log K) x)
€T —

K ArcSinh(4/(1/2)K log K)
Remark 4. While [} and f}* might seem complex,

ArcSinh(yv/w) = log(yv/w + Vw + 1) so they are

relatively simple functions to work with.

(€))

We will show that f;, pj. as defined above satisfy
their respective conditions (6) and (7):

Theorem 1. The minimax compander fj; and max-
imin single-letter density pj. satisfy

sup L(p, fz) = inf sup L(p,f) (10)
PEPy /K0 f PEPy /K
= suwp inf L(p, f) = inf L(pf, f) (1D
pePyyk T€ fer
which is equal to z(p}, fi) and satisfies
T * 1 —
L(pic. fie) = 57 (L+0o(1)) KM log? K. (12)

24

Since any symmetric P € 73[% has marginals
p € Pk, this (with Proposition 1) implies an im-
portant corollary for the normalized KL-divergence
loss incurred by using the minimax compander:

Corollary 1. For any prior P € P

Cr(P.f2) = (14 (1) log? K .



However, the set of symmetric P € 73[% does
not correspond exactly with p € Py x: while any
symmetric P € 731% has marginals p € Pk, it is not
true that any given p € P/ has a corresponding
symmetric prior P € 73[%. Thus, it is natural to
ask: can the minimax compander’s performance
can be improved by somehow taking these ‘shape’
constraints into account? The answer is ‘not by
more than a factor of ~ 2’:

Proposition 3. There is a prior P* € 73[% such that
for any P € 77]%

K —
2K

While the minimax compander satisfies the min-
imax condition (6), it requires working with the
constant cg, which, while bounded, is tricky to
compute or use exactly. Hence, in practice we advo-
cate using the approximate minimax compander (9),
which yields very similar asymptotic performance
without needing to know c:

inf EK(P*vf) = ﬁK(P fie) -
feF

Proposition 4. Suppose that K is sufficiently large
so that ci € 57 = L, =], Then for any p € P,

1+e)?
Lp, fi¥) < A +e)Lp, f3) .-

Before we show how we get Theorem 1, we make
the following points:

Remark 5. If we use the uniform quantizer instead
of minimax there exists a P € P}% where

Ex-p[Di(X]Z)] = © (K2N"21og N) .

This is done by using marginal density p uniform
on [0,2/K). To get a prior P € PL with these
marginals, if K is even, we can pair up indices so
that Toj—1 = 2/K — Ty fO}" all ] = 1,,K/2
(for odd K, set xyx = 1/K) and then symmetrize
by permuting the indices. See Appendix F for more
details.

The dependence on N is worse than N ~2 re-
sulting in L(p,f) = oo. This shows theoretical
suboptimality of the uniform quantizer. Note also
that the quadratic dependence on K is significantly
worse than the log® K dependence achieved by the
minimax compander.

Incidentally, other single-letter priors such as
p(z) = (1 — a)z™® where o = £=2 can achieve
worse dependence on N (specifically, N~?~% for
this prior). However, the example above achieves a

(13)

bad dependence on both N and K simultaneously,
showing that in all regimes of K, N the uniform
quantizer is vulnerable to bad priors.

Remark 6. Instead of the KL divergence loss on
the simplex, we can do a similar analysis to find
the minimax compander for L3 loss on the unit
hypercube. The solution is given by the identity func-
tion f(x) = x corresponding to the standard (non-
companded) uniform quantization. (See Section VI.)

To show Theorem 1 we formulate and show a
number of intermediate results which are also of
significant interest for a theoretical understanding
of companding under KL divergence, in particular
studying the asymptotic behavior of L(p, f, N) as
N — co. We define:

Definition 2. For pe P and f € F, let

I -
Lo f) = 57 | po)f @) 2 do
24 ),
1 o
:Exwp[ﬁf’()() 2x 1].
For full rigor, we also need to define a set of
‘well-behaved’ companders:

Definition 3. Let 7' = F be the set of f such that
for each f there exist constants ¢ > 0 and o €
(0,1/2] for which f(x)— cx® is still monotonically
increasing.

(14)

Then the following describes the asymptotic
single-letter loss of compander f on prior p (with
centroid decoding):

Theorem 2. For any pe P and f € F,

liminf N*L(p, f, N) = L'(p, /).~ (15)

—00

Furthermore, if f € F' then an exact result holds:
L(p.f) = L'(p, f) < 0. (16)

The intuition behind the formula for Li(p, f) is
that as N — oo, the density p becomes roughly
uniform within each bin (™. Additionally, the bin
containing a given z € [0, 1] will have width r(,) ~
N~1f'(x)~'. Then, letting unif ;) be the uniform
distribution over /™ and Um) ~ x be the midpoint
of I (which is also the centroid under the uniform
distribution), we apply the approximation

_ 1o
B x~unit oy [X 108 (X /Pn)] ~ 577Uy
1
~ —N— 2 2 71
sV S (@)



Averaging over X ~ p and multiplying by N? then
gives (14). One wrinkle is that we need to use the
Dominated Convergence Theorem to get the exact
result (16), but we cannot necessarily apply it for all
f € F; instead, we can apply it for all f e F . and
outside of F' we get (15) using Fatou’s Lemma.

While limiting ourselves to f € F' might seem
like a serious restriction, it does not lose anything
essential because F' is ‘dense’ within F in the
following way:

Proposition 5. For any f € F and 6 € (0, 1],
folx) = (1= 8)f(x) + o2/
satisfies fs € F' and
lim L(p, f5) = lim L'(p. f3) = L'(p. f).

Remark 7. It is important to note that strictly
speaking the limit represented by L(p, f) may not
always exist if f ¢ F'. However: (i) one can always
guarantee that it exists by selecting f € F'; (ii)
by (15), it is impossible to use f outside F' to
get asymptotic performance better than L'(p, f);
and (iii) by Proposition 5, given f outside F', one
can get a compander in F' with arbitrarily close
(or better) performance to [ by using fs(x) =
(1 —0)f(x) + 822 for & close to 0. This suggests
that considering only f € F' is sufficient since there
is no real way to benefit by using f ¢ F'.

Additionally, both f;: and f3* are in F'. Thus,
in Theorem 1, although the limit might not exist for
certain f € F,p € Py, the minimax compander
still performs better since it has less loss than even
the lim inf of the loss of other companders.

7)

Given Theorem 2, it’s natural to ask: for a given
p € P, what compander f minimizes L'(p, f)? This
yields the following by calculus of variations:

Theorem 3. The best loss against source p € P is

. > _ . +
inf L(p, f) = min L' (p, f)
- (f( () o) ()
=21l p(x)z x
where the optimal compander against p is
C(p()th)Y3at
fola) = argminLi(p, f) = b O) (19)

FeF () at

(satisfying f(x) o (p(a)z™")">).

Note that f, may not be in F' (for instance, if
p assigns zero probability mass to an interval [ <
[0, 1], then f, will be constant over /). However, this
can be corrected by taking a convex combination
with 2172 as described in Proposition 5.

The expression (18) represents in a sense how
hard p € P is to quantize with a compander, and the
maximin density pj is the density in P;,x which
maximizes it;’ in turn, the minimax compander [}
is the optimal compander against pj, 1.e.

fie = Fpr-

So far we considered quantization of a random
probability vector with a known prior. We next
consider the case where quantization guarantee is
given pointwise, i.e. we cover A 1 with a finite
number of KL divergence balls of fixed radius. Note
that since the prior is unknown, only the midpoint
decoder can be used.

Theorem 4 (Divergence covering). On alphabet
size K > 4 and N > 8log(2y/KlogK + 1)
intervals, the minimax and approximate minimax
companders with midpoint decoding achieve worst-
case loss over ANy _1 of

max Dy (z]z) < (1 + err(K))N?log* K

mEAK71
where err(K) is an error term satisfying
log log K
log K

Note that the non-asymptotic worst-case bound
matches (up to a constant factor) the known-prior
asymptotic result (12). We remark that condition on
N is mild: for example, if N = 256 (i.e. we are
representing the probability vector with 8 bits per
entry), then N > 8log(2+/K log K + 1) for all K <
2.6 x 10%°.

err(K) < 18 < 7 when K > 4.

Remark 8. When b is the number of bits used
to quantize each value in the probability vector
using the approximate minimax compander yields a
worst-case loss on the order of 2% log? K. In [5]
we prove bounds on the optimal loss under arbi-
trary (vector) quantization of probability vectors
and show that this loss is sandwiched between

~2b55s » —2bs
27K=1 ([5, Proposition 2]) and 2~ %1 log K ([5,

SThe maximizing density over all p € P happens to be p(z) =
%171/2; however, Ex~,[X] = 1/3 so it cannot be the marginal of

any symmetric P € PI% when K > 3.



Theorem 2]). Thus, the entrywise companders in this
work are quite competitive.

We also consider the natural family of power
companders f(x) = z°, both in terms of average
asymptotic raw loss and worst-case non-asymptotic
normalized loss. By definition, f(z) € F' and hence

~

L(p, f) is well-defined and Theorem 2 applies.

Theorem 5. The power compander f(x) = z° with
exponent s € (0,1/2] has asymptotic loss

is*QKQSfl

sup L(p. f) = 5 (20)
PEP /K
For K > 7, (20) is minimized by setting s = @

(when K <7, @ > 1/2) and f(x) = x* achieves

sup L(p, f) = — —log® K

PEP1/ K

and  sup Z(P, f)= e—logZK
PE'PI% 2

1

Additionally, when s = —5, it achieves the
following worst-case bound wit%z midpoint decoding
for K > T and N > §log K:

2
max Dy (z]|z)<(1 + err(K, N))%N_2 log® K

:EEAK,1

e logK

—. (2D
2N —sSlog K

where err(K, N) =

Note in particular that when N > elog K,
we have err(K,N) < 1, giving a bound of
MaXgen o, Dy (€]2) < 2N 2log? K.

We can think of s = log;K as a ‘minimax’ among
the class of power companders. This result shows
flz) = 2% has performance within a constant
factor of the minimax compander, and hence might
be a good alternative.

B. Experimental Results

We compare the performance of five quantizers,
with granularities N = 2% and N = 2!, on three
types of datasets of various alphabet sizes:

« Random synthetic distributions drawn from the
uniform prior over the simplex: We draw and
take the average over 1000 random samples for
our results.

« Frequency of words in books: These frequen-
cies are computed from text available on the

Natural Language Toolkit (NLTK) libraries for
Python. For each text, we get tokens (single
words or punctuation) from each text and sim-
ply count the occurrence of each token

« Frequency of k-mers in DNA: For a given
sequence of DNA, the set of k-mers are the
set of length k substrings which appear in the
sequence. We use the human genome as the
source for our DNA sequences. Parts of the
sequence marked as repeats are removed.

Our quantizers are:

. Approximate Minimax Compander: As
given by (9). Using the approximate minimax
compander is much simpler than the minimax
compander since the constant cx does not need
to be computed.

« Truncation: Uniform quantization (equivalent
to f(z) = x), which truncates the least signifi-
cant bits. This is the natural way of quantizing
values in [0, 1].

« Float and bfloat16: For 8-bit encodings (/N =
2%), we use a floating point implementation
which allocates 4 bits to the exponent and
4 bits to the mantissa. For 16-bit encodings
(N = 26), we use bfloatl6, a standard which
is commonly used in machine learning [6].

« Exponential Density Interval (EDI): This is
the quantization method we used in an achiev-
ability proof in [1]. It is designed for the
uniform prior over the simplex.

« Power Compander: Recall that the compan-
der is f(x) = x°. We optimize s and find
that s = loglc — asymptotically minimizes KL
divergence, and also gives close to the best
performance empirically. To see the effects of
different powers s on the performance of the
power compander, see Figure 1.

Because a well-defined prior does not always
exist for these datasets (and for simplicity) we use
midpoint decoding for all the companders. When a
probability value of exactly 0 appears, we do not
use companding and instead quantize the value to
0, i.e. the value 0 has its own bin.

Our main experimental results are given in Fig-
ure 2, showing the KL divergence between the
empirical distribution  and its quantized version z
versus alphabet size K. The approximate minimax
compander performs well against all sources. For
truncation, the KL divergence increases with A and
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Fig. 1. Power compander f(z) = z° performance with different
powers s used to quantize frequency of words in books. The number
K of distinct words in each book is shown in the legend. The

theoretical optimal power s = @ is plotted.
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Fig. 2. Plot comparing the performance of the truncation compander,
the EDI compander, floating points, the power compander, and the
approximate minimax compander (9) on probability distributions of
various sizes.

is generally fairly large. The EDI quantizer works
well for the synthetic uniform prior (as it should),
but for real-world datasets like word frequency in
books, it performs badly (sometimes even worse
than truncation). The loss of the power compander
is similar to the minimax compander (only worse
by a constant factor), as predicted by Theorem 5.
The experiments show that the approximate min-
imax compander achieves low loss on the entire
ensemble of data (even for relatively small gran-

ularity, such as N = 256) and outperforms both
truncation and floating-point implementations on the
same number of bits. Additionally, its closed-form
expression (and entrywise application) makes it sim-
ple to implement and computationally inexpensive,
so it can be easily added to existing systems to lower
storage requirements at little or no cost to fidelity.

C. Paper Organization

We provide background and discuss previous
work on companders in Section III. We prove Theo-
rem 2 in Section IV (though proofs of some lemmas
and propositions leading up to it are given in Ap-
pendix A). Proposition 5 is proved in Appendix B.
In Section V, we optimize over (14) to get the
maximin single-letter distribution (showing part of
Proposition 2 with other parts left to Appendix D-A)
and the minimax compander, thus showing The-
orems 1 and 3, Corollary 1 and Proposition 3
(leaving Proposition 4 for Appendix D-B). We prove
Theorem 4 and the worst-case part of Theorem 5 in
Appendix E. Other parts of Theorem 5 are discussed
in Appendix C-B. In Section VI we discuss compan-
ders for losses other than KL divergence. Finally,
in Section VII we discuss a connection of our
problem to the problem of information distillation
with proofs given in Appendix G. (The appendices
are included in the supplementary material.)

III. BACKGROUND

Companders (also spelled “compandors™) were
introduced by Bennett in 1948 [2] as a way to
quantize speech signals, where it is advantageous
to give finer quantization levels to weaker signals
and coarser levels to larger signals. Bennett gives a
first order approximation that the mean-square error
in this system is given by

b

1 f p(z) .

12N2 ), (f'(x))

where N is the number quantization levels, a and
b are the minimum and maximum values of the
input signal, p is the probability density of the
input signal, and f’ is the slope of the compressor
function placed before the uniform quantization.
This formula is similar to our (14) except that we
have an extra ! since we are working with KL
divergence. Others have expanded on this line of
work. In [7], the authors studied the same problem

(22)



and determined the optimal compressor under mean-
square error, a result which parallels our result
(18). However, results like those in [2], [7] are
stated either as first order approximations or make
simplifying assumptions. For example, in [7], the
authors state that they assume the values ¥, are
close together enough that probability density within
any given bin can be treated as a constant. In
contrast, we rigorously show that this fundamental
logic holds under very general conditions (f € F1).

Generalizations of Bennett’s formula are also
studied when instead of mean-square error, the loss
is the expected rth moment loss E| - |". This is
computed for vectors of length K in [8] and [9].

The typical examples of companders used in en-
gineering and signals processing are the p-law and
A-law companders [10]. For the u-law compander,
[7] and [11] argue that for mean-squared error, for
a large enough constant v the distortion becomes
independent of the signal.

Quantizing probability distributions is a well-
studied topic, though typically the loss function is
a norm and not KL divergence [12]. Quantizing for
KL divergence is considered in our earlier work [1],
focusing on average KL loss for Dirichlet priors.

A similar problem to quantizing under KL diver-
gence is information k-means. This is the problem
of clustering n points a; to k centers @; to minimize
the KL divergences between the points and their
associated centers. Theoretical aspects of this are
explored in [13] and [14]. Information k-means has
been implemented for several different applications
[15], [16], [17]. There are also other works that
study clustering with a slightly different but related
metric [18], [19], [20]; however, the focus of these
works is to analyze data rather than reduce storage.

Remark 9. A variant of the classic problem of pre-
diction with log-loss is an equivalent formulation to
quantizing the simplex with KL loss: let x € Ny _4
and A ~ x (in the alphabet | K |); we want to predict
A by positing a distribution z € Nk, and our loss
is —log za. In the standard version, the problem is
to pick the best z given limited information about x;,
however, if we know x but are required to express z
using only log, M bits, it is equivalent to quantizing
the simplex with KL divergence loss.

IV. ASYMPTOTIC SINGLE-LETTER LOSS

In this section we give the proof of Theo-
rem 2 (though the proofs of some lemmas must be
sketched). We use the following notation:

Given an interval / we define ¥; to be its midpoint
and r; to be its width, so that by definition

I=1[gr—ri/2,91 +71/2].

Note that if 7 < [0, 1] then r; < 2y;.

Given probability distribution p and interval I,
we denote the following: p|; is p restricted to [;
mp1 = Px.,[X € I] is the probability mass of I;
and the centroid of I under p is

ng = EXNP\I[X] = Epr[X | X e ]] .

If they are undefined because Px .,[X € I] = 0 then
by convention p|; is uniform on I and ¥, ; = yr.
When I = I is a bin of the compander, we
can replace it with (n) in the notation, i.e. g, =
Y7 (so the midpoint of the bin containing x at
granularity N is denoted ¥, (»)) and the width of
the bin is 7(,(2))). When I and/or p are fixed, we
sometimes drop them from the notation, i.e. ; or
even just 7 to denote the centroid of / under p.

A. The Local Loss Function

One key to the proof is the following perspective:
instead of considering X ~ p directly, we (equiv-
alently) first select bin /(™ with probability Tp,(n)>
and then select X ~ pl(,). The expected loss can
then be considered within bin /™. This makes it
useful to define:

Definition 4. Given probability measure p and in-
terval I, the single-interval loss of [ under p is

by 1 = Exp|, [X 10g<X/gp,I)] .

As before, if p and/or [ is fixed and clear, we can
drop it from the notation (and if 7 = 7™ is a bin,
we can denote the local loss as /), (). This can be
interpreted as follows: if we quantize all x € [ to the
centroid ¥, then ¢, ; is the expected loss of X ~ p
conditioned on X € [. Thus the values of 7,



can be used as an alternate means of computing the
single-letter loss:

L(p, f, N) = Ex,[X log(X /F(X))]

N
Z Wp,(n)EX~p|(n) [X log(X/gp,(n))]

n=1
N

= T mlpm) = f Cp,(ny (2)) AP -
n=1 [071]

Thus the normalized single-letter loss (whose limit
is the asymptotic single-letter loss (5)) is

N2L(p, f,N) = N Ly rx(a)) P -

[0,1]

For single-letter density p and compander f, we
define the local loss function at granularity N:

gy () = N* Uy (nn () - (23)

We also define the asymptotic local loss function:

g(r) = !

ﬁf/(x)_%_l :
Theorem 2 is therefore equivalent to:

N—00

limiangNdp>Jgdepe77,fe}" (24)
and]\lfim gNdpzfgdepEP,fe]:T. (25)
—00

To prove (24) and (25), we show:
Proposition 6. For allpe P, f € F, if X ~ p then

lim gn(X) = g(X) almost surely.
N—0

Proposition 7. Let f be a compander and ¢ > 0
and o € (0, 1] such that f(x)—cx® is monotonically
increasing. Letting gy be the local loss functions as
in (23) and

h(l’) _ (22/a + 0z221/0‘_2)(coz)_2m1_2a + C—l/a21/a—2

then gn(x) < h(z) for all x, N. Additionally, if o <
1/2 then §, 1, hdp < .

The lower bound (24) then follows immediately
from Proposition 6 and Fatou’s Lemma; and when
f € F1, by Proposition 7 there is some h which is
integrable over p and dominates all gy, thus show-
ing (25) by the Dominated Convergence Theorem.

To prove Proposition 6, we use the following:
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« For any x at which f is differentiable, when N
is large, the width of the interval x falls in is

Pt ¥ N7 f'(2)7F
« For any z at which F), is differentiable, p|; will
be approximately uniform over any sufficiently
small / containing z.
« For a sufficently small interval I containing x
and such that p|; approximately uniform,
1
lpr ~ ﬂr?x_l.
Putting these together, we get that if /), and f are
both differentiable at x then when N is large,

gn (@) = N? by (ny (@)
1 _ 1 o _
~ N2ﬂr(2n]v(x))x P ﬁf’(ﬂf) et = g(z)

as we wanted. We formally state each of these
steps in Section A-B and combine them to prove
Proposition 6 in Section A-C.

The proof of Proposition 7 is given in Sec-
tion A-D, along with its own set of definitions and
lemmas needed to show it.

V. MINIMAX COMPANDER

Theorem 2 showed that for f € F', the asymp-
totic single-letter loss is equivalent to

Lip.f) = 5 | ple) (@) e ae,

0
Using this, we can analyze what is the ‘best’ com-
pander f we can choose and what is the ‘worst’
single-letter density p in order to show Theorems 1
and 3 and their related results.

A. Optimizing the Compander

We show Theorem 3, which follows from Theo-
rem 2 by finding f € F which minimizes Li(p, f).
This is achieved by optimizing over f’; we will also
use some concepts from Proposition 5 to connect it
back to infrer L(p, f) when the resulting f is not
in F'. Since f : [0,1] — [0,1] is monotonic, we
use constraints f’(z) > 0 and Sé f(x)de = 1. We
solve the following:

minimize L'(p, f) = 2—14 flp(x)f’(x)_%_l dx
0

1
subject to f f(z)de =1
0
and f'(x) = 0 for all z € [0,1]



The function L'(p, f) is convex in f’, and thus first
order conditions show optimality. Let \(z) satisfy
Sé Mz)dx = 0. If f'(z) oc (p(z)z~)Y/3, we derive:

[ reum ow) e

— i ) p(a:)x_li(f’(x) + zf)\(a:))f2 dx

— —% ) pla)z " (f'(z) + t)\(:v))_3)\(x) dx

_ _% p@)a” [ (@) A @) e (at £ =0)
o —% 1)\(x)dx=0 (26)

Thus, such f satisfies the first-order optimality
condition under the constraint {f'(z)dz = 1.
This gives f/(z) o (p(z)z~")"* and f(0) = 0 and
f(1) = 1, from which (18) and (19) follow. If
fp € F', then f, = argmin L(p, f), and for any
other f € F,

L(p, f,) = L'(p, f,) < L'(p, f)
< lim inf N2L(p, f, N)

If f, ¢ FI, for any § > 0 define f,5 = (1 —
8)f, + 0x'/? (as in (17)). Then f,5 — dz'/? = (1 —
§)f, is monotonically increasing so f,s5 € F', so
Theorem 2 applies to f,,s5; additionally, f,s — (1 —
§)f, = 6x/? is monotonically increasing as well
so fi5 = (1 —0)f). Hence, plugging into the L'
formula gives:

z(p7 fp,&) = LT<p7 fp,é) < LT(p7 fp)(l - 5>72 .

Taking 6 — 0 (and since F' < F) shows that
Lt — inf L
(p, fp) jnf (», f),

finishing the proof of Theorem 3.

Remark 10. Since we know the corresponding
single-letter source p for a Dirichlet prior, using this
p with Theorem 3 gives us the optimal compander
for Dirichlet priors on any alphabet size. This gives
us a better quantization method than EDI which was
discussed in Section II-B. This optimal compander
for Dirichlet priors is called the beta compander
and its details are given in Appendix C-A.
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B. The Minimax Companders and Approximations

To prove Theorem 1 and Corollary 1, we first
consider what density p maximizes equation (18):

5 (] 1<p<x>x—1>1/3dx)3

i.e. is most difficult to quantize with a compander.
Using calculus of variations to maximize

| (o)) d

0

27)

(which of course maximizes (18)) subject to p(z) >
0 and Sép(x) dr = 1, we find that maximizer is
p(z) = %x_l/ 2. However, while interesting, this is
only for a single letter; and because E[X]| = 1/3
under this distribution, it is clearly impossible to
construct a prior over A\g_1 (whose output vector
must sum to 1) with this marginal (unless K = 3).

Hence, we add an expected value constraint to
the problem of maximizing (27), giving:

! 1/3
maximize | (p(z)z~") P da
J
K
subject to | p(z)dx = 1; (28)
Jo
rl 1
plx)rdr = —; (29)
Jo (@) K

and p(z) = 0 for all .

We can solve this again using variational methods
(we are maximizing a concave function so we only
need to satisfy first-order optimality conditions). A
function p(z) > 0 is optimal if, for any A\(z) where

Ll Az)dr =0 and Jl MNz)rdr =0

0
the following holds:

1
K 3 (p(x) + t/\(m))1/3 de =0.
dt J,
We have by the same logic as before:
1
4 =3 (p(z) + t)\(x))l/S dx
1 _
=3 J a3 (p(z) + tA(x)) 2/3)\($) dx
1 1
= gf e VBp(x) 3 N(z) dx (att = 0).
0

(30)



Thus, if we can arrange things so that there are
constants ag, by such that

x’1/3p(x)’2/3 =ag + bgx

this ensures (30) equals zero. In that case,

7 VB3p(x)™3 = ag + bga
=4 p($)72/3 = CLKiCl/g + beA/S
— p(x) = (agz® + be4/3)_3/2 (31)

This is the maximin density pj. from Proposition 2
(8), where a, by are set to meet the constraints (28)
and (29). Exact formulas for ay, bx are difficult to
find; we give more details on after the next step.

We want to determine the optimal compander for
the maximin density (31). We know from (26) that
we need to first compute

—1/2

() = J w3 (aKw1/3 + wa4/3) dw
0

- 2ArcSinh (V%) )

Vb

The best compander f(x) is proportional to (32)
and is exactly given by f(x) = ¢(x)/¢(1). The
resulting compander, which we call the minimax

compander, is
ArcSinh <4 /T—S)
ArcSinh <4 /Z—ﬁ) ‘

Given the form of f(x), it is natural to determine an
expression for the ratio by /ax. We can parameterize
both ax and by by bi/ax and then examine how
bk /ax behaves as a function of K. The constraints
on ayx and by give that

/() (33)

aKg = 41/3<b[(/a[( + 1)71/3
bK = 4&1_(2 —ag .

The ratio b /ax grows approximately as K log K.
Hence, we choose to parameterize

bK/aK = CKKlOgK.

To satisfy the constraints, we get .25 < cx < .75 so
long as K > 24 (see Section D-A for details), and
Lemma 11 in Section D-A2 shows that cx — 1/2
as { — oco. Combining these gives Proposition 2.
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We can then express ax, bx in terms of cg:

ag = 4P (cxKlog K + 1)71/3
b = 401[}2 —ax
= 4B (cxKlog K + 1)%3
— 43 (cxKlog K +1)7'3
— 43 (e K log K)?3(1 + o(1)).

(34)

When K is large, the second term in (34) is negligi-
ble compared to the first. Thus, plugging into (33)
we get the minimax compander and approximate
minimax compander, respectively:

ArcSinh ( (cx K log K)x)

Jiclw) = ArcSinh (\/W)
~ FE () — ArcSinh(4/((1/2)K log K)z) |

ArcSinh(4/(1/2) K log K)

The minimax compander minimizes the maximum
(raw) loss against all densities in Py/x, while the
approximate minimax compander performs very
similarly but is more applicable since it can be used
without computing cy.

To compute the loss of the minimax compander,
we can use (18) to get

Foe g 1 [ 2ArcSinh (\/CKKlog K) ’
L'(pk, fx) =

24 NG

Substituting we get

LY (P, fic)

1 8 (log (vVexKlog K + v/cx K log K + 1))3
24 2cx K log K (1 + o(1))

1 (log4(cxKlog K))?

Y 2cx K log K (1+o(1)
1 log? K
=i K (1+o0(1)). (35)

In fact, not only is f} optimal against the max-
imin density pj, but (as alluded to in the name
‘minimax compander’) it minimizes the maximum
asymptotic loss over all p € Py k. More formally
we show that (f},p%) is a saddle point of L.

The function L'(p, f) is concave (actually linear)
in p and convex in f’, and we can show that the pair
(f%, py) form a saddle point, thus proving (10)-(11)
from Theorem 1.



We can compute that

() () o (P (x)x~")?
_ x_1/3(aK:131/3 n be4/3)—1/2
1
Vagx + bga?

Assume we set ax and by to the appropriate values
for K. For any p € Pk,

L sk - |

0

1

p(@)z (f5) () *dz

1
= f p(z)r Y agr + bga?)dr
0

1

=ag + bKK
i.e. L'(p, f) does not depend on p. Since f; is the
optimal compander against the maximin compander

pj we can therefore conclude:

sup LY(p, fi) = L' (v}, f3)
PEP1/K

= inf LT(p}, f) =

inf LT .
inf sup inf L'(p, f)

PEP1/ K

Since it is always true that

sup inf LT(p, f) < inf sup Li(p, f),
pePyx I € f F pePy K
this shows that (f},p} ) is a saddle point.
Furthermore, f3 € F' (specifically it behaves as
a multiple of 2'/2 near 0), so L(p, f3) = L'(p, f3)
for all p, thus showing that f}; performs well against
any p € Py k. Using (14) with the expressions for
pi and fj and (35) gives (12). This completes the
proof of Theorem 1.

Remark 11. While the power compander f(z) =
/18 K s not minimax optimal, it has similar prop-
erties to the minimax compander and differs in loss
by at most a constant factor. We analyze the power
compander in Section C-B.

C. Existence of Priors with Given Marginals

While pj is the most difficult density in P,k to
quantize, it is unclear whether a prior P* on Ag_ 4
exists with marginals pj — even though K copies
of p% will correctly sum to 1 in expectation, it may
not be possible to correlate them to guarantee they
sum to 1. However, it is possible to construct a prior
P* whose marginals are as hard to quantize, up to a
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constant factor, as pj, by use of clever correlation
between the letters. We start with a lemma:

Lemma 1. Let p € Py/i. Then there exists a joint
distribution of (X1, ..., Xg) such that (i) X; ~ p
for all i € [K] and (ii) Y5 Xi < 2, guaranteed.

Proof. Let F' be the cumulative distribution function
of p. Define the quantile function F'~! as

F~Y(u) =inf{z : F(z) = u}.

We break [0,1] into K uniform sub-intervals
I = ((i —1)/K,i/K] (let I, = [0,1/K]). We then
generate X1, Xo,..., X jointly by the following
procedure:

1) Choose a permutation ¢ : [K] — [K] uni-

formly at random (from K'! possibilities).

2) Let Uy, ~ unify,,, independently for all k.

3) Let X}, = F_l(Uk)

Now we consider >, Xj. Let b; = F~'(i/k)
for i = 0,1,..., K. Note that if o(k) = i then
U € ((i —1)/K,i/K]| and hence X, = F~1(Uy) €
[bi—1,b;]. Therefore X,-1(;) € [b;—1, ;] and thus for

any permutation o,
K
Db <D Xy < )b
i=1 i=1

1
K
_ (ZbH> + b — bo

=

as Zz bz;l < Zi]E[XU_l(i)] = KEXNP[X] = 1 D

Lemma 1 shows a joint distribution of

Wi,...,Wk_1 such that W; ~ pj for all ¢
and Zfi}l W; < 2 (guaranteed) exists. Then,
if X; = W;/2 for all : € [K — 1], we have
SN X, < 1. Then setting X = 1= X, > 0
ensures that (Xi,...,Xg) is a probability
vector. Denoting this prior F;, and letting
P () = 2p5(22) (so Wi ~ pie = Xi ~ pi
we get that

]lcg_;‘_-ﬁK(Phardv f) = (K - 1) }gﬁL(pK ; f) (36)
1 . . .. _1K-1 ~ .
= (K = 1)L (pi, fie) = 5 sup Lx (P, fr)-
2 2 K PePﬁ

(37)
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Fig. 3. Each compander (or quantization method) is used on random
distributions drawn from the prior P ;. Comparison is given to when
each compander is used on the books and DNA datasets.

The last inequality holds because pj; is the maximin
density (under expectation constraints). To make

4 Symmetric, we permute the letter indices ran-
domly without affecting the raw loss; thus we get

Corollary 1. To get (37) from (36), we have

1

~ 1
int L (2pic(20), ) = o ( |

1/ 1\’
_ - * —1y1/31

24 (J;) (2pF (u)2u™") 2du)

1 %

This shows Proposition 3. In Figure 3, we validate
the distribution B ; by showing the performance of
each compander when quantizing random distribu-
tions drawn from £ ,. For the minimax compander,
the KL divergence loss on the worst-case prior looks
to be within a constant of that for the other datasets.

(200 e

VI. COMPANDING OTHER METRICS AND SPACES

While our primary focus has been KL divergence
over the simplex, for context we compare our results
to what the same compander analysis would give for
other loss functions like squared Euclidean distance
(L%) and absolute distance (L, or TV distance). For
a vector x and its representation z let

Li(x,z) = Z:(a:Z — z)?
Ll(il)',Z) = Z |[EZ — Zz|

For squared Euclidean distance, asymptotic loss
was already given by (22) in [2], and scales as N 2.
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It turns out that the maximin single-letter distribu-
tion over a bounded interval is the uniform distribu-
tion. Thus, the minimax compander for L3 is simply
the identity function, i.e. uniform quantization is
the minimax for quantizing a hypercube in high-
dimensional space under L3 loss. (For unbounded
spaces, L3 loss does not scale with N~2.)

If we add the expected value constraint to the L3
compander optimization problem, we can derive the
best square distance compander for the probability
simplex. For alphabet size K, we get that the
minimax compander for L3 is given by

K(K —2)x —
ng,K(x)—\/H l((_Qz)x 1

and the total L3 loss for probability vector & and
its quantization z has the relation

lim N?L3(x, z) < 1
N—o0 3
For L, unlike KL divergence and L2, the loss
scales as 1/N. Like L2, the minimax single-letter
compander for L; loss in the hypercube [0, 1]¥ is
the identity function, i.e. uniform quantization. In
general, the derivative of the optimal compander for
single-letter density p(z) has the form

fil,K(f) cA/p(x).

On the probability simplex for alphabet size K,
the worst case prior p(z) has the form

p(z) = (agr + Br) 2
where «g, Sk are constants scaling to allow
S[O,l] dp = 1 (i.e. p is a valid probability density)
and {, yzdp = 1/K (ie. Ex,[X] = 1/K so K
copies of it are expected to sum to 1).

Thus, the minimax compander on the simplex for
Ly loss (and letting vx = ax/Bk) satisfies

Jiox (@) o (age + Bg) ™
= fr, x(x) o log((ax/Br)r + 1)
_ log(ykz +1)
= [r.x(7) = Tog(re +1)

since f1, x(x) has to be scaled to go from 0 to 1.
The asymptotic L, loss for probability vector x
and its quantization z is bounded by

lim NLi(x,z) < O(log K) .
N—0
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Loss Space Optimal Compander Asymptotic Upper Bound
. % ArcSinh(\/cK (Klog K) ) _ 2
KL Simplex | fi(z) = S (Ve KToe ) N~2log® K
12 Simplex | frz so(x) = YT N-?
L3 Hypercube | f;z(2) = = (uniform quantizer) N72K
Ly (TV) | Simplex | fp, x(z) = FEusetd N-tlog K
L, (TV) | Hypercube | fr,(x) = = (uniform quantizer) N—'K

Fig. 4. Summary of results for various losses and spaces. Asymptotic Upper Bound is an upper bound on how we expect the loss of the
optimal compander to scale with NV and K (constant terms are neglected).

VII. CONNECTION TO INFORMATION
DISTILLATION

It turns out that the general problem of quantizing
the simplex under the average KL divergence loss,
as defined in (2), is equivalent to recently introduced
problem of information distillation. Information dis-
tillation has a number of applications, including in
constructing polar codes [21], [22]. In this section
we establish this equivalence and also demonstrate
how the compander-based solutions to the KL-
quantization can lead to rather simple and efficient
information distillers.

A. Information Distillation

In the information distillation problem we have
two random variables A € A and B € B, where
|A| = K (and B can be finite or infinite) under joint
distribution P4 p with marginals P4, Pp. The goal
is, given some finite M < |B|, to find an information
distiller (which we will also refer to as a distiller),
which is a (deterministic) function h : B — [M],
which minimizes the information loss

I(A; B) — I(A; h(B))

associated with quantizing B — h(B). The interpre-
tation here is that B is a (high-dimensional) noisy
observation of some important random variable A
and we want to record observation B, but only
have log, M bits to do so. Optimal & minimizes
the additive loss entailed by this quantization of B.
To quantify the amount of loss incurred by this
quantization, we use the degrading cost [22], [21]
DC(K, M) = sup inf I(A; B) — I(A; h(B)).
Pa.B h
Note that in supremizing over P, p there is no
restriction on B, only on |A|. It has been shown
in [22] that there is a P4 g such that

inf 1(A; B) — I(A; h(B)) = QM40

giving a lower bound to DC(K, M). For an upper
bound, [23] showed that if 2K < M < |B|, then

DC(K, M) = O(M~%E=1)y

Specifically, DC(K, M) < v(K)M~% =1 where
v(K) ~ 16meK? for large K. While [21] focused on
multiplicative loss, their work also implied an im-

proved bound on the additive loss as well; namely,
for all K > 2 and MY®E-D > 4 we have

DC(K, M) < 1268(K — 1)M~2E=1  (38)

B. Info Distillation Upper Bounds Via Companders

Using our KL divergence quantization bounds,
we will show an upper bound to DC(K, M) which
improves on (38) for K which are not too small and
for M which are not exceptionally large. First, we
establish the relation between the two problems:

Proposition 8. For every P, p define a random
variable X € Nk 1 by setting X, = P[A = a| B].
Then, for every information distiller h : B — [M]
there is a vector quantizer z : N 1 — N1 with
range of cardinality M such that

I(A; B) = I(A; h(B)) = E[Di.(X[[2(X))]  (39)
Conversely, for any vector quantizer z there exists
a distiller h such that

I(A; B) = I(A; h(B)) < E[Di. (X[ 2(X))]

The inequalities in Proposition 8 can be replaced
by equalities if the distiller A and the quantizer z
avoid certain trivial inefficiencies. If they do so,
there is a clean ‘equivalent’ quantizer z for any
distiller h, and vice versa, which preserves the
expected loss. This equivalence and Proposition 8
are shown in Appendix G.



Thus, we can use KL quantizers to bound the
Degrading Cost above (see Appendix G for details):

DC(K, M) = supinf I(A; B) — I(A; h(B))
Pap I
= sgp iIzlf Ex-p[Dx.(X|2Z)]
< iIzlf Sl}ip Ex.p[Dx(X[Z)]. (40)

We then use the approximate minimax compander
results to give an upper bound to (40). This yields:

Proposition 9. For any K > 5 and MYE >
[8log(2y/K log K + 1)]
loglog K
log K
Proof. Consider the right-hand side of (39). The
compander-based quantizer from Theorem 4 gives a

guaranteed bound on D(X |2(X)) (and M = N¥
substituted), which also holds in expectation. L]

DC(K, M)< (1+18 >M?<10g2K.

Remark 12. Similarly, an upper bound on the
divergence covering problem [5, Thm 2] implies

DC(K, M) < 800(log K)M~E=1

(This appears to be the best known upper bound
on DC.) The lower bound on the divergence cov-
ering, though, does not imply lower bounds on
DC, since divergence covering seeks one collection
of M points that are good for quantizing any P,
whereas DC permits the collection to depend on
P. For distortion measures that satisfy the triangle
inequality, though, we have a provable relationship
between the metric entropy and rate-distortion for
the least-favorable prior, see [24, Section 27.7].
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APPENDIX ORGANIZATION

Appendix A: We fill in the details of the proof
of Theorem 2.

Appendix B: We prove Proposition 5.

Appendix C: We develop and analyze other
types of companders, specifically beta compan-
ders, which are optimized to quantize vectors from
Dirichlet priors (Section C-A), and power com-
panders, which have the form f(x) = 2° and
have properties similar to the minimax compander
(Section C-B). Supplemental experimental results
are also provided.

Appendix D: We analyze the minimax com-
pander and approximate minimax compander more
deeply, showing that cx € [1/4,3/4] (Section D-A)
and limg o cx = 1/2 (Section D-A2), and show
that when cx ~ 1/2, the approximate minimax
compander performs similarly to the minimax com-
pander against all priors p € P (Section D-B). Sup-
plemental experimental results are also provided.

Appendix E: We prove Theorem 4, showing
bounds on the worst-case loss (adversarially se-
lected «, rather than from a prior) for the power,
minimax, and approximate minimax companders.

Appendix G: We discuss the connection to
information distillation in detail.

APPENDIX A
ASYMPTOTIC SINGLE-LETTER LOSS PROOFS

In this appendix, we give all the proofs necessary
for Theorem 2, whose proof outline was discussed
in Section IV. We begin with notation in Sec-
tion A-A. In Section A-B, we give some preliminar-
ies for showing Proposition 6 (which shows that the
local loss functions gy converge to the asymptotic
local loss function g a.s. when the input X is
distributed according to p € P). In Section A-C,
we give the proof of Proposition 6. In Section A-D,
we give the proof of Proposition 7 (which shows the
existence of an integrable A dominating gn when the
compander f is from the ‘well-behaved’ set F).

In order to focus on the main ideas, some of
the more minor details needed for Proposition 6
and Proposition 7 are omitted and left for later
sections. We fill in the details on the lemmas and
propositions used in the proof of Proposition 6,
including proofs for all results from Section A-B
(specifically Lemmas 2 and 3 and Propositions 10
to 12) in Sections A-E to A-IL
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We then fill in the details of the lemmas for the
proof of Proposition 7, specifically Lemmas 4 and 7.

A. Notation

Given probability distribution p and interval I,
p|r denotes p restricted to I, i.e. X ~ p|; is the
same as X ~ p conditioned on X e I. We also
define the probability mass of / under p as m,; =
Px.p[X € I]. If m,; = 0, we let p|; be uniform on
I by default.

Given two probability distributions p, ¢ (over the
same domain), their Kolmogorov-Smirnov distance
(KS distance) is

dis(p, @)= Fp — Fylloo =sup [Fy () — Fy(z)] (41)

(recall that F),, I, are the CDFs of p, q).

We use standard order-of-growth notation (which
are also used in Section II). We review these def-
initions here for clarity, especially as we will use
some of the rarer concepts (in particular, small-w).
For a parameter ¢ and functions a(t), b(t), we say:

a(t)
a(t)
a(t)

We use small-o notation to denote the strict versions
of these:

O(b(t) > limsupa(t)/b(0)| < =
Qb(t)) = liminf |a(t)/b(t)] > 0
O(b(t) = alt) = O(b(1)), alt) = Ab(1)).

e
—~
~+
~
I

o(b(t)) = lim |a(t)/b(t)] = 0

t—00

w(b(t)) < lim |a(t)/b(t)| = 0.

t—00

e
~
<~
~—
[

Sometimes we will want to indicate order-of-growth
as t — 0 instead of ¢ — oo; this will be explicitly
mentioned in that case.

B. Preliminaries for Proposition 6

We first generalize the idea of bins. The bin
around x € [0, 1] at granularity N is the interval / =
I™ containing x such that f(I) = [(n—1)/N,n/N]
for some n € [N]. This notion relies on integers
because f(I) = [(n — 1)/N,n/N] for integers
n, N. We remove the dependence on integers while
keeping the basic structure (an interval I about z
whose image f(I) is a given size):



Definition 5. For any x € [0,1], 6 € [0,1], and € >
0, we define the pseudo-bin 1®%¢) gs the interval
satisfying:

0 _ [z — gr(xﬁvé)’ T+ (1— Q)T(;"G’a)] where

r@08) _ inf (r cfle+ (A —=60)r)— f(x—0r) = 5)
(42)

The interpretation of this is that 1®%) is the
minimal interval z such that |f(/(®%)| > ¢ and
such that z occurs at § within 7®%)_i.e. a 6 fraction
of 1(®9%) falls below x and 1 — @ falls above. Its
width is 7(®%), This implies that bins are a special
type of pseudo-bins. Specifically, for any x and N
(and any compander f),

Jx @) = [@O1N) for some 0 € [0,1].
We now consider the size of pseudo-bins as ¢ — 0:

Lemma 2. If f is differentiable at x, then

lim e 1r®0e) = f(x)™

e—0
(including going to oo when f'(x) = 0). The limit
converges uniformly over 0 € [0, 1].

The proof is given in Section A-E. Note that
applying this to bins means limy_,., Nr"¥®) —
f'(z)~', and hence when f'(r) > 0 we have
rv @) = N7 ()~ 4 o(N 7).

For any interval /, we want to measure how
close p is to uniform over [ using the distance
measure ds(p,q) from (41). We will show that
when F)(x) = p(x) is well-defined and positive at
x, p is approximately uniform on any sufficiently
small interval [ around z. Formally:

Proposition 10. If p(x) = Fj(z) > 0 is well-
defined, then for every ¢ > 0 there is a 0 > 0 such
that for all intervals I such that x € I and r; <9,

sz(p’[, unif[) <e€.

We give the proof in Section A-F. This allows us
to use the following:

Proposition 11. Let p be a probability measure and
I be an interval containing x such that r; < x/4
and ds(p|r,unif;) < e where € < 1/2. Then

s — Cumit, | < 2er72™! + O(rin™?) .

Recall that ¢,; is the interval loss of / under
distribution p when all points in [/ are quantized to
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.1, the centroid of the interval. We give the proof
of Proposition 11 in Section A-G.

Proposition 12. For any x > 0 and any sequence
of intervals Iy, I, - -- < [0, 1] all containing x such
that r;, — 0 as i — o0,

1
ﬂrix_l + O(rix_2) .

The proof is in Section A-H.

Note that the above lemmas are all about asymp-
totic behavior as intervals shrink to 0 in width; to
deal with the (edge) case where they do not, we
need the following lemma:

unifIl. =

Lemma 3. For any I such that Px_,[X € I| > 0,
there is some ar > 0 such that

lp = ar forany J 2 1.

We give the proof in Section A-I.

C. Proof of Proposition 6

We now combine the above results to prove
Proposition 6, i.e. that limy_,, gy (X) = ¢g(X) al-
most surely when X ~ p. Because p € P (i.e. itis a
continuous probability distribution) we will treat the
bins as closed sets, ie. I™ = [f(22)71, f(2)71];
this does not affect anything since the resulting

overlap is only a finite set of points.

Proof. Since p € P then when X ~ p the following
hold with probability 1:

Do<X<1;

2) f'(X) is well-defined;

3) p(X) = F,(X) is well defined;

4) p(X) > 0.
This is because if p € P, and |S| denotes the
Lebesgue measure of set S, then

|S‘=0 - ]P)XNP[XES]ZO

This implies (1) since {0, 1} is measure-0.

Additionally, by Lebesgue’s differentiation theo-
rem for monotone functions, any monotonic func-
tion on [0,1] is differentiable almost everywhere
on [0,1] (i.e. excluding at most a measure-0 set),
and compander f and CDF £}, are monotonic. This
implies 2) and 3). Finally, 4) follows because the set
of X such that p(X) = 0 has probability 0 under p
by definition.

Therefore, we can fix X ~ p and assume it
satisfies the above properties.



We now consider the bin size 7, (x)) as N — o0;
there are two cases, (a) limy_o r(ny(x)) = 0 and
(b) im sup o T(ny(x)) > 0. For case (b), since the
length of the interval does not go to zero, gy (X) =
N2€p,(nN(X)) — o0; additionally, g(X) = o by
default since case (b) requires that f'(X) = 0, and
so gn(X) — g(X) as we want.

Case (a): In this case (which holds for all X if
f e Fh, any § > 0 there is some sufficiently large
N* (which can depend on X)) such that

N 2N = 1y <9

By Proposition 10, for any € > 0 there is some
0 > 0 such that for all intervals I where X € I and
; < 0, we have dig(p|r, unif;) < e. Putting this
together implies that for any € > 0, there is some
sufficiently large N7 such that for all N > N7,

A s (D] (ny (x)), Unif oy (x)) < €.

i.e. p is € close to uniform on [ (n~(X)) | Furthermore,
we can always choose £ < 1/2 and N* sufficiently
large that 7, (x)) < X /4 (since im0 7(ny (x)) =
0). Under these conditions, for N > N* we can
apply Proposition 11 and get

Mpy(nN(X)) - gunif<nN<X>>|
< 261, (X + O,

(nn(

X))X_Q) :

We can then turn this around: as N — o0, we have
e — 0 and hence € = o(1) (as N — o), so

[y, (x)) — ¢ o(rfnX 1) . (43)

unif ( (X)) | =

We then apply Proposition 12 (note that since
Ty(X)) < X/4 and X < 2§(nN(X)), we know
automatically that 7, (x)) < Jmy(x))/2) to get that

1 _
. ooy X )

2% o () T (x
However, since X is fixed and 7, (x)) = 0 as N —
0 (and | X — Yy (x))| < 7y (x)) since they are both
in the bin 70"~()) we know that 7, (x)) = X (1+
o(1)) where o(1) is in terms of N (as N — o).
Hence (noting that (1 + o(1))~! is still 1 + o(1)
and O(r{, = x) X ?)is o(1)rf,  (x) X ") we can re-

write the above and combine with (43) to get

14 +O(

unif g (x))

1 -1
Cunit o = 57 (1 + 0D)Guyoen X

1 _
ST+ o)1 X

= b (0) = o5
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We now split things into two cases: (i) f'(
(i) J'(X) =

Case i (f'(X) > 0): For all N thereis a6 € [0,1]
such that J(~(X)) — [(X01/N) (bing are pseudo-
bins, see Definition 5). Thus, by Lemma 2 (which
shows uniform convergence over 6),

dim N7 ) = f/(X)7

X) > 0;

Thus, we may re-write as a little-o and plug into
gn(X):

Finx)y = N (X)) +o(NT)
= N'(X)7H (1 + o(1))
— gn(X) = N2y (n ()
1
2 2 —1

2 1 —2 p! -2y -1
= N2 (1 +o(1))N2f/(X) 72X

1

= 1+ o) (X)X

implying limy_ gy (X) = g(X) as we wanted.
Case ii (f'(X) = 0): As before, for any N there

is some 6 € [0,1] such that [("~(X)) = J(X0,1/N)

Thus, by Lemma 2 and as f'(X) = 0, we have

lim N T(n

Am N7 (x)) = 0

since the convergence in Lemma 2 is uniform over
6. We can then re-write this as a little-w:

Tnn(x)) = W(N7).

This implies that
gn(X) = N2, (ny(x))

1
- N?2__
24

= NQL
24

=w(1)

(1+o(1)rf X

(1+o(1)w(N"HX!

where w(1) means limy_,, gn(X) = co. But since
f'(X) = 0, by convention we have ¢g(X) =
/(X)X = o0 and so limy_qgn(X) =
g(X) as we wanted.

Case (b): imsupy_,, T(ny(x)) > 0. Note that this
can only happen if f/(X) = 0, so g(X) = oo; hence
our goal is to show that limy_,, gn(X) = c0.

Related to the above, this only happens if f is
not strictly monotonic at X, i.e. if there is some
a < X or some b > X such that f(X) = f(a) or



f(X) = b (or both). If both, [a,b] < I"~X) for
all N. Since p(X) is well-defined and positive, any
nonzero-width interval containing X has positive
probability mass under p. Thus, by Lemma 3, there
exists some « > 0 such that all J 2 [a,b] satisfies
(,.; = c. But then gn(X) > N2« and goes to .

If only a exists, we divide the granularities N
into two classes: first, N such that 7~(X) has
lower boundary exactly at X (which can hap-
pen if f(X) is rational), and second, N such
that /~(X)) has lower boundary below X. Call
the first class N (1), N)(2),... and the sec-
ond N® (1), N®(2),.... Then as no b exists,
limy_, o "0 = 0, ie. the bins corresponding
to the first class shrink to 0 and the asymptotic
argument applies to them, showing gy ;(X) —
co. For the second class, for any ¢, we have
[Pv@e®) 5 [a, X] and so we have an o > 0
lower bound of the interval loss, and multiplying
by N? takes it to co. Thus since both subsequences
of N take gn(X) to o, we are done. An analogous
argument holds if b exists but not a.

As this holds for any X under conditions 1-4,
which happens almost surely, we are done. [

D. Proof of Proposition 7

To finish our Dominated Convergence Theorem
(DCT) argument, we to prove Proposition 7, which
gives an integrable function ~» dominating all the
local loss functions gy. As with Proposition 6, we
do this in stages. We first define:

Definition 6. For any interval I, let

07 =suply
q

where q is a probability distribution over [0,1]. If
I = I™ we can denote this as 62‘71).

Since /¢, ; is only affected by ¢|; (i.e. what ¢
does outside of [ is irrelevant), we can restrict
q to be a probability distribution over [ without
affecting the value of ¢7. The question is thus: what
is the maximum single-interval loss which can be
produced on interval [?

Then, we can use the upper bound

9N (@) = N2l (g < Ny - (44)

This has the benefit of simplifying the term by
removing p. We now bound /7:
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We give the proof in Section A-J. We can then
add the above result to (44) in order to obtain

1, ——1
9" (v (@)Y (nn ()

Lemma 4. For any interval I, {7 <

However, it is hard to use this as the boundaries
of 1™~ (*)) in relation to z are inconvenient. Instead,
use an interval which is ‘centered’ at x in some way,
with the help of the following:

Lemma 5. If [ < I', then (7 < (3.
Proof. This follows as any ¢ over [ is also a distri-
bution over I’ (giving 0 probability to I'\I). ]

Thus, if we can find some interval J such that
(=) < J (but of the right size) and which
had more convenient boundaries, we can use that
instead. We define:

Definition 7. For compander f at scale N and x €
[0, 1], define the interval
1

7= (@) = 5 £+ 5| 2 0,1)

As mentioned, we want this because it contains
J(nn ().

Lemma 6. For any strictly monotonic f and integer
N,

(@) — JfNe

Proof. Since f is strictly monotonic, it has a well-
defined inverse 1.

By definition the bin [ (nn(2)) " when passed

through the compander f, returns [, ], i.e.
-1 n
Jon @)y — [”_ _],
/ ) N 'N

Note that this interval has width 1/N and includes
f(z) and (by definition) it is in [0, 1]. Hence,

FUOED) < [f() = 1. f@) + x| A 0.1]
= IO < fIH)

— (@) < jfNz

and we are done. O]

Now we can consider the importance of f € F1:
by dominating a monomial cz®, we can ‘upper
bound’ the interval .J/*¥:* by the equivalent interval
with the compander f,(x) = ca® (i.e. J/V* <



JfN:2) “which is then much nicer to work with.®
This also guarantees that f is strictly monotonic.

Lemma 7. If fi,fo € F are strictly monotonic
increasing companders such that fo — fi is also

monotonically increasing (not necessarily strictly)
and f1(0) =0, then for any x € [0,1] and N,

JfaNa o pfiNa

The proof is given in Section A-K. Finally, we
need a quick lemma concerning the guarantee that
if f e FT, the function g(z) = 5;f'(z) 2z~ is
integrable under any distribution p:

Lemma 8. Let f € F', and let g(x) =

if’(x)*%*l. Then for any probability distribution
p over [0, 1],

f gdp < .
[0,1]

Proof. If f € F', then there is some ¢ > 0 and
a € (0,1/2] such that f(z) — cz® is monotonically
increasing. Thus (whenever it is well-defined, which
is almost everywhere by Lebesgue’s differentiation
theorem for monotone functions) we have f'(z) >
cax®~! and since a € (0,1/2], we have 1 —2a > 0.
Thus, for all z € [0, 1],

1 1
0<g(x) < ﬂc_zof?xl_za < ﬁc_zoa_Q

which of course implies that S[o 9P < . N

We can now prove Proposition 7, which will
complete the proof of Theorem 2.

Proof of Proposition 7. As before, let f.(x) = cx®;
thus f.(0) = 0 so we can apply Lemma 7. We begin,
as outlined in (45), with:

gn () = Nl (ny ()

2 px
< NW;LN,Z 47

where (46) follows from the definition of /7; (47)
follows from Lemmas 5 and 6; and (48) follows
from Lemma 7. However, since f.(z) = cz®, we
have a specific formula we can work with. We

®While fy(x) may not map to all of [0, 1], it’s a valid compander
(but sub-optimal as it only uses some of the /V labels).
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have f/(z) = acx®! and f7'(w) = (w/c)"/* =
¢~ Yewl/® Note that this means we can re-write

h(l’) _ (22/a + Oé221/a_2)f,<l’)_2l’_l + C_1/a21/a_2

which sheds some light on the structure of A(x).
Using Lemma 8 proves that 8[01 hdp is finite if
f € F, which occurs when v < 1 )2.

Fix a value of z. Let ry(z) be the width of
JN2 We consider two cases: (i) cz® < 1/Nj;
and (ii) cz® = 1/N.

Case (i): This implies f(J5"*) < [0,2/N] so

T < C—l/aN—l/a
— ry(z) < Y(N/2)7 Ve

Then, as J7*™* has lower boundary 0 in this case,
Unn(z)) = Tn(x)/2. Thus, using (45),

1
gn(z) < N2§7“N($)2?J(w(x))

< C—l/a2—1/OtN—1/Oé+2 ]

If o« < 1/2, then N~/*2 is maximized at N = 1,
and thus

gN(x) < C_I/QQ_I/CX.

If a > 1/2, the value N~/**2 is maximized for the
largest possible N still satisfying Case (i). Since
cx® < 1/N, this implies that N < ¢~ 'z~ Then,
9N<l’) < C_l/a(c_lx_a)_l/a+22_l/a
-2, 1-2a9-1/a

=c
= o?(caz® )2l Ve
= o2 fl(z) 227V
Thus, for Case (i) we have that for any a € (0, 1],
gn(@) < @ fy(a) 22tz o teg e

Case (ii): When cx® > 1/N, since x € | =
yr = /2 (the midpoint of an interval cannot be less
than half the largest element of the interval), we can
upper-bound gy () (using (48) and Lemma 4) by

gn(z) < NQ%TN(:U)Qy;}*,N@ < Nry(z)?2™t.

49)

We then bound ry(z) using the Fundamental The-
orem of Calculus: since f is monotonically increas-
ing, for any a < b,

J () dt < £5) - f(a)



(any discontinuities can only make f increase
faster). Additionally ry(x) = by —ay where f(b;) =
max(f(z)+1/N,1) and f(a;) = f(x)—1/N (since
it’s Case (ii) we know f(z) — 1/N > 0 and since
f e F' is strictly monotonic a;,b; are unique).
Thus, if we define as, by such that

wa%ﬂdtzlﬂVaml " pyd = 1/N

(or ag = 0 or by = 1 if they exceed the [0,1]
bounds) we have ry(z) < by — ay. Then, because
f — f« 1s monotonically increasing, we can define
as, b3 where

Jx fi(t)dt = 1/N and N fit)dt =1/N

and get that ry(x) < bs — a3 (also allowing b3 > 1
if necessary). This yields:

ry(z) < c_l/o‘f
max(0,cx*—1/N)
rmin(1,cx®+1/N)

a tw* Tt dw

min(1,cx*+1/N)

(f) (w) duw

_ C—l/a
Jmax(0,cz*—1/N)
rmin(1,cz®+1/N)

o t(ex® + 1/N)Yo L dw
max(0,cx*—1/N)
rcc®+1/N

a ez + 1/N)Yet quw

cx®—1/N

= (2/N)c_1/aa_1(cza + 1/]\7)1/0‘_1

—1
<c Ve

(-

[

— ry(x) < (2/N)cVea Y ea® + 1/N)YVa!
< 2]\/’1071/"‘0471(2ca:a)1/°"1
_ N—lc—l/a —121/a(cxa)1/a—1
=2V N~ ela™la! ™)
= Ql/aNilf*(aﬁi

Thus, we can incorporate this into our bound (49)

gn(z) < N?ry(z)z™
< 2% fi(x) 2t

So, h(x), as the sum of the two cases, upper bounds
gn(z) no matter what.

We can also note that if o < 1/2, then z'72* < 1
and hence we can upper-bound h by a constant.
Thus §, ;hdp = Exo,[h(X)] < oo trivially, for
any p, and we are done. 0

This completes the proof of (16) in Theorem 2.
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E. Proof of Lemma 2

Proof. Note that for fixed # and z, %) is nonneg-
ative and monotonically decreases as ¢ decreases.
Thus lim._o %) > 0 is well defined.

We first assume that lim, o 7% = 0 for all
6 € [0, 1]. Let sp(r) be defined as

flx+ (1 =0)r) -

r

f(z—0r) ‘

se(r) :=

We want to show that lim, g s¢(r) = f'(x) for all
0 € [0,1], and that this limit is uniform over 6 €
[0,1]. For 6 € {0,1} we get respectively the right
and left derivatives and since f is differentiable at
x we are done for those cases. For § € (0,1) we
write:

so(r) = flx+1—=0)r)— f(x—6r)
@t (-0~ f@)
A= fte =)
flz+ (A =0)r) - f(x)
= (1=9) (1—0)r
o=t 1)

This implies

iyt -y (0ol
flz—6r) — f(z)
+0 — )

= (1=0)f"(z) + 0/ (z) =

Furthermore we note that the convergence is uni-
form over 6 € [0, 1]. This is because for any a > 0,
there is a 0 > 0 such that for |r| <4,




But [r| <d = |—60r] <¢§and |(1 —0)r| <.
Thus,
[so(r) — f'(2)]
Ny Sl (A =0)r) — flz)
B ‘(1 %) (1—6)r
fla+ A -0)r)— f(z) ;
(1—-0)a+ o

Thus we have uniform convergence of sy () to f/(z)
over all § € [0,1] as r — 0. Since @) — 0 as
e — 0,

f'(z) = lim 59(7"(””’0"5))

e—0
~ lim flz+ (1 —0)yr@®%e)) — f(x — gr@0e)
e—0 T(.’I?,O,E)
I £
)
— lime™ Lp(@oe) — f/(z)71
E—>

as we wanted. The third equality comes from the
definition of 7®%) (42) and the fact that f’(x) is
well-defined.

Now we need to consider what happens if
lim._or®®<) = ( for some values of #; this can
either be because the limit is positive or because the
limit does not exist, but in either case it is clearly
only possible if f is not strictly monotonic at x and
hence only if f’(z) = 0. Additionally, it can only
happen if f is flat at =, i.e. there is either some a < x
or some a > x such that f(a) = f(x) (or both). In
this case, for any 0 < 6 < 1, [ (©.0.) contains the
interval between @ and x and hence 7(**%) > |z —al.
For # = 0 and 6 = 1, either »*%9) is bounded
away from 0, or it approaches 0; in the first case,
g lp@0e) 5 o by default, while in the second the
proof for the lim._,o r®%%) = 0 case holds.

Thus, for all values of 6 € [0, 1], we know that
lim._,oe r®%¢) = oo as we need; and this is
uniform over 6§ because for any 6 € (0,1) we have
e~ r@9¢) > 1|z — |, meaning that for any large
a > 0, we can choose ¢* small enough so that for all
e < &* all of the following hold: (i) e~ !z —a| > «;
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(i) e 'r®09 > «; and (iii) e '7®%%) > . Thus,
we have uniform convergence and we are done. [

F. Proof of Proposition 10

Proof. We can assume that ¢ < 1/2 (if not, just use
the value of § corresponding to ¢ = 1/2). Let § > 0
be such that for all 2’ such that |2’ — x| < 6,

Fp(2) — Fy(@)

T —x

—p()| < ple)e/s

Since the derivative p(z) = Fj(x) is well-defined,
this & must exist. Then for 2’ € I,

(Fp(2') = Fy(x)) — (¢ — z)p(z),
< |2 — z|p(x)e/8 < rip(x)e/8

Now let z” also be such that 2" — x| < 6. Then

|(Fp(z") = F, (56)) (x” —a')p(z)|
= |(Fp(2") = Fy(x)) — (2" — 2)p(2))
Fy(z)) — (2’ — 2)p(x))|
(50)

((Fp( ') —
< 7p(r)e/d
Let 2’ be the lower boundary of 7, so x’ + r; is the

upper boundary of I (for which the above of course
applies). Then we get

‘(Fp(x/ +rr) — Fp(x/)) - Tlp(x)’
F, (' +r) — F(2

< rp(r)e/4

|
-1 <e/4. 51
rip(T) / G

Then we know that for any x” € I,

I (33”) _ FP(‘I”) — Fp(x/>
R ) = B
By (50) we know that

(2" — 2" \p(x)—rp(x)e/4 < F,(2") — F,(2")

< (2" = 2")p(z) + rip(w)e/4
= rp(x) (2" —2)/rr —e/4) < Fp(a") — Fp(a')
< rp(@)((z" — ') /rr + €/4)

and by (51) we know that

rip(z) — rip(z)e/4 < Fy(x + rp) — F,(2')

< rip(w) + rip(x)e/4

= rmp(x)(1 —e/4) < Fy(x + ry) — F,(2')
< rip(a)(1 +/4).
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Noting that (2" — 2')/r; = Funir, (2”) € [0,1] is the since dggs(-,-) is a metric, dgs(q1,q2) =
CDF of the uniform distribution on I, we get that  dys(Tw(q1), Tw(ge)) for any ¢q, ¢ and w, and

@) > rip(x)((z” — a)/rr — /4)

E dis(T,, (unify), T, (unif7)) < |29 — 21|/r7 .

8 rip(z)(1+¢e/4)
" /
- —¢/4
= (@ 12: /T 1 e/ For convenience, let ¢ = Ty, ,(p|;) and ¢ =
j/r e/ Ty, (unify), and let Wy ~ ¢y and W5 ~ go. We know
> Funit, (7") — € the following: E[W;] = E[W,] = 0; dks(q1,q2) <

2¢; and ¢y, g2 have support on [—r, r/].
L A Let n; = E[W{] — E[WZ]. Then we can compute
L(2") < rip(x)((«” + ') /rr — &/4) the following:
! rip(x)(1 —e/4)
(" —2")/rr +¢e/4 ry . i
- il =| | @0V > 2] - BW; > o]y da
0
< Funir, (2") + € f

and similarly that

F

p

Ty . .
(P[W] < —x] = P[W; < —z]) dx
and hence for such a 4 > 0 we have for all [

containing x and such that r; < § we have

|Fpj, (") — Funir, (2")] < €

0

If 7 is odd, then we do a u-substitution with v = x/
and get

for all 2" € I. For 2" ¢ [ = [2',2" + r;] we then
observe that

i

J‘WMG>fﬂ—PW@>fﬂMx

mi| = .
. , 0 ifa" <o
th(a:’) = Funit, (x/) - e ' 0 1/i i 1/i
1 ifa" >a2" +r; — | (PW < =z -P[Wj < —2'']) da
thus finishing the proof. U rr 77"'1
:ﬁ[dﬂﬂ%)ﬂ—ﬂ%)ﬂﬂu
0
G. Proof of Proposition 11 0
i—1
Proof. Let & = ¥y, 1 — yr. Then: - f u (PIWy < u] = P[Wy < u) du
—ry
6= | [ @ron X 501 - P X 5ol ae] <2 [ i e e
I 0
< J Py, [X = 2] = Pyounit, [X = ]| da Similarly if 7 is even we get
I
< rre. i

| = " 1/i7 _ 1/i
For any distribution ¢ and any fixed value w, define Inil = L PW1 = 2] = P[W, > 277]) do

the shift operator 7,,(q) to denote the distribution of 0
X —w where X ~ ¢ (i.e. just shift it by w). Note + f
that Ty ,(p[r) and Ty, (unif;) are both constructed -
to have expectation 0, and in particular T, (unif;)
is the uniform distribution over an interval of width

r; centered at 0. Additionally,

dis(Ty, ; (pl1), Ty, (unify))

. TI . .
< dgs(Ty,,(plr), Ty, , (unif;)) < 2J w1 2edu = der’
+ dgs(Ty, , (unif), Ty, (unif 7))

< 2¢

(P[W, < —2Y1] — P[Wi < —2]) dx

i
I

and we can conclude that |n;| < 4er? in general.




Then we can take the respective Taylor expan-
sions: let X; ~ p|; and Xy ~ unif; (and W7 ~
q1, W ~ g2 as above). We get

U1 = E[ X1 log(X1/9p1)]
= Up 1 E[(W1 /Up,1 + 1) log(W1/Pp1 + 1)]
~ - Wi N2 (W /i )3
= YpaIE lwl/?/p,l + (W/Gp.1)”  (Wi/Gp1) ]

2 6(1+n)?
(52)

where 7 is a number between 0 and W;/7y,; (we
get this using Lagrange’s formula for the error).
Since Wy + ¥, 1 € I, we know that

Yp I =TT SWH Yp1 S Ypr T77-

Since r; < /4 and y,; > x — r; (as x,y, share
the width-r; interval 1), we get that 4, ; > 3r;, and
therefore

2. - 4.
gyp,l < Wl + yp,I < gyp,l
—1 N 1

— < W < —.
e 3 1/yp,1 3

This gives that |n| < 1/3. Using this and the fact

that E[I¥;] = 0 by construction, we can write (52)

as

B[P
8/3

o

8/3(x —ry)?’

Since r; < x/4, we know that = —r; > (3/4)z, and

hence

lp1 < SE[WE] Gy + (Fpr)

L\DI»—l N)I»—*

[Wl]/ypl +

1 N _
by1 < §E[W12 Vi + (2/3)r72~

Hence we get
1 ~ _
b = SEIWE) /s + O(rfa™)

Because x — r; < y; as well (and W5 has support
on [—r,r7]) we can repeat the above arguments to
conclude similarly that

Cunit, = SEWS)/5r + O(rjz™®) . (53)
Hence their difference is
|£p,] - Eunif1| <
L EIWE) Gr — EIWE 5| + 063 (54)
9 11/ Yp.1 21/Yr1 rpx
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Taking the main term, we split it into three parts:

BV Gt — E[WS /5]

< [E(W?)/Jps — E[WE] /2| (55)
+ |E[W31/5; — E[W3]/x] (56)
+ [E[WP)/z —E[WS /2. (57)

The first part (55) can be bounded by
[E[WE)/Gpr — E[WE] /2| < [E[WE]|1/5p0 — 1/2]
<72 % — Yp,1]
yp 1T
< (4/3)r3x2
= O(riz™?).
An analogous argument bounds (56), giving
[E[W3]/5r — E[W3]/z| =
Finally, (57) follows from
[E[WY]/z — E[W3]/z| =

r[x 2).

Imo|z ™! < derjzt.

Thus, plugging it all into (54) we get

|€p,f un1f1| 257’1{5 + O(T?CL’_2) .

H. Proof of Proposition 12

Proof. Let i* be such that r;, < x/4 for all
¢t = ¢* (since lim; ,,7;, = 0 this exists) and
WLOG consider the sequence of ¢ > ¢*. The result
then follows from the Taylor series of f,ni, , as
shown by (53) (see proof of Proposition 11 in
Section A-G). Keeping the definition from the proof
of Proposition 11, we let Wy ~ T3, (unify,), i.e.
uniform over a width r 1 interval centered at 0. Thus
we have E[W3] = 57 and hence (53) yields

= §E[W22]/§Ii +O(rjz™?)
1

= 24TI y[ + O(Tix72>

guniffi
(58)

But 37, and x share the interval /; and hence as
r, — 0,
g[l. =+ O(T[i)
=z2(1+O(r,z ™))
= 7, =2 (1+O0(rpa™))

since when 7y, is very small, O(r,z~!) is very small
o (1+O0(rpz )™ =1+ O(r,z™") (the inverse



of a value close to 1 is also close to 1). Thus, we
can replace ’Ijl_il in (58) to get

1
Cunie, = ﬂrisfl + O(rix”)

as we wanted. ]

1. Single-Interval Loss Function Properties and
Proof of Lemma 3

We prove Lemma 3 here; to do so, we show a few
lemmas concerning the single-interval loss function
¢, 1. First, we show an alternative formula for ¢,
which sheds some light on it:

Lemma 9. For any p, I,
lp1 = Exp), [ X log X] — .1 10g(Yp.1)

Proof. We compute /,, ; as follows:
1 = Exp[ X 1og(X /1) | X € 1]
= Exp|; [ X log(X/F,1)]
= Exp, [X 1og(X) — X'log(y.1)]
= Exp; [X log X — Ex~p|; [X] log(ng)
= Exp, [Xlog X] — 5,1 log(¥y,1)
since 1 = Exp, [ X]. O

We now want to show that it really does represent
something resembling a loss function: first, that it
is nonnegative, and second that it achieves equality
if and only if X ~ p on I is known for sure (so the
decoded value can be guaranteed to equal X).

Lemma 10. For any p and I < [0, 1] (even p is not
continuous),

gp,[ = 0
with equality if and only if there is some w € [ s.t.
Px [ X =w|Xel]=1.

Proof. Using Lemma 9, if we define the function
h(t) = tlogt then since h is strictly convex, by
Jensen’s Inequality (where all expectations are over

X ~plp)
l,r = E[h(X)] — R(E[X]) =0

with equality if and only if X ~ pl|; is fixed with
probability 1. [

This yields the following corollary:
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Corollary 2. If p € P and I has nonzero width,
€p7 1>0.

This follows because p € P is continuous and
so cannot have all its mass on a particular value in
any nonzero-width 7. If [ has zero probability mass
under p, then £, ; defaults to the interval loss under
a uniform distribution.

Finally, we can prove Lemma 3. Recall that it
shows that if / has nonzero probability mass under
p, one cannot get the interval loss to approach 0 by
choosing J 2 I, i.e. if p € P and [ is such that
Px.,[X € I] > 0, then there is some « > 0 (which
can depend on [) such that

lpy=aforal J21T.
Proof of Lemma 3. We can re-write ¢, ; as

EPJ = EX~p[X ].Og(X/gp’J) |X € J]
p(z) ~
= xlog(x/yp.s) dx
J, Capriesta/in)

where § ; dp is just the integral representation of
Px,[X € J].

Therefore, since p € P, {,; is continuous at
J with respect to the boundaries of .J (the in-
verse probability mass (§, dp)~" is continuous since
§,dp=§,dp>0).

Thus, we can consider ¢, ; as a continuous func-
tion over the boundaries of J on the domain where
I < J < [0,1]; this domain can be represented
as a closed subset of [0, 1]? and hence is compact.
Thus, by the Weierstrass extreme value theorem, ¢,
achieves its minimum « on this domain, and by
Corollary 2 it must be positive.

Hence, we have shown that there is an a > 0
such that for any J 2 1, {, ; > «. OJ

J. Proof of Lemma 4

Proof. We WLOG restrict ourselves to ¢ which are
probability distributions over I. Let P; denote the
set of probability distributions over / (not necessar-
ily continuous) and P; denote the set of probability
distributions over I which place all the probability
mass on the boundaries y; — /2 and y; +77/2, i.e.
for all ¢’ € P; we have

Pxg|X € {gr —71/2, 91 +11/2}] =

We then make the following claim:



Claim 1: For all q € Py, exists ¢’ € P; such that
los <Ly 1.

This follows from the convexity of the function
xlog(x) and the definition of ¢, , i.e.

gq,[ = EX~q[X log(X/gq,Iﬂ

(since ¢ in this case is a distribution over I, we
removed the condition X € [ as it is redundant).
In particular, if ¢’ is the (unique) distribution in
P; such that Ex. ., [X] = y,s (i.e. we move all
the probability mass to the boundary but keep the
expected value the same), then ¢, ; can be computed
by considering the average over the linear function
which connects the end points of X log(X /¥y, )
over /. Because of convexity, this linear function
is always greater than or equal to X log(X /7, ) on
I, and therefore ¢, ; < {y ;. Thus, Claim 1 holds
and we can restrict our attention to P;.

For simplicity we introduce a linear mapping w
from [—1/2,1/2] to I: for § € [—1/2,1/2], let
w(f) = yr + Orr (so w(—1/2) = yr —ry/2 is the
lower boundary of I, w(1/2) = y; + r;/2 is the
upper boundary, and w(0) = g; is the midpoint). We
also specially denote a = w(—1/2) to be the lower
boundary and b = w(1/2) to be the upper boundary.
Then, since any g € P} can only assign probabilities
to a and b, we can parametrize all ¢ € P}: let ¢(0)
denote the distribution assigning probability 1/2+ 6
to the upper boundary b and 1/2 — 6 to the lower
boundary a. Then this gives the nice formula:

Yqgt0),1 = Y1 + Orp = w(0)
i.e. ¢(0) is the unique distribution in P; with expec-
tation w(#). This brings us to our next claim:
Claim 2: Lyg),1 < 2Ly, forany 6 € [—1/2,1/2].
Ignoring the redundant condition X € I, we use
lgr = Ex [ X log(X)] — Yq,r log(Yq,1) (59)
to re-write £4g) ; as follows:
Loy, = (1/2 = O)alog(a) + (1/2 + §)blog(b)
— w(0) log(w(0))
This implies that

Ca@),r < o)1 + Lo(—0).1
= (alog(a) + blog(b))
— (w(0) log(w(0)) + w(—0) log(w(~0)))
< (alog(a) + blog(b)) — 2y, log(yr)
= 2ly0).1
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where the inequality follows because xlog(zx) is
convex and the mean of w(f) and w(—6) is w(0) =
91, showing Claim 2.

Claim 3: 2ly0) 1 < 37777 -

This comes from rewriting according to (59) and
then applying the Taylor series expansion of (1 +
t)log(1 + t). Define t = r;/(2y;) < 1 (otherwise
I¢10,1]), we get:

2&1(0),1
= (a log(a) + blog(b)) — 2y; log(yr)
= (yr — r1/2) log(yr — 11/2)
+ (U1 +11/2) log(yr + 71/2) — 291 log(yr)
= (yr — r1/2)(log(yr — r1/2) — log(yr))
+ (91 + r1/2)(log(9r + r1/2) — log(¥1))
= gr((1—1t)log(1 —t) + (1 + ¢t)log(1 + t))

We can use the inequality that (1 —¢)log(1l —¢) +
(1+t)log(1 + t) < 2t* for || < 1, to get

_ 1,
24001 < 2yrt® = 57"?% !

This resolves Claim 3.
The lemma then follows from Claims 1, 2, and
3. O

K. Proof of Lemma 7

Proof. First, note that the above conditions imply
that fo(z) > fi(x) and that f5(z) > fi(x) for all x
where both are defined (almost everywhere).

Let J/oN® = [a;,b;] for i = 1,2. We will prove
that a; < ay and b; > by. Note that by definition if
fi(z) —1/N < 0 then a; = 0 and a; < ay happens
by default; thus this is also the case if fo(z)—1/N <
0 since f, = f; means this implies fi(xz)—1/N < 0.
Meanwhile, if f5(z) + 1/N > 1 we have

/N =1~ fo(x) = f2(1) = fo(2) = f1(1) = fi(2)

meaning that by = 1 (and by = 1) so b; > by; and
similarly fi(z)+ 1/N > 1 simply implies b; = 1 >
bs.

Thus we do not need to worry about the bound-
aries hitting 0 or 1 (i.e. we can ignore the ‘n[0, 1]’
in the definition), as the needed result easily holds
whenever it happens.

Then a; and ay are the values for which

szé(t)dt=ﬁ fiydt = 1/N



But since 0 <

fi(t)

< f4(t), we know that

f fa(t)dt = 1/N = f fi(t) dt < J f5(t) dt

which implies that a; > a;. An analogous proof on
the opposite side proves b; > by and hence

Jf2’N’x = [ag, bg] - [(11, bl] = Jfl’N’x

as we needed. L]

APPENDIX B
PROOF OF PROPOSITION 5

Proof. First, note that f; — dz'/2 = (1 — 6)f is
monotonically increasing so f € F'. Furthermore,
where the derivative f’ exists (which is almost
everywhere since it is monotonic and bounded),

f5(x) = (1=0)f'(x)

Thus, pointwise, lims_o fj(z) = f'(z) for all x.
Since for all § > 0 we have f € F', Theorem 2
applies to fs. So, we have

s T
lim L(p, f5) = lim L'(p, f5)

+ (6/2)2~1/?

and lims_o p() fj(z) 27! = p(2)f'(z) %27, ie.
pointwise convergence of the 1ntegrand We now

consider two p0551b111t1es (i) SO x)f(z) 227t <
o0; (ii) So (x) 227! = oo,

In case (1) WLOG assume that 0 < 1/2; then
fi(x) > 5 f'(x), which implies fj(z)™? < 4f'(x)~?

Thus, we have an integrable dominating function
(p(z) f'(z)22~") and we can apply the Dominated
Convergence Theorem, which shows what we want.

In case (>i1), we need to show
limg o §; p(2) f(z) 22" da = 0. Let
X = {x e [0,1] f'(x) = 6272} and

Xs_ = [0,1]\X;", with 1.(-) denoting their
respective indicator functions. Then
fi(x) = (L =8)f'(x) + (5/2)~ "
< flx) + 6x 12
<2f'(2) Ly (@ >+26x—1/21 ey

— [0 @) STe 5+ g0

Xy ().
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This then shows that (switching to S-dp notation)
1
| syt ay = [0 @@ 2 dp
1 _
+ Zleé(a:)é 2dp.

Note that X" expands as § — 0. We then have
two sub-cases (a) lims_oPx,[X € X] = 15 (b)
limsoPxp[X € X;7] < 1, which implies that
there is some 3 > 0 such that Px..,[X € X | >
for all 0. Then in sub-case (a), we have

. / -2,.—1
lim 2| L () ()" dp
1
=7 m B [1ar (X) f/(X) X7 = 0.

This is infinite because X, := lims o X5 is
probability measure-1 set, and by the definition
of Lebesgue integration, integration over X, is
equivalent to the limit of integration over X", and
since it is probability measure 1 integrating over it
with respect to p is equivalent to integrating over
[0, 1]. Meanwhile in sub-case (b) we have

1 5 62 _ 62
which goes to 0 as § — 0, and we are done.  []

APPENDIX C
BETA AND POWER COMPANDERS

In this appendix, we analyze beta compan-
ders, which are optimal companders for symmetric
Dirichlet priors and are based on the normalized
incomplete beta function (Section C-A) and power
companders, which have the form f(z) = z°
and which have properties similar to the minimax
compander when s = 1/log K (Section C-B).

We also add supplemental experimental results.
First, we compare the beta compander with trunca-
tion (identity compander) and the EDI (Exponential
Density Interval) compander we developed in [1]
in the case of the uniform prior on Ag_; (which
is equivalent to a Dirichlet prior with all parameters
set to 1), on book word frequencies, and on DNA k-
mer frequencies. EDI was, in a sense, developed to
minimize the expected KL divergence loss for the
uniform prior (specifically to remove dependence
on K) as a means of proving a result in [1]; the
beta compander was then directly developed for all
Dirichlet priors.



Second, we compare the theoretical prediction
for the power compander against various data sets;
this demonstrates a close match to the theoreti-
cal performance for synthetic (uniform on Ag 1)
data and DNA k-mer frequencies, while the power
compander performs better on book word frequen-
cies. Note that this is not a contradiction, as the
theoretical prediction is for its performance on the
worst possible prior — it instead indicates that book
word frequencies are somehow more suited to power
companders than the uniform distribution or DNA
k-mer frequencies.

Finally, we compare how quickly the beta and
power companders converge to their theoretical lim-
its (with uniform prior); specifically how quickly
N2L(p, f,N) converges to L(p,f). The results
show that for large K (~ 10°), both are already
very close by N = 2% = 256; while for smaller
values of K, power companders still converge very
quickly while beta companders may take even until
N = 216 = 65536 or beyond to be close.

A. Beta Companders for Symmetric Dirichlet Priors

Definition 8. When X is drawn from a Dirichlet
distribution with parameters o = aq,...,Qg, We
use the notation X ~ Dir(a). When o = -+ =
ag = o, then X is drawn from a symmetric
Dirichlet with parameter o and we use the notation

X ~ Dirg(a).

As a corollary to Theorem 3, we get that the
optimal compander for the symmetric Dirichlet dis-
tribution is the following:

Corollary 3. When « ~ Dirg(«), let p(z) be
the associated single-letter density (same for all
elements due to symmetry). The optimal compander

for p satisfies
a+1l (K—-1a+2\"!
@ = B(5— )
7wy = B(* )
I'(a_Q)/B(l . x)((K—l)a—l)/?,

(60)

where B(a,b) is the Beta function. Therefore, f(x)
is the normalized incomplete Beta function I, ((a +
1)/3,((K — 1)a + 2)/3).

Then
Lp. f)
o — 1« 3
:%B( ;1,(K ? +2) B(a, (K — 1)a)™

(61)
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comparing companders with N = 256
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Fig. 5. Comparing the beta compander and the EDI method. The
random data is drawn with Dirg (1) (i.e. uniform).

This result uses the following fact:

Fact 1. For X ~ Dir(ay,...,ak), the marginal
distribution on Xy is Xj ~ Beta(ag, k), where
br = Z#k a;j. When the prior is symmetric with
parameter o, we get that all Xy are distributed
according to Beta(a, (K — 1)a).

Remark 13. Since (61) scales with K —1 this means
that L (Dirg (), f) is constant with respect to K.
This is consistent with what we get with the EDI
compander (see [1]).

We will call the compander f derived from inte-
grating (60) the beta compander. (This is because
integrating (60) gives an incomplete beta function.)
The beta compander naturally performs better than
the EDI method since this compander is optimized
to do so. We can see the comparison in Figure 5
that on random uniform distributions, the beta com-
pander is better than the EDI method by a constant
amount for all K.

The beta compander is not the easiest algorithm
to implement however. It is necessary to compute
an incomplete beta function in order to find the
compander function f, which is not known to have a
closed form expression. We reiterate Remark 4 that
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Fig. 6. Comparing theoretical performance (62) of the power
compander to experimental results.

it is indeed interesting that the minimax compander,
on the other hand, does have a closed form.

B. Analysis of the Power Compander

Starting with Theorem 2, we can use the asymp-
totic analysis to understand why the power compan-
der works well for all distributions. The following
proposition proves the first set of results in Theo-
rem 5.

Proposition 13. Let single-letter density p be the
marginal probability of one letter on any symmetric
probability distribution P over K letters. For the
power compander f(x) = x* where s < 3,

11

72K23
K 24

Lip, f) <

and for any prior P € 73]%,

~ 1
Li(P,z®) < ﬂs_QK%.

Optimizing over s gives

Li(P,f) < —10g K.

24 (62)

Proof. Since f(x) = z° we have that f'(z) =
sx*~!. Using Theorem 2, this gives

Lip. f)

1

1
= —3_2f o2 p(x)dr =
0

_ _2]E N Xl 2s )
24 X p[ ]

24

The function x'~2 is increasing and also a con-

cave function. We want to find the maximin prior
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distribution P € 73]% (with marginals p) with the
constraint

ZEX1~P[X1'] =1
K2
(another constraint is that values of p are such that
must sum to one, but we give a weaker constraint
here).
We want to choose P to maximize

ZEXPP[X}_QS] = ]E(le--wXK)“P [Z Xi1_2S] :
(2 (2
By concavity (even ignoring any constraint that P
is symmetric), the maximum solution is given when
X, = -+ = Xg. Therefore, the maximin P is such
that the marginal on one letter p is

p(1/K) =1.

The probability mass function where 1/K occurs
with probability 1 is a limit point of a sequence of
continuous densities of the form

1
p(r)=—onzxe

1 1 N
—=—&—=+¢
2e K K
as ¢ — 0. We use this since we are restricting to
continuous probability distributions.
Evaluating with this gives

L E N X1723
1 L 1 1-2s
< 558 -
24 K
11 s 22
K S
~ Ko’
which shows (62). Multiplying by K gives

L (P, f) for symmetric P.

Note that for any non-symmetric P, we can
always symmetrize P to a symmetric prior Py,
by averaging over all random permutations of the
indices. Because the loss Lk (P, f) is concave in
P, the symmetrized prior Py, will give an higher
value, that 1s Lx(P f) < Lkl Py, f). Hence
Lk (P, f) < 545 2K? holds for all priors.

Finding the s which minimizes s 2K s
equivalent to finding s which minimizes slog K —
log s.

d
0= EslogK—
1
log K

1
logs =log K — —
s

= § =



We can plug this back into our equatlon using the
fact that el X = K 1mphes that K se® = e.

Thus, using f(z) = rEER gives that

2

k(Pf) <5

log? K for any P € Py .

To generate a prior P € 77]% that matches this upper
bound, we note that this means we want its marginal
p to maximize 4 (log” K)Ex.,[X'~?/16X]  and
from before we know that fixing X = 1/K does
this (since Ex.,[X] = 1/K as p is the marginal of
P). While p has to represent a probability density
function, and therefore cannot be a point mass,
we can restrict its support to an arbitrarily small
neighborhood around 1/K (and it is obvious that
there are priors P € PI% with such a marginal),
thus getting a match and showing that

2
~ e

sup Li (P, f) = ﬂlogQK.

PEPI%

]

The power compander turns out to give guar-
antees bounds on the value on Lx(P,f) when
f is chosen so that s = 1/log K. We show the
comparison between this theoretical result on raw
loss with the experimental results in Figure 6.

C. Converging to Theoretical

For both the power compander and the beta
compander, we show in Figure 7 how quickly
the experimental results converge to the theoretical
results. Experimental results have a fixed granular-
ity NV whereas the theoretical results assume that
N — oo. The plots show that by N = 26 (each
value gets 16 bits), the experimental results for the
power compander are very close to the theoretical
results, and even for N = 2% they are not so far.
For the beta compander, the experimental results
are close to the theoretical when K is large. When
K = 100, the results for N = 26 is not that close
to the theoretical result, which demonstrates the
effect of using unnormalized (or raw) values. The
difference between normalizing and not normalizing
gets smaller as K increases.
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APPENDIX D
MINIMAX AND APPROXIMATE MINIMAX
COMPANDERS

In this appendix, we analyze the minimax
compander and approximate minimax compander.
Specifically, we analyze the constant cg, to show
that it falls in [1/4,3/4] (Section D-A) and that
limg oo cx = 1/2 (Section D-A2). We also show
that when cgx is close to 1/2, the approximate
minimax compander (which is the same as the
minimax compander except it replaces cx with 1/2)
has performance close to the minimax compander
against all priors p € P (Section D-B).

A. Analysis of Minimax Companding Constant

1) Determining bounds on cy: If ag,bx = 0,
then p(z) is well-behaved (and bigger than 0).

We need ax and by to be such that p(z) is a
density that integrates to 1 and also that p(x) has
expected value of 1/K. To do this, first we compute
that

1
Ex,[X] = J z (ak o'/ 4 bK.CE4/3>73/2 dx

D ones(yE)

= +
bxvak + bk b%Q
The constraint that Sé p(z)dx = 1 requires that

axvax + bxg = 2. We can use this to get

Cap KA /35 + 1ArcSinh <4 /2—?{)
Exp[X] = b +

bk

1 = + 1ArcSinh (1/7)

r

1 a/EH1log (Vr+Ar+1)

r r

(63)

where we use r = by /ax. We will find upper and
lower bounds in order to approximate what r should
be. Using (63), we can get

1logr
so long as r > 3. If we choose r = ¢; K log K and
set ¢; = .75, then
1log(c1 K log K)
Ex,|X]| <=
x~plX] 2 cKlogK
- 1 log log K log c; 1
T 20K 26,Klog K 2cKlogK — K
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Theoretical Limit for Beta Compander and Uniform Prior

— Theoretical
« N=16

N =256

N = 4096
« N=65536

500 1000 5000 1,10¢ 5x10° 1x10°

K (alphabet size)

Fig. 7. Comparing theoretical expression z(p7 f) with experimental result. The KL divergence value of the experimental results are multiplied

to N? in order to be comparable to L(p, f).
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Fig. 8. Comparing theoretical performance (35) of the approximate
minimax compander to experimental results.
so long as K > 4. Similarly, we have

1logr
Ex[X] > 3 &

r

for all r. If we choose r = co K log K and set ¢y =
.25, then

1log(co K log K) - 1
co K log K

Ex,[X] > >
so long as K > 24.

Changing the value of c changes the value of
Ex,[X] continuously. Hence, for each K > 24,
there exists a cx so that if r = cx K log K, then

1
Ex,[X] = T
such that .25 < ¢ < .75.
This proves the result for K > 24; numerical
evaluation of cx for K = 5,6, ..., 24 then confirms
that the result holds for all K > 4.

2) Limiting value of ck:

Lemma 11. In the limit, cx — 1/2.

b _

Proof. We start with r = £
need to meet the condition that

cx K log K, and we

1 a/rHllog(Vr4+Ar+1) 4

T K-

r

Substituting we get

1 -1 1
K cxgKlog K * cxkKlog K 1
log (vexKlog K + y/ex K log K + 1)
cxgKlog K
L L
log K cxkKlog K
log (vexKlog K + y/ex K log K + 1)
log K

Let ¢ = limg_, ci. Since cg is bounded, we know
that limg .o cx K log K = o0 since cx is bounded
below by 1/4; additionally log cx is bounded (above
and below) since for K > 4 we have cix €

[1/4,3/4].



“ ly—{rclo log K

1
g+
\/CKKlogK
log (vexKlog K + /ex Klog K + 1)

log K
log (24/cx K log K
041 g P VerKlog )
K—o log K
_ 10g2+%loch—F%logKJr%loglogK
e log K
1
2

]

B. Approximate Minimax Compander vs. Minimax
Compander

For any K, cx can be approximated numerically.
To simplify the quantizer, recall we can use cx ~
for large K to get the approximate minimax com-
pander (9).

This is close to optimal without needing to com-
pute cx. Here we prove Proposition 4.

Proof. Since [}, fi*

L(p, &) = L'(p, f) and L(p, f3¥) =

We define the corresponding asymptotic local loss
functions

e F', we know that

g*(x) = (fK)( )P
T

g () = S (f) @) 2!

so that our goal is to prove

Jg**dpé (l—i—s)fg*dp.

Let v* = cx(KlogK) and v** = (K log K)
(the constants in f; and f3* respectively) and
let ¢*(z) = ArcSinh(y/~*z) and ¢**(z) =
ArcSinh(4/9**z). Then
v
2y/x/y* e + 1

/f}/**
2 /Ty +1°

(6%)' () =
and (¢™)'(z) =

L'(p, [ .
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Note that ff(z) = ¢"()/¢"(1) and fi#(z) =
@™ (2)/d**(1). We now split into two cases: (i)
cx > 1/2 and (i) cx < 1/2.

In case (i) (which implies v* > +**, and note that
Y/ = 2ex < 1+¢€), we get for all x € [0, 1],

”y**:c+1
** v*r + 1

¢**
(L7 € [LVT+e]
since % € [v/7**/7*, 1]. Because v* > y**

and ArcSinh is an increasing function, we know that
»*(1) = ¢**(1). Thus, for any zx € [0, 1],

() - @I

i} e
- cb*(l)
- W
=>(;*<*)'()2<( +ée)( )()
Hz) < (L+e)g*(z
— f **dp<(1+£)Jg dp

which is what we wanted to prove.

Case (ii), where cx < 1/2 (implying +**
can be proved analogously:
Y+l

<b** **
\/ Y*r + 1

€ [1 A/ /] =

> %)

[1,v1+€]

which then gives us (¢™*)'(z) = (¢*)'(z) and

(1) = f (&%) (t) d

<WV1+ sjl(qﬁ !
< (WIte)*(1).



Thus, for any z € [0, 1],

ey @7 (2)

( K ) (l’) - (b**(l)

R

T (WVT+e)e*(1)

1 % \/

= \/—(fK) (z)
— (?}*)( )72 < (1 +¢)( )( )7
g7 () < (1+e)g*(x

< >jg@

completing the proof for both cases. ]

We show the comparison of the theoretical
(asymptotic in K result) of the approximate min-
imax compander with the experimental results in
Figure 8.

APPENDIX E
WORST-CASE ANALYSIS

In this section, we prove Theorem 4 which ap-
plies both to the minimax compander and the power
compander. Since we are dealing with worst-case
(i.e. not a random x) the centroid is not defined;
therefore this theorem works with the midpoint
decoder. Thus, the (raw) decoded value of z is
Yo ())-

Additionally, we are not using the raw reconstruc-
tion but the normalized reconstruction, and hence it
does not suffice to deal with a single letter at a time.
Thus, we will work with a full probability vector
b A AK—I-

Proof of Theorem 4 and (21) in Theorem 5. Let
x € Ak, be the vector we are quantizing, with
ith element (out of A, summing to 1) z;; since
we are dealing with midpoint decoding, our (raw)
decoded value of x; iS ¥y (s,). For simplicity, let
us denote it as ¥;, and the normalized value as
Zi = ﬂz/(Zj ?jj)'

Let 0; = y; —x; be the difference between the raw
decoded value y; and the original value z;. Then:

szlog—
—lelog— + log (Z%)
_2 5z+1og(1+25i).

Dy (x| 2)

;— 0;) log
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Next we use that log(1 + w) < w.

2 =055+ 2
_Z —5; +Z—+Z§
_; b — )’

(note that in (64) we used the inequality log(1 +
w) < w on both appearances of the logarithm, as
well as the fact that y; — d; = x; = 0).

We now consider each bin 1™ induced by f. For
simplicity let the dividing points between the bins
be denoted by

n

By = JH(ﬁ) = Yn) + T(n)/2

(where 7(,) is the width of the nth bin) so that

= (Bn-1) B(n)]. Since all the companders we
are discussing are strictly monotonic, there is no
ambiguity. Then, the Mean Value Theorem (which
we can use since the minimax compander, the
approximate minimax compander, and the power
compander are all continuous and differentiable )
says that, for each I (") there is some value W(n)

Dy, (z]|z) <

(64)

such that
f/('w(n)) _ f(ﬁg;:j : ;((f(;—l)) - N— IT(_nl)
(since f(Buy) — f(Bu-y) = n/N — (n— 1)/N =

1/N and B(,) — Bn-1) = r) by definition).

Thus, we can re-write this as follows:

ey = N7 f ()™

We will also denote the following for simplicity:
I, = [("N(x"')); Ti = V(ny () and w; = W(ny (z:)) (the
bin, bin length, and bin mean value corresponding
to 177,)

Trivially, since w; € I;, we know that % < Y.
Thus, we can derive (since ¥; is the midpoint of /;
and x; € I;, we know that |j; — x;| < r;/2) that

D (2] 2) < Eu

Yi
1

1 1

< 32 N ) ()
1
>

9 1
LGy ©



Note that while we are using midpoint decoding for
our quantization, for the purposes of analysis, it is
more convenient to express the all the terms in the
KL divergence loss using the mean value.

We now examine the worst case performance of
the three companders: the power compander, the
minimax compander, and the approximate minimax
compander.

Power compander: In this case, we have

f(z) = 2* and f'(z) = sz**

for s = —L— (which is optimal for minimizing raw
log K

distortion against worst-case priors). This yields

1.5 1

1 -2 -2 1-2s

So long as s < 1/2 (which occurs for K > 7),
the function w; ~** is concave in w;. Thus, replacing

all w; by their average will increase the value.

Furthermore, K° = K WK — e. Thus, we can
derive:
1 L w; 1—2s

— %N‘z(log2 K)€2<Z wi> o

2
%N‘2(10g2 K)max {1, sz} :
66
Next, we need to bound max {1, >, w;}. Assume
that > w; > 1 (otherwise our bound is just 1).

Then, we note the following: >, z; = 1 by defi-
nition; s~ = log K; and

ri = N1 (w;) ™t = N s w0

(2

This allows us to make the following derivation:

— Zwi < ZZBZ + %N‘ls_lzwil_s

1 w; 1—s
<1+ 5N log(K)K (le > (67)

N

=1+ ngl log(K)

<1+ ng1 log(K)
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We get (67) by the same concavity trick: because
w;~* is concave in w;, replacing each individual w;
with their average can onlx increase the sum. We
get (68) because K*° = KlskK = e,

We can combine terms with  , w;.

€ a1
(1 — §N logK);wi <1.

This implies that if N > glog K, then

1
zi:wz ST :N-Tlgk
N e logK
TN tlogk
(69)

Furthermore, if N > elog K, we get that ZZ w; < 2.
Combining (66) with (69), we have

Dy (x| 2)

N — Slog K

e? e logK
< S N2(log? K (14682
g IV (log )max{ < +2J\f—§1ogK)}

e? e logK
= —N2(log’?K) (14—

g V" (log )< +2N—§logK>
for N > Slog K. When N > clog K, this becomes
the pleasing

Dy (z]2) < N 2log? K .

Minimax compander and approximate minimax
compander: Since they are very similar in form,
it is convenient to do both at once. Let ¢ be a
constant which is either cx if we are considering
the minimax compander, or % if we’re considering
the approximate minimax compander; and let v =
cK'log K. Then our compander and its derivative
will have the form

f(x) = ArcSinh(,/77)
ArcSinh(,/7)
£(2) : =

- 2ArcSinh(,/7) v/2y/1T =z
= f'(z)”" = 2ArcSinh(y/7) \/m
Y
This then yields that
ri = N7Hf (w;) ™

= 2N "' ArcSinh(y/7) iy w?
Y



Then we can derive from (65) that
Yt w?

Dy (z]2) < —N_2(2ArcSinh(ﬁ))22 2

wy

= 2N ?(ArcSinh(,/7))? (5 + 2 UJZ'>

< 2N ?(ArcSinh(y/7))? (5 + max {1’ 2 w@})

Assuming that ), w; > 1 (otherwise the bound is
just 1),

T
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if N > nArcSinh(,/7). Combining these and using

the expression ArcSinh(y/w) = log(vw+1 +
Vw) < log(24/w + 1) we get from (70) that

K, N
v N —nArcSinh(,/7)
2

2N ?(ArcSinh(y/cK log K))?

K N
(CK log K TNC nArcSinh(y/cK log K))

“?(log(24/cK log K + 1))?

7 1 N
-1 . wW;
= Zwi <Z$i+N ArcSmh(ﬁ)ZW (clogK - N—nlog(Q\/cKlogKJrl))

=1+ N~ 'ArcSinh(,/7) Z \/%

(71)

To bound the sum in (71), using the fact that /- is
concave (so averaging the inputs of a sum of square
roots makes it bigger), we get

AR

S, 1/2
<K|—= * ;
(K(cKlogK)) +Ziw

2 Wi 2
< (clogK) +sz‘
Z i +sz

= (clog K)1/2

= (Xw) (“Wlfow)

(2

= (L)

7

where 1 = 1 4 (clog K)~2. Then (71) becomes
Zwi < 1+ nN~'ArcSinh(y/7) (Z wi> .

Since we have ), w; on both sides of the equation,
we can combine these terms like before.

(1 —nN~'ArcSinh(y/7)) Zwi <1

:Zi:wigN—

N
nArcSinh(,/7)

This holds for all N > nlog(2y/cKlog K + 1);
furthermore, if N > 3nlog(2y/cKlog K + 1), the
second term in the parentheses is at most 3/2 (and if
N is larger, this term goes to 1). Recall c is between
1/4 and 3/4 (as it is either cx or 1/2) when K > 4.
Then, we know that for all K" > 4 that n < 2.57 ...
and 1/(clog K') < 5/2. Thus, for

N > 8log(24/cK log K + 1)

> 3(2.6) log(24/cK log K + 1)
> 3nlog(24/cKlog K + 1)

we can bound the entire parenthesis term by 4. Then,

8N ?(log(2+/cK log K + 1))?
< 8N ?(log(3+/cK log K))?
= 2N ?(log(cK log K) + 2log 3)*

log log K
_ 2N‘2<1 + O(%)) log? K .

Dy (z|z) <

(72)

Note that whether ¢ is cx or 1/2, it is always
between 1/4 and 3/4, and so it has no effect on
the order of growth. We also note that the above
(stated more crudely) is an order of growth within
O(N2log” K).

We can obtain a relatively clean upper bound on
the error term O(%) by setting ¢ = 3/4 (which
is larger than the whole range of possible values); in
this case, numerically computing (72), we get that
the error term is at most 18M for K > 4. The
quantity 1 8M has a max1mum value of around
6.62183. ]



The statement above (which is used for Theo-
rem 4) computes constants for our bound which
work for both the minimax compander and approx-
imate minimax compander and only requires that
K > 4.

If we are only concerned with large alphabet
sizes, to improve the constants for the approxi-
mate minimax compander (where ¢ = 1/2), we
can instead use the following: For K 55 and

N > 6log(2+/cKlog K + 1),

-~ log log K
Di(z|2) < N 2(1 + 6%) log? K
APPENDIX F
UNIFORM QUANTIZATION

In this section, we examine of the performance
of uniform quantization under KL divergence loss.
This is the same as applying the truncate compander.

First, we will prove (13) of Remark 5.

Proof of (13). Let p be the single-letter distribution
which is uniform over [0,2/K] for each symbol.
Specifically, the probability density function is

K 2
p(x) = 5 for x € [0, ?]

and since the expected value under p is 1/K, we
have that p € Py k.

We want to compute the single-letter loss for p,
but notice that we cannot use Theorem 2 to do so,
since the quantity L'(p, f) is not finite here (this is
not surprising since we are showing a case where
the dependence of L(p, f,N) on N is larger than
©(N2)). Thus we need to compute the single-letter
loss starting with (4).

EmﬂM=MﬂXMMM)H

-2
= Z J {z < 2/K}—xlog idw
Q) 2 YUn

o 12N/K]

(n+1)/N
> — Z f x log Nidx
2 n/N Yn

x)zlog —dx

n=1
2N/K

K yn+*
= — f x log —dm

Yn
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where we let r = 1/N.
Using the Taylor expansion for log(1 + x), we
can get that

Un+5 3 5
f xlog Nﬁdx = T~ + 0 <7:—3>
n—1 Un 24y, g3

This gives that

KB%KJ 3 O(TS)
2 = 249, g3
[2N/K|
- % o(w)

2N/K

[ Z/: | 1
n=1

Because the intervals are uniform, the centroid is

the midpoint of each interval, which means that

L(p,f.N) =

K1
48 N3

n—1/2
"N
This gives that
[Z%KJ 1 [2%/:& 1
n=1 gn n=1 n_]\}/Q
2V/K]
> N —
n=1 n

> (1N log(2N/K)

We also need to bound the smaller order terms to
make sure they are not too big,

|2N/K| 1 [2N/K] 1
— < N3 |23+ —
nz_]l s ,;2 (n—1)°

= N3C4

Combining these give

Lip, f,N) =

s 1V log(2N /)

K
= (N2 logN>

All the inequalities we used for the lower bound
can easily be adjusted to make an upper bound. For
instance, the floor function in the summation can
be replaced with a ceiling function. The quantity ¥,
can be rounded up or down and the inequalities ap-
proximating sums can have different multiplicative
constants. This gives that for p(x), we have

Zmﬁm=®(K

e log N)



Combining this single-letter density with the
proof of Proposition 3 gives a prior P over the
simplex so that

K2
~7 log N>

ZK(P7f7N) N
(73)

when f is the truncate compander.

We want to relate the raw loss in (73) to the
expected loss L (P, f, N). This requires us to look
at the normalization constant.

(i)

[ K K K
=Ex.p ]()g (ng—2$k+2$k>]
| k=1 k=1 k=1
[ K
=Ex-.p|log (Z O0p +1 ]
| k=1

where 0 = 4, — x,. We can bound
1 1
2N 2N
K

K K
—— <M<~
IN ];1’“ ON

Additionally, we know that by construction,

Ex~p [Z 5k] = Z (U — 1) =0

since ¥y, is produced by the centroid decoder. There-
fore, since log is concave, we have

K
Ex-p llog (Z O + 1)]
k=1
1 K K

. —(E/@N))

_ —1K2N_2
8

where the second inequality follows from the Taylor
series of log(1 + w). But this means that

—Ex.p llog (g Ok + 1)] =0 (%)

DN — Do

=
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and hence by the proof of Proposition 1
L(P, f,N)

K
= L(P, f,N) +Ex.p llog (Z O + 1)]

K? K?
—@< logN)+O<N2)

K2
=0 ( log N )
since the extra log NV factor causes the first term to
dominate the second. [

The density p(z) which produces (73) is not nec-
essarily the worst possible density function in terms
of the dependence of raw loss on the granularity
N; however, it achieves simultaneously a worse-
than-©(N~2) dependence on N and a very large
dependence on the alphabet size K (namely ©(K?))
with the uniform quantizer (i.e. truncation), and
is therefore an ideal example of why the uniform
quantizer is vulnerable to having poor performance.

For illustration, we will also sketch an analysis of
the performance of the uniform prior against prior
p(z) = (1—a)z™ where o = £=2 (as mentioned in
Remark 5); this is constructed so that Ex_,[X] =
1/K and hence p € Py k. The analysis shows that
the loss is proportional to N~(2~),

Let N be large; for this sketch we will treat p
as roughly uniform over any bin I := ((n —
1)/N,n/N]. Note that this does not strictly hold
for small n (no matter how large N gets, p never
becomes approximately uniform over e.g. I )) but
this inaccuracy is most pronounced on the first
interval I = (0,1/n]. Additionally, p on (0,1/n]
is a stretched and scaled version of p on (0, 1]; for
n=2,3,..., N, the distribution p over I is closer
to being uniform, and hence the distortion over any
bin under p can be bounded below (and above) by a
constant multiple of the distortion under a uniform
distribution (the constant can depend on A but not
N). Thus for determining the dependence of the
(raw) distortion on NNV, this simplification does not
affect the result.

Then, the expected distortion given that X €
I™ is proportional (roughly) to N~2(n/N)~! =
n~'N~! (since the interval has width oc N~! and
is centered at a point ocn/N), and the probability
of falling into 1™ is proportional to (n/N)'—* —
(n — 1)/N)t=® ~ n=eN~-1-%; therefore (up to



a multiplicative factor which is constant in V) the
expected distortion is roughly

N N
Z nleflnfaNf(lfa) _ Nf(Qfa) Z n*(lJra)
n=1

n=1

But, noting that > n~0+%) is a convergent series,
we can apply an upper bound

N
Z n*(l“ra) <
n=1

which i1s a (finite) constant which depends only
on K (through «) but not N. Hence, we obtain
our O(N~(~) O(N~—2 . N%) order for the
distortion. We note that as discussed this is worse
than O(N 2 log N).

0

Z n*(l“ra)

n=1

APPENDIX G
CONNECTION TO INFORMATION DISTILLATION
DETAILS

In this section, we go over the technical re-
sults connecting quantizing probabilities with KL
divergence and information distillation (discussed
in Section VII), in particular the proof of Propo-
sition 8, which shows that information distillers
and quantizers under KL divergence have a close
connection. N

In this section, we will use the notation B to
denote h(B). We denote by P4, Pp the marginals
of A and B under the joint distribution Py p.

A. Equivalent Instances of Information Distillation
and Simplex Quantization

We consider an information distillation instance,
consisting of a joint probability distribution P4 p
over A x B where |A| = K (and B can be arbitrarily
large or even uncountably infinite) and a number
of labels M to which we can distill; WLOG we
will assume A = [K]. The objective of information
distillation is to find a distiller h : B — [M ] which
preserves as much mutual information with A as
possible, i.e. minimizes the loss

Lin(Pas, h) i= I(A; B) = I(A; B)

where B = h(B).” We denote an instance of the
information distillation problem as (P4 5, M)p.

"We do not include the parameter M in the loss expression because
it is already implicitly included as the range of the distiller h.
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What is important about b € B for information
distillation is what B = b implies about A. We
therefore denote by x(b) € Ak ;1 the conditional
probability of A given B = b, i.e.

va(b) = Pas(alt) = A = a| B = b].

This then suggests a way to define the equivalent
simplex quantization instance to a given information
distillation instance. Recall that a simplex quanti-
zation instance (with average KL divergence loss)
consists of a prior P over A _; and a number of
quantization points M ; the goal is to find a quantizer
z . Ag_1 — /Ak_1 such that its range Z has
cardinality M (or less) and which minimizes the
expected KL divergence loss

Lsq(P, z) = Exp[ Dy (X[ 2(X))]

We denote an instance of the simplex quantiza-
tion problem (with average KL divergence loss) as

Definition 9. We call an information distillation
instance (Pyp, M), and a simplex quantization
instance (P, M)sq equivalent if they use the same
value of M and P is the push-forward distribution
induced by x(-) on Pg, ie.

B~Pg = X =x(B)~P
We denote this (Pap, M)in = (P, M )sq.

We show that any instance of one problem has at
least one equivalent instance of the other.

Lemma 12. For any information distillation in-
stance (P p, M), there is some (P, M)y, such
that (Pa g, M), = (P, M)sq and vice versa.

Proof. 1n either case, given the limit on the number
of labels/quantization points M, we use it for the
equivalent instance.

Given an information distillation instance with
joint distribution P4 5, we have a well-defined func-
tion « : B — Ak, and therefore the push-forward
distribution P of Pp under x(-) is well-defined,
giving us the equivalent instance (P, M )gq.

Given a simplex quantization instance with prior
P, welet B= Agk_; and let Pyp = Py pPp given
by Pg = P (a probability distribution over Ag_1)
and Py p(alb) = x,(b), i.e. A is distributed on A =
[K] according to B € Ak ;. Then x(-) is just the
identity function and therefore P = Pp is the push-
forward distribution as we need. [



Note that each information distillation instance
(Pap, M),5 has a unique equivalent simplex quan-
tization instance (since P is determined by being
the push-forward distrbution of Pg), whereas each
simplex quantization instance (P, M)s, may have
many different equivalent information distillation
instances, as B3 can be arbitrarily large and elaborate.

The goal will be to show that if we have equiv-
alent instances (Pap,M)p = (P,M)s, then a
distiller h for (P4 g, M), will have an ‘equivalent’
quantizer z for (P, M)g, (achieving the same loss)
and vice versa. This is generally achieved by the fol-
lowing scheme: we arbitrarily label the M elements
of Z as zU) for j e [M], so

Z={zW .. 200

Then we will generally have equivalence between h
and z if the following relation holds:

z(z(b)) = z"®) forall be B.
Then we will derive
LID(PA,B7 h) = LSQ(P7 Z) .

However, as mentioned, this may be true (and/or
possible) only if & or z avoid certain trivial inef-
ficiencies, hence the inequalities in Proposition 8.
These will be formally defined and discussed in the
following subsections.

B. Separable Information Distillers

We consider what happens when we have b, '
such that z(b) = «x(V), ie. B = b and B =
b induce the same conditional probability for A
over A. In this case, in the ‘equivalent’ simplex
quantization instance, the quantizer z will quantize
x = x(b) = (V) to a single value z\) € Z, while
the distiller has the option of assigning h(b) # h(V');
if so, it is not clear what value the ‘equivalent’
quantizer z will assign to * = x(b) = x(V).
However, we will show that we can ignore such
cases. We define:

Definition 10. We call a quantizer h separable if
for any b, € B,

2(0) = 2(V)) = h(b) = h(t)

i.e. if b and V' induce the same conditional prob-
ability vector for A, they are assigned the same
quantization label.
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We call the set of information distillers  and
the set of separable information distillers Heep.

Since the important attribute of any b € B (for
information distillation) is how B = b affects the
distribution of A, there is no reason why b,0’ € B
should be assigned different labels by the distiller if
x(b) = x(b'); thus, intuitively, it is clear that consid-
ering separable distillers is sufficient for discussing
bounds the the performance of optimal distillers. We
show this formally:

Lemma 13. For any h e 'H (inducin(gié = h(B)),
there is some h* € Hse, (inducing B* = h*(DB)
such that

I(A; B) < I(A; BY)
This then implies:

sup I(A; B) =
heH

sup I(4; E)

heHsep

Proof. This follows from the fact that it is optimal
to only consider deterministic distiller (or quantiza-
tion) functions, as shown in [21]. We may assume
WLOG that 1 ¢ Heep.

First, note that Pg induces a push-forward distri-
bution P over Ak _; through x(b). If h € Heep, this
means there is a deterministic hn : Ax_; — [M]
satisfying

h(b) = ha(x(b)) for all be B.

Then I(A; h(B)) = I(A; ha(x(B))).

If h ¢ Heep, we still have a joint distribution
Pw( BB then we consider the conditional probability
distribution Py, p) (b|a(b)). This can be viewed as
a non-deterministic distiller hp : N1 — [M] (it
returns a random output with distribution dependent
on input b) under prior P, and similarly

I(A;W(B)) = I(A; ha((B)))

since the joint distribution P,z is the same either
way. But by [21], for X ~ P over Ak _; and any
non-deterministic distiller hn : Ag_1 — [M], there
is a deterministic distiller A} : Ag_1 — [M] such
that

I(A; ha (X)) < (A A (X))

Finally, any deterministic A% : Ax_; — [M] has
an equivalent (separable) h* : B — [M] such
that h*(b) = h%(x(b)) for all b € B, simply by
definition. Thus, for any non-separable i € H, there



is an equivalent non-deterministic distiller ha for
X ~ P; for every non-deterministic distiller ~x for
X ~ P, there is a better deterministic distiller i ;
and for every deterministic distiller 4\ for X ~ P,
there is an equivalent hA* € Heep, 1.€.

I(A; (B)) = I(A; ha(X))
< I(A;hA (X)) = I(A; R*(B))

This then implies that

sup I(A; B) < sup I(A; B)
heH hEHsep

while the fact that He, & H implies

sup I(A; B) = sup I(A; B)
heH hEHsep

thus producing the equality we want [

This of course also implies that for any h € H,
there is some h* € Hep, such that

LID(PA,37 h) = LID<PA,B7 h*)
and furthermore that

11275 LID(PA,Bv h) = hi:%ip LID(PA,B’ h)'

C. Decoding-Optimal Simplex Quantizers

We now consider simplex quantizers under av-
erage KL divergence loss. In particular, we note
an obvious potential inefficiency: letting Z =
{zW ..., 2} be the range of quantizer z, we
define XV) ;= {x e Ag_; : z(x) = 2} for all j;
then, given X') there will be some optimal choice
for the value of z\¥) which minimizes the expected
KL divergence. If z does not use the optimal
value (which will turn out to be the conditional
expectation e.g. centroid of X)), for instance by
using a value of 2U) which is completely unrelated
to XU), then there is an obvious and easily-fixed
inefficiency.

One way to frame this is by breaking the quan-
tization process into two steps, an encoder g :
Ak_1 — [M] and a decoder Dec : [M] — Ak
so that the quantization of X is Z = z(X) =
Dec(g(X)); we WLOG label the elements of Z
such that z) = Dec(j). Then the encoder g
partitions A\ _; into the M ‘bins’ (analogous to the
compander bins) XM ... XM (the same as defined
above):

XU ={xe Ak i :g(x) =j}.
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Lemma 14. Given encoder g and prior P, the
optimal decoder function (for g on P) is

Dec, = argminEx . p[ Dy, (X ||Dec(g(X)))]

Dec

satisfies, for all j € [M],
Dec?(j) = Exp[X | X € XV)]

We call any quantizer consisting of an encoder g
and the optimal decoder function Dec; decoding-
optimal. This implies that for any quantizer z on
prior P, there is a decoding-optimal z* such that

Lso (P, 2%) < Lgo(P, 2) .
Proof. This is proved by [24, Corollary 4.2]. [

Note that the optimal Dec,(j) is the centroid
(conditional expectation under P) of the bin X ()
induced by g.

D. Deriving the Connection

We now prove Proposition 8. We first define
what it means for a distiller and a quantizer to be
equivalent:

Definition 11. If we have equivalent informa-
tion distillation and simplex quantization problems
(Pap, M), = (P, M)sq, then the distiller h and
quantizer z are equivalent for these problems if:

o h is separable and z is decoding-optimal;

o there is a labeling zV), ... z™M) of the ele-
ments of Z such that z(x(b)) = z"®) for all
beB.

We denote this as h = z.

We then claim that all separable distillers and
decoding-optimal quantizers have equivalent coun-
terparts:

Lemma 15. For any (Pap, M)y = (P, M)sq,
any separable h for (P g, M), has an equivalent
(decoding-optimal) z, and any decoding-optimal z
for (P, M)sq has an equivalent (separable) h.

Proof. We handle the two directions separately:

Any h has an equivalent z: Since h is separable,
we know that x(b) = x(V/) = h(b) = (V).
Thus, we can define XY as

XV = {xe Ag_y:h(b) =] Vbst x(b) = x}



for all j € [M]. Then we define z as follows:
z(x) = zU) for all z € XU), where

Z(j) = EXNP[X’X € X(j)] .

Then by construction of zU) we have that z is
decoding-optimal and for € X¥) we have h(b) =
4 for all b such that z(b) = = and z(xz) = 2V,
hence z(x) = z("®), 50 they are equivalent.

Any z has an equivalent h: We label the elements

of Z arbitrarily as () ..., 2(*); then we let h(b) =
4 for all b such that z(x(b)) = 29, which implies
z(x(b)) = 2(h®), O

Now we show that equivalent solutions have the
same loss:

Proposition 14. If (Pap, M), = (P,M)sq and
h = z, then

LID(PA,B7 h) = LSQ(P7 Z)

Proof. Let (A,B) ~ Py p and let X = x(B) and
Z = z(X). Then we know since (P4 p, M), =
(P, M)sq that X ~ P. Furthermore, defining

XU = {x e Ag_y:h(b) =j Vb st x(b) = x}

and 2) = E[X | X e XU)], we know that since
h =z we have Z = z("®). We now let Z; refer
to the ith element of vector Z, and let B = h(B)
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and b = h(b). We then derive:
LID(PA,B7 h) = [(A7 B) - [(A, é)

= Ep[ D ((A[B)[(A|B))]
= Lso(P, 2)

where (74) holds as B~ Pg = X ~ P and
Z=2(X)=2® —Ex_p[X|X e XD)]

and since A ~ X = X(B), we know that
Pp(alb) = Ex.p[X, | X € X, O

Proof of Proposition 8. We get the proof of Propo-
sition 8 as a corollary to Proposition 14 and Lem-
mas 13 to 15 (which show, respectively, that non-
separable distillers can be replaced by separable dis-
tillers, that non-decoding-optimal quantizers can be
replaced by decoding-optimal quantizers, and that
any separable distiller has an equivalent decoding-
optimal quantizer and vice versa).

Note that Proposition 8 ensures (P4 p, M), =
(P, M) through its definition of X.

Then, given a distiller h € H, by Lemma 13 we
can find a separable h* € Heep, such that

LID(PA,Ba h*) < LID(PA,B7 h) .
By Proposition 14, there is a quantizer z such that
LSQ(P> Z) < LID(PA,Ba h*) < LID<PA,Bv h) .

completing the result in the first direction.



Given a quantizer z, by Lemma 14 there exists a
decoding-optimal z* such that

Lso(P,z*) < Lip(P, 2) .
By Proposition 14, there is a distiller A such that
Lip(Pap,h) < Leg(P, 2%) < Lgo(P, 2) .
completing the result in the second direction. [

Now that we have shown Proposition 8, we
can use it to derive the connection between the
performance of our companders and the Degrading
Cost DC:

Proposition 15. For any K, M:

DC(K,M) = sup inf Lso(P,z)  (75)

P over Ng_q |Z|=M

Proof. We show inequalities in both directions to
get the equality.

First, note that for any joint distribution P4 g on
A x B where |A|] = K (WLOG we can assume
A = [K]), we know there is some prior P over
A g1 such that

(Pa, M) = (P, M)sq

for all M, by Lemma 12, and that for any distiller
h : B — M there is some quantizer z with
cardinality-M range such that

LSQ(P, Z) < LID(PA7B7 h)

by Lemma 15 and Proposition 14. Thus for any P4 p
and M, for the equivalent P,

inf LID(PA,Ba h) >

nf inf  Lso(P, z)

|Z]=M
and hence we have

DC(K, M) = sup
Py,
A=K

iIlf LID(PA,Ba h/)
B—->M

> sup inf Lgq(P, 2)
P over N4 \Z\Z:M

Then, for any P over A\ 1, we have the same
logic: by Lemma 12 there is an equivalent P4 g, so
for any P, M we can find P4 g for which

inf Le(P,2) >
1Z[=M

iIlf LID(PA,BJ h)
h:B—M
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Then we get that

DC(K, M) = sup h:llgrElMLID(PA,B7h‘)

A, B
|A|=K

< sup inf Lo (P, 2)
P over Ag_1 \Z|Z:M

and hence the equality in (75) holds. [
Proposition 15 is used to show (40).

E. Comparison

Compared to (38), our bound in Proposition 9
which uses the approximate minimax compander
has a worse dependence on M. Our dependence on
M is worse since our compander method performs
scalar quantization on each entry, and the raw quan-
tized values do not necessarily add up to 1. Other
quantization schemes can rely on the fact that the
values add up to 1 to avoid encoding one of the K
values. Offsetting this are the improved dependence
on K (log2 K versus K — 1, as stated) and constant
(< 19 and decreasing to 1 as K — oo versus
1268); this yields a better bound when M is not
exceptionally large. For example, when K = 10, our
bound is better than (38) so long as the conditions
on M'X in Proposition 9 are met (which requires
M > 16'9) and if M < 1.014 x 10°7. While these
may both seem like very large numbers, the former
corresponds with only 4 bits to express each value in
the probability vector, while the latter corresponds
with more than 32 bits per value. In general, the
‘crossing point’ (at which both bounds give the
same result) is at

K(K—1)
log log K K1 ’

log K > log® K

M = (1268 (1+ 18

or, to put it in terms of ‘bits per vector entry’ b
(taking log, of the above to get bits and dividing
by K),
K—-1
2

b~

<10g2(K) — 2log, log K + 10.3)

for large K. The disadvantage is that our bound
does not apply to the case of K < 5 or M
which is not large. Note that scalar quantization
in general only works with very large M, since
even 2 different encoded values per symbol requires
M = 2K different quantization values.



