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ABSTRACT

Multipoint evaluation is the computational task of evaluating a
polynomial given as a list of coefficients at a given set of inputs. Be-
sides being a natural and fundamental question in computer algebra
on its own, fast algorithms for this problem are also closely related
to fast algorithms for other natural algebraic questions like poly-
nomial factorization and modular composition. And while nearly
linear time algorithms have been known for the univariate instance
of multipoint evaluation for close to five decades due to a work of
Borodin and Moenck, fast algorithms for the multivariate version
have been much harder to come by. In a significant improvement to
the state of art for this problem, Umans and Kedlaya & Umans gave
nearly linear time algorithms for this problem over field of small
characteristic and over all finite fields respectively, provided that
the number of variables n is at most d°!) where the degree of the
input polynomial in every variable is less than d. They also stated
the question of designing fast algorithms for the large variable case
(ie.n¢ d"(l)) as an open problem.

In this work, we show that there is a deterministic algorithm for
multivariate multipoint evaluation over a field Fy of characteristic
p which evaluates an n-variate polynomial of degree less than d in
each variable on N inputs in time

((N + d")”"(l)poly(log q.d, n,p))

provided that p is at most d°D and q is at most (exp(- - - (exp(d)))),
where the height of this tower of exponentials is fixed. When the
number of variables is large (e.g. n ¢ d°(V)), this is the first nearly
linear time algorithm for this problem over any (large enough) field.
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Our algorithm is based on elementary algebraic ideas and this al-
gebraic structure naturally leads to the following two independently
interesting applications.

We show that there is an algebraic data structure for univariate
polynomial evaluation with nearly linear space complexity and sub-
linear time complexity over finite fields of small characteristic and
quasipolynomially bounded size. This provides a counterexample
to a conjecture of Miltersen who conjectured that over small finite
fields, any algebraic data structure for polynomial evaluation using
polynomial space must have linear query complexity.

We also show that over finite fields of small characteristic and
quasipolynomially bounded size, Vandermonde matrices are not
rigid enough to yield size-depth tradeoffs for linear circuits via the
current quantitative bounds in Valiant’s program. More precisely,
for every fixed prime p, we show that for every constant € > 0,
and large enough n, the rank of any n X n Vandermonde matrix

V over the field Fpa can be reduced to (n/exp(Q(poly(e)\llog n)))

by changing at most n®(€) entries in every row of V, provided
a < poly(log n). Prior to this work, similar upper bounds on rigidity
were known only for special Vandermonde matrices. For instance,
the Discrete Fourier Transform matrices and Vandermonde matrices
with generators in a geometric progression.
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1 INTRODUCTION

We study the question of designing fast algorithms for the following
very natural and fundamental computational task.
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Question 1.1 (Multipoint Evaluation). Given the coefficient vector
of an n-variate polynomial f of degree at most d — 1 in each variable
over a field F and a set of points {a; : i € [N]} in F", output f(a;)
foreachi € [N].

Besides being a natural and fundamental question in computer
algebra on its own, fast algorithms for this problem is also closely
related to fast algorithms for other natural algebraic questions like
polynomial factorization and modular composition [10].

The input for this question can be specified by (d" + Nn) elements
of F and clearly, there is a simple algorithm for this task which
needs roughly ((d" - N)poly(n, d)) arithmetic operations over F:
just evaluate f on a; for every i iteratively.

Thus for N = d", the number of field operations needed by this
algorithm is roughly quadratic in the input size. While nearly linear
time! algorithms have been known for the univariate instance of
multipoint evaluation [5] for close to five decades, fast algorithms
for the multivariate version have been much harder to come by.In a
significant improvement to the state of art for this problem, Umans
[15] and Kedlaya & Umans [10] gave nearly linear time algorithms
for this problem over fields of small characteristic and over all
finite fields respectively, provided that the number of variables n
is at most d°V) where the degree of the input polynomial in every
variable is less than d. They also stated the question of designing
fast algorithms for the large variable case (i.e. n ¢ d°M) as an open
problem. In this work, we make some concrete progress towards this
question over finite fields of small characteristic (and not too large
size). We also show two independently interesting applications of
our algorithm. The first is to an upper bound for algebraic data
structures for univariate polynomial evaluation over finite fields
and second is to an upper bound on the rigidity of Vandermonde
matrices over fields of small characteristic. Before stating our results,
we start with a brief outline of each of these problems and discuss
some of the prior work and interesting open questions. We state
our results in Section 2.

1.1 Algorithms for Multivariate Multipoint
Evaluation

For the case of univariate polynomials and N = d, Borodin and
Moenck [5] showed that multipoint evaluation can be solved in
O(dpoly(log d)) field operations via a clever use of the Fast Fourier
Transform (FFT).

For multivariate polynomials, when the evaluation points of
interest are densely packed in a product set in F”, FFT based ideas
naturally generalize to multivariate multipoint evaluation yielding
a nearly linear time algorithm. However, if the evaluation points
are arbitrary and the underlying field is sufficiently large 2, and
in particular not packed densely in a product set, the question of
designing algorithms for multipoint evaluation that are significantly
faster than the straightforward quadratic time algorithm appears
to be substantially harder. In fact, the first significant progress in

!Throughout this paper, we use the phrase “nearly linear time" to refer to algorithms
such that for all sufficiently large m, they run in time m'*°() on inputs of size m.
20ver small fields, for instance if |F| < d'*°0) or |F|” < N'°( 3 standard
application of multidimensional Fast Fourier Transform which just evaluates the
polynomial at all points in F” and looks up the values at the N input points works in
nearly linear time. So, throughout the discussion on multipoint evaluation, we assume
that F is large enough.
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this direction was achieved nearly three decades after the work of
Borodin and Moenck by Niisken and Ziegler [14] who showed that
forn=2and N = d?, multipoint evaluation can be solved in most
O(d«2/2+1) operations, where w; is the exponent for multiplying a
d x d and a d x d? matrix. The algorithm in [14] also generalizes to
give an algorithm for general n that requires O(d®2/2("~1)+1) field
operations.? Two significant milestones in this line of research are
the results of Umans [15] and Kedlaya & Umans [10] who designed
nearly linear time algorithms for this problem for fields of small
characteristic and over all finite fields respectively, provided the
number of variables n is at most d°()). We now discuss these results
in a bit more detail.

Umans [15] gave an algorithm for multipoint evaluation over
finite fields of small characteristic. More precisely, the algorithm
in [15] solves multipoint evaluation in time O(N + d™)(n?p)™) -
poly(d, n, p,log N) over a finite field F of characteristic p. Thus,
when p and n are d°W), the running time can be upper bounded by
(N + d™)1*9 for every constant § > 0 and d, N sufficiently large.
In addition to its impressive running time, the algorithm of Umans
[15] is also algebraic, i.e. it only requires algebraic operations over
the underlying field. With multipoint evaluation naturally being
an algebraic computational problem, an algebraic algorithm for it
has some inherent aesthetic appeal. The results in [15], while being
remarkable has two potential avenues for improvement, namely, a
generalization to other fields and to the case when the number of
variables is not d°).

In [10], Kedlaya & Umans addressed the first of these issues.
They showed that multipoint evaluation can be solved in nearly
linear time over all finite fields. More precisely, for every § > 0,
their algorithm for multipoint evaluation has running time (N +
dmyi+é log1+0(l) q over any finite field F of size ¢, provided d is
sufficiently large and n = d°"). Quite surprisingly, the algorithm
in [10] is not algebraic. It goes via lifting the problem instance
from the finite field F to an instance over Z and then relies on an
extremely clever and unusual application of the Chinese Remainder
Theorem to reduce the instance over Z back to instances over small
finite fields. Intuitively, the gain in the entire process comes from
the fact that in the reduced instances obtained over small finite
fields, the evaluation points of interests are quite densely packed
together inside a small product set and a standard application of
the multidimensional FFT can be used to solve these small field
instances quite fast. Another closely related result is a recent work
of Bjorklund, Kaski and Williams [4] who (among other results)
give an algorithm for multivariate multipoint evaluation but their
time complexity depending polynomially on the field size (and not
polynomially on the logarithm of the field size).

In addition to these algorithms for multivariate multipoint eval-
uation, Umans [15] and Kedlaya & Umans [10] also show that these
fast algorithms lead to significantly faster than previously known
algorithms for many other natural algebraic problems. This includes
the questions of modular composition where the input consists of
three univariate polynomials f, g, h € F[X] of degree less than d
each and the goal is to output (f(g(X)) mod h(X)). In addition to

3The results in both [5] and [14] work for arbitrary N, but for simplicity have been
stated for N = d and N = d? respectively here.
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being interesting on its own, faster algorithms for modular composi-
tion over finite fields are known to directly imply faster algorithms
for univariate polynomial factorization over such fields. Indeed,
using their nearly linear time algorithm for multipoint evaluation ,
Umans [15] and Kedlaya & Umans [10] obtain the currently fastest
known algorithms for univariate polynomial factorization over fi-
nite fields. We refer the reader to [10] for a detailed discussion of
these connections and implications.

In spite of the significant progress on the question of algorithms
for multipoint evaluation in [15] and [10], some very natural related
questions continue to remain open. For instance, we still do not
have nearly linear time algorithms for multipoint evaluation when
the number of variables is large, e.g. n ¢ d°® over any (large
enough) finite field, or when the field is not finite. Since multipoint
evaluation is quite naturally an algebraic computational problem, it
would also be quite interesting to have a nearly linear size arithmetic
circuits over the underlying field for this problem even if such a
circuit cannot be efficiently constructed. Currently, small circuits
of this kind are only known over finite fields of small characteristic
due to the results in [15]. The algorithm in [10] does not seem to
yield such a circuit since it is not algebraic over the underlying
field.

1.2 Data Structures for Polynomial Evaluation

One particular implication of the results in [10] is towards the
question of constructing efficient data structures for polynomial
evaluation over finite fields. The data here is a univariate polyno-
mial f € F[X] of degree less than n over a finite field F. The goal is
to process this data and store it in a way that we can support fast
polynomial evaluation queries, i.e. queries of the form: given an
a € Foutput f(a). The two resources of interest here are the space
required to store the data and the number of locations * accessed for
every query, i.e the query complexity. There are two very natural
solutions to this problem.

o We can store the coefficient vector of the polynomial f in the
memory and for each query a € F, we can read the whole
memory to recover the coefficient vector of f and hence
compute f(a). Thus, the space complexity and the query
complexity of this data structure are both (O(nlog q)) bits,
with clearly the space requirement being the best that we
can hope for.

The second natural data structure for this problem just stores
the evaluation of f on all « € F in the memory, and on any
query, can just read off the relevant value. Thus, the space
complexity here is O(q log q) bits, but the query complexity
is O(log q) bits (which is the best that we can hope for). For
q being much larger than n the space requirement here is
significantly larger than that in the first solution.

Using their algorithm for multipoint evaluation in [10], Kedlaya
& Umans construct a data structure for this problem with space com-
plexity n1*9 log!**™) g and query complexity poly(log n)-log'*°™) ¢
for all § > 0 and sufficiently large n. Thus, the space needed is quite

4This can be measured in terms of the cells accessed where each cell contains an
element over the underlying field. This is an instance of the cell probe model and
is quite natural in the context of algebraic data structures for algebraic problems.
Alternatively, we can also measure the space and query complexity in terms of the
number of bits stored and accessed respectively.
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close to optimal, and the query complexity is within a poly(log n)
factor of the optimal. Quite surprisingly, this data structure is not
algebraic since it relies on the multipoint evaluation algorithm
in [10] which in turn relies on non-algebraic modular arithmetic.
We also note that while the algorithm for multipoint evaluation
over fields of small characteristic in [15] is algebraic, to the best
of our knowledge, it does not immediately yield a data structure
for polynomial evaluation. We remark that while the discussion
here has been focused on data structures for univariate polynomial
evaluation, the ideas in [10] continue to work as it is even for the
multivariate version of this problem and gives quantitatively simi-
lar results there. In fact, their solution to the univariate problem
goes via a reduction to the multivariate case!

In a recent work, Bjorklund, Kaski and Williams [4] also prove
new data structures upper bounds for polynomial evaluations for
multivariate polynomials over finite fields. These data structures
are algebraic and are based on some very neat geometric ideas
closely related to the notion of Kakeya sets over finite fields. Their
construction can be viewed as giving a tradeoff in the space and
query complexities but at least one of these parameters always
appears to have polynomial dependence on the size of the underly-
ing finite field. This is in contrast to the results in [10] where the
query complexity depends nearly linearly on log g which is more
desirable for this problem.

A very natural open question in this line of research is to ob-
tain an algebraic data structure for this problem which matches
the space and query complexity of the results in [10]. Currently,
we do not have an algebraic data structure for this problem over
with even polynomial space and sublinear query complexity over
any sufficiently large field. In fact, Miltersen [13] showed that for
algebraic data structures over finite fields of size exponential in n,
if the space used is poly(n), then the trivial data structure obtained
by storing the given polynomial as a list of coefficients and reading
off everything in the memory on every query is essentially the
best we can do. Miltersen also conjectured a similar lower bound
to hold over smaller fields. Thus, over smaller finite fields (for in-
stance, finite fields of size poly(n)), either proving a lower bound
similar to that in [13] , or constructing algebraic data structures for
polynomial evaluation with perform guarantees similar to those
in [10] are extremely interesting open problems. For the later goal,
it would be a good start to even have an algebraic data structure
that does significantly better than the trivial solution of storing the
coefficient vector of the given polynomial.

1.3 Non-Rigidity of Vandermonde Matrices

An application of our results for multipoint evaluation is towards
upper bounds for the rigidity of Vandermonde matrices. In this
section, we give a brief overview of matrix rigidity.

Let F be any field. An n X n matrix M over F is said to be (r, s)
rigid for some parameters r, s € N if M cannot be written as a sum
of n X n matrices of rank at most r and sparsity at most s. In other
words, the rank of M cannot be reduced to less than or equal to
r by changing at most s of its entries. This notion was defined by
Valiant [16] who showed that if the linear transformation given by
M can be computed by an arithmetic circuit of size O(n) and depth
O(log n), then M is not (O(n/log log n), O(n'*€)) rigid for any € > 0.
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For brevity, we say that a family of matrices is Valiant rigid if it is
(O(n/loglog n), O(n*€)) rigid for some € > 0.

Even though the question of provable rigidity lower bounds
for explicit matrix families has remained elusive, there has been a
steady accumulation of various families of explicit matrices that
are suspected to be rigid. For instance, Hadamard Matrices, De-
sign Matrices, the Discrete Fourier Transform (DFT) matrices and
various Vandermonde Matrices have all been suspected to be rigid
with varying parameters at various points in time. For some of
these cases, we even have rigidity lower bounds either for special
cases or with parameters weaker than what is needed for Valiant’s
connection to arithmetic circuit lower bounds. However, quite sur-
prisingly Alman & Williams [2] showed that Hadamard matrices
are not Valiant rigid over Q. This result was succeeded by a se-
quence of recent results all showing that many more families of
matrices suspected to be highly rigid are in fact not Valiant rigid.
This includes the work of Dvir & Edelman [6], the results of Dvir
& Liu [7], those of Alman [1] and Kivva [11].

This list of suspected to be highly rigid that have since been
proven innocent includes families like Hadamard Matrices [2], Dis-
crete Fourier Transform (DFT) Matrices, Circulant and Toeplitz
matrices [7] and any family of matrices that can be expressed as a
Kronecker product of small matrices [1, 11].

However, a notable family of matrices missing from this list is
that of Vandermonde matrices. Special cases of Vandermonde ma-
trices, for instance the DFT matrices, are known to be not be Valiant
rigid, and in fact this result extends to the case of all Vandermonde
matrices where the generators are in geometric progression.” How-
ever, the case of Vandermonde matrices with arbitrary generators
is still not well understood.®

2 OUR RESULTS

We now state our results formally and try to place them in the
context of prior work.

2.1 Algorithms for Multivariate Multipoint
Evaluation

Our main result is a fast algebraic algorithm for multipoint evalua-
tion over fields of small characteristic. We state this result informally
here, and refer the reader to Theorem 7.1 for a formal statement.

Theorem 2.1 (Informal). Over a field Fpa of characteristic p, there
is a deterministic algorithm which evaluates a given n-variate poly-
nomial of degree less than d in each variable on N inputs in time

((N n dn)1+0(l) . poly(a, d, n,P)) >

provided that p is at most d°D and a is at most (exp(- - - (exp(d)))),
where the height of this tower of exponentials is fixed.

A few remarks are in order.

5An n x n Vandermonde matrix over a field F is specified by a list of n field elements
ay, A1, - . ., Ap—1 in F that we call generators. The rows and columns are indexed by
{0,1, ..., n—1} and the (i, j)th entry of the matrix equals a;/.

Lokam [12] shows that n X n Vandermonde matrices with algebraically independent
generators are at least (v, Q(n?)) rigid. This bound, however, is not sufficient for
Valiant’s program.
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Remark 2.2. Throughout this paper, we assume that we are given a
description of the field Fg=pa as a part of the input. For instance, we
are given an irreducible polynomial v(Y) € Fp[Y] of degree equal to
logp q andFg = Fp[Y]/{v(Y)). a
Remark 2.3. Our algorithms for Theorem 2.1 can be viewed as natu-
rally giving an arithmetic circuit of nearly linear size for multivariate
multipoint evaluation over the underlying finite field Fpa. Throughout
this paper, this is what we mean when we say we have an “algebraic”
algorithm. Moreover, given a description of Fg as in Remark 2.2, we
can use the algorithm in Theorem 2.1 to output such a circuit for
multipoint evaluation in nearly linear time. 4

As alluded to in the introduction, when the number of variables
is large (e.g. n ¢ d°M), this is the first nearly linear time algorithm
for this problem over any sufficiently large field. Prior to this work,
the fastest known algorithms for multivariate multipoint evaluation
are due to the results of Umans [15] and Kedlaya & Umans [10]
who give nearly linear time algorithms for this problem over finite
fields of small characteristic and all finite fields respectively when
the number of variables n is at most d°(!). Theorem 2.1 answers an
open question of Kedlaya & Umans [10] over the fields where it
applies.

By a direct connection between the complexity of multipoint
evaluation and modular composition shown by Kedlaya & Umans
[10], Theorem 2.1 implies a nearly linear time algorithm for modular
composition even when the number of variables n is not less than
d°M 1n [10], such an algorithm was obtained when n < d°M (over
all finite fields). More precisely, we have the following corollary.

Corollary 2.4 (Informal). Let Fpa be a field of characteristic p.
Then, there is an algorithm that on input an n-variate polynomial
f(X1,X2,...,Xn) of individual degree less than d and univariate
polynomials g1(X), .. ., gn(X) and K(X) in Fpa[X] with degree less
than N, outputs the polynomial

f(91(X), g2(X), ..., gn(X))  mod h(X)

in time
(d" + N)'*°W - poly(a.d,n,p),

provided that p is at most d°Y) and a is at most (exp(- - - (exp(d)))),
where the height of this tower of exponentials is fixed.

Our algorithm is based on elementary algebraic ingredients. One
of these ingredients is the basic fact that the restriction of a low
degree multivariate polynomial to a low degree curve is a low
degree univariate polynomial! We use this fact together with some
other algebraic tools, e.g. univariate polynomial interpolation (with
multiplicities), structure of finite fields, and multidimensional FFT
for our algorithm. We describe an overview of the main ideas in
the proof in Section 3. We also note that even though the algorithm
in [15] is algebraic, it appears to be based on ideas very different
from those in this paper. In particular, Umans relies on a clever
reduction from the multivariate problem to the univariate problem
by working over appropriate extension of the underlying field. This
is then combined with the classical univariate multipoint evaluation
algorithm to complete the picture. Our algorithm, on the other hand,
does not involve a global reduction from the multivariate set up to
the univariate set up, and crucially relies on more local properties
of low degree multivariate polynomials.
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Another related prior work is a result of Bjérklund, Kaski and
Williams [4], who give a data structure (and an algorithm) for mul-
tipoint evaluation and some very interesting consequences to fast
algorithms for problems in #{. We note that at a high level, the
structure of our algorithm is similar to that of the algorithm of
Bjorklund, Kaski and Williams [4]. However, the technical details
and quantitative bounds achieved are different. One major differ-
ence is that the time complexity of the algorithm in [4] depends
polynomially on the field size. Thus strictly speaking, with the field
size growing, this algorithm is not polynomial time in the input
size. On the other hand, the time complexity of the algorithms in
the works of Umans [15], Kedlaya & Umans [10] and that in Theo-
rem 2.1 depends polynomially in the logarithm of the field size, as
is more desirable. We discuss the similarities and differences in the
high level structure of the algorithm in [4] and that in Theorem 2.1
in a little more detail in Section 3.

2.2 Data Structures for Polynomial Evaluation

As an interesting application of our ideas in Theorem 2.1, we get the
following upper bound for data structure for polynomial evaluation.

Theorem 2.5 (Informal). Let p be a fixed prime. Then, for all suffi-
ciently large n € N and all fields Fpa with a < poly(log n), there is
an algebraic data structure for polynomial evaluation for univariate
polynomials of degree less than n over Fpa that has space complexity

at most n'*°1) and query complexity at most n°(.

A more precise version of Theorem 2.5 can be found in the full
version [3]. We remark that by an algebraic data structure, we mean
that there is an algebraic algorithm (in the spirit of Remark 2.3) over
Fpa that, when given the coefficients of a univariate polynomial
f of degree at most n as input outputs the data structure Dy in

time n+°(1) and another algebraic algorithm which when given
an « € Fpa and query access to Dy outputs f(a) in time n°M In
other words, there is an arithmetic circuit C; over Fpa with nl+o()
outputs that when given the coefficients of f as input, outputs
Dy and an arithmetic circuit C; with no) inputs satisfying the
following: for every a € Fpa, there is a subset S(«) of cells in Dy
such that on input @ and D |s(4), C2 outputs f(a).

As alluded to in the introduction, Miltersen [13] showed that
over finite fields that are exponentially large (in the degree pa-
rameter n), any algebraic data structure for polynomial evaluation
with space complexity poly(n) must have query complexity Q(n).
He also conjectured that the lower bound continues to hold over
smaller fields.” Theorem 2.5 provides a counterexample to this con-
jecture when the underlying field has small characteristic and is
quasipolynomially bounded in size.

The data structure of Kedlaya & Umans [10] outperforms the
space and query complexities of the data structure in Theorem 2.5.
However, their construction is not algebraic; essentially because

"We note that Miltersen did not precisely quantify what smaller fields mean, but the
case when the field size is a large polynomial in the degree parameter n is a natural
setting, since the trivial data structures in this case do not have both nearly linear
space and sublinear query complexity. Theorem 2.5 provides such a construction when
the underlying field additionally has a small characteristic.
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their algorithm for multipoint evaluation is not algebraic.® How-
ever, their construction works over all finite fields, while we require
fields of small characteristic that are quasipolynomially bounded
in size. Umans’ [15] algorithm for multipoint evaluation on the
other hand is algebraic, although to the best of our knowledge, this
is not known to give a data structure for polynomial evaluation.
Finally, we note that for the algebraic data structure in the work of
Bjorklund, Kaski and Williams [4], either the query complexity or
the space complexity has polynomial dependence on the field size
and thus even over fields of polynomial size it does not appear to
give nearly linear space complexity or sublinear query complexity.
However, the results in [4] are stated for multivariate polynomials
and it is not clear to us if for the special case of univariate polyno-
mial one can somehow bypass this polynomial dependence on field
size by a careful modification of their construction.

2.3 Upper Bound on the Rigidity of
Vandermonde Matrices

As the second application of the ideas in Theorem 2.1, we show
the following upper bound on the rigidity of general Vandermonde
matrices.

Theorem 2.6 (Informal). Let p be a fixed prime. Then, for all con-
stants € with 0 < € < 0.01 and for all sufficiently large n, if V is
an n X n Vandermonde matrix over the field Fpa for a < poly(logn),

[ — i
then the rank of V can be reduced to PO o m) by changing

at most n'*®(€) entries of V.

For a more formal version of Theorem 2.6, we refer to the full
version of our paper [3]. Theorem 2.6 extends the list of natural fam-
ilies of matrices that were considered potential explicit candidates
for rigidity but turn out to not be rigid enough for Valiant’s program
[16] of obtaining size-depth tradeoffs for linear arithmetic circuits
via rigidity. Prior to this work, such upper bounds on rigidity were
only known for special Vandermonde matrices, for instance, the
Discrete Fourier transform matrix and Vandermonde matrices with
generators in geometric progression [7].

Our proof of Theorem 2.6 crucially relies on the results in [7]
and combines these ideas with ideas in the proof of Theorem 2.1.
We discuss these in more details in the next section.

3 AN OVERVIEW OF THE PROOFS

In this section we describe some detail, the main high level ideas of
our proofs. We begin with a detailed overview of our algorithms
for multipoint evaluation. We have three algorithms (Section 5,
Section 6 and Section 7) starting with the simplest one and each
subsequent algorithm building upon the previous one with some
new ideas. We start with the simplest one here.

3.1 A Simple Algorithm for Multipoint
Evaluation

We start with some necessary notation. Let p be a prime and Fy be

a finite field with g = p?. Let f € F4[x] be an n-variate polynomial

of degree at most d — 1 in every variable and fori = 1,2,..., N let

a; € Fg be points. The goal is to output the value of f at each of

8This is also the reason why the data structure in [10] does not give a counterexample
to Miltersen’s conjecture.
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these points @;. As is customary, we assume that the field Fq is given
as Fp[Y]/(v(Y)) for some degree a irreducible polynomial v(Y) €
Fp[Y]. In Observation 4.2, we observe that given the irreducible
polynomial v(Y) € Fp[Y] such that Fg = Fp[Y]/(v(Y)) and any
u € Fg, we can efficiently compute the coefficients of the univariate
polynomial over Fp[Y] corresponding to u via arithmetic operations
over Fy. Therefore, for the rest of this discussion, we assume that
every field element (in the coefficients of f and the coordinates of
a;) are explicitly given to univariate polynomials of degree at most
a-1inFp[Y].

We start with a discussion of the simplest version of our al-
gorithm before elaborating on the other ideas needed for further
improvements. The formal guarantees for this version can be found
in Theorem 5.1. The algorithm can be thought to have two phases,
the preprocessing phase and the local computation phase.

Preprocessing Phase. We start with a description of the prepro-
cessing phase.

o A Subfield of Appropriate Size: As the first step of the

algorithm, we compute a natural number b such that pb_1 <

adn < pb. For the ease of this discussion, let us assume that

b divides a, and thus Ipr is a subfield ofIFq = Fpa. If b does

not divide a, then we work in a field Fpe that is a common
extension of Fpa and F b

e Evaluating f on sz: We now use the standard multidi-

mensional Fast Fourier Transform algorithm to evaluate f
on all of IFZb. This algorithm runs in quasilinear time in the

input size, i.e. O(d™ + (p?™)), where O hides poly(d, n, p, b)
factors. From our choice of b, we note that this quantity is
at most O((padn)™).

Local Computation Phase: We now describe the local compu-
tation phase.

e A Low Degree Curve through a;: Once we have the eval-
uation of f on all points in F”,, we initiate some local compu-

tation at each ;. This local computation would run in time
(adn)¢ for some fixed constant c, thereby giving an upper

bound of O ((pad)” + N(adn)o(l)) on the total running time.

To describe this local computation, let us focus on a point ;.
Since the field elements of Fy are represented as univariate
polynomials of degree at most (a — 1) in Fy[Y], we get that
for every a; € IF’qI there exist vectors a; o, @; 1, - -
in IF; such that

Qi a-1

ai=ajo+tajY+--- +ai,a_1Y“_1 .
Let us now consider the curve g(t) € Fg[t] defined as

git)=aio+ajit+---+ ai,a—lta_l '

We are interested in some simple properties of this curve. The
first such property is that it passes through the point ;, since
@; = gi(Y) (recall that Y is an element of Fy = F,[Y]/{v(Y))
here). The second property is that this curve contains a lot of
points in the F;b. In particular, note that for every y € pr,

gi(y) € ]F;b. Thus, there are at least p? points on g;(t) in

IF’; , (counted with multiplicities).
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e Restriction of f to g;(t): We now look at the univariate
polynomial h; () obtained by restricting the n-variate polyno-
mial f to the curve g;(¢). Thus, if g; (t) = (gi,0(t) - . - gi,n-1(1))
for some univariate polynomials g; ;(¢) of degree at most a—1,
then h;(t) is equal to the polynomial f(g;,o(), . .., gi,n-1(t)).
Clearly, the degree of h; is at most a(d — 1)n < adn. From
our previous discussion, we know that h;(Y) = f(a;). More-
over, we have already evaluated f on all of F; , and thus, we

know the value of hj(y) for all y € F,». Note that these are

at least p? many inputs on which the value of h;(t) is cor-
rectly known to us. Also, from our choice of b, we know that
p? > adn > deg(h;). Thus, we can recover the polynomial h;
completely using univariate polynomial interpolation in time
at most poly(a, d, n, p), and thus can output h;(Y) = f(a;)
in time poly(a, d, n, p). Iterating this local computation for
everyi € {0,1,...,N — 1}, we can compute the value of f
at a; for each such i.

Correctness and Running Time: The correctness of the algo-
rithm immediately follows from the outline above. Essentially, we
set things up in a way that to compute f(a;) it suffices to evaluate
the univariate polynomial h; at input Y € F;. Moreover, from the
preprocessing phase, we already have the value of f on IF; , and this

in turn gives us the evaluation of h;(t) on p? > adn > deg(h;) dis-
tinct inputs. Thus, by standard univariate polynomial interpolation,
we recover h; and hence h;(Y) = f(a;) correctly.

The time complexity of the preprocessing phase is dominated by
the step where we evaluate f on IF; ,- This can be upper bounded

by O((padn)™) using the standard multidimensional FFT algorithm.
In the local computation phase, the computation at each input
point a; involves constructing the curve g;(t), constructing the
set {(y,hi(y)) : y € pr }, using the evaluation of h; on these p?
inputs to recover h; uniquely via interpolation and then computing
hi(Y). For every y € ]pr, gily) € F;b can be done in time at

most poly(a, d, n, p). So, the total time complexity of this phase is
at most (N - poly~(a, d, n,p)), and hence the total running time of
the algorithm is O(N + (padn)™).

3.2 Towards Faster Multipoint Evaluation

The algorithm outlined in the previous section achieves a O(Nn +
d™)1+o() when apn = d°1). We now try to modify it so that it
continues to be nearly linear time even when the number of vari-
ables n and the degree of underlying field a are not less than d°(1),
The factor of p™ appears to be inherent to our approach and seems
difficult to get rid of, and this leads to the restriction of working
over fields of small characteristic for all our results in this paper.

Before proceeding further, we remark that the basic intuition
underlying all of our subsequent algorithms are essentially the
same as those in the simple algorithm outlined in this section. For
each of the further improvements, we modify certain aspects of
this algorithm using a few more technical (and yet simple) ideas on
top of the ones already discussed in Section 3.1.

Handling Large Number of Variables. The factor of n” in the
running time appears in the preprocessing phase of the algorithm
in Section 3.1. The necessity for this stems from the fact that the
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univariate polynomial h;(t) obtained by restricting f to the curve
gi(t) through a; can have degree as large as a(d — 1)n. Thus, for
interpolating h;(t) from its evaluations, we need its value on at
least a(d — 1)n + 1 distinct inputs. Thus, we need p? to be at least
ald—1)n+ 1.

However, we note that if we have access to not just the eval-
uations of h;(t), but also to the evaluations of its derivatives up
to order n — 1 at each of these inputs in pr, then h;(t) can be

uniquely from this information provided pb is at least deg(h;(t))/n,
ie. (a(d — 1)n + 1)/n < ad (see Lemma 4.9 for a formal state-
ment). Thus, with observation at hand, we now choose b such
that p’f1 <ad< ph . Moreover, for the local computation, we now
need not only the evaluation of h; on all points in F,_, but also the
evaluations of all derivatives of h;(t) of order at most n — 1 on all
these points. A natural way of ensuring that the evaluations of these
derivatives of h;(t) are available in the local computation phase is
to compute not just the evaluation of f but also of all its partial
derivatives of up to n on all of ]F; ,- Together with the chain rule

of partial derivatives, we can use the evaluations of these partial
derivatives of f and the identity h;(t) = f o g;(t) to obtain the eval-
uations of h;(t) and all its derivatives of order at most n — 1 on all
inputs in F pb- This ensures that h; can once again be correctly and
uniquely recovered given this information via a standard instance
of Hermite Interpolation, which in turn ensures the correctness of
the algorithm.

To see the effect on the running time, note that in the prepro-
cessing phase, we now need to evaluate not just f but all its partial
derivatives of order at most n — 1 on all of ]F;b. Thus, there are

now roughly ( < 4" polynomials to work with in this phase.
So, given the coefficients of f, we first obtain the coefficients of
all these derivatives, and then evaluate these polynomials on F”,

n+n)
n

using a multidimensional FFT algorithm again. Also, the coefficient
representation of any fixed derivative of order up to n — 1 can be
computed from the coefficients of f in O(d™) time (see Lemma 4.6).
Thus, the total time complexity of the preprocessing phase in this
new algorithm can be upper bounded by O((adp)™4™).

Once we have this stronger guarantee from the preprocessing
phase, we get to doing some local computation at each point ;.
Now, instead of recovering h; via a standard univariate polynomial
interpolation, we have to rely on a standard Hermite interpolation
for this. In particular, we need access to the evaluation of all deriva-
tives of h;(t) of order at most n — 1 on all inputs y € F, ;. This can
be done via an application of chain rule of derivatives and the fact
that we have evaluations of all partial derivatives of f of order at
most n—1 on all points in IF; ,- The time taken for this computation

ateachy € pr turns out to be about O(4"poly(d, n, a, p)). Thus,
the total time taken for local computation at all the input points
can be upper bounded by roughly O(N4"poly(d, n, a, p)).

Thus, the total time complexity of this modified algorithm is
O((N + (adp)™)4™). In other words, we have managed to remove
the factor of n” present in the algorithm in Section 3.1 and replace
it by 4™. An algorithm based on this improvement is described in
Section 6.

Handling Larger Fields. We now discuss the improvement
in the dependence on the parameter a, which is the degree of the
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extension of F;, where the input points lie. In the local computation
step at each point, the curve g;(t) through @; has degree a—1 in the
worst case, since we view the field elements in Fpa as univariate
polynomials of degree at most a — 1 with coefficients in Fj,. There-
fore, the restriction of f to such a curve, namely the polynomial
hi(t) can have degree (a— 1) deg(f) in the worst case. This forces us
to choose the parameter b such that p? is at least deg(h;), thereby
leading to a factor of @” in the running time. Note that if we had
the additional promise that the point @; was in an extension F pa
of Fp, for some @ < g, then the curve g; would be of degree at most
(@—1) < (a—1) and hence the polynomial h; would have degree at
most (@ — 1) deg(f). More generally, if all the input points &; were
promised to be in IF";&, we can improve the factor a” to (a@)" in the

running time by choosing b such that pb is larger than adn (in fact,

we only need p? > (ad) if we are working with multiplicities). We

also note that for every a € N the curve g;(t) takes a value in F”,

whenever ¢ is set to a value in de. As a consequence, the curve

gi contains at least p? points in " .. With these observations in
P

hand, we now elaborate on the idea for reducing the a” factor in
the running time. For simplicity of exposition, we outline our ideas
in the setting of the algorithm discussed in Section 3.1. In particular,
derivative based improvements are not involved.

Let a’ be such that p?” > adn > p®~!. Now, instead of recovering
h; directly from its values on F 5, we try to recover h; in two steps.
In the first step, we try to obtain the values of h;(y) for every
y €F pa’ using the information we have from the preprocessing
phase. Assuming that we can do this, we can again obtain h; by
interpolation and compute h;(Y) = f(a;).

Now, to compute h;(y) for y € Fpa, we note that h;(y) equals
f o gi(y), thus it would be sufficient if we had the evaluation of f
on the point set {g;(y) : y € F e }. This seems like the problem we
had started with, but with one key difference: the points {g;(y) :
Y € Fpa/} are all in F;a, with a’ = ©(log adn)! Thus, the degree
of the extension where these points lie is significantly reduced. In
essence, this discussion gives us a reduction from the problem of
evaluating f on N points in an to evaluating f on N - adn points
in ]F;a,, with a’ = O(log adn). Thus, we have another instance of

multipoint evaluation with a multiplicatively larger point set in an
extension of Fj, of degree logarithmic in adn. If we now apply the
algorithm discussed in Section 3.1, we get a running time of roughly
O(Nadn + (pdnlog(adn))™). Thus, in the running time, the factor
a™ has been replaced by log" a at the cost of N being replaced by
Nadn. In fact, we can continue this process ¢ times, and in each
step we end up with an instance of multipoint evaluation with the
size of the point set being increased by a multiplicative factor, with
the gain being that we have a substantial reduction in the degree
of the field extension that the points live in.

Comparison with the Techniques of Bjorklund, Kaski and
Williams [4]. Now that we have an overview of the algorithms
for multipoint evaluation in this paper, we can elaborate on the
similarities they share with the algorithms in [4]. At a high level,
the similarities are significant. In particular, both the algorithms
have a preprocessing phase where the polynomial is on a product
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set using multidimensional FFT. This is followed by a local com-
putation step, where the value of the polynomial at any specific
input of interest is deduced from the already computed data by
working with the restriction of the multivariate polynomial to an
appropriate curve. In spite of these similarities in the high level out-
line, the quantitative details of these algorithms are different. One
salient difference is that the time complexity of the algorithm in [4],
depends polynomially on the size of the underlying field, whereas
in our algorithm outlined above, this dependence is polynomial in
logarithm of the field size as long as the size of the field is bounded
by a tower function of fixed height in the degree parameter d. This
difference stems from technical differences in the precise product
set used in the preprocessing phase and the sets of curves utilized in
the local computation phase. In particular, the degree of the curves
in the local computation phase of our algorithms depends poly-
nomially on log |F|, where as the degree of the curves used in [4]
depends polynomially on |F|. Additionally, algorithms in [4] rely
on the assumption that the total degree of the polynomial divides
|F*| = 1, whereas we do not need any such divisibility condition.

3.3 Data Structure for Polynomial Evaluation

The multipoint evaluation algorithm in Theorem 2.1 is naturally
conducive to obtaining data structures for polynomial evaluation.
Essentially, the evaluation of the polynomial in a fixed grid (in-
dependent of the N points of interest in the input) gives us the
data structure, and the local computation at each input point of
interest which requires access to some of the information computed
in the preprocessing phase constitutes the query phase of the data
structure. We discuss this in some more detail now.

Let f(X) € Fpa[X] be a univariate polynomial of degree at most
n. We start by picking parameters d, m such that d" is at least n. For
any such choice of d and n, there is clearly an m-variate polynomial
F(Zo,Z4,...,Zm-1) such that F(X, X%, x4 ..., x9"") = f(X).
In other words, the image of F under the Kronecker substitution
equals f. Now, as in the multipoint evaluation algorithms, we pick
the smallest integer b such that p? > adm and evaluate F on F™

and store these points along with the value of F on these inputs in
the memory. This forms the memory content of our data structure.
Thus, the memory can be thought of having p?™ < (padm)™ cells,
each containing a pair (c, F(c)) for c € ]F;”b.

To get a sense of the parameters, let us set d = n!/1°81087 and

m = loglog n. Clearly, the constraint d™ > n is met in this case.
For this choice of parameter and for p being a constant and a <

1+0(1) and

poly(log n), we get that the space complexity is at most n
the query complexity is at most n°1). The complete details can be

found in the full version [3].

3.4 Rigidity of Vandermonde Matrices

The connection between rigidity of Vandermonde matrices and
multipoint evaluation is also quite natural. Consider a Vander-
monde matrix V,, with generators ay, . . ., ap—1 and for every i, j €
{0,1,...,n — 1}, the (i, j)th entry of V}, is (x{ Now, for any uni-
variate polynomial f of degree at most n — 1, the coeflicients of f,
together with the set {«; : i € {0,1,...,n— 1}} of generators form
an instance of (univariate) multipoint evaluation. Moreover, for any
choice of the generators {a; : i € {0, 1,...,n — 1}}, the algorithm
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for multipoint evaluation, e.g Theorem 2.1 can naturally be inter-
preted as a circuit for computing the linear transform given by the
matrix V. Furthermore, if this linear circuit is structured enough,
we could, in principle hope to get a decomposition of V,, as a sum of
a sparse and a low rank matrix from this linear circuit, for instance,
along the lines of the combinatorial argument of Valiant [16]. Our
proof of Theorem 2.6 is along this outline. We now describe these
ideas in a bit more detail.

Given a univariate polynomial f of degree n — 1 and inputs
o, a1, - . ., An-1, let F be an m- variate polynomial of degree d
such that (n = d™)° as described in Section 3.3. Moreover, for
i€{0,1,....n-1}leta; = (a;,a?, ...
in Section 3.3, f(a;) = F(a;). Let V be the n X n matrix where the
rows are indexed by {0, 1,...,n — 1} and the columns are indexed
by all m- variate monomials of individual degree at most d — 1. We
use the fact that d™ = n here. From the above set up, it immediately
follows that the coefficient vectors of f and F are equal to each other
(with the coordinate indices having slightly different semantics)

m-1 )
R alfi ). Now, as discussed

and the matrices V,, and V are equal to each other.

We now observe that the algorithm for multipoint evaluation
described in Section 3.1 gives a natural decomposition of V (and
hence V},) as a product of a matrix A of row sparsity at most adm
and a p?™ x d™ matrix B with b being the smallest integer such that
pb > adm. The rows of B are indexed by all elements of F™, and

the columns are indexed by all m-variate monomials of individual
degree at most d — 1, and the (a, e) entry of B equals a®. Intuitively,
the matrix B corresponds to the preprocessing phase of the algo-
rithm and the matrix A corresponds to the local computation. At
this point, we use an upper bound of [7] on the rigidity of Dis-
crete Fourier Transform matrices over finite fields and the inherent
Kronecker product structure of the matrix B to obtain an upper
bound on the rigidity of B. Finally, we observe that that matrix
Vn = V = A- B obtained by multiplying a sufficiently non-rigid
matrix B with a row sparse matrix A continues to be non-rigid with
an interesting regime of parameters. This essentially completes
the proof. For more details, we refer the reader to look at the full
version [3] of this result.

Organization of the Paper. The rest of the paper is organized as
follows. We start with the preliminaries section in Section 4. We
then present the most basic version of our algorithm in Section 5
followed by the improved versions for larger number of variables
and larger size fields in Section 6 and Section 7 respectively. Due to
space constraints, we skip some of the details in this version of the
paper, including the proofs of many of the claims and the analyses
of some of the algorithms. We refer the interested reader to the full
version [3] for these missing details.

4 PRELIMINARIES

We use N to denote the set of natural numbers {0, 1,2, ...}, F to de-
note a general field. For any positive integer N, [N] denotes the set
{1,2,..., N}.Byx and z, we denote the variable tuples (X3, . .., Xp)
and (Z1,...,Zy), respectively. For any e = (e1,...,ep) € N7,
x® denotes the monomial [}, Xfi. By |e|1, we denote the sum
e1+ - +en.

9For simplicity, let us assume that such a choice of integers d, m exist.
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For every positive integer k, k! denotes [];_; i. For k = 0, k! is
defined as 1. For two non-negative integer i and k with k > i,

(I:) denotes % For k < i, (’f) = 0. For non-negative in-
teger iy,...,is with iy + --- + is = k, (il,.].c.,is) = ill»k»%is!' For
a = (ag,...,an),b = (by,...,by) € N, (E) = 1%, (Zz) and
(a+b)_ n (a,~+b,-)
a,b/ = Lli=1\q; b; /)"

We say that a function ¢ : N — N is polynomially bounded, or
denoted by y/(n) < poly(n), if there exists a constant ¢ such that for
all large enough n € N, y/(n) < n°.

Suppose that p be a positive integer greater than 1. Then for
any non-negative integer c, log®(n) denotes the c-times composi-
tion of logarithm function with itself, with respect to base p. For
example, logzz(n) = logp Iogp (n). By log; (n), denotes the smallest
non-negative integer c such that logy®(n) < 1. For p = 2, we may
omit the subscript p in log,, (n), log;;C (n) and log;‘ (n).

4.1 Some Facts about Finite Fields

Suppose that p is a prime and q = p* for some positive integer a.
Then there exists an unique finite field of size g. In other words, all
the finite fields of size q are isomorphic to each other. We use Fy to
denote the finite field of size g, and p is called the characteristic of Fg.
For any finite field Fy, IF’}; represents the multiplicative cyclic group
after discarding the field element 0. For any irreducible polynomial
v(Y) over Fy, the quotient ring Fg[Y]/(v(Y)) forms a larger field
over Fy of size q? where b is the degree of v(Y). The next lemma
describes that we can efficiently construct such larger fields over
Fg, when the characteristic of the field is small.

Lemma 4.1. Let p be a prime and q = p* for some positive integer
a. Then, for any positive integer b, the field Fqb can be constructed as
Fql[Y]/{v(Y)), where v(Y) is degree b irreducible polynomial over Fg,
in poly(a, b, p) Fq-operations. Furthermore, all the basic operations
inFgp can be done in poly(b) Fq-operations.

Fix a field Fy of characteristic p. In the standard algebraic model
over Fg, the basic operations are addition, subtraction, multiplica-
tion, and division of elements in Fy. Let Fy = F[X]/(g(X)) where
g = p“ and g(X) is a degree a irreducible polynomial over F.
Then for any element & € Fg, consider its canonical representation
a=ay+ a1 X +...+ae-1X% ! where a; € Fp. Note that it is not
clear how to extract @;’s from « using the algebraic operations over
Fg. We show that this is possible if p is small.

Observation 4.2. Let p be prime and q = p® for some positive
integer a. Let Fgq = Fp[X1/{(g(X)) where g(X) is a degree a irreducible
polynomial over Fp. Leta € Fg anda = ap + a1 X +- -+ + ag-1X%1
where a; € Fp. Then, given blackbox access to & and Fq-operations,
@0, a1, . . ., 0g—1 can be computed in poly(a,log p) Fq-operations.

Thus, for the rest of our paper, we consider that the extraction of
the Fp-coefficients from elements in Fy as an algebraic operation.

Suppose that Fg, and Fg, are two finite fields of characteristic
p such that Fy, is a subfield of Fg,. Then Fy, forms a vector space
over Fg, . A subset {f1, B2, ..., i} of Fy, is called an Fg, -basis if
every element of @ € Fg, is a unique linear combination of f;’s
over Fg,.
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Lemma 4.3. Let p be a prime and q = p® for some positive integer a.
Let b be a positive integer and Fqb = Fg[Y]/{v(Y)) for some degree
b irreducible polynomial v(Y) over Fq. Then, the following holds:

(1) The field Fgb contains the subfield Fpp. Furthermore, all the

elements of Fpp can be computed in p? - poly(a, b, p) Fq-
operations.
In poly(a, b, p) Fy-operations, an element § € Fqb can be

computed such that {1, 5, ... ,ﬁb_l} forms an Fp-basis for

]pr. Moreover, given any element o € pr, the Fp—linear

combination of & in the basis{1, §, .. ., ﬂb_l} can be computed
in poly(b) Fq-operations.

—
N
~

4.2 Hasse Derivatives

In this section, we briefly discuss the notion of Hasse derivatives
that plays a crucial role in our results.

Definition 4.4 (Hasse derivative). Let f(x) be an n-variate poly-
nomial over a field F. Let e = (e1,...,en) € N™. Then, the Hasse
derivative of f with respect to the monomial x® is the coefficient of
z¢ in the polynomial f(x + z) € (F[x])[z]. a

Notations. Suppose that f(x) be an n-variate polynomial over
afield F. Let b € N". Then, dy,(f) denotes the Hasse derivative of
f(x) with respect to the monomial xP. For any non-negative integer

k, 3=(f) is defined as
") = {Eb(f) | beN" st [bl; < k},

For a univariate polynomial A(t) over F and a non-negative inte-
ger k, R6)(#) denotes the Hasse derivative of h(t) with respect to
the monomial ¢¥, that is, Coeff i (h(t + Z)).

Next, we mention some useful properties of Hasse derivatives.

Proposition 4.5. Let f(x) be an n-variate polynomial over F. Let
a,b € N". Then,

(1) Falf) = Bearn () Coeflye(f)x2.
2) Bad(f) = () Basp(f)-

For proof one can see [8, Appendix C]. The following lemma
describes the cost of computing Hasse derivatives.

Lemma 4.6. Letp be a prime and q = p® for some positive integer a.
Let f(x) be an n-variate polynomial over Fy with individual degree

less than d. Letb = (b1, ...,by) € N™. Then, given f(x) and b as
input, Algorithm 1 outputs 0y,(f) in

d"™ - poly(n) + poly(b, d)

Fq-operations, where b = max;c[,) bi.

Proor. We first describe the algorithm and then argue about its
correctness and running time.
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Algorithm 1 Computing Hasse derivative

Input: An n-variate polynomial f(x) € F4[x] with individual
degree less than d and b = (by,...,b,) € N™.
Output: Eb(f)
1: Let b be max;¢[p) bi.
2: Let D be an (b + 1) X d array.
3: forj«— O0Otod—1do
4 fori < 0tobdo
if i = j then
Di,j «— 1.
else if i > j then
Dj,j « 0.
else if i = 0 then
Dy,j « 1.
else
Dj j = Dj-1,j-1 + Dj, j-1
13: foree {0,1,...,d—1}" do

R AL

14: Lete = (e1,...,en).
15: ce < Coeftxe(f) - [172; Dp, ;-
16: Output Yeefo,1,....d-1}" cex®P.

In Algorithm 1, for alli € {0,1,...,b}and j € {0,1,...,d —
the (i, j)th entry of array D

Di,j = (]l) modp.

For this, we note that the arithmetic in Line 15 of the algorithm
is happening over the underlying field Fy. This combined with

1},

Proposition 4.5 implies that the Algorithm 1 computes dy(f).

To compute the array D, we are performing d(b+1) Fp-operations.

Computing all ¢¢’s for e € {0,1,...,d — 1}" takes d" - (n + 1)
Fg-operations. Therefore, Algorithm 1 runs in our desired time
complexity. O

4.3 Univariate Polynomial Evaluation and
Interpolation

The two simplest but most important ways of representing an
univariate polynomial of degree less than d are either by giving the
list of its coefficients, or by giving its evaluations at d distinct points.
In this section, we discuss about the cost of changing between
these two representations. First, we mention the cost of polynomial
evaluation, that is, going from the list of coefficients to the list of
evaluations.

Lemma 4.7 (Evaluation). Let f(x) be a degree d polynomial over F.
Let a1, g, . .., an be N distinct elements from F. Then, f(a;) for all
i € [N] can be computed in O(Nd) F-operations.

For each i € [N], using Horner’s rule, one can compute f(a;)
with d — 1 additions and d — 1 multiplications over F. Therefore, the
total cost of computing f(«;) for all i € [N] is O(Nd) operations.
For more details see [9, Section 5.2]. Next, we discuss the cost of
polynomial interpolation where we go from the list of evaluations
to the list of coefficients.

Lemma 4.8 (Interpolation). Let f(x) be a degree d polynomial over
F.Letag, a1, . . ., g be(d+1) distinct elements fromF. Let f; = f(a;)
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foralli € {0,1,...,d}. Then, given (a;, Bi) foralli € {0,1,...,d},
f(x) can be computed in O(d?) F-operations.

For proof see [9, Section 5.2]. The following lemma gives a
stronger version of univariate polynomial interpolation, known as
Hermite interpolation. Here, the number of evaluation points can be
less than d, but evaluations of Hasse derivatives of the polynomial
up to certain order is available.

Lemma 4.9 (Hermite interpolation). Let f(x) be a degree d univari-
ate polynomial over a field F and ey, . . ., e;; be m positive integers
such that ey + - - - + ey, is greater thand. Let a1, . . ., am be m distinct
elements from . For alli € [m] and j € [ej], let f(i_l)(ai) = Bij.
Then given (ai, j, fij) for alli € [m] and j € [e;j], f(x) can be com-
puted in O(d®) F-operations.

For proof see [9, Section 5.6]. We also remark that while there
are nearly linear time algorithms for all of the above operations
(multipoint evaluation, interpolation and Hermite interpolation)
based on the Fast Fourier transform. However, for our applications
in this paper, the above stated more naive bounds suffice.

4.4 Multidimensional Fast Fourier Transform

We crucially rely on the following lemma,

Lemma 4.10. LetF be a finite field and let F be a subfield of F. Then,
there is a deterministic algorithm that takes as input an n-variate
polynomial f € F[x] of degree at mostd — 1 in each variable as a list
of coefficients, and in at most (d™ +|E|™)- poly(n, d, log |F|) operations
over the field F, it outputs the evaluation of f for all € F™.

5 A SIMPLE ALGORITHM FOR MULTIPOINT
EVALUATION

We start with our first and simplest algorithm for multipoint evalu-
ation . The algorithm gives an inferior time complexity to what is
claimed in Theorem 2.1, but contains some of the main ideas. Sub-
sequently, in Section 6 and Section 7, we build upon this algorithm
to eventually prove Theorem 2.1. Our main theorem for this section
is the following.

Theorem 5.1. Let p be a prime and q = p® for some positive integer
a. There is a deterministic algorithm such that on input an n-variate
polynomial f(x) over Fg with individual degree less than d and points
ay,ay,...,an fromFL, it outputs f(a;) for alli € [N] in time

(N + (adnp)™) - poly(a,d, n,p) .

5.1 A Description of the Algorithm

We start with a description of the algorithm, followed by its analysis.
We recall again that through all the algorithms in this and subse-
quent sections, we assume that the underlying field F4 is given to us
via an irreducible polynomial of appropriate degree over the prime
subfield. Moreover, from Observation 4.2, we also assume without
loss of generality that for every input field element, we have access
to its representation as a polynomial of appropriate degree over the
prime subfield. For a polynomial map g(¢) = (g1(t), g2(¢), . . ., gn(?))
and an n-variate polynomial f, we use f(g(¢)) to denote the uni-
variate polynomial f(g1(), ..., gn(t)).
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Algorithm 2 Efficient Multivariate Multipoint Evaluation
Input: An n-variate polynomial f(x) € F4[x] with individual
degree less than d and N distinct points @1, @2, . . .,an from Fg
Output: f(a1), f(az),..., f(an).
1: Let p be the characteristic of Fg and g = p*.
2: Let vp(Yp) be an irreducible polynomial in Fy[Yp] of degree a
and

Fq = Fp[Yol/{vo(Y0))-
3: Let b be the smallest integer such that pb > adn.
4: Compute an irreducible polynomial v1 (Y1) in Fg[Y1] of degree
b and
Fqb = Fq[Y1]/{v1(Y1)). (Lemma 4.1)
5: Compute the subfield Fop of Fgp. (Lemma 4.3)
6: Evaluate f(x) over the grid F;b. (Lemma 4.10)

7. foralli € [N] do

8: Leta; =a;jo+a;1Yo+--- +ai,a_1Y0“‘1, where a;jj € Fz

9: Let g;(t) be the curve defined as a; o + a; 1t + -+ +
ai,a_lta_l.

10: Compute the set P; = {(y,gi(y)) | vy € pr }. (Lemma 4.7)

11 Compute the set E; = {(y, f(y")) | (y,y’) € P;} from the
evaluations of f(x) over FZ b

12: Let h;(t) be the univariate polynomial defined as f(g;(t)).

13: Using E;, interpolate h;(t). (Lemma 4.8)

14: Output h;(Yp) as f(a;). (Lemma 4.7)

5.2 Analysis of Algorithm 2

Proor oF THEOREM 5.1. Proof of correctness can be found in
the full version [3] of our result.

Time Complexity of Algorithm 2. From Lemma 4.1, the field Fob
can be constructed as Fg[Y1]/{v1(Y1)) for some degree b irreducible
polynomial v1(Y1) over Fq in poly(a, b, p) many F4-operations.
Also, all the basic operations in the field Fop = FqlY1]/{v1(Y1))
can be done using poly(b) F4-operations. Applying Lemma 4.3, the
cost of computing all the elements of the subfield Fpp (of Fqb) is
pP - poly(a, b, p) [Fg4-operations. Using Lemma 4.10, we can evaluate
f(x) over the grid F;b in

(d" + p®™) - poly(a, b, d, n, p)
[Fq-operations. For all i € [N], using Lemma 4.7, the cost of com-
puting the set P; = {(y,gi(y)) | v € pr} is pb - poly(a, b, n)
Fg-operations. Using the set E;, Lemma 4.8 ensures that h;(t) can
be interpolated using poly(a, b, d, n) F4-operations. Finally, h(Yy)
can be computed in poly(a, d, n) many F4-operations. Since adn <

pP < adnp, the above discussion implies that that Algorithm 2
performs

(N + (adnp)™) - poly(a, d, n, p)
Fq4-operations.

6 MULTIPOINT EVALUATION FOR LARGE
NUMBER OF VARIABLES

In this section, we append the overall structure of Algorithm 2 with
some more ideas to improve the dependence of the running time
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on n. In particular, the goal is to reduce the n" factor in the running
time of Theorem 5.1 to a factor of the form exp(O(n)). The main
result of this section is the following theorem.

Theorem 6.1. Let p be a prime and q = p? for some positive integer
a. There is a deterministic algorithm such that on input an n-variate
polynomial f(x) overFg with individual degree less than d and points
ai,ay,...,an fromFL, it outputs f(a;) for alli € [N] in time

(N + (adp)™) - 4™ - poly(a, d, n, p).

A useful additional ingredient in the proof of this theorem is the
following lemma.

Lemma 6.2. Let f(x) be an n-variate degree d polynomial over a
fieldF, g(t) = (91, - - -, gn) where g; € F[t], and h(t) = f(g(t)). For
alli € [n), let gi(t + Z) = gi(t) + Zgi(t, Z) for some g; € F[t, Z].
Letg(t,Z) = (g1, ...,gn), and for alle = (e1,...,ey) € N, go =
[17, g;*. Forany £ € N, let

¢
he(t.2)= 320 Y Gelf)NE(n) - kelt.2).

i=0 eeN":|e|;=i

Then, for everyk € N withk < ¢, h6)(1) = Coeff ,« (he).

6.1 A Description of the Algorithm
We start by describing the algorithm.

Algorithm 3 Efficient multivariate polynomial evaluation with
large number of variables

Input: An n-variate polynomial f(x) € Fy[x] with individual

degree less than d and N points a1, a2, . . .,a N from IF"Z
Output: f(a1), f(a2),..., f(an).

1. Let p be the characteristic of Fg and g = p®.

2: Let vp(Yp) be an irreducible polynomial in Fp[Yo] of degree a
and

Fq = Fp[Yol/(vo(Y0)).

3: Let b the smallest positive integer such that pb > ad.

4: Compute an irreducible polynomial v1 (Y1) in F4[Y1] of degree
b and

Fqb = Fg[Y1]/{v1(Y1)). (Lemma 4.1)
5: Compute the subfield pr of Fqb. (Lemma 4.3)

6: Compute the set 5<n(f). (Lemma 4.6)
7. Evaluate all the polynomials in 5<n( f) over the grid F;b.

(Lemma 4.10)
8: foralli € [N] do

9: Leta; = aio +ai,1Y0 + - +ai’a_1Y0“_1, where a;ij € FZ

10: Let g;(t) be the curve defined as a; o + a; 1t + --- +
) a—1
g1t .

11: Let h;(t) = f(gi(2)).
Let B = {(y, KO (), BV ), BV 0) |y € B
Invoke the function EVALUATE DERIVATIVES A with input
gi(t) and compute the set E;.
Using E;, interpolate h;(t). (Lemma 4.9)
Output h;(Yp) as f(a;). (Lemma 4.7)

12:

14:

—_
v
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We now describe the function Evaluate Derivatives A invoked
above. We follow the same notation as in Algorithm 3 including
the local variable names.

Algorithm 4 Function to generate data for Hermite Interpolation

1: function EVALUATE DERIVATIVES A (g(t))

2 Let g(t) = (91, - - 9n)-

3 Foralli € [n],let gi(t + Z) = gi(t) + Zgi(t,Z) and g(t, Z) =
(G911, 2), ..., gn(t, 2)).

4 Compute g;(t, Z) for all i € [n]. (Lemma 4.6)

5: Foralle = (e1,...,en) € N, let ge = ]_[;1:1 gfi.

6: Compute the set of polynomials {ge(t,Z) | lel1 < n}.
(Polynomial multiplication)

7: P 0.

8: forally € pr do

9: Using evaluations of polynomials in 5<n( f) over F;’ P

compute the polynomial

n-1
h(2)=>70 3 Bl )E1 gy, 2).
i=0  eeN™:|e|;=i
10: Foralli € {0,1,...,n— 1}, extract Coeﬂzi(hy).
11: P — PU{(y, Coeff z0(hy), Coeff 71(hy), ..., Coeff zn-1(hy))}.

12: return P.

Please refer to the full version [3] for a detailed analysis of
Algorithm 3 and proof of Theorem 6.1.

7 MULTIPOINT EVALUATION WITH
IMPROVED FIELD DEPENDENCE

In this section, we build on the ideas in Algorithm Theorem 6.1

to improve the dependence on the field size. Our main theorem,

which is a formal statement of our main result Theorem 2.1 stated

in the introduction.

Theorem 7.1. Letp be a prime and q = p® for some positive integer
a. There is a deterministic algorithm such that on input an n-variate
polynomial f(x) over Fq with individual degree less than d, points
ay,az,....aN fromFg and a non-negative integer £ < log;(a), it
outputs f(a;) for alli € [N] in time

(N : (zdp logp(dp))f + (zrdp logp(dp))n).O(£’+1)n.poly(a, d.n,p).

where r = max{2, log;f(a)}.

7.1 A Description of the Algorithm
We start by describing the algorithm.
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Algorithm 5 Efficient multivariate polynomial evaluation over

large fields

Input: An n-variate polynomial f(x) € Fg[x] with individual
degree less than d, N points @1, a3, . ..,aN from F}, and a
non-negative integer £ < log; (a) where g = p? and p is the

characteristic of Fy.
Output: f(a1),..., f(an).

1. Let vg(Yp) be an irreducible polynomial in F,[Yy] of degree a
and Fgq = F[Yo]/{vo(Y0))-

: Pointsg « {a; | i € [N]}, ap < a, and q¢ < p°.

: PoLyNomIAL EvALUATION(0). (Recursive call)

: Output Evalg g.

: function PoLYNOMIAL EVALUATION(i)

Let a;+1 be the smallest positive integer such that p%+! >
aijd, and gj41 < q%+1.

7: Compute an irreducible polynomial v;+1(Y;+1) over Fg of

degree aj;+1 and

Fgiy = IF;q[Yi+1]/<2)1‘+1(Yi+1)>- (Lemma 4.1)
8: Compute the subfield Fpai.1 of Fg, ;. (Lemma 4.3)

RS NS S}

9: Compute an element f; in Fg; s.t. {1, B;, ... ,ﬁ?"_l} forms
an Fj-basis for Fpa; . (Lemma 4.3)

10: Pointsj+q1 « 0.

11: for all ¢ € Points; do

12: Leta = ag + a1 f5; +~--+aai_1,3?"71,whereaj EIF"Z.

13: Compute @y, . . .,2g;-1. (Lemma 4.3)

14: Let gq(t) be the curve defined as ag + a1t + --- +
aai_lt“i 1

15: Po — {gay) | v € Fpain} (Lemma 4.7), and

Points;4+1 « Pointsj;1 U Pg.
16: if i < £ then

17: PoLYNOMIAL EVALUATION(i + 1).

18: else

19: Compute all the polynomials in ES(Hl)(n_l)(f).
(Lemma 4.6)

20: Evaluate all the polynomials in 5S<€+1)("71)( f) over the
grid anm . (Lemma 4.10)

21: Observe that Points, is a subset of F7,, ..

22 For all e € N" with |e|; < (( + 1)(n - 1), Evalpyq e =
{(@.0e(f)@) | @ € Fl,,, )

23: foralle e N" st |e|; < i(n—1)do

24: Eval; ¢ < 0.

25: for all @ € Points; do

26 Let he,a(t) = de(f)(ga(t)).

27 Let Fea = {(r-himn g0 |y e
Fpaiﬂ }

28: Using EvALUATE DERIVATIVES B with input
(ga(t), i, e), compute Ee g.

29: Using Ee, ¢, interpolate he (). (Lemma 4.9)

30: Eval; ¢ < Eval; e U {(a, he,a(fi))}. (Lemma 4.7)
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Algorithm 6 Evaluating Hasse derivatives for Algorithm 5

1: function EVALUATE DERIVATIVES B (g(t), k, €)

2 Let g(t) = (91, - - - 9n)-

3: Lete = (e1,...,en).

4 Letgi(t+2Z) = gi(t)+ Zgi(t, Z), for all i € [n], and g(¢, Z) =
(Gi(t. 2), ..., gn(t, Z)).

5 Compute g;(t, Z) for all i € [n]. (Lemma 4.6)

6 Forallb=(by,...,by) € N let g, = [17, §"".

7: Compute the set of polynomials {g,(t,Z) | |bl1 < n}.
(Polynomial multiplication)

8 Let D be an ((k + 1)(n — 1) + 1) X n array such that,

D= (J) modp, where i € {0,1,...,n—1},j € {0, 1,..., (k+1)(n—1)}
1

9: Like Algorithm 1, we can compute D using Fp-operations.
10: Forb = (b1,...,b,) € N" such that |b|; < n,

n
Ch 1—1 D€i+bi,bi'

i=1
11: P 0.
12: forally Fpakﬂ do
13: Using evaluations of polynomials in 5S<k+1)(n71)(f)
over Pointsy., 1, compute
n-1
h(2)=7" > ayBen(HEW)E(1: 2).

i=0  beN™|b|;=i
14: Foralli € {0,1,...,n— 1}, extract Coeff 7:(hy ).
15: P — PU{(y, Coeff z0(hy), Coeff z71(hy), ..., Coeff zn-1(hy))}.
16: return P.

Please refer to the full version [3] for a detailed analysis of
Algorithm 5 and proof of Theorem 7.1.
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