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ABSTRACT
Multipoint evaluation is the computational task of evaluating a

polynomial given as a list of coefficients at a given set of inputs. Be-

sides being a natural and fundamental question in computer algebra

on its own, fast algorithms for this problem are also closely related

to fast algorithms for other natural algebraic questions like poly-

nomial factorization and modular composition. And while nearly
linear time algorithms have been known for the univariate instance

of multipoint evaluation for close to five decades due to a work of

Borodin and Moenck, fast algorithms for the multivariate version

have been much harder to come by. In a significant improvement to

the state of art for this problem, Umans and Kedlaya & Umans gave

nearly linear time algorithms for this problem over field of small

characteristic and over all finite fields respectively, provided that

the number of variables n is at most do(1) where the degree of the
input polynomial in every variable is less than d . They also stated

the question of designing fast algorithms for the large variable case

(i.e. n < do(1)) as an open problem.

In this work, we show that there is a deterministic algorithm for

multivariate multipoint evaluation over a field Fq of characteristic

p which evaluates an n-variate polynomial of degree less than d in

each variable on N inputs in time(
(N + dn )1+o(1)poly(logq,d,n,p)

)
provided that p is at most do(1), and q is at most (exp(· · · (exp(d)))),
where the height of this tower of exponentials is fixed. When the

number of variables is large (e.g. n < do(1)), this is the first nearly
linear time algorithm for this problem over any (large enough) field.
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Our algorithm is based on elementary algebraic ideas and this al-

gebraic structure naturally leads to the following two independently

interesting applications.

We show that there is an algebraic data structure for univariate
polynomial evaluation with nearly linear space complexity and sub-

linear time complexity over finite fields of small characteristic and

quasipolynomially bounded size. This provides a counterexample

to a conjecture of Miltersen who conjectured that over small finite

fields, any algebraic data structure for polynomial evaluation using

polynomial space must have linear query complexity.

We also show that over finite fields of small characteristic and

quasipolynomially bounded size, Vandermonde matrices are not

rigid enough to yield size-depth tradeoffs for linear circuits via the

current quantitative bounds in Valiant’s program. More precisely,

for every fixed prime p, we show that for every constant ϵ > 0,

and large enough n, the rank of any n × n Vandermonde matrix

V over the field Fpa can be reduced to

(
n/exp(Ω(poly(ϵ)

√
logn))

)
by changing at most nΘ(ϵ ) entries in every row of V , provided
a ≤ poly(logn). Prior to this work, similar upper bounds on rigidity

were known only for special Vandermonde matrices. For instance,

the Discrete Fourier Transformmatrices and Vandermondematrices

with generators in a geometric progression.
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1 INTRODUCTION
We study the question of designing fast algorithms for the following

very natural and fundamental computational task.
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Question 1.1 (Multipoint Evaluation). Given the coefficient vector
of an n-variate polynomial f of degree at most d − 1 in each variable
over a field F and a set of points {ααα i : i ∈ [N ]} in Fn , output f (ααα i )
for each i ∈ [N ].

Besides being a natural and fundamental question in computer

algebra on its own, fast algorithms for this problem is also closely

related to fast algorithms for other natural algebraic questions like

polynomial factorization and modular composition [10].

The input for this question can be specified by (dn+Nn) elements

of F and clearly, there is a simple algorithm for this task which

needs roughly ((dn · N )poly(n,d)) arithmetic operations over F:
just evaluate f on ααα i for every i iteratively.

Thus for N = dn , the number of field operations needed by this

algorithm is roughly quadratic in the input size. While nearly linear
time1 algorithms have been known for the univariate instance of

multipoint evaluation [5] for close to five decades, fast algorithms

for the multivariate version have been much harder to come by. In a

significant improvement to the state of art for this problem, Umans

[15] and Kedlaya & Umans [10] gave nearly linear time algorithms

for this problem over fields of small characteristic and over all

finite fields respectively, provided that the number of variables n

is at most do(1) where the degree of the input polynomial in every

variable is less than d . They also stated the question of designing

fast algorithms for the large variable case (i.e. n < do(1)) as an open

problem. In this work, wemake some concrete progress towards this

question over finite fields of small characteristic (and not too large

size). We also show two independently interesting applications of

our algorithm. The first is to an upper bound for algebraic data

structures for univariate polynomial evaluation over finite fields

and second is to an upper bound on the rigidity of Vandermonde

matrices over fields of small characteristic. Before stating our results,

we start with a brief outline of each of these problems and discuss

some of the prior work and interesting open questions. We state

our results in Section 2.

1.1 Algorithms for Multivariate Multipoint
Evaluation

For the case of univariate polynomials and N = d , Borodin and

Moenck [5] showed that multipoint evaluation can be solved in

O(dpoly(logd)) field operations via a clever use of the Fast Fourier

Transform (FFT).

For multivariate polynomials, when the evaluation points of

interest are densely packed in a product set in Fn , FFT based ideas

naturally generalize to multivariate multipoint evaluation yielding

a nearly linear time algorithm. However, if the evaluation points

are arbitrary and the underlying field is sufficiently large
2
, and

in particular not packed densely in a product set, the question of

designing algorithms formultipoint evaluation that are significantly

faster than the straightforward quadratic time algorithm appears

to be substantially harder. In fact, the first significant progress in

1
Throughout this paper, we use the phrase “nearly linear time" to refer to algorithms

such that for all sufficiently largem, they run in timem1+o(1)
on inputs of sizem.

2
Over small fields, for instance if |F | ≤ d1+o(1)

or |F |n ≤ N 1+o(1)
, a standard

application of multidimensional Fast Fourier Transform which just evaluates the

polynomial at all points in Fn and looks up the values at the N input points works in

nearly linear time. So, throughout the discussion on multipoint evaluation, we assume

that F is large enough.

this direction was achieved nearly three decades after the work of

Borodin and Moenck by Nüsken and Ziegler [14] who showed that

for n = 2 and N = d2, multipoint evaluation can be solved in most

O(dω2/2+1) operations, where ω2 is the exponent for multiplying a

d × d and a d × d2 matrix. The algorithm in [14] also generalizes to

give an algorithm for general n that requires O(dω2/2(n−1)+1) field

operations.
3
Two significant milestones in this line of research are

the results of Umans [15] and Kedlaya & Umans [10] who designed

nearly linear time algorithms for this problem for fields of small

characteristic and over all finite fields respectively, provided the

number of variables n is at most do(1). We now discuss these results

in a bit more detail.

Umans [15] gave an algorithm for multipoint evaluation over

finite fields of small characteristic. More precisely, the algorithm

in [15] solves multipoint evaluation in time O((N + dn )(n2p)n ) ·
poly(d,n,p, logN ) over a finite field F of characteristic p. Thus,

when p and n are do(1), the running time can be upper bounded by

(N + dn )1+δ for every constant δ > 0 and d,N sufficiently large.

In addition to its impressive running time, the algorithm of Umans

[15] is also algebraic, i.e. it only requires algebraic operations over

the underlying field. With multipoint evaluation naturally being

an algebraic computational problem, an algebraic algorithm for it

has some inherent aesthetic appeal. The results in [15], while being

remarkable has two potential avenues for improvement, namely, a

generalization to other fields and to the case when the number of

variables is not do(1).
In [10], Kedlaya & Umans addressed the first of these issues.

They showed that multipoint evaluation can be solved in nearly

linear time over all finite fields. More precisely, for every δ > 0,

their algorithm for multipoint evaluation has running time (N +

dn )1+δ log
1+o(1) q over any finite field F of size q, provided d is

sufficiently large and n = do(1). Quite surprisingly, the algorithm
in [10] is not algebraic. It goes via lifting the problem instance

from the finite field F to an instance over Z and then relies on an

extremely clever and unusual application of the Chinese Remainder

Theorem to reduce the instance over Z back to instances over small

finite fields. Intuitively, the gain in the entire process comes from

the fact that in the reduced instances obtained over small finite

fields, the evaluation points of interests are quite densely packed

together inside a small product set and a standard application of

the multidimensional FFT can be used to solve these small field

instances quite fast. Another closely related result is a recent work

of Björklund, Kaski and Williams [4] who (among other results)

give an algorithm for multivariate multipoint evaluation but their

time complexity depending polynomially on the field size (and not

polynomially on the logarithm of the field size).

In addition to these algorithms for multivariate multipoint eval-

uation, Umans [15] and Kedlaya & Umans [10] also show that these

fast algorithms lead to significantly faster than previously known

algorithms for many other natural algebraic problems. This includes

the questions of modular composition where the input consists of

three univariate polynomials f ,д,h ∈ F[X ] of degree less than d
each and the goal is to output (f (д(X )) mod h(X )). In addition to

3
The results in both [5] and [14] work for arbitrary N , but for simplicity have been

stated for N = d and N = d2
respectively here.

404



Fast, Algebraic Multivariate Multipoint Evaluation in Small Characteristic and Applications STOC ’22, June 20–24, 2022, Rome, Italy

being interesting on its own, faster algorithms for modular composi-

tion over finite fields are known to directly imply faster algorithms

for univariate polynomial factorization over such fields. Indeed,

using their nearly linear time algorithm for multipoint evaluation ,

Umans [15] and Kedlaya & Umans [10] obtain the currently fastest

known algorithms for univariate polynomial factorization over fi-

nite fields. We refer the reader to [10] for a detailed discussion of

these connections and implications.

In spite of the significant progress on the question of algorithms

for multipoint evaluation in [15] and [10], some very natural related

questions continue to remain open. For instance, we still do not

have nearly linear time algorithms for multipoint evaluation when

the number of variables is large, e.g. n < do(1) over any (large

enough) finite field, or when the field is not finite. Since multipoint

evaluation is quite naturally an algebraic computational problem, it

would also be quite interesting to have a nearly linear size arithmetic

circuits over the underlying field for this problem even if such a

circuit cannot be efficiently constructed. Currently, small circuits

of this kind are only known over finite fields of small characteristic

due to the results in [15]. The algorithm in [10] does not seem to

yield such a circuit since it is not algebraic over the underlying

field.

1.2 Data Structures for Polynomial Evaluation
One particular implication of the results in [10] is towards the

question of constructing efficient data structures for polynomial

evaluation over finite fields. The data here is a univariate polyno-
mial f ∈ F[X ] of degree less than n over a finite field F. The goal is
to process this data and store it in a way that we can support fast

polynomial evaluation queries, i.e. queries of the form: given an

α ∈ F output f (α). The two resources of interest here are the space
required to store the data and the number of locations

4
accessed for

every query, i.e the query complexity. There are two very natural

solutions to this problem.

• We can store the coefficient vector of the polynomial f in the

memory and for each query α ∈ F, we can read the whole

memory to recover the coefficient vector of f and hence

compute f (α). Thus, the space complexity and the query

complexity of this data structure are both (O(n logq)) bits,
with clearly the space requirement being the best that we

can hope for.

• The second natural data structure for this problem just stores

the evaluation of f on all α ∈ F in the memory, and on any

query, can just read off the relevant value. Thus, the space

complexity here is O(q logq) bits, but the query complexity

is O(logq) bits (which is the best that we can hope for). For

q being much larger than n the space requirement here is

significantly larger than that in the first solution.

Using their algorithm for multipoint evaluation in [10], Kedlaya

&Umans construct a data structure for this problemwith space com-

plexityn1+δ log
1+o(1) q and query complexity poly(logn)·log1+o(1) q

for all δ > 0 and sufficiently large n. Thus, the space needed is quite

4
This can be measured in terms of the cells accessed where each cell contains an

element over the underlying field. This is an instance of the cell probe model and

is quite natural in the context of algebraic data structures for algebraic problems.

Alternatively, we can also measure the space and query complexity in terms of the

number of bits stored and accessed respectively.

close to optimal, and the query complexity is within a poly(logn)
factor of the optimal. Quite surprisingly, this data structure is not

algebraic since it relies on the multipoint evaluation algorithm

in [10] which in turn relies on non-algebraic modular arithmetic.

We also note that while the algorithm for multipoint evaluation

over fields of small characteristic in [15] is algebraic, to the best

of our knowledge, it does not immediately yield a data structure

for polynomial evaluation. We remark that while the discussion

here has been focused on data structures for univariate polynomial

evaluation, the ideas in [10] continue to work as it is even for the

multivariate version of this problem and gives quantitatively simi-

lar results there. In fact, their solution to the univariate problem

goes via a reduction to the multivariate case!

In a recent work, Björklund, Kaski and Williams [4] also prove

new data structures upper bounds for polynomial evaluations for

multivariate polynomials over finite fields. These data structures

are algebraic and are based on some very neat geometric ideas

closely related to the notion of Kakeya sets over finite fields. Their

construction can be viewed as giving a tradeoff in the space and

query complexities but at least one of these parameters always

appears to have polynomial dependence on the size of the underly-

ing finite field. This is in contrast to the results in [10] where the

query complexity depends nearly linearly on logq which is more

desirable for this problem.

A very natural open question in this line of research is to ob-

tain an algebraic data structure for this problem which matches

the space and query complexity of the results in [10]. Currently,

we do not have an algebraic data structure for this problem over

with even polynomial space and sublinear query complexity over

any sufficiently large field. In fact, Miltersen [13] showed that for

algebraic data structures over finite fields of size exponential in n,
if the space used is poly(n), then the trivial data structure obtained

by storing the given polynomial as a list of coefficients and reading

off everything in the memory on every query is essentially the

best we can do. Miltersen also conjectured a similar lower bound

to hold over smaller fields. Thus, over smaller finite fields (for in-

stance, finite fields of size poly(n)), either proving a lower bound
similar to that in [13] , or constructing algebraic data structures for
polynomial evaluation with perform guarantees similar to those

in [10] are extremely interesting open problems. For the later goal,

it would be a good start to even have an algebraic data structure

that does significantly better than the trivial solution of storing the

coefficient vector of the given polynomial.

1.3 Non-Rigidity of Vandermonde Matrices
An application of our results for multipoint evaluation is towards

upper bounds for the rigidity of Vandermonde matrices. In this

section, we give a brief overview of matrix rigidity.

Let F be any field. An n × n matrix M over F is said to be (r , s)
rigid for some parameters r , s ∈ N ifM cannot be written as a sum

of n × n matrices of rank at most r and sparsity at most s . In other

words, the rank of M cannot be reduced to less than or equal to

r by changing at most s of its entries. This notion was defined by

Valiant [16] who showed that if the linear transformation given by

M can be computed by an arithmetic circuit of size O(n) and depth

O(logn), thenM is not (O(n/log logn),O(n1+ϵ )) rigid for any ϵ > 0.
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For brevity, we say that a family of matrices is Valiant rigid if it is

(O(n/log logn),O(n1+ϵ )) rigid for some ϵ > 0.

Even though the question of provable rigidity lower bounds

for explicit matrix families has remained elusive, there has been a

steady accumulation of various families of explicit matrices that

are suspected to be rigid. For instance, Hadamard Matrices, De-

sign Matrices, the Discrete Fourier Transform (DFT) matrices and

various Vandermonde Matrices have all been suspected to be rigid

with varying parameters at various points in time. For some of

these cases, we even have rigidity lower bounds either for special

cases or with parameters weaker than what is needed for Valiant’s

connection to arithmetic circuit lower bounds. However, quite sur-

prisingly Alman & Williams [2] showed that Hadamard matrices

are not Valiant rigid over Q. This result was succeeded by a se-

quence of recent results all showing that many more families of

matrices suspected to be highly rigid are in fact not Valiant rigid.

This includes the work of Dvir & Edelman [6], the results of Dvir

& Liu [7], those of Alman [1] and Kivva [11].

This list of suspected to be highly rigid that have since been

proven innocent includes families like Hadamard Matrices [2], Dis-

crete Fourier Transform (DFT) Matrices, Circulant and Toeplitz

matrices [7] and any family of matrices that can be expressed as a

Kronecker product of small matrices [1, 11].

However, a notable family of matrices missing from this list is

that of Vandermonde matrices. Special cases of Vandermonde ma-

trices, for instance the DFT matrices, are known to be not be Valiant

rigid, and in fact this result extends to the case of all Vandermonde

matrices where the generators are in geometric progression.
5
How-

ever, the case of Vandermonde matrices with arbitrary generators

is still not well understood.
6

2 OUR RESULTS
We now state our results formally and try to place them in the

context of prior work.

2.1 Algorithms for Multivariate Multipoint
Evaluation

Our main result is a fast algebraic algorithm for multipoint evalua-

tion over fields of small characteristic.We state this result informally

here, and refer the reader to Theorem 7.1 for a formal statement.

Theorem 2.1 (Informal). Over a field Fpa of characteristic p, there
is a deterministic algorithm which evaluates a given n-variate poly-
nomial of degree less than d in each variable on N inputs in time(

(N + dn )1+o(1) · poly(a,d,n,p)
)
,

provided that p is at most do(1) and a is at most (exp(· · · (exp(d)))),
where the height of this tower of exponentials is fixed.

A few remarks are in order.

5
An n × n Vandermonde matrix over a field F is specified by a list of n field elements

α0, α1, . . . , αn−1 in F that we call generators. The rows and columns are indexed by

{0, 1, . . . , n − 1} and the (i , j)th entry of the matrix equals αi j .
6
Lokam [12] shows that n × n Vandermonde matrices with algebraically independent

generators are at least (
√
n, Ω(n2)) rigid. This bound, however, is not sufficient for

Valiant’s program.

Remark 2.2. Throughout this paper, we assume that we are given a
description of the field Fq=pa as a part of the input. For instance, we
are given an irreducible polynomial v(Y ) ∈ Fp [Y ] of degree equal to
logp q and Fq ≡ Fp [Y ]/⟨v(Y )⟩. ⌟

Remark 2.3. Our algorithms for Theorem 2.1 can be viewed as natu-
rally giving an arithmetic circuit of nearly linear size for multivariate
multipoint evaluation over the underlying finite field Fpa . Throughout
this paper, this is what we mean when we say we have an “algebraic"
algorithm. Moreover, given a description of Fq as in Remark 2.2, we
can use the algorithm in Theorem 2.1 to output such a circuit for
multipoint evaluation in nearly linear time. ⌟

As alluded to in the introduction, when the number of variables

is large (e.g. n < do(1)), this is the first nearly linear time algorithm

for this problem over any sufficiently large field. Prior to this work,

the fastest known algorithms for multivariate multipoint evaluation

are due to the results of Umans [15] and Kedlaya & Umans [10]

who give nearly linear time algorithms for this problem over finite

fields of small characteristic and all finite fields respectively when

the number of variables n is at most do(1). Theorem 2.1 answers an

open question of Kedlaya & Umans [10] over the fields where it

applies.

By a direct connection between the complexity of multipoint

evaluation and modular composition shown by Kedlaya & Umans

[10], Theorem 2.1 implies a nearly linear time algorithm formodular

composition even when the number of variables n is not less than

do(1). In [10], such an algorithm was obtained when n < do(1) (over
all finite fields). More precisely, we have the following corollary.

Corollary 2.4 (Informal). Let Fpa be a field of characteristic p.
Then, there is an algorithm that on input an n-variate polynomial
f (X1,X2, . . . ,Xn ) of individual degree less than d and univariate
polynomials д1(X ), . . . ,дn (X ) and h(X ) in Fpa [X ] with degree less
than N , outputs the polynomial

f (д1(X ),д2(X ), . . . ,дn (X )) mod h(X )

in time
(dn + N )1+o(1) · poly(a,d,n,p) ,

provided that p is at most do(1) and a is at most (exp(· · · (exp(d)))),
where the height of this tower of exponentials is fixed.

Our algorithm is based on elementary algebraic ingredients. One

of these ingredients is the basic fact that the restriction of a low

degree multivariate polynomial to a low degree curve is a low

degree univariate polynomial! We use this fact together with some

other algebraic tools, e.g. univariate polynomial interpolation (with

multiplicities), structure of finite fields, and multidimensional FFT

for our algorithm. We describe an overview of the main ideas in

the proof in Section 3. We also note that even though the algorithm

in [15] is algebraic, it appears to be based on ideas very different

from those in this paper. In particular, Umans relies on a clever

reduction from the multivariate problem to the univariate problem

by working over appropriate extension of the underlying field. This

is then combined with the classical univariate multipoint evaluation

algorithm to complete the picture. Our algorithm, on the other hand,

does not involve a global reduction from the multivariate set up to

the univariate set up, and crucially relies on more local properties

of low degree multivariate polynomials.
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Another related prior work is a result of Björklund, Kaski and

Williams [4], who give a data structure (and an algorithm) for mul-

tipoint evaluation and some very interesting consequences to fast

algorithms for problems in #¶. We note that at a high level, the

structure of our algorithm is similar to that of the algorithm of

Björklund, Kaski and Williams [4]. However, the technical details

and quantitative bounds achieved are different. One major differ-

ence is that the time complexity of the algorithm in [4] depends

polynomially on the field size. Thus strictly speaking, with the field

size growing, this algorithm is not polynomial time in the input

size. On the other hand, the time complexity of the algorithms in

the works of Umans [15], Kedlaya & Umans [10] and that in Theo-

rem 2.1 depends polynomially in the logarithm of the field size, as

is more desirable. We discuss the similarities and differences in the

high level structure of the algorithm in [4] and that in Theorem 2.1

in a little more detail in Section 3.

2.2 Data Structures for Polynomial Evaluation
As an interesting application of our ideas in Theorem 2.1, we get the

following upper bound for data structure for polynomial evaluation.

Theorem 2.5 (Informal). Let p be a fixed prime. Then, for all suffi-
ciently large n ∈ N and all fields Fpa with a ≤ poly(logn), there is
an algebraic data structure for polynomial evaluation for univariate
polynomials of degree less than n over Fpa that has space complexity
at most n1+o(1) and query complexity at most no(1).

A more precise version of Theorem 2.5 can be found in the full

version [3]. We remark that by an algebraic data structure, we mean

that there is an algebraic algorithm (in the spirit of Remark 2.3) over

Fpa that, when given the coefficients of a univariate polynomial

f of degree at most n as input outputs the data structure Df in

time n1+o(1) and another algebraic algorithm which when given

an α ∈ Fpa and query access to Df outputs f (α) in time no(1). In

other words, there is an arithmetic circuitC1 over Fpa with n1+o(1)

outputs that when given the coefficients of f as input, outputs

Df and an arithmetic circuit C2 with no(1) inputs satisfying the

following: for every α ∈ Fpa , there is a subset S(α) of cells in Df
such that on input α and Df |S (α ), C2 outputs f (α).

As alluded to in the introduction, Miltersen [13] showed that

over finite fields that are exponentially large (in the degree pa-

rameter n), any algebraic data structure for polynomial evaluation

with space complexity poly(n) must have query complexity Ω(n).
He also conjectured that the lower bound continues to hold over

smaller fields.
7
Theorem 2.5 provides a counterexample to this con-

jecture when the underlying field has small characteristic and is

quasipolynomially bounded in size.

The data structure of Kedlaya & Umans [10] outperforms the

space and query complexities of the data structure in Theorem 2.5.

However, their construction is not algebraic; essentially because

7
We note that Miltersen did not precisely quantify what smaller fields mean, but the

case when the field size is a large polynomial in the degree parameter n is a natural

setting, since the trivial data structures in this case do not have both nearly linear

space and sublinear query complexity. Theorem 2.5 provides such a construction when

the underlying field additionally has a small characteristic.

their algorithm for multipoint evaluation is not algebraic.
8
How-

ever, their construction works over all finite fields, while we require

fields of small characteristic that are quasipolynomially bounded

in size. Umans’ [15] algorithm for multipoint evaluation on the

other hand is algebraic, although to the best of our knowledge, this

is not known to give a data structure for polynomial evaluation.

Finally, we note that for the algebraic data structure in the work of

Björklund, Kaski and Williams [4], either the query complexity or

the space complexity has polynomial dependence on the field size

and thus even over fields of polynomial size it does not appear to

give nearly linear space complexity or sublinear query complexity.

However, the results in [4] are stated for multivariate polynomials

and it is not clear to us if for the special case of univariate polyno-

mial one can somehow bypass this polynomial dependence on field

size by a careful modification of their construction.

2.3 Upper Bound on the Rigidity of
Vandermonde Matrices

As the second application of the ideas in Theorem 2.1, we show

the following upper bound on the rigidity of general Vandermonde

matrices.

Theorem 2.6 (Informal). Let p be a fixed prime. Then, for all con-
stants ϵ with 0 < ϵ < 0.01 and for all sufficiently large n, if V is
an n × n Vandermonde matrix over the field Fpa for a ≤ poly(logn),
then the rank of V can be reduced to n

exp(Ω(ϵ 7 log0.5 n)
) by changing

at most n1+Θ(ϵ ) entries of V .
For a more formal version of Theorem 2.6, we refer to the full

version of our paper [3]. Theorem 2.6 extends the list of natural fam-

ilies of matrices that were considered potential explicit candidates

for rigidity but turn out to not be rigid enough for Valiant’s program

[16] of obtaining size-depth tradeoffs for linear arithmetic circuits

via rigidity. Prior to this work, such upper bounds on rigidity were

only known for special Vandermonde matrices, for instance, the

Discrete Fourier transform matrix and Vandermonde matrices with

generators in geometric progression [7].

Our proof of Theorem 2.6 crucially relies on the results in [7]

and combines these ideas with ideas in the proof of Theorem 2.1.

We discuss these in more details in the next section.

3 AN OVERVIEW OF THE PROOFS
In this section we describe some detail, the main high level ideas of

our proofs. We begin with a detailed overview of our algorithms

for multipoint evaluation. We have three algorithms (Section 5,

Section 6 and Section 7) starting with the simplest one and each

subsequent algorithm building upon the previous one with some

new ideas. We start with the simplest one here.

3.1 A Simple Algorithm for Multipoint
Evaluation

We start with some necessary notation. Let p be a prime and Fq be

a finite field with q = pa . Let f ∈ Fq [x] be an n-variate polynomial

of degree at most d − 1 in every variable and for i = 1, 2, . . . ,N let

ααα i ∈ F
n
q be points. The goal is to output the value of f at each of

8
This is also the reason why the data structure in [10] does not give a counterexample

to Miltersen’s conjecture.
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these pointsααα i . As is customary, we assume that the field Fq is given

as Fp [Y ]/⟨v(Y )⟩ for some degree a irreducible polynomial v(Y ) ∈
Fp [Y ]. In Observation 4.2, we observe that given the irreducible

polynomial v(Y ) ∈ Fp [Y ] such that Fq = Fp [Y ]/⟨v(Y )⟩ and any

u ∈ Fq , we can efficiently compute the coefficients of the univariate

polynomial over Fp [Y ] corresponding tou via arithmetic operations

over Fq . Therefore, for the rest of this discussion, we assume that

every field element (in the coefficients of f and the coordinates of

ααα i ) are explicitly given to univariate polynomials of degree at most

a − 1 in Fp [Y ].
We start with a discussion of the simplest version of our al-

gorithm before elaborating on the other ideas needed for further

improvements. The formal guarantees for this version can be found

in Theorem 5.1. The algorithm can be thought to have two phases,

the preprocessing phase and the local computation phase.

Preprocessing Phase. We start with a description of the prepro-

cessing phase.

• A Subfield of Appropriate Size: As the first step of the

algorithm, we compute a natural number b such that pb−1 ≤

adn ≤ pb . For the ease of this discussion, let us assume that

b divides a, and thus Fpb is a subfield of Fq = Fpa . If b does

not divide a, then we work in a field Fpc that is a common

extension of Fpa and Fpb .

• Evaluating f on Fn
pb

: We now use the standard multidi-

mensional Fast Fourier Transform algorithm to evaluate f
on all of Fn

pb
. This algorithm runs in quasilinear time in the

input size, i.e. Õ(dn + (pbn )), where Õ hides poly(d,n,p,b)
factors. From our choice of b, we note that this quantity is

at most Õ((padn)n ).

Local Computation Phase:We now describe the local compu-

tation phase.

• A Low Degree Curve throughααα i : Once we have the eval-
uation of f on all points in Fn

pb
, we initiate some local compu-

tation at each ααα i . This local computation would run in time

(adn)c for some fixed constant c , thereby giving an upper

bound of Õ
(
(pad)n + N (adn)O (1)

)
on the total running time.

To describe this local computation, let us focus on a point ααα i .
Since the field elements of Fq are represented as univariate

polynomials of degree at most (a − 1) in Fp [Y ], we get that
for every ααα i ∈ F

n
q , there exist vectors ααα i ,0,ααα i ,1, . . . ,ααα i ,a−1

in Fnp such that

ααα i = ααα i ,0 +ααα i ,1Y + · · · +ααα i ,a−1Y
a−1 .

Let us now consider the curve g(t) ∈ Fnp [t] defined as

gi (t) = ααα i ,0 +ααα i ,1t + · · · +ααα i ,a−1ta−1 .

We are interested in some simple properties of this curve. The

first such property is that it passes through the pointααα i , since
ααα i = gi (Y ) (recall thatY is an element of Fq = Fp [Y ]/⟨v(Y )⟩
here). The second property is that this curve contains a lot of
points in the Fn

pb
. In particular, note that for every γ ∈ Fpb ,

gi (γ ) ∈ Fnpb . Thus, there are at least p
b
points on gi (t) in

Fn
pb

(counted with multiplicities).

• Restriction of f to gi (t): We now look at the univariate

polynomialhi (t) obtained by restricting then-variate polyno-
mial f to the curve gi (t). Thus, if gi (t) = (дi ,0(t) . . .дi ,n−1(t))
for some univariate polynomialsдi , j (t) of degree atmosta−1,
then hi (t) is equal to the polynomial f (дi ,0(t), . . . ,дi ,n−1(t)).
Clearly, the degree of hi is at most a(d − 1)n < adn. From
our previous discussion, we know that hi (Y ) = f (ααα i ). More-

over, we have already evaluated f on all of Fn
pb

and thus, we

know the value of hi (γ ) for all γ ∈ Fpb . Note that these are

at least pb many inputs on which the value of hi (t) is cor-
rectly known to us. Also, from our choice of b, we know that

pb > adn > deg(hi ). Thus, we can recover the polynomialhi
completely using univariate polynomial interpolation in time

at most poly(a,d,n,p), and thus can output hi (Y ) = f (ααα i )
in time poly(a,d,n,p). Iterating this local computation for

every i ∈ {0, 1, . . . ,N − 1}, we can compute the value of f
at ααα i for each such i .

Correctness and Running Time: The correctness of the algo-
rithm immediately follows from the outline above. Essentially, we

set things up in a way that to compute f (ααα i ) it suffices to evaluate

the univariate polynomial hi at input Y ∈ Fq . Moreover, from the

preprocessing phase, we already have the value of f on Fn
pb

and this

in turn gives us the evaluation of hi (t) on p
b > adn > deg(hi ) dis-

tinct inputs. Thus, by standard univariate polynomial interpolation,

we recover hi and hence hi (Y ) = f (ααα i ) correctly.
The time complexity of the preprocessing phase is dominated by

the step where we evaluate f on Fn
pb

. This can be upper bounded

by Õ((padn)n ) using the standard multidimensional FFT algorithm.

In the local computation phase, the computation at each input

point ααα i involves constructing the curve gi (t), constructing the

set {(γ ,hi (γ )) : γ ∈ Fpb }, using the evaluation of hi on these pb

inputs to recover hi uniquely via interpolation and then computing

hi (Y ). For every γ ∈ Fpb , gi (γ ) ∈ F
n
pb

can be done in time at

most poly(a,d,n,p). So, the total time complexity of this phase is

at most (N · poly(a,d,n,p)), and hence the total running time of

the algorithm is Õ(N + (padn)n ).

3.2 Towards Faster Multipoint Evaluation
The algorithm outlined in the previous section achieves a O(Nn +

dn )1+o(1) when apn = do(1). We now try to modify it so that it

continues to be nearly linear time even when the number of vari-

ables n and the degree of underlying field a are not less than do(1).
The factor of pn appears to be inherent to our approach and seems

difficult to get rid of, and this leads to the restriction of working

over fields of small characteristic for all our results in this paper.

Before proceeding further, we remark that the basic intuition

underlying all of our subsequent algorithms are essentially the

same as those in the simple algorithm outlined in this section. For

each of the further improvements, we modify certain aspects of

this algorithm using a few more technical (and yet simple) ideas on

top of the ones already discussed in Section 3.1.

Handling LargeNumber of Variables. The factor ofnn in the

running time appears in the preprocessing phase of the algorithm

in Section 3.1. The necessity for this stems from the fact that the
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univariate polynomial hi (t) obtained by restricting f to the curve

gi (t) through ααα i can have degree as large as a(d − 1)n. Thus, for
interpolating hi (t) from its evaluations, we need its value on at

least a(d − 1)n + 1 distinct inputs. Thus, we need pb to be at least

a(d − 1)n + 1.
However, we note that if we have access to not just the eval-

uations of hi (t), but also to the evaluations of its derivatives up

to order n − 1 at each of these inputs in Fpb , then hi (t) can be

uniquely from this information provided pb is at least deg(hi (t))/n,
i.e. (a(d − 1)n + 1)/n ≤ ad (see Lemma 4.9 for a formal state-

ment). Thus, with observation at hand, we now choose b such

that pb−1 ≤ ad ≤ pb . Moreover, for the local computation, we now

need not only the evaluation of hi on all points in Fpb but also the

evaluations of all derivatives of hi (t) of order at most n − 1 on all

these points. A natural way of ensuring that the evaluations of these

derivatives of hi (t) are available in the local computation phase is

to compute not just the evaluation of f but also of all its partial
derivatives of up to n on all of Fn

pb
. Together with the chain rule

of partial derivatives, we can use the evaluations of these partial

derivatives of f and the identity hi (t) = f ◦ gi (t) to obtain the eval-

uations of hi (t) and all its derivatives of order at most n − 1 on all

inputs in Fpb . This ensures that hi can once again be correctly and

uniquely recovered given this information via a standard instance

of Hermite Interpolation, which in turn ensures the correctness of

the algorithm.

To see the effect on the running time, note that in the prepro-

cessing phase, we now need to evaluate not just f but all its partial

derivatives of order at most n − 1 on all of Fn
pb
. Thus, there are

now roughly

(n+n
n

)
≤ 4

n
polynomials to work with in this phase.

So, given the coefficients of f , we first obtain the coefficients of

all these derivatives, and then evaluate these polynomials on Fn
pb

using a multidimensional FFT algorithm again. Also, the coefficient

representation of any fixed derivative of order up to n − 1 can be

computed from the coefficients of f in Õ(dn ) time (see Lemma 4.6).

Thus, the total time complexity of the preprocessing phase in this

new algorithm can be upper bounded by Õ((adp)n4n ).
Once we have this stronger guarantee from the preprocessing

phase, we get to doing some local computation at each point ααα i .
Now, instead of recovering hi via a standard univariate polynomial

interpolation, we have to rely on a standard Hermite interpolation

for this. In particular, we need access to the evaluation of all deriva-

tives of hi (t) of order at most n − 1 on all inputs γ ∈ Fpb . This can

be done via an application of chain rule of derivatives and the fact

that we have evaluations of all partial derivatives of f of order at

most n− 1 on all points in Fn
pb

. The time taken for this computation

at each γ ∈ Fpb turns out to be about O(4npoly(d,n,a,p)). Thus,

the total time taken for local computation at all the input points

can be upper bounded by roughly O(N 4
n
poly(d,n,a,p)).

Thus, the total time complexity of this modified algorithm is

Õ((N + (adp)n )4n ). In other words, we have managed to remove

the factor of nn present in the algorithm in Section 3.1 and replace

it by 4
n
. An algorithm based on this improvement is described in

Section 6.

Handling Larger Fields. We now discuss the improvement

in the dependence on the parameter a, which is the degree of the

extension of Fp where the input points lie. In the local computation

step at each point, the curve gi (t) throughααα i has degree a−1 in the

worst case, since we view the field elements in Fpa as univariate

polynomials of degree at most a − 1 with coefficients in Fp . There-
fore, the restriction of f to such a curve, namely the polynomial

hi (t) can have degree (a−1) deg(f ) in the worst case. This forces us

to choose the parameter b such that pb is at least deg(hi ), thereby
leading to a factor of an in the running time. Note that if we had

the additional promise that the point ααα i was in an extension Fp ã

of Fp for some ã < a, then the curve gi would be of degree at most

(ã − 1) < (a − 1) and hence the polynomial hi would have degree at
most (ã − 1) deg(f ). More generally, if all the input points ααα i were
promised to be in Fn

p ã
, we can improve the factor an to (ã)n in the

running time by choosing b such that pb is larger than ãdn (in fact,

we only need pb ≥ (ãd) if we are working with multiplicities). We

also note that for every ã ∈ N the curve gi (t) takes a value in Fnp ã
whenever t is set to a value in Fp ã . As a consequence, the curve

gi contains at least pã points in Fn
p ã
. With these observations in

hand, we now elaborate on the idea for reducing the an factor in

the running time. For simplicity of exposition, we outline our ideas

in the setting of the algorithm discussed in Section 3.1. In particular,

derivative based improvements are not involved.

Leta′ be such thatpa
′

> adn ≥ pa
′−1

. Now, instead of recovering

hi directly from its values on Fpb , we try to recover hi in two steps.

In the first step, we try to obtain the values of hi (γ ) for every
γ ∈ Fpa′ using the information we have from the preprocessing

phase. Assuming that we can do this, we can again obtain hi by
interpolation and compute hi (Y ) = f (ααα i ).

Now, to compute hi (γ ) for γ ∈ Fpa′ , we note that hi (γ ) equals

f ◦ gi (γ ), thus it would be sufficient if we had the evaluation of f
on the point set {gi (γ ) : γ ∈ Fpa′ }. This seems like the problem we

had started with, but with one key difference: the points {gi (γ ) :
γ ∈ Fpa′ } are all in F

n
pa′

with a′ = Θ(logadn)! Thus, the degree

of the extension where these points lie is significantly reduced. In

essence, this discussion gives us a reduction from the problem of

evaluating f on N points in Fnpa to evaluating f on N · adn points

in Fn
pa′

, with a′ = Θ(logadn). Thus, we have another instance of

multipoint evaluation with a multiplicatively larger point set in an

extension of Fp of degree logarithmic in adn. If we now apply the

algorithm discussed in Section 3.1, we get a running time of roughly

Õ(Nadn + (pdn log(adn))n ). Thus, in the running time, the factor

an has been replaced by log
n a at the cost of N being replaced by

Nadn. In fact, we can continue this process ℓ times, and in each

step we end up with an instance of multipoint evaluation with the

size of the point set being increased by a multiplicative factor, with

the gain being that we have a substantial reduction in the degree

of the field extension that the points live in.

Comparisonwith the Techniques of Björklund, Kaski and
Williams [4]. Now that we have an overview of the algorithms

for multipoint evaluation in this paper, we can elaborate on the

similarities they share with the algorithms in [4]. At a high level,

the similarities are significant. In particular, both the algorithms

have a preprocessing phase where the polynomial is on a product
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set using multidimensional FFT. This is followed by a local com-

putation step, where the value of the polynomial at any specific

input of interest is deduced from the already computed data by

working with the restriction of the multivariate polynomial to an

appropriate curve. In spite of these similarities in the high level out-

line, the quantitative details of these algorithms are different. One

salient difference is that the time complexity of the algorithm in [4],

depends polynomially on the size of the underlying field, whereas

in our algorithm outlined above, this dependence is polynomial in

logarithm of the field size as long as the size of the field is bounded

by a tower function of fixed height in the degree parameter d . This
difference stems from technical differences in the precise product

set used in the preprocessing phase and the sets of curves utilized in

the local computation phase. In particular, the degree of the curves

in the local computation phase of our algorithms depends poly-

nomially on log |F|, where as the degree of the curves used in [4]

depends polynomially on |F|. Additionally, algorithms in [4] rely

on the assumption that the total degree of the polynomial divides

|F∗ | − 1, whereas we do not need any such divisibility condition.

3.3 Data Structure for Polynomial Evaluation
The multipoint evaluation algorithm in Theorem 2.1 is naturally

conducive to obtaining data structures for polynomial evaluation.

Essentially, the evaluation of the polynomial in a fixed grid (in-

dependent of the N points of interest in the input) gives us the

data structure, and the local computation at each input point of

interest which requires access to some of the information computed

in the preprocessing phase constitutes the query phase of the data

structure. We discuss this in some more detail now.

Let f (X ) ∈ Fpa [X ] be a univariate polynomial of degree at most

n. We start by picking parameters d,m such that dm is at least n. For
any such choice of d and n, there is clearly anm-variate polynomial

F (Z0,Z1, . . . ,Zm−1) such that F (X ,Xd ,Xd2

, . . . ,Xdm−1 ) = f (X ).
In other words, the image of F under the Kronecker substitution

equals f . Now, as in the multipoint evaluation algorithms, we pick

the smallest integer b such that pb > adm and evaluate F on Fm
pb

and store these points along with the value of F on these inputs in

the memory. This forms the memory content of our data structure.

Thus, the memory can be thought of having pbm ≤ (padm)m cells,

each containing a pair (c, F (c)) for c ∈ Fm
pb

.

To get a sense of the parameters, let us set d = n1/log logn and

m = log logn. Clearly, the constraint dm ≥ n is met in this case.

For this choice of parameter and for p being a constant and a ≤

poly(logn), we get that the space complexity is at most n1+o(1) and

the query complexity is at most no(1). The complete details can be

found in the full version [3].

3.4 Rigidity of Vandermonde Matrices
The connection between rigidity of Vandermonde matrices and

multipoint evaluation is also quite natural. Consider a Vander-

monde matrix Vn with generators α0, . . . ,αn−1 and for every i, j ∈

{0, 1, . . . ,n − 1}, the (i, j)th entry of Vn is α
j
i . Now, for any uni-

variate polynomial f of degree at most n − 1, the coefficients of f ,
together with the set {αi : i ∈ {0, 1, . . . ,n − 1}} of generators form
an instance of (univariate) multipoint evaluation. Moreover, for any

choice of the generators {αi : i ∈ {0, 1, . . . ,n − 1}}, the algorithm

for multipoint evaluation, e.g Theorem 2.1 can naturally be inter-

preted as a circuit for computing the linear transform given by the

matrix Vn . Furthermore, if this linear circuit is structured enough,

we could, in principle hope to get a decomposition ofVn as a sum of

a sparse and a low rank matrix from this linear circuit, for instance,

along the lines of the combinatorial argument of Valiant [16]. Our

proof of Theorem 2.6 is along this outline. We now describe these

ideas in a bit more detail.

Given a univariate polynomial f of degree n − 1 and inputs

α0,α1, . . . ,αn−1, let F be an m- variate polynomial of degree d
such that (n = dm )9 as described in Section 3.3. Moreover, for

i ∈ {0, 1, . . . ,n−1}, letααα i = (αi ,α
d
i , . . . ,α

dm−1
i ). Now, as discussed

in Section 3.3, f (αi ) = F (ααα i ). Let Ṽ be the n × n matrix where the

rows are indexed by {0, 1, . . . ,n − 1} and the columns are indexed

by allm- variate monomials of individual degree at most d − 1. We

use the fact that dm = n here. From the above set up, it immediately

follows that the coefficient vectors of f and F are equal to each other

(with the coordinate indices having slightly different semantics)

and the matrices Vn and Ṽ are equal to each other.

We now observe that the algorithm for multipoint evaluation

described in Section 3.1 gives a natural decomposition of Ṽ (and

hence Vn ) as a product of a matrix A of row sparsity at most adm

and a pbm ×dm matrix B with b being the smallest integer such that

pb > adm. The rows of B are indexed by all elements of Fm
pb

and

the columns are indexed by allm-variate monomials of individual

degree at most d − 1, and the (ααα, e) entry of B equals αααe. Intuitively,
the matrix B corresponds to the preprocessing phase of the algo-

rithm and the matrix A corresponds to the local computation. At

this point, we use an upper bound of [7] on the rigidity of Dis-

crete Fourier Transform matrices over finite fields and the inherent

Kronecker product structure of the matrix B to obtain an upper

bound on the rigidity of B. Finally, we observe that that matrix

Vn = Ṽ = A · B obtained by multiplying a sufficiently non-rigid

matrix B with a row sparse matrixA continues to be non-rigid with

an interesting regime of parameters. This essentially completes

the proof. For more details, we refer the reader to look at the full

version [3] of this result.

Organization of the Paper. The rest of the paper is organized as

follows. We start with the preliminaries section in Section 4. We

then present the most basic version of our algorithm in Section 5

followed by the improved versions for larger number of variables

and larger size fields in Section 6 and Section 7 respectively. Due to

space constraints, we skip some of the details in this version of the

paper, including the proofs of many of the claims and the analyses

of some of the algorithms. We refer the interested reader to the full

version [3] for these missing details.

4 PRELIMINARIES
We use N to denote the set of natural numbers {0, 1, 2, . . .}, F to de-
note a general field. For any positive integer N , [N ] denotes the set
{1, 2, . . . ,N }. By x and z, we denote the variable tuples (X1, . . . ,Xn )
and (Z1, . . . ,Zn ), respectively. For any e = (e1, . . . , en ) ∈ Nn ,
xe denotes the monomial

∏n
i=1 X

ei
i . By |e|1, we denote the sum

e1 + · · · + en .

9
For simplicity, let us assume that such a choice of integers d ,m exist.
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For every positive integer k , k! denotes
∏k

i=1 i . For k = 0, k! is
defined as 1. For two non-negative integer i and k with k ≥ i ,(k
i
)
denotes

k !
i !(k−i)! . For k < i ,

(k
i
)
= 0. For non-negative in-

teger i1, . . . , is with i1 + · · · + is = k ,
( k
i1, ...,is

)
= k !

i1!· · ·is ! . For

a = (a1, . . . ,an ), b = (b1, . . . ,bn ) ∈ Nn ,
(a
b
)
=

∏n
i=1

(ai
bi

)
, and(a+b

a,b
)
=
∏n

i=1
(ai+bi
ai ,bi

)
.

We say that a functionψ : N→ N is polynomially bounded, or

denoted byψ (n) ≤ poly(n), if there exists a constant c such that for

all large enough n ∈ N,ψ (n) ≤ nc .
Suppose that p be a positive integer greater than 1. Then for

any non-negative integer c , log◦cp (n) denotes the c-times composi-

tion of logarithm function with itself, with respect to base p. For
example, log

◦2
p (n) = logp logp (n). By log

⋆
p (n), denotes the smallest

non-negative integer c such that log
◦c
p (n) ≤ 1. For p = 2, we may

omit the subscript p in logp (n), log
◦c
p (n) and log

⋆
p (n).

4.1 Some Facts about Finite Fields
Suppose that p is a prime and q = pa for some positive integer a.
Then there exists an unique finite field of size q. In other words, all

the finite fields of size q are isomorphic to each other. We use Fq to

denote the finite field of sizeq, andp is called the characteristic of Fq .
For any finite field Fq , F

∗
q represents the multiplicative cyclic group

after discarding the field element 0. For any irreducible polynomial

v(Y ) over Fq , the quotient ring Fq [Y ]/⟨v(Y )⟩ forms a larger field

over Fq of size qb where b is the degree of v(Y ). The next lemma

describes that we can efficiently construct such larger fields over

Fq , when the characteristic of the field is small.

Lemma 4.1. Let p be a prime and q = pa for some positive integer
a. Then, for any positive integer b, the field Fqb can be constructed as
Fq [Y ]/⟨v(Y )⟩, wherev(Y ) is degree b irreducible polynomial over Fq ,
in poly(a,b,p) Fq -operations. Furthermore, all the basic operations
in Fqb can be done in poly(b) Fq -operations.

Fix a field Fq of characteristic p. In the standard algebraic model

over Fq , the basic operations are addition, subtraction, multiplica-

tion, and division of elements in Fq . Let Fq = Fp [X ]/⟨д(X )⟩ where
q = pa and д(X ) is a degree a irreducible polynomial over Fp .
Then for any element α ∈ Fq , consider its canonical representation

α = α0 + α1X + . . . + αa−1X
a−1

where αi ∈ Fp . Note that it is not
clear how to extract αi ’s from α using the algebraic operations over

Fq . We show that this is possible if p is small.

Observation 4.2. Let p be prime and q = pa for some positive
integer a. Let Fq = Fp [X ]/⟨д(X )⟩ whereд(X ) is a degree a irreducible
polynomial over Fp . Let α ∈ Fq and α = α0 +α1X + · · ·+αa−1Xa−1

where αi ∈ Fp . Then, given blackbox access to α and Fq -operations,
α0,α1, . . . ,αa−1 can be computed in poly(a, logp) Fq -operations.

Thus, for the rest of our paper, we consider that the extraction of

the Fp -coefficients from elements in Fq as an algebraic operation.

Suppose that Fq1 and Fq2 are two finite fields of characteristic
p such that Fq1 is a subfield of Fq2 . Then Fq2 forms a vector space

over Fq1 . A subset {β1, β2, . . . , βk } of Fq2 is called an Fq1 -basis if
every element of α ∈ Fq2 is a unique linear combination of βi ’s
over Fq1 .

Lemma 4.3. Let p be a prime and q = pa for some positive integer a.
Let b be a positive integer and Fqb = Fq [Y ]/⟨v(Y )⟩ for some degree
b irreducible polynomial v(Y ) over Fq . Then, the following holds:

(1) The field Fqb contains the subfield Fpb . Furthermore, all the

elements of Fpb can be computed in pb · poly(a,b,p) Fq -
operations.

(2) In poly(a,b,p) Fq -operations, an element β ∈ Fqb can be

computed such that {1, β, . . . , βb−1} forms an Fp -basis for
Fpb . Moreover, given any element α ∈ Fpb , the Fp -linear

combination ofα in the basis {1, β, . . . , βb−1} can be computed
in poly(b) Fq -operations.

4.2 Hasse Derivatives
In this section, we briefly discuss the notion of Hasse derivatives

that plays a crucial role in our results.

Definition 4.4 (Hasse derivative). Let f (x) be an n-variate poly-
nomial over a field F. Let e = (e1, . . . , en ) ∈ Nn . Then, the Hasse
derivative of f with respect to the monomial xe is the coefficient of
ze in the polynomial f (x + z) ∈ (F[x])[z]. ⌟

Notations. Suppose that f (x) be an n-variate polynomial over

a field F. Let b ∈ Nn . Then, ∂b(f ) denotes the Hasse derivative of
f (x)with respect to the monomial xb. For any non-negative integer

k , ∂
≤k
(f ) is defined as

∂
≤k
(f ) =

{
∂b(f ) | b ∈ N

n
s.t. |b|1 ≤ k

}
,

For a univariate polynomial h(t) over F and a non-negative inte-

ger k , h(k )(t) denotes the Hasse derivative of h(t) with respect to

the monomial tk , that is, CoeffZ k (h(t + Z )).
Next, we mention some useful properties of Hasse derivatives.

Proposition 4.5. Let f (x) be an n-variate polynomial over F. Let
a, b ∈ Nn . Then,

(1) ∂a(f ) =
∑
e∈Nn

(e
a
)
Coeffxe (f )xe−a.

(2) ∂a∂b(f ) =
(a+b
a,b

)
∂a+b(f ).

For proof one can see [8, Appendix C]. The following lemma

describes the cost of computing Hasse derivatives.

Lemma 4.6. Let p be a prime and q = pa for some positive integer a.
Let f (x) be an n-variate polynomial over Fq with individual degree
less than d . Let b = (b1, . . . ,bn ) ∈ Nn . Then, given f (x) and b as
input, Algorithm 1 outputs ∂b(f ) in

dn · poly(n) + poly(b,d)

Fq -operations, where b = maxi ∈[n] bi .

Proof. We first describe the algorithm and then argue about its

correctness and running time.
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Algorithm 1 Computing Hasse derivative

Input: An n-variate polynomial f (x) ∈ Fq [x] with individual

degree less than d and b = (b1, . . . ,bn ) ∈ Nn .
Output: ∂b(f ).

1: Let b be maxi ∈[n] bi .
2: Let D be an (b + 1) × d array.

3: for j ← 0 to d − 1 do
4: for i ← 0 to b do
5: if i = j then
6: Di , j ← 1.

7: else if i > j then
8: Di , j ← 0.

9: else if i = 0 then
10: D0, j ← 1.

11: else
12: Di , j = Di−1, j−1 + Di , j−1

13: for e ∈ {0, 1, . . . ,d − 1}n do
14: Let e = (e1, . . . , en ).
15: ce ← Coeffxe (f ) ·

∏n
i=1 Dbi ,ei .

16: Output

∑
e∈{0,1, ...,d−1}n cexe−b.

In Algorithm 1, for all i ∈ {0, 1, . . . ,b} and j ∈ {0, 1, . . . ,d − 1},
the (i, j)th entry of array D

Di , j =

(
j

i

)
modp.

For this, we note that the arithmetic in Line 15 of the algorithm

is happening over the underlying field Fq . This combined with

Proposition 4.5 implies that the Algorithm 1 computes ∂b(f ).
To compute the arrayD, we are performingd(b+1)Fp -operations.

Computing all ce’s for e ∈ {0, 1, . . . ,d − 1}n takes dn · (n + 1)

Fq -operations. Therefore, Algorithm 1 runs in our desired time

complexity. □

4.3 Univariate Polynomial Evaluation and
Interpolation

The two simplest but most important ways of representing an

univariate polynomial of degree less than d are either by giving the

list of its coefficients, or by giving its evaluations at d distinct points.

In this section, we discuss about the cost of changing between

these two representations. First, we mention the cost of polynomial

evaluation, that is, going from the list of coefficients to the list of

evaluations.

Lemma 4.7 (Evaluation). Let f (x) be a degree d polynomial over F.
Let α1,α2, . . . ,αN be N distinct elements from F. Then, f (αi ) for all
i ∈ [N ] can be computed in O(Nd) F-operations.

For each i ∈ [N ], using Horner’s rule, one can compute f (αi )
with d − 1 additions and d − 1multiplications over F. Therefore, the
total cost of computing f (αi ) for all i ∈ [N ] is O(Nd) operations.
For more details see [9, Section 5.2]. Next, we discuss the cost of

polynomial interpolation where we go from the list of evaluations

to the list of coefficients.

Lemma 4.8 (Interpolation). Let f (x) be a degree d polynomial over
F. Letα0,α1, . . . ,αd be (d+1) distinct elements from F. Let βi = f (αi )

for all i ∈ {0, 1, . . . ,d}. Then, given (αi , βi ) for all i ∈ {0, 1, . . . ,d},
f (x) can be computed in O(d2) F-operations.

For proof see [9, Section 5.2]. The following lemma gives a

stronger version of univariate polynomial interpolation, known as

Hermite interpolation. Here, the number of evaluation points can be

less than d , but evaluations of Hasse derivatives of the polynomial

up to certain order is available.

Lemma 4.9 (Hermite interpolation). Let f (x) be a degree d univari-
ate polynomial over a field F and e1, . . . , em bem positive integers
such that e1 + · · ·+em is greater than d . Let α1, . . . ,αm bem distinct
elements from F. For all i ∈ [m] and j ∈ [ej ], let f (j−1)(αi ) = βi j .
Then given (αi , j, βi j ) for all i ∈ [m] and j ∈ [ej ], f (x) can be com-
puted in O(d2) F-operations.

For proof see [9, Section 5.6]. We also remark that while there

are nearly linear time algorithms for all of the above operations

(multipoint evaluation, interpolation and Hermite interpolation)

based on the Fast Fourier transform. However, for our applications

in this paper, the above stated more naive bounds suffice.

4.4 Multidimensional Fast Fourier Transform
We crucially rely on the following lemma,

Lemma 4.10. Let F be a finite field and let ˜F be a subfield of F. Then,
there is a deterministic algorithm that takes as input an n-variate
polynomial f ∈ F[x] of degree at most d − 1 in each variable as a list
of coefficients, and in at most (dn+ | ˜F|n ) ·poly(n,d, log |F|) operations
over the field F, it outputs the evaluation of f for all ααα ∈ ˜Fn .

5 A SIMPLE ALGORITHM FOR MULTIPOINT
EVALUATION

We start with our first and simplest algorithm for multipoint evalu-

ation . The algorithm gives an inferior time complexity to what is

claimed in Theorem 2.1, but contains some of the main ideas. Sub-

sequently, in Section 6 and Section 7, we build upon this algorithm

to eventually prove Theorem 2.1. Our main theorem for this section

is the following.

Theorem 5.1. Let p be a prime and q = pa for some positive integer
a. There is a deterministic algorithm such that on input an n-variate
polynomial f (x) over Fq with individual degree less than d and points
ααα1,ααα2, . . . ,αααN from Fnq , it outputs f (ααα i ) for all i ∈ [N ] in time

(N + (adnp)n ) · poly(a,d,n,p) .

5.1 A Description of the Algorithm
We start with a description of the algorithm, followed by its analysis.

We recall again that through all the algorithms in this and subse-

quent sections, we assume that the underlying field Fq is given to us

via an irreducible polynomial of appropriate degree over the prime

subfield. Moreover, from Observation 4.2, we also assume without

loss of generality that for every input field element, we have access

to its representation as a polynomial of appropriate degree over the

prime subfield. For a polynomial map g(t) = (д1(t),д2(t), . . . ,дn (t))
and an n-variate polynomial f , we use f (g(t)) to denote the uni-

variate polynomial f (д1(t), . . . ,дn (t)).
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Algorithm 2 Efficient Multivariate Multipoint Evaluation

Input: An n-variate polynomial f (x) ∈ Fq [x] with individual

degree less than d and N distinct points ααα1,ααα2, . . . ,αααN from Fnq .

Output: f (ααα1), f (ααα2), . . . , f (αααN ).
1: Let p be the characteristic of Fq and q = pa .
2: Let v0(Y0) be an irreducible polynomial in Fp [Y0] of degree a

and

Fq = Fp [Y0]/⟨v0(Y0)⟩.

3: Let b be the smallest integer such that pb > adn.
4: Compute an irreducible polynomial v1(Y1) in Fq [Y1] of degree
b and

Fqb = Fq [Y1]/⟨v1(Y1)⟩. (Lemma 4.1)

5: Compute the subfield Fpb of Fqb . (Lemma 4.3)

6: Evaluate f (x) over the grid Fn
pb

. (Lemma 4.10)

7: for all i ∈ [N ] do
8: Let ααα i = ααα i ,0 +ααα i ,1Y0 + · · ·+ααα i ,a−1Y

a−1
0

, where ααα i , j ∈ F
n
p .

9: Let gi (t) be the curve defined as ααα i ,0 + ααα i ,1t + · · · +
ααα i ,a−1t

a−1.

10: Compute the set Pi = {(γ , gi (γ )) | γ ∈ Fpb }. (Lemma 4.7)

11: Compute the set Ei = {(γ , f (γγγ
′)) | (γ ,γγγ ′) ∈ Pi } from the

evaluations of f (x) over Fn
pb

.

12: Let hi (t) be the univariate polynomial defined as f (gi (t)).
13: Using Ei , interpolate hi (t). (Lemma 4.8)

14: Output hi (Y0) as f (ααα i ). (Lemma 4.7)

5.2 Analysis of Algorithm 2
Proof of Theorem 5.1. Proof of correctness can be found in

the full version [3] of our result.

Time Complexity of Algorithm 2. From Lemma 4.1, the field Fqb

can be constructed as Fq [Y1]/⟨v1(Y1)⟩ for some degreeb irreducible
polynomial v1(Y1) over Fq in poly(a,b,p) many Fq -operations.
Also, all the basic operations in the field Fqb = Fq [Y1]/⟨v1(Y1)⟩

can be done using poly(b) Fq -operations. Applying Lemma 4.3, the

cost of computing all the elements of the subfield Fpb (of Fqb ) is

pb · poly(a,b,p) Fq -operations. Using Lemma 4.10, we can evaluate

f (x) over the grid Fn
pb

in

(dn + pbn ) · poly(a,b,d,n,p)

Fq -operations. For all i ∈ [N ], using Lemma 4.7, the cost of com-

puting the set Pi = {(γ , gi (γ )) | γ ∈ Fpb } is p
b · poly(a,b,n)

Fq -operations. Using the set Ei , Lemma 4.8 ensures that hi (t) can
be interpolated using poly(a,b,d,n) Fq -operations. Finally, h(Y0)
can be computed in poly(a,d,n) many Fq -operations. Since adn <

pb ≤ adnp, the above discussion implies that that Algorithm 2

performs

(N + (adnp)n ) · poly(a,d,n,p)

Fq -operations. □

6 MULTIPOINT EVALUATION FOR LARGE
NUMBER OF VARIABLES

In this section, we append the overall structure of Algorithm 2 with

some more ideas to improve the dependence of the running time

on n. In particular, the goal is to reduce the nn factor in the running

time of Theorem 5.1 to a factor of the form exp(O(n)). The main

result of this section is the following theorem.

Theorem 6.1. Let p be a prime and q = pa for some positive integer
a. There is a deterministic algorithm such that on input an n-variate
polynomial f (x) over Fq with individual degree less than d and points
ααα1,ααα2, . . . ,αααN from Fnq , it outputs f (ααα i ) for all i ∈ [N ] in time

(N + (adp)n ) · 4n · poly(a,d,n,p).

A useful additional ingredient in the proof of this theorem is the

following lemma.

Lemma 6.2. Let f (x) be an n-variate degree d polynomial over a
field F, g(t) = (д1, . . . ,дn ) where дi ∈ F[t], and h(t) = f (g(t)). For
all i ∈ [n], let дi (t + Z ) = дi (t) + Zд̃i (t,Z ) for some д̃i ∈ F[t,Z ].
Let g̃(t,Z ) = (д̃1, . . . , д̃n ), and for all e = (e1, . . . , en ) ∈ Nn , g̃e =∏n

i=1 д̃
ei
i . For any ℓ ∈ N, let

hℓ(t,Z ) =
ℓ∑
i=0

Z i
∑

e∈Nn : |e |1=i

∂e(f )(g(t)) · g̃e(t,Z ).

Then, for every k ∈ N with k ≤ ℓ, h(k )(t) = CoeffZ k (hℓ).

6.1 A Description of the Algorithm
We start by describing the algorithm.

Algorithm 3 Efficient multivariate polynomial evaluation with

large number of variables

Input: An n-variate polynomial f (x) ∈ Fq [x] with individual

degree less than d and N points ααα1,ααα2, . . . ,αααN from Fnq .

Output: f (ααα1), f (ααα2), . . . , f (αααN ).
1: Let p be the characteristic of Fq and q = pa .
2: Let v0(Y0) be an irreducible polynomial in Fp [Y0] of degree a

and

Fq = Fp [Y0]/⟨v0(Y0)⟩.

3: Let b the smallest positive integer such that pb > ad .
4: Compute an irreducible polynomial v1(Y1) in Fq [Y1] of degree
b and

Fqb = Fq [Y1]/⟨v1(Y1)⟩. (Lemma 4.1)

5: Compute the subfield Fpb of Fqb . (Lemma 4.3)

6: Compute the set ∂
<n
(f ). (Lemma 4.6)

7: Evaluate all the polynomials in ∂
<n
(f ) over the grid Fn

pb
.

(Lemma 4.10)

8: for all i ∈ [N ] do
9: Let ααα i = ααα i ,0 +ααα i ,1Y0 + · · ·+ααα i ,a−1Y

a−1
0

, where ααα i , j ∈ F
n
p .

10: Let gi (t) be the curve defined as ααα i ,0 + ααα i ,1t + · · · +
ααα i ,a−1t

a−1
.

11: Let hi (t) = f (gi (t)).
12: Let Ei = {(γ ,h

(0)

i (γ ),h
(1)

i (γ ), . . . ,h
(n−1)
i (γ ) | γ ∈ Fpb }.

13: Invoke the function Evaluate Derivatives A with input

gi (t) and compute the set Ei .
14: Using Ei , interpolate hi (t). (Lemma 4.9)

15: Output hi (Y0) as f (ααα i ). (Lemma 4.7)
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We now describe the function Evaluate Derivatives A invoked

above. We follow the same notation as in Algorithm 3 including

the local variable names.

Algorithm 4 Function to generate data for Hermite Interpolation

1: function Evaluate Derivatives A (g(t))
2: Let g(t) = (д1, . . . ,дn ).
3: For all i ∈ [n], let дi (t +Z ) = дi (t)+Zд̃i (t,Z ) and g̃(t,Z ) =
(д̃1(t,Z ), . . . , д̃n (t,Z )).

4: Compute д̃i (t,Z ) for all i ∈ [n]. (Lemma 4.6)

5: For all e = (e1, . . . , en ) ∈ Nn , let g̃e =
∏n

i=1 д̃
ei
i .

6: Compute the set of polynomials {g̃e(t,Z ) | |e|1 < n}.
(Polynomial multiplication)

7: P ← ∅.
8: for all γ ∈ Fpb do

9: Using evaluations of polynomials in ∂
<n
(f ) over Fn

pb
,

compute the polynomial

hγ (Z ) =
n−1∑
i=0

Z i
∑

e∈Nn : |e |1=i

∂e(f )(g(γ ))g̃e(γ ,Z ).

10: For all i ∈ {0, 1, . . . ,n − 1}, extract CoeffZ i (hγ ).
11: P ← P∪{(γ ,CoeffZ 0 (hγ ),CoeffZ 1 (hγ ), . . . ,CoeffZn−1 (hγ ))}.

12: return P .

Please refer to the full version [3] for a detailed analysis of

Algorithm 3 and proof of Theorem 6.1.

7 MULTIPOINT EVALUATION WITH
IMPROVED FIELD DEPENDENCE

In this section, we build on the ideas in Algorithm Theorem 6.1

to improve the dependence on the field size. Our main theorem,

which is a formal statement of our main result Theorem 2.1 stated

in the introduction.

Theorem 7.1. Let p be a prime and q = pa for some positive integer
a. There is a deterministic algorithm such that on input an n-variate
polynomial f (x) over Fq with individual degree less than d , points
ααα1,ααα2, . . . ,αααN from Fnq and a non-negative integer ℓ ≤ log

⋆
p (a), it

outputs f (ααα i ) for all i ∈ [N ] in time

(
N ·

(
2dp logp (dp)

)ℓ
+
(
2rdp logp (dp)

)n )
·O(ℓ+1)n ·poly(a,d,n,p) ,

where r = max{2, log◦ℓp (a)}.

7.1 A Description of the Algorithm
We start by describing the algorithm.

Algorithm 5 Efficient multivariate polynomial evaluation over

large fields

Input: An n-variate polynomial f (x) ∈ Fq [x] with individual

degree less than d , N points ααα1,ααα2, . . . ,αααN from Fnq , and a

non-negative integer ℓ ≤ log
⋆
p (a) where q = p

a
and p is the

characteristic of Fq .
Output: f (ααα1), . . . , f (αααN ).

1: Let v0(Y0) be an irreducible polynomial in Fp [Y0] of degree a
and Fq = Fp [Y0]/⟨v0(Y0)⟩.

2: Points0 ← {ααα i | i ∈ [N ]}, a0 ← a, and q0 ← pa .
3: Polynomial Evaluation(0). (Recursive call)

4: Output Eval0,0.
5: function Polynomial Evaluation(i)
6: Let ai+1 be the smallest positive integer such that pai+1 >

aid , and qi+1 ← qai+1 .
7: Compute an irreducible polynomial vi+1(Yi+1) over Fq of

degree ai+1 and

Fqi+1 = Fq [Yi+1]/⟨vi+1(Yi+1)⟩. (Lemma 4.1)

8: Compute the subfield Fpai+1 of Fqi+1 . (Lemma 4.3)

9: Compute an element βi in Fqi s.t. {1, βi , . . . , β
ai−1
i } forms

an Fp -basis for Fpai . (Lemma 4.3)

10: Pointsi+1 ← ∅.
11: for all ααα ∈ Pointsi do
12: Let ααα = ααα0 +ααα1βi + · · · +αααai−1β

ai−1
i , where ααα j ∈ F

n
p .

13: Compute ααα0, . . . ,αααai−1. (Lemma 4.3)

14: Let gααα (t) be the curve defined as ααα0 + ααα1t + · · · +
αααai−1t

ai−1
.

15: Pααα ← {gααα (γ ) | γ ∈ Fpai+1 } (Lemma 4.7), and

Pointsi+1 ← Pointsi+1 ∪ Pααα .
16: if i < ℓ then
17: Polynomial Evaluation(i + 1).
18: else
19: Compute all the polynomials in ∂

≤(ℓ+1)(n−1)
(f ).

(Lemma 4.6)

20: Evaluate all the polynomials in ∂
≤(ℓ+1)(n−1)

(f ) over the
grid Fnpaℓ+1 . (Lemma 4.10)

21: Observe that Pointsℓ+1 is a subset of Fnpaℓ+1 .

22: For all e ∈ Nn with |e|1 ≤ (ℓ + 1)(n − 1), Evalℓ+1,e =
{(ααα, ∂e(f )(ααα)) | ααα ∈ F

n
paℓ+1 }.

23: for all e ∈ Nn s.t. |e|1 ≤ i(n − 1) do
24: Evali ,e ← ∅.
25: for all ααα ∈ Pointsi do
26: Let he,ααα (t) = ∂e(f )(gααα (t)).
27: Let Ee,ααα = {(γ ,h

(0)
e,ααα (γ ), . . . ,h

(n−1)
e,ααα (γ )) | γ ∈

Fpai+1 }.
28: Using Evaluate Derivatives B with input

(gααα (t), i, e), compute Ee,ααα .
29: Using Ee,ααα , interpolate he,ααα (t). (Lemma 4.9)

30: Evali ,e ← Evali ,e ∪ {(ααα,he,ααα (βi ))}. (Lemma 4.7)
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Algorithm 6 Evaluating Hasse derivatives for Algorithm 5

1: function Evaluate Derivatives B (g(t), k , e)
2: Let g(t) = (д1, . . . ,дn ).
3: Let e = (e1, . . . , en ).
4: Let дi (t +Z ) = дi (t)+Zд̃i (t,Z ), for all i ∈ [n], and g̃(t,Z ) =
(д̃1(t,Z ), . . . , д̃n (t,Z )).

5: Compute д̃i (t,Z ) for all i ∈ [n]. (Lemma 4.6)

6: For all b = (b1, . . . ,bn ) ∈ Nn , let g̃b =
∏n

i=1 д̃
bi
i .

7: Compute the set of polynomials {g̃b(t,Z ) | |b|1 < n}.
(Polynomial multiplication)

8: Let D be an ((k + 1)(n − 1) + 1) × n array such that,

Di , j =

(
j

i

)
modp, where i ∈ {0, 1, . . . ,n−1}, j ∈ {0, 1, . . . , (k+1)(n−1)}

9: Like Algorithm 1, we can compute D using Fp -operations.
10: For b = (b1, . . . ,bn ) ∈ Nn such that |b|1 < n,

cb ←
n∏
i=1

Dei+bi ,bi .

11: P ← ∅.
12: for all γ ∈ Fpak+1 do

13: Using evaluations of polynomials in ∂
≤(k+1)(n−1)

(f )
over Pointsk+1, compute

hγ (Z ) =
n−1∑
i=0

Z i
∑

b∈Nn : |b |1=i

cb∂e+b(f )(g(γ ))g̃b(γ ,Z ).

14: For all i ∈ {0, 1, . . . ,n − 1}, extract CoeffZ i (hγ ).
15: P ← P∪{(γ ,CoeffZ 0 (hγ ),CoeffZ 1 (hγ ), . . . ,CoeffZn−1 (hγ ))}.

16: return P .

Please refer to the full version [3] for a detailed analysis of

Algorithm 5 and proof of Theorem 7.1.
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