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Abstract

It has been postulated that the brain is organized by “metamodal”, sensory-independent cortical modules
capable of performing tasks (e.g., word recognition) in both “standard” and novel sensory modalities. Still, this
theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects,
thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal
processing do not specify requirements for successful metamodal processing at the level of neural
representations. Specification at this level may be particularly important in neurotypical individuals, where
novel sensory modalities must interface with existing representations for the standard sense. Here we
hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus
representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to
identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to
recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The
vocoded algorithm preserved the dynamics and representational similarities of auditory speech while the
token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-
vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling
between them and somatosensory areas. Our results advance our understanding of brain organization by
providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of
novel sensory substitution devices that aim to tap into existing processing streams in the brain.

Significance Statement

It has been proposed that the brain is organized by “metamodal”, sensory-independent modules specialized for
performing certain tasks. This idea has inspired therapeutic applications such as sensory substitution devices,
e.g., enabling blind individuals “to see” by transforming visual input into soundscapes. Yet, other studies have
failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in
neurotypical individuals requires matching representational similarities between stimuli in novel and standard
modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-
vibrotactile transformations. Critically, only vibrotactile stimuli that preserved representational similarities of
auditory speech engaged auditory speech areas after training. This suggests that matching representational

similarities is critical to unlocking the brain’s metamodal potential.
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Introduction

The dominant view of brain organization revolves around cortical areas dedicated for processing information
from specific sensory modalities. However, emerging evidence over the past two decades has led to the idea
that cortical areas are defined by task-specific computations that are invariant to sensory modality(Pascual-
Leone and Hamilton, 2001). Evidence for this comes from studies in sensory-deprived populations (Sadato et
al., 1996; Lomber et al., 2010; Bola et al., 2017) which show that areas that traditionally perform unisensory
processing can be recruited by stimuli from another sensory modality to perform the same task. This ability of a
novel sensory modality stimuli to engage a cortical area the same way as the standard sensory modality
stimulus is called metamodal engagement. Importantly, there is evidence (Renier et al., 2005, 2010; Amedi et
al., 2007; Siuda-Krzywicka et al., 2016) for metamodal engagement of traditionally unisensory areas even in
neurotypical individuals — thereby opening the door for novel sensory modalities to recruit established sensory
processing pathways. This idea has given rise to promising therapeutic applications like sensory substitution
devices (SSDs). These devices can, for instance, enable blind individuals to process visual information by
translating camera input to sounds (Meijer, 1992; Bach-y-Rita and Kercel, 2003). Still, other studies (Fairhall et
al., 2017; Twomey et al., 2017; Benetti et al., 2020; Mattioni et al., 2020; Vetter et al., 2020) failed to find or
found less robust evidence of cross-modal engagement in neurotypical subjects. This calls into question the

conditions under which a cortical area can be successfully recruited by stimuli from a novel sensory modality.

Current theories emphasize that metamodal engagement of a cortical area, depends on a task-level
correspondence irrespective of the stimulus modality and the presence of task-relevant connectivity (Heimler et
al., 2015). Thus, metamodal theories are specified at the level of computation (i.e., shared task) and
implementation (i.e., sufficient connectivity) — the first and third levels of Marr’s levels of analysis (Marr, 1982).
However, consideration of these two levels alone cannot explain the failure of certain studies to find
metamodal engagement. We argue that metamodal engagement depends on not just an abstract
correspondence between standard and novel modality stimuli, but also on a correspondence between their
encoding in the target area. This correspondence at the level of encoding corresponds to Marr’s second level,
the algorithmic level. For instance, since auditory cortex in neurotypical adults is sensitive to the temporal

dynamics of auditory speech (Yi et al., 2019; Penikis and Sanes, 2022), metamodal engagement of this area
3



by novel modality stimuli depends on their ability to match the temporal dynamics of spoken words. Failure to
do so may favor alternate learning mechanisms such as paired associate learning (McClelland et al., 1995;

Eichenbaum et al., 1996).

In the present study, we tested the hypothesis that metamodal engagement of a brain area in neurotypical
individuals depends on matching the encoding schemes between stimuli from the novel and standard sensory
modalities. We used functional MRI (fMRI) data from an independent auditory scan to identify target auditory
speech areas for metamodal engagement in the bilateral STG. We then built on prior behavioral studies to train
two groups of neurotypical adults to recognize words using one of two auditory-to-VT sensory substitution
algorithms. Critically, while both algorithms preserved behavioral word similarities, one encoding (“vocoded”)
closely matched the temporal dynamics of auditory speech whereas the other (“token-based”) did not. Our
results show that while subjects in both algorithm groups learned to accomplish the word recognition task
equally well, only those trained on the similarity-preserving vocoded VT representation exhibited metamodal
engagement of the bilateral STG. Consistent with these findings, only subjects in the vocoded VT group
exhibited increased functional connectivity between the auditory and somatosensory cortex after training.
These findings suggest that metamodal engagement of a cortical area in neurotypical adults depends not only
on a correspondence between standard and novel modality stimuli at the task-level but also at the neural

representational level.
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Materials and Methods

Participants

We recruited a total of 22, right-handed, healthy, native English speakers in this study (ages 18-27, 12
females). Georgetown University’s Institutional Review Board approved all experimental procedures, and
written informed consent was obtained from all subjects before the experiment. We excluded 4 subjects from
the auditory scan due to excessive motion (>20% of volumes) resulting in a total of 18 subjects. In the
vibrotactile (VT) scans, subjects were alternately assigned to one of the two VT algorithm groups (see below),
resulting in 11 subjects per group. However, 2 of the 22 subjects, 1 from each VT algorithm group, were
excluded because they failed to complete the training. Thus, a total of 20 subjects were analyzed for the VT
scans (10 per group). An effect-size sensitivity analysis was performed using an o of p = 0.05, power of 0.8,
and a two-tailed one-sample or two-sample t-test for auditory and VT scans respectively using G*Power (Faul
et al., 2007). This calculation yielded a minimum detectable effect size of 0.7 and 0.99 for the auditory and VT

scans respectively.

Stimuli and Materials

Stimulus Selection

A set of word stimuli (Tbl. 1) was developed according to the following criteria: 1) short monosyllabic stimuli (~4
phonemes); 2) only contain phonemes from a limited subset of English consonants (8 consonants and 6
vowels); 3) set containing items predicted to be perceptually unique and therefore learnable; and 4) words that
span the VT vocoder perceptual space (see below). To develop the set meeting these criteria we utilized a
computational modeling approach based on the methods described in (Auer and Bernstein, 1997). Existing
tactile consonant and vowel perceptual identification data (Bernstein, unpublished) were used in combination
with the PhLex lexical database (Seitz, Bernstein, Auer, & MacEachern, 1998) to model the lexical perceptual
space. In outline, the modeling steps are: (1) Transform phoneme identification data into groupings of
phonemes as a function of a set level of dissimilarity; (2) Re-transcribe a phonemically transcribed lexical
database so that all the words are represented in terms of only the phonemic distinctions across groupings;

and (3) Collect words that are identical under the re-transcription and count how many are in each collection. In
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this study, the lexical equivalence class (LEC) size —the number of words in a collection—was set to three.
Only words that were accompanied by three or fewer other words following re-transcription were considered
candidates for the study. Words in smaller LECs are predicted to be perceptually easier (more unique) than
words in larger LECs, which offer more opportunities for confusions.

The set of words meeting the first three criteria was further examined as a function of consonants and vowel
patterns to identify the largest pool of potential stimulus words. Three consonant (C) and vowel (V) segment
patterns (CVC, CCVC, and CVCC) were selected for the final stimulus set. The words with these segment
patterns were then examined in relation to the predicted VT vocoder perceptual space. The tactile identification
confusion matrices were transformed into phoneme distance matrices using a phi-square transform (Iverson et
al., 1998). Within a segment pattern, all word-to-word distances were computed as the sum of the pairwise
phoneme distances. The word distance matrix was then submitted to multidimensional scaling to facilitate two-
dimensional visualization of the lexical space. Close pairs were selected with goal of achieving distributed
coverage in each of the three lexical spaces (CVC, CVCC, and CCVC). For each close pair, a third more
distant word was chosen that provided a bridge to other pairs in the space. Final selection was based on the
word-to-word computed distances using phi-square distances rather than the multidimensional space as clear
warping was present due to the reduction of dimensionality.

This resulted in 60 total words or 20 sets of triples. We trained subjects to associate 30 words (10 triplets) with
their corresponding VT tokens. In the fMRI scans we used 15 (5 triplets) of these trained words of which 9

belonged to the CVCC, 3 to the CCVC and 3 to the CVC lexical classes (Tbl. 1).

Description of VT Stimulus System

Custom hardware and software was used to present the VT stimuli. The system that vocoded the acoustic
speech for VT stimuli had been developed and used previously for real time speech analysis and stimulus
presentation (Bernstein et al., 1991; Iverson et al., 1998; Eberhardt et al., 2014). The vocoder filters were as
described as the “GULin” vocoder algorithm (Bernstein et al., 1991). Their vocoder implemented 15 sixth-order
bandpass filters with frequencies centered at 260, 392, 525, 660, 791, 925, 1060, 1225, 1390, 1590, 1820,
2080, 2380, 2720, and 3115 Hz, with respective bandwidths of 115, 130, 130, 130, 130, 130, 145, 165,190,

220, 250, 290, 330, 375, and 435 Hz. The 16™ channel was a high-pass filter with a 3565-Hz cutoff. Because
6
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the energy in speech rolls off by 6 dB per octave, and because the skin has a narrow dynamic range, the
energy passed by each of the filters was linearly scaled, resulting in a good representation of the speech
formant patterns across a range of signal intensities (Bernstein et al., 1991). Because new MRI-compatible
hardware was built for the current study, and therefore new driver software was needed, the vibrotactile drive
signals of the old vocoder system were sampled to drive the new system (thus guaranteeing that the
underlying acoustic analysis remained the same), to maintain timing and output channel information. Then at
presentation time, prior to each stimulus, the stimulus timing record that specified the onset time of each pulse
on each channel was uploaded to the VT control system.

The hardware transducer was an updated version of the one used in Malone et al., (Malone et al., 2019). The
stimulator hardware comprised piezoelectric bimorph transducers (Fig. 1A). During operation, a constant +57-
V applied to all stimulators retracted the contactors into the surround, and each applied -85-V pulse drove the
contactor into the skin. The display’s control system comprised the power supplies (-85V, +57V), high voltage
switching circuits to apply these voltages to the piezoelectric bimorphs, and a digital control system that
accepted from a controlling computer’s serial COM port the digital records specifying a stimulus (comprising
the times and channels to output pulses on), and a command to initiate stimulus output. All pulses were
identical. The drive signal was a square wave, with a pulse time of 2 ms and a maximum pulse rate of 150
pulses per second.

The 16-channel (20cm x 11.0 cm) array was organized as 2 rows of 8 stimulators (Fig. 1A), with center-to-
center stimulator spacing of 2.54 cm, which was worn on the volar forearm. This spacing is greater than the
average distance on the volar forearm at which participants achieved at least 95% correct discrimination on a
tactile spatial acuity task (Tong et al., 2013). Transducers were arranged so that similar frequencies were
mapped to similar locations along the forearm. Specifically, low frequencies mapped to transducers near the
wrist, and higher frequencies mapped to transducers near the elbow (Fig. 1C). To ensure that the stimulators
would maintain contact with the volar forearm, the transducer array comprised four rigid modules connected
with stiff plastic springs. Velcro straps were used to mount the device to the arm firmly while bending the array
to conform to the arm’s shape. With no applied voltage to the piezoelectric bimorphs, the contactors were flush

with the circuit board surface facing the skin.
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Token-based VT Speech Encoding

The same 16-channel VT device was used to present subjects with the token-based stimuli. Token-based
stimuli were constructed based on prior work (Reed et al., 2018) and reflected the idea that spoken words can
be described as a string of phonemes. Phonemes in turn can be uniquely described by a set of phonetic
features. Therefore, each phonetic feature was assigned a unique VT pattern. In this study, we used place,
manner, and voicing features to describe phonemes (Fig. 1B). Place was coded as patterns that occurred
either proximal or distal to the wrist. Stop and fricative manner features were codded as patterns that occurred
either medial or lateral to the body respectively. The nasal manner feature was distinguished by driving two
channels instead of one for stops and fricatives. Voicing was coded as either driving high frequency vibrations
(250Hz) or low frequency vibrations (100Hz). Vowels were coded in a similar feature-based manner, but were
dynamic stimuli (e.g., swirls and sweeps) whereas consonants were static. Importantly, all consonant patterns
lasted 120ms and all vowel stimuli lasted 220ms and there was a 100ms gap between each pattern. As a
result, token-based stimuli were either 660ms or 880ms long. CVCC trained token-based stimuli used in fMRI
analyses were 880ms long while their VT vocoded counterparts had a mean duration of 727ms and standard
deviation of 91.6ms. A paired t-test revealed that token-based stimuli were significantly longer (t; = 4.99; p =
0.001) than their vocoded counterparts. Thus, not only did VT vocoded but not token based stimuli preserve

the temporal dynamics found in auditory speech, but they also conveyed more information per unit time.

Experimental Design

In the current study, subjects participated in two pre-training fMRI sessions and one post-training session upon
successful completion of 6 behavioral training sessions. The final post-training session was followed by a 10-
AFC experiment to assess if subjects retained the trained associations between VT stimuli and the words. The
two pre-training fMRI sessions consisted of an auditory scan followed by a VT scan and were done on
separate days. After the pre-training VT scan subjects performed 6 sessions of behavioral training in which
they learned to associate patterns of vibrotactile stimulation with words. Subjects could only perform one
training session per day. A subject was considered to have successfully completed the training and thus was

eligible for the post-training scan if he or she completed all 6 training sessions.
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Behavioral Training

Subjects performed a total of 6 training sessions and could only perform 1 training session per day. Each
session took place in a quiet room while the subject was seated and listened to an auditory white noise
stimulus through over-the-ear headphones. Auditory white noise was presented to mask the mechanical sound
of the VT stimulation. During a training session the subject performed 5 blocks of an N-alternative forced
choice (N-AFC) task consisting of 60 trials with self-paced breaks between blocks. During the training sessions
only the 15 stimuli to be trained were presented. At the beginning of each trial, the orthographic labels for the
word choices were displayed on the screen, and a VT stimulus was played after a short delay. Participants
then indicated which label corresponded to the VT stimulus using a numerical key. The keys ‘1’ to ‘0’
corresponded to the left-to-right progression of the word choices displayed on the screen. Feedback was given
after each trial, as well as an opportunity to replay any of the word choices. To facilitate training progression,
the training paradigm utilized a leveling system organized in sets of 3 levels. The level of the participant
determined the similarity of the stimuli on each trial as well as the number of choices (N) in the N-AFC task. In
a set of 3 levels, the number of choices (N) was kept constant, but the choices themselves were increasingly
confusable. For example, in level 1 subjects may have to distinguish ‘sand and ‘meat’ but in level 3 they may
have to distinguish the more similar pair ‘sand and ‘tanned’. Subjects started on level 1 which utilized a 2-
AFCs, and the number of choices N was increased by 1 when progressing between each set of 3 levels (e.g.,
level 3 to level 4). An accuracy of 80% was required to advance to the next level. After the completion of all 6
training sessions subjects were invited to perform a post-training fMRI scan. Then on a separate day from the
post-training scan subjects were brought back to perform a 10-AFC task. Stimuli presented in the 10-AFC task
consisted only of the 15 trained words and like the training sessions consisted of 5 self-paced blocks of 60

trials each.

FMRI Experimental Procedures

EPI images were collected from 9 event-related runs in the auditory scan and 6 runs in each of the VT scans.
A sparse acquisition paradigm was used in the auditory scan. Each run contained either 30 auditory vocoded,
30 VT vocoded, or 30 VT token-based stimuli. The same words were used in all the scans, but subjects were

only trained to recognize VT versions of 15 of them. In both scans, subjects performed a 1-back task that was
9
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utilized to maintain attention: Subjects were asked to press a button in their left hand whenever the same
stimulus was presented on two consecutive trials. These catch trials comprised ten percent of the trials in each
run. Furthermore, an additional ten percent of trials were null trials.

In the auditory scan each trial was 3s long and started with 1.5s of volume acquisition followed by the auditory
word (during the silent period, see below, “Data Acquisition”; Fig. 1D). There were 118 trials per run plus an
additional 15s fixation at the start of the run for a total run length of 369s and session length of 43 min. In the
VT scan, each trial was 4s long (Fig. 1D) and there was a total of 111 trials per run plus an additional 10s

fixation at the start and end of the run for total run length of 464 s and a session length of 46 min.

FMRI Data Acquisition

MRI data were acquired at the Center for Functional and Molecular Imaging at Georgetown University on a 3.0
Tesla Siemens Trio Scanner for both the auditory and VT scans. We used whole-head echo-planar imaging
sequences (flip angle = 90°, TE = 30 ms, FOV = 205, 64x64 matrix) with a 12-channel head coil. For the
auditory scan we used a sparse acquisition paradigm (TR = 3000 ms, TA = 1500 ms) in which each image was
followed by an equal duration of silence before the next image was acquired. 28 axial slices were acquired in
descending order (thickness = 3.5 mm, 0.5 mm gap; in-plane resolution = 3.0x3.0 mm?). This sequence was
used in previous auditory studies from our lab (Chevillet et al., 2013). For the VT scan, we used a continuous
acquisition paradigm (TR=2000 ms) and collected 33 interleaved descending slices at the same resolution as
in the auditory scan. A T1-weighted MPRAGE image (resolution 1x1x1mm?) was also acquired for each

subject.

FMRI Data Preprocessing

Image preprocessing was performed in SPM12 (http://www fil.ion.ucl.ac.uk/spm/software/spm12/) and AFNI

version 20.1.03 (Cox, 1996; Cox and Hyde, 1997). The first four acquisitions of each run were discarded to
allow for T1 stabilization, and the remaining EPI images were slice-time corrected to the middle slice for the VT
scans. No slice-time correction was performed for the auditory scans due to using a sparse acquisition
paradigm due to temporal discontinuities between successive volumes (Perrachione and Ghosh, 2013). These

images were then spatially realigned and submitted to the AFNI align_epi_anat.py function to co-register the
10
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anatomical EPI images for each subject. This was used because, upon inspection, it provided better

registration between the anatomical and functional scans than the corresponding SPM12 routine.

Anatomical Preprocessing

Freesurfer version 6.0 (Fischl et al., 1999) was used to reconstruct cortical surface models including an outer
pial and inner white-matter surface using the standard recon-all function. These surfaces were then brought
into the SUMA environment (Argall et al., 2006; Saad and Reynolds, 2011) and fit to a standardized mesh
based on an icosahedron with 64 linear divisions using AFNI’'s Maplcosehedron command (Oosterhof et al.,
2011; Saad and Reynolds, 2011). This procedure yielded 81,924 nodes for each participant’s whole-brain
cortical surface mesh. Each node on the standard mesh corresponds to the same location across subjects —
thereby allowing node-wise group-level analysis. This improved the spatial resolution of our analyses since
interpolation of the functional data is unnecessary (Oosterhof et al., 2011). Finally, we used the CoOSMoMVPA
toolbox (Oosterhof et al., 2016), and the Surfing Toolbox (Oosterhof et al., 2011) to construct searchlights

around each surface node by selecting the 30 closest voxels measured by geodesic distance.

Univariate Analyses

We fit a general linear model (GLM) to each subject’s pre-processed functional images. For both the auditory
and VT studies, we specified 38 regressors in for each run: 30 regressors, 1 for each word, 1 regressor for
button press, and 6 motion regressors of no interest, For the all scans, a “Stimuli-Baseline” contrast image was
generated for each subject. The contrast maps were smoothed using a 8mm FWHM smoothing kernel and
then mapped to the cortical surface using 3dVol2Surf. For each scan, a one-sample t-test was used to
compare “Stimuli-Baseline” versus 0. Finally, a paired t-test was used to compare pre- versus post-training

scans.

Defining Regions of Interest
In the current study we tested evidence for metamodal engagement in specific regions of interest (ROls).
These ROls were defined either functionally or structurally. Functional ROIs were defined by applying whole-

brain representational similarity analysis (RSA)(Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013) to
11



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

auditory fMRI data (see below). This revealed statistically significant bilateral STG clusters that were then used
in the main analyses with VT data. We also hypothesized that learning to recognize VT stimuli as words might
rely on routes other than metamodal recruitment in the STG, specifically through paired-associate learning in
the hippocampus (Eichenbaum et al., 1996, 2007; Gilbert and Kesner, 2003; Treder et al., 2021). We therefore

defined bilateral hippocampal ROI using the HCP-MMP1.0 (Glasser et al., 2016) atlas.

Representational Similarity Analysis (RSA)

Constructing Model Representational Dissimilarity Matrices (mRDMs)

Three mRDMs were generated: an auditory mRDM, a VT vocoded mRDM, and a VT token-based mRDM.
Entries in these mMRDMs corresponded to distances between words. The distance metric that was used was
the edit distance between the words where the edits were weighted by the perceptual confusability of the
phonemes to be substituted. Edit distances are frequently used with highly intelligible speech, for which there
are no phoneme-to-phoneme dissimilarity data, and when more refined segment-to-segment distances are not
available as was the case for the VT token-based algorithm. Furthermore, recent work (Kell et al., 2018) has
shown that the representational format captured by the edit distance matched those found in both higher-order
STG speech regions and speech recognition-specific representations learned in later layers of a deep neural
network. Auditory phoneme confusability was derived from a behaviorally measured perceptual auditory
vocoded phoneme identification task. For both VT algorithms, phoneme confusability was generated using the
last training block of N-AFC training data collected in this study. This procedure involved constructing word
confusion matrices and using it to extract phoneme-level confusion matrices. Vowel confusions were extracted
directly from the monosyllabic word confusion data. Consonant confusions were extracted by collapsing over
pre-and post-vocalic positions. In addition, a simplifying assumption was made for incorrect responses where
single consonants were matched with consonant clusters. The implemented procedure resulted in credit for
correct identifications of individual consonants in clusters while attributing incorrect responses to both
consonants in a cluster. Once the phoneme-level confusability was computed for auditory and VT conditions, it
was transformed into a distance measure using a phi-square transform (lverson et al., 1998). Word-to-word
distances were computed as the sum of the pairwise phoneme distances for all the position-specific phoneme

pairs in each of the possible pairs of stimulus words. Given the difficulty of estimating a distance swap between
12
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consonants and vowels as well as between segments of different lengths, we restricted our analyses to CVCC
words which were our most common segmental class (Tbl. 1). This resulted in a 9-by-9 auditory vocoded, VT
vocoded, and VT token-based mRDMs for the CVCC trained words (Fig. 2). These representational spaces
are highly correlated (r = 0.94) and reflect the close representational congruence at the behavioral level

between auditory and VT stimuli generated by both algorithms.

Whole-Brain Searchlight RSA Analysis

RSA (Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013) analyses were performed using the
CoSMoMVPA toolbox (Oosterhof et al., 2016) and custom MATLAB scripts. Within a given searchlight, the
activity (t-statistic) in the voxels for each condition constituted its pattern. A cocktail-blank removal was
performed on this condition-by-voxel data matrix whereby the mean pattern of activity across conditions was
removed for each voxel (Walther et al., 2016). A neural dissimilarity matrix (hnRDM) was then computed in each
searchlight by computing the pairwise Pearson correlation distance (1-Pearson Correlation) between the
patterns of all pairs of conditions. To assess whether a given region represented stimuli in a hypothesized
format, the nRDM was compared to the mRDM. This was done by taking the Spearman Correlation between
the vectorized lower triangles of the nRDM and mRDM. This correlation was then Fischer z-transformed to

render the correlations more amenable to parametric analyses (Kriegeskorte et al., 2008).

ROI-Based RSA Analysis

ROI-based RSA analyses were performed in the VT scans to test if, following training, VT stimuli engaged
auditory speech representations. To do so, we averaged the Fischer z-transformed correlations of searchlights
in each ROI for the four groups (pre/post x vocoded/token). We then fit these average ROI correlations with a
linear mixed effects model in R using the Lme4 Package. This model included three main effects
TrainingPhase (0 for pre-training, 1 for post-training), Algorithm (0 for token, 1 for vocoded), and Hemi (0 for
right, 1 for left). It also included all interaction terms, as well as a random slope and intercept. The random
effects terms allowed us to model the subject-specific variability in the pre-training and the training-related
change in correlation. The final model is shown below:

Correlation ~ 1 + TrainingPhase * Algorithm « Hemi + (TrainingPhase | Subj)
13
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The reference group corresponding to the intercept was specified as pre-training, token-based, right-
hemisphere. All Bs reported reflect deviations from this reference group given the other effects. The model was
estimated using REML and degrees of freedom were adjusted using the Satterthwaite approximations. Post-
hoc contrasts were computed using the emmeans package and all reported p-values were corrected for

multiple comparisons using Sidak’s method.

Task-Regressed Functional Connectivity

The metamodal theory critically hypothesizes that metamodal engagement consists in linking a brain area
performing a particular computation (e.g., word representation) in a standard modality with an input stream
from a novel modality. We therefore performed functional connectivity analyses to test for learning-induced
changes in functional connectivity between the somatosensory and auditory ROI of interest. Specifically, we
used the CONN-fMRI toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) to perform smoothing, segmentation,
and cleaning of the data as well as to compute seed-to-voxel correlation maps. Native-space functional data
were smoothed using an 8mm FWHM smoothing kernel. Next, anatomical scans were segmented to identify
regions of white matter and CSF. We then regressed out the signals from these regions using CompCor
(Behzadi, Restom, Liau, & Liu, 2007) as well as the main effect of task. Whole-brain seed-to-voxel correlation
maps were then computed within each subject. Finally, we mapped each subject’s correlation maps to a

standard cortical mesh using 3dVol2Surf to perform group analyses.

Whole-Brain Statistical Correction

We tested the group-level significance of whole-brain RSA analyses as well as functional connectivity
differences by first computing a t-statistic at each node on the standard surface. To correct these t-statistic
maps for multiple comparisons, we first estimated the smoothness of the data for each analysis in each
hemisphere using the AFNI/SUMA SURFFWHM command. We then used this smoothness estimate to
generate noise surface maps using the AFNI/SUMA slow_surf_clustsim.py command. This then allowed us to
generate an expected cluster size distribution at various thresholds that we compared clusters in our actual

data to. For the whole-brain analyses a two-tailed cluster-defining threshold of oo = .005 was used. Since the

14
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auditory RSA scan was used as an independent localizer scan in which to investigate neural effects of VT
training a stricter cluster-defining threshold (o = .001) was applied in the auditory RSA scan to isolate more
spatially restrictive clusters. All resulting clusters were corrected at the p < .05 level. Tables report the
coordinates of the center of mass of clusters in MNI space and their location as defined by the HCP-MMP1.0

(Glasser et al., 2016) and Talairach-Tournoux Atlases.
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Results

Analysis Overview

We first examined univariate engagement of cortical areas by VT and auditory stimuli. Next, we used RSA to
identify areas encoding auditory speech, and then tested whether VT stimuli were encoded like the auditory
speech stimuli in those areas following training. We also examined training-related changes in functional
connectivity between somatosensory and auditory areas to provide complementary evidence for learning-
related differences. Finally, we examined if token-based stimuli, which failed to show metamodal engagement

in auditory areas, were encoded in the hippocampus which is known to play a role in associative learning.

Behavior

Subjects (n=22) were trained to recognize stimuli derived from either a token-based of vocoded auditory-to-VT
sensory substitution algorithm, but 2 subjects were excluded due to a failure to complete the training paradigm.
Importantly, the performance for all subjects was markedly above chance on the 10-AFC session performed
after the post-training fMRI scan. Participants in both vocoded and token-based groups achieved progressively
higher levels in the behavioral training paradigm across training sessions (Fig. 3A). The median final levels
achieved were 8 and 7 for the token-based and vocoded VT groups respectively. After the final post-training
fMRI scan, subjects completed a 10-AFC test on the trained words (Fig. 3B). All subjects performed better than
chance (10%) and the median accuracies were 35.3% and 48.5% for the token-based and vocoded VT groups
respectively. A two-sample t-test revealed no significant difference in accuracy between algorithm groups (t1s =

0.386, p = 0.704).
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Univariate fMRI Analysis

In the auditory scan, the contrast of “All Words>Baseline” revealed bilateral Superior Temporal Gyrus (STG)
activation (Table 2 and Fig. 4A). In the VT scans, unpaired two-sample t-tests revealed no significant
differences between the vocoded and token-based groups in either the pre-training or post-training phase.
Therefore, subjects were combined within training-phase to test for the cortical common response to VT
stimulation. The contrast “All Vibrotactile Words>Baseline” revealed several regions, including bilateral
supplementary motor area (SMA), precentral gyri (Table 2 and Fig. 4B-C). No significant clusters were
identified for the post- vs pre- training contrast. To gain a better picture of the neuronal representations

underlying these responses, we performed a series of RSA analyses.
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Whole-brain searchlight analysis reveals bilateral STG regions are engaged in the perception of
spoken vocoded words

We conducted a whole-brain searchlight RSA analysis to identify regions engaged by auditory vocoded words
(Fig. 5). This revealed left (x =-58,y =-18,z=5; o = 0.001; p = 0.001) and right mid-STG (x =58,y =-14,z =
3; oo =0.001; p = 0.016) clusters. There is strong evidence (Hamilton et al., 2018, 2021) that these regions are

involved in processing complex temporal patterns found in auditory speech.
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Vocoded but not token-based VT stimuli are encoded similarly to auditory spoken words in the mid-
STG following VT speech training

Next, we conducted ROI-based RSA analyses to test the prediction that trained VT stimuli would be encoded
similarly to auditory words in the mSTG. To do so, we used a linear mixed-effects model (see Methods) to test
the effects of training phase, algorithm, hemisphere, as well as the interaction among them on the correlations
between neural and model RDMs (Fig. 6).

This revealed a significant interaction effect between training phase and algorithm (B = 0.240, t3199= 2.679, p =
0.012). Post-hoc tests revealed a significant training effect in the right mSTG for the vocoded (t31.1 = 3.380, p =
0.008 Sidak-adjusted; d =2.09, 95% CI =[0.78, 3.40]) but not the token-based group (t31.1=-0.408, p = 0.990
Sidak-adjusted; d =-0.25, 95% CI = [-1.51, 1.00]). Furthermore, post-hoc tests did not reveal a significant
increase between the pre- and post-training correlations in the left mSTG for either the vocoded (t311=1.781, p
= 0.298 Sidak-adjusted; d = 1.10, 95% CI = [-0.17, 2.38]) or the token-based (t314 = 0.250, p = 0.999 Sidak-
adjusted; d =0.15, 95% Cl = [-1.11, 1.42]) group. Analyses were repeated for the VT token-based group using
its corresponding behavioral mMRDM (Fig. 2) which still showed a non-significant training effect in both the left
(ts0 = 0.025, p = 0.989 Sidak-adjusted; d = 0.267, 95% CI =[-1.042, 1.58]) and right mSTG (30 = -0.008, p =
0.999 Sidak-adjusted; d =-0.091, 95% CI = [-1.399, 1.217]).

Although there was no significant three-way interaction, we performed exploratory analyses to compare the
correlation between the left vs. right mid-STG. This revealed significantly (35 = 2.396, p = 0.011 uncorrected; d
=1.07, 95% CI =[0.15, 2.00]) higher correlations post-training in the right than left mSTG. In addition, there
was a non-significant (fy = 2.185, p = 0.057 uncorrected; d = 0.61, 95% CI = [-0.03, 1.25]) difference when the
difference between pre- and post-training correlations were compared between the right and left mid-STG.
Finally, since training on VT stimuli may induce changes in high-level somatosensory areas, we also examined
training-related changes in S2 representations using the OPI/SII HCP-MMP1.0 ROI (Glasser et al., 2016).
However, there were no significant interactions or main effects. These results indicate that trained VT stimuli
based on vocoded speech were encoded similarly to auditory speech in the mid-STG while token-based VT

stimuli were not.
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Training with Vocoded VT Speech Stimuli Increases Functional Connectivity Between Somatosensory
and Auditory Regions

Previous studies showed that learning is accompanied by increased functional connectivity between cortical
areas (Lewis et al., 2009; Urner et al., 2013; Siuda-Krzywicka et al., 2016). Therefore, we tested the
hypothesis that training on the vocoded VT word stimuli was associated with increased functional connectivity
of somatosensory regions and the auditory word encoding right mid-STG ROI (Fig. 5). To do so, we computed
the training-related changes in the right mid-STG seed-to-voxel functional connectivity in the vocoded group
(Fig. 7A, Table 3). This revealed two clusters, one in the left STG (o = 0.005; p = 0.044) and another in the left
secondary somatosensory (SllI) (o = 0.005; p = 0.026). Furthermore, reasoning that VT stimulation on the right
arm would engage the left SlI region, we performed an additional seed-to-voxel analysis using the left SlI seed
defined by the HCP-MMP1.0 atlas (Glasser et al., 2016). This complementary analysis (Fig. 7B) revealed two
clusters, one in the right insula and Heschl’'s Gyrus (o = 0.005; p = 0.001) and another in the right STG (o =
0.005; p = 0.001). The left Sll also showed an increase in connectivity to the left central sulcus (o = 0.005; p =
0.001). (Table 3). Similar seed-to-voxel analyses also using the left hippocampus or the bilateral mid-STG
ROls as seeds revealed no significant training-related differences in the token-based group. This pattern of
training-related functional connectivity between somatosensory and auditory areas for VT vocoded but not
token based stimuli was also found when calculating ROI-to-ROI functional connectivity (Fig. 7C-D). These
results support a model in which vocoded VT speech training leads to increased functional connectivity

between somatosensory areas and auditory speech areas.
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Training Increases Encoding of the VT Token-Based Stimuli in the Left Hippocampus

The noteworthy difference in the encoding of VT vocoded versus token-based speech in the mid-STG raised
the question: what other pathway underlies subjects’ ability to learn the token-based VT stimuli as words (see
Fig. 3). As mentioned in the Introduction, it is possible that a poor match between the temporal dynamics of VT
token-based stimuli and auditory speech precludes metamodal engagement in the mSTG and instead favors
alternate strategies to learn associations between arbitrary pairs of stimuli. A key region involved in learning
such associations is the hippocampus (McClelland et al., 1995; Eichenbaum et al., 1996, 2007; O’Reilly and
Rudy, 2001).

We therefore used a linear mixed effect model to test whether the hippocampus encoded token-based stimuli
after training (Fig. 8). This analysis revealed a significant two-way interaction between training phase and
hemisphere ( = 0.095, t3 = 2.696, p = 0.011; Fig. 8) as well as a significant three-way interaction effect
between training phase, algorithm, and hemisphere (§ = -0.151, {35 = -3.027, p = 0.005). The three-way
interaction suggests that the relationship between training phase and hemisphere varied depending on the
algorithm. In the left hemisphere, post-hoc tests revealed a significant (f37 = 3.232, p = 0.012 Sidak-adjusted;
d =2.022, 95% CI = [0.70, 3.35]) training-related increase in correlations for the token-based but not vocoded
(ts0.7=-0.785, p = 0.901 Sidak Adjusted; d = 0.49, 95% CI = [-0.79, 1.77]) VT group. In the right hemisphere,
there was a trending increase in correlation for the vocoded group (t307 = 2.387, p = 0.0902 Sidak Adjusted; d
=1.49, 95% CI = [0.19, 2.80]) but not the token-based (t307 = 0.506, p = 0.9783 Sidak Adjusted; d =0.32, 95%
Cl =[-0.96, 1.60]) VT group. Of note, using the vocoded and token-based mRDMs for the corresponding
groups also resulted in the same significant two-(B = 0.071, tzs = 2.139, p = 0.039) and three-way ( = 0.108,
t36 = 2.287, p = 0.028) interaction effects. Furthermore, there was also a significant training effect for VT token-

based stimuli in the left hippocampus (t;s2 = 2.598, p = 0.015); d = 1.76, 95% CI = [0.359, 3.172]).
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Discussion

Metamodal theories of brain organization (Pascual-Leone and Hamilton, 2001; Heimler et al., 2015) propose
that cortical areas are best described by their task-specific sensory modality-invariant function. However,
mixed evidence for metamodal brain organization in neurotypical individuals (Sadato et al., 1996; Ptito et al.,
2005; Amedi et al., 2007; Siuda-Krzywicka et al., 2016; Bola et al., 2017) has called into question the
conditions under which metamodal engagement occurs. We argue, that metamodal engagement in
neurotypical individuals requires not just correspondence at the task level(Marr, 1982) but also between stimuli
at the level of neural encoding. In the current study, we investigated this hypothesis by training subjects on the
same word recognition task using one of two auditory-to-VT transformation algorithms. One algorithm
(vocoded) preserved the temporal dynamics of auditory speech while the other algorithm (token-based) did
not. First, using whole brain RSA and an independent auditory scan we identified auditory speech areas in the
bilateral mSTG that served as putative targets for metamodal engagement by VT stimuli. We then showed that,
after training only VT vocoded stimuli engaged this area like auditory vocoded words. Importantly, subjects in
both groups achieved comparable levels of proficiency on the post-training recognition task and had similar
behavioral confusions. This eliminates performance differences as a reason for the different training effects at
the neural level. We then showed that only VT vocoded but not token-based stimuli were associated with a
significant training-related increase in functional connectivity between the mid-STG and secondary
somatosensory areas. Finally, both algorithms, to different degrees, engaged hippocampal areas previously
implicated in paired-associate learning.

In this study, we show that adequately capturing (and eventually harnessing) the metamodal potential of cortex
requires not only the right task and sensory modalities but also an understanding of the information
representation in these regions. Prior work has primarily investigated metamodal engagement in congenitally
sensory-deprived individuals (Lomber et al., 2010; Reich et al., 2011; Bola et al., 2017). In such cortical areas,
given the right task-relevant connectivity, bottom-up input from another sensory modality can conceivably drive
the de novo learning of task-relevant representations even for encoding schemes very different from those in
neurotypical individuals (Striem-Amit et al., 2012). However, in neurotypical adults, existing representations in
traditionally unisensory areas reflect the task-relevant features of the typical sensory input (Simoncelli and

Olshausen, 2001; Lewicki, 2002). Therefore, for metamodal engagement to occur, information partially
22
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processed in one sensory hierarchy needs to interface with pre-existing representations derived from the
typical modality. The lack of evidence for metamodal engagement of the mid-STG by token-based VT stimuli in
our study and the mixed evidence in prior studies of neurotypical individuals may reflect a failure to
successfully perform this interface mapping.

The ability to map between sensory hierarchies likely depends on both anatomical and functional convergence.
Anatomical (Schroeder et al., 2003; Mothe et al., 2006a; Smiley et al., 2007) and functional studies in humans
and non-human primates (Schroeder et al., 2001; Foxe et al., 2002; Kayser et al., 2009; Ro et al., 2013) have
established convergence points between somatosensory and auditory cortices such as the belt and parabelt
areas. Given this connectivity, prior computational studies have shown that the mapping between different
representational formats can be learnt through simple biologically plausible learning rules (Pouget and Snyder,
2000; Davison and Frégnac, 2006). Still, while it is simple to learn the mapping between static features, it is
non-trivial to match the temporal dynamics between functional hierarchies (Pouget and Snyder, 2000; Davison
and Frégnac, 2006). In the auditory cortex studies (Overath et al., 2015; Moore and Woolley, 2019) have
shown that auditory stimuli that do not preserve the same temporal modulations found in conspecific
communication signals sub-optimally drive higher-order auditory cortex and preclude learning. This is
supported by our current results, that only VT vocoded stimuli that preserve these fast temporal dynamics can
drive auditory perceptual speech representations in the mid-STG.

The token-based algorithm was based on a previously published algorithm (Reed at al., 2018) where stimulus
durations were chosen to optimize recognizability. In this study, the token-based algorithm generated longer
stimuli than those generated by the vocoded algorithm. Given this difference, it is remarkable that words were
recognized equally well in both algorithms, even though the vocoded stimuli were shorter (therefore requiring
more information processed per unit time). Thus, although both algorithms were similarly learnable, effective
metamodal engagement may facilitate more efficient learning. Yet, differences in stimulus length between the
two algorithms could lead to a trivial difference in BOLD contrast responses, making our within-subject
before/after experimental design essential for controlling stimulus differences and isolating the neural effects of
training.

Intriguingly, we find stronger evidence of metamodal engagement by VT vocoded stimuli in the right rather than

left mid-STG. A significant body of work (Boemio et al., 2005; Obleser et al., 2008; Giraud and Poeppel, 2012;
23
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Flinker et al., 2019; Albouy et al., 2020) suggests that the left and right STG are differentially sensitive to
spectrotemporal content of auditory stimuli. Specifically, it has been proposed (Flinker et al., 2019) that the left
STG samples auditory information on fast and slow timescales while the right preferentially does the latter. In
the current study, our VT vocoded stimuli preserve the coarse temporal dynamics of auditory speech, but due
to hardware limitations have a lower temporal resolution than the auditory source signal. Also, the temporal
resolution of vibrotactile perception is lower than that of auditory processing — since receptors in the skin act as
additional low pass filters (Bensmaia and Hollins, 2005). Thus, the observed metamodal engagement of the
right more than the left STG provides support for the asymmetric spectrotemporal modulation theory of
hemispheric processing (Flinker et al., 2019).

Given that subjects were able to learn token-based and vocoded VT stimuli as words with roughly equal
proficiency, how does the former group accomplish this task? We initially hypothesized that the slower
temporal dynamics of token-based stimuli would engage more anterior STG areas that are thought to integrate
information on longer timescales (Overath et al., 2015; Hullett et al., 2016). However, we did not find evidence
for this in the current study. This may be due to insufficient connectivity between somatosensory and anterior
STG (Mothe et al., 2006b). However, we did find evidence that token-based stimuli engage neural
representations in the left hippocampus. This fits with previous proposals that learned associations can be
retrieved using paired-associate recall circuits in the medial temporal lobe (Miyashita, 2019). A more thorough
understanding of this process through future studies will shed additional insight into which pathways and
mechanisms are leveraged to learn different types of associations.

The present study has some limitations. For instance, token-based stimuli may be encoded in the mSTG in a
format that may be captured by an alternative mRDM. Still, we did not find a significant training effect in the
mSTG even when using a mRDM derived specifically for token-based stimuli. Likewise, our hypothesis that
only the vocoded encoding led to multimodal engagement was supported by the functional connectivity
analyses that revealed significant training-related changes in connectivity between somatosensory and
auditory areas only for the VT vocoded but not the token-based group. This acts as complementary evidence
that VT token-based stimuli are unable to “engage” the mSTG. Next, despite evidence for a training-related
effect for VT token-based stimuli in the hippocampus, this result should be interpreted with caution since the

post-training correlation was not significantly greater than 0. Finally, a limitation of the present study is the
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modest sample size used. This is especially true in the VT scans, in which only large effect sizes could be
detected. In the current study, the crucial hypothesis was that VT vocoded stimuli engaged auditory word
representations in the STG after training better than token-based VT stimuli. Mixed-effects analysis was able to
detect this significant predicted interaction. Yet, it is possible that token-based stimuli might also exhibit small
training-related changes that may have been missed due to the small sample size.

In summary, ours is the first study to use two different sensory substitution algorithms to demonstrate that
metamodal engagement in neurotypical individuals relies on a correspondence between the encoding
schemes of novel and standard sensory modality stimuli. This extends metamodal theories (Heimler et al.,
2015) that only emphasize a correspondence at the task level (Heimler et al., 2015). Consideration of these
correspondences may provide insight into how the brain maps between various levels of different functional
hierarchies like sub-lexical and lexical orthography and phonology (Share, 1999). It also suggests that
therapeutic sensory substitution devices might benefit from different algorithms for patients with acquired rather
than congenital sensory deprivation. For the former, careful consideration should be given to the type of
sensory substitution algorithm to best interfaces with spared sensory representations. The ability to
“piggyback” onto an existing processing hierarchy (e.g., auditory speech recognition) may facilitate the rapid
learning of novel stimuli presented through a spared sensory modality (e.g., VT). Future work should explore
whether this observed integration into existing processing streams leads to improved generalization and

transfer of learning.
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Figure Legends and Tables

Figure 1: VT hardware, speech-to-tactile transformation algorithms, stimuli, fMRI experimental design,
and model dissimilarity matrix. (A) 16-channel MRI-compatible VT stimulator. (B) Shows the token-based
algorithm for transforming spoken words into VT patterns. It assigns each phoneme a distinct VT pattern (see
Methods section for more details). (C) Shows the vocoding algorithm which focuses on preserving the
temporal dynamics between the auditory and VT stimuli. (D) Shows the auditory (top) and VT (bottom) fMRI
one-back paradigms used in the study. In both paradigms, subjects focused on a central fixation cross, and
pressed a button in their left hand if they heard or felt the same stimulus twice in a row. Green frame (not
shown in task) indicates such a one-back trial. Abbreviations: TR — repetition time, ITI — intertrial interval, TA —

acquisition time.

Figure 2: Behavioral level correspondence between auditory and VT stimuli. The auditory and the two VT
perceptual model representational dissimilarity matrices (MRDMs) for the 9 CVCC trained words are highly

correlated (r = 0.94) demonstrating a correspondence of stimulus similarities at the behavioral level.

Figure 3: Progression of learning VT stimuli as speech. (A) Shows the performance of individuals on the
behavioral training paradigm across sessions. The left and right plots show the training progression for
subjects in the token-based and vocoded VT groups, respectively. Data for the final training sessions for two
subjects, one per group, are missing due to technical error. Shaded lines connect the same individual across
sessions. Data for the final session of two subjects was lost due to technical error. (B) Shows the performance
of subjects by algorithm group on 10-AFC task completed after the final post-training fMRI scan. A two-sample
t-test reveals no significant difference in performance between the groups (t1s = 0.386, p = 0.704). Dashed red

line indicates chance performance. Horizontal lines in the violin plots reflect the median.

Figure 4: Univariate activity for “Stimuli-Baseline” in the auditory and VT scans. (A) Shows the group-
level speech perception network revealed by the contrast of all auditory words > baseline. (B) Shows the pre-
training group-level VT perception network revealed by the contrast of all vibrotactile words > baseline. (C)

Same as (B), but for post-training scans. Results are rendered on a SUMA-derived standard surface. All
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results are presented at a cluster-defining two-tailed oo = 0.005 and p < 0.05. LH and RH refer to left and right

hemisphere, respectively.

Figure 5: Auditory Scan — Representational similarity analysis (RSA) of vocoded auditory words. RSA
revealed that neural RDMs in bilateral STG regions significantly correlated with the predicted auditory
perceptual MRDM (Fig. 2) (n=18; oo = 0.001; p <.05). The center of mass of the left STG cluster was centered
on MNI: -58, -18, 5. The center of mass of the right STG cluster was centered on MNI: 58, -14, 3. Colors reflect

across-subject t-statistics.

Figure 6: Vocoded but not token-based VT stimuli are encoded similarly to auditory spoken words in
the mid-STG following VT speech training. Linear mixed-effects analysis revealed a significant two-way
interaction between Training Phase and Algorithm (§ = 0.240, t3;, = 2.679, p = 0.012). To investigate this
interaction, we created interaction effects plots. (A) The mean Fisher-transformed Pearson correlation between
neural and model RDMs estimated from the mixed-effects model for the vocoded group are represented by the
opaque lines. For the VT vocoded group, post-hoc tests show a significant difference between pre- and post-
training in the right (£31.1= 3.380, p = 0.008 Sidak-adjusted) but not the left STG (t31.4 = 1.781, p = 0.298 Sidak-
adjusted). (B) The same as (A) but for the token-based group. Post-hoc tests show no significant difference in
the right (t314 = -0.408, p = 0.990 Sidak-adjusted) or left STG (t31.1 = 0.250, p = 0.999 Sidak-adjusted). Values
above each violin reflect the uncorrected p-value from a one-sample t-test against 0. Semi-transparent lines
reflect raw individual subject correlations from either the left (teal) or right (orange) STG. Horizontal lines in the
violin plots reflect the median. Green asterisk marks significant (p<.05) differences after multiple comparisons

correction.

Figure 7: Training with Vocoded VT Speech Stimuli Increases Functional Connectivity Between
Somatosensory and Auditory Regions. (A) Using the right mid-STG ROI (Fig. 5) as a seed revealed two
significant clusters of increased functional connectivity after training in the left STG (MNI: -50, -19, 7) and in the

left supramarginal gyrus (MNI: -55, -28, 21). (B) Using the left Sl seed derived from the HCP-MMP1.0 atlas
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(Glasser et al., 2016) revealed a significant cluster in the left central sulcus (MNI: -40, -19, 42). It also identified
two significant clusters in the right hemisphere. The first encompassed right insula and Heschl’s gyrus (MNI:
40, -17, 11). The other is on the right STG (MNI: 63, -22, 7). All whole-brain results shown are corrected at two-
tailed voxel-wise o = 0.005 and cluster-p < 0.05. Colors reflect across-subject t-statistics. (C-D) Shows the
post-pre training correlations for the VT vocoded and token-based groups respectively using an ROI-to-ROI
functional connectivity. Color bar reflects the post-pre training difference in functional connectivity between
ROls. A paired t-test was performed to compare changes in functional connectivity post-pre training. Green

asterisks mark p < 0.05 FDR corrected.

Figure 8: Training Increases Encoding of the VT Token-Based Stimuli in the Left Hippocampus. Linear
mixed-effects analysis revealed a significant three-way interaction between Training Phase, Algorithm, and
Hemisphere (B = -0.151, {3 = -3.027, p = 0.005). To investigate this interaction, we created interaction effects
plots. (A) The mean Fisher-transformed Pearson correlation between neural and model RDMs estimated from
the mixed-effects model for the vocoded group are represented by the opaque lines. For the VT vocoded
group, post-hoc tests show a trending difference between pre- and post-training in the right (307 = 2.387, p =
0.0902 Sidak-adjusted) but not the left hippocampus (307 = 0.785, p = 0.901 Sidak-adjusted). (B) The same as
(A) but for the token-based group. Post-hoc tests show no significant difference in the right (t307 = 0.506, p =
0.978 Sidak-adjusted), but do show a significant difference in the left hippocampus (t307 = 3.232, p = 0.012
Sidak-adjusted). Values above each violin reflect the uncorrected p-value from a one-sample t-test against 0.
Semi-transparent lines reflect raw individual subject correlations from either the left (teal) or right (orange)
hippocampus. Horizontal lines in the violin plots reflect the median. Green asterisk and orange tilde mark

significant (p<.05) and trending (p<.1) differences, respectively, after multiple comparisons correction.
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Table 1: Breakdown of word stimuli presented to participants

Table 2: Location for all regions with significant activation vs baseline. Clusters are thresholded at a

voxel-wise o < 0.001 and cluster-level p < 0.05, FWE corrected.

Table 3: Location for all regions with significant training-related changes in seed-to-voxel functional
connectivity in the VT vocoded group. Clusters are thresholded at a voxel-wise o < 0.001 and cluster-

level p < 0.05, FWE corrected.
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Table 1

All Stimuli
CVCC Sand, tanned, mask, teams, toads, dense, most, nest, dance
Trained CCVC Spit, spin, stoop
CcvC Meat, peace, nose
CcvcCC Send, tend, max, seems, zones, nets, meant, mist, maps
Untrained | CCVC Snip, skin, stoke
cvC Peat, knees, soak




Table 2

HCP-MMP1.0 ROI Cluster | Center of Mass Coordinates (MNI)
Scan Hemi | (Talairach-Tournoux Atlas) | p-Value X y z
Auditory RH Parabelt Complex 0.001 57 -13 3
o g (Superior Temporal Gyrus)
Q_ LH Parabelt Complex 0.001 | -56 19 5
P (Superior Temporal Gyrus)
S Auditory 5 Complex 0.001 -62 -36 7
(Superior Temporal Gyrus)
O RH Area PF Complex 0.001 55 -25 24
CD (Inferior Parietal Lobule)
Anterior Intraparietal Area 0.001 39 -39 42
3 (Inferior Parietal Lobule)
Supplementary and 0.001 8 13 52
C Pre- Cingulate Eye Field
CU Training (Medial Frontal Gyrus)
Premotor Eye Fields 0.001 51 2 41
(Middle Frontal Gyrus)
§ Anterior Ventral Insular Area | 0.001 30 25 3
(Insula)
Area OP1/SlI 0.001 -52 -27 23
U (Inferior Parietal Lobule)
Rostral Area 6 0.001 -50 2 28
q) LH (Precentral Gyrus)
e Supplementary and 0.001 -8 9 54
Q Cingulate Eye Field
(Superior Frontal Gyrus)
q) Anterior Intraparietal Area 0.001 -45 -38 42
(Inferior Parietal Lobule)
O Anterior Ventral Insular Area | 0.001 -30 25 7
o (Insula)
Frontal Eye Fields 0.002 -30 -3 48
< (Middle Frontal Gyrus)
Retroinsular Cotex 0.001 53 -32 25
— (Inferior Parietal Lobule)
RH Supplementary and 0.001 7 15 49
o Post- Cingulate Eye Field
m Training (Medial Frontal Gyrus)
Area PF Opercular 0.003 57 -16 22
O (Post Central Gyrus)
L Area Posterior 24 Prime 0.019 7 2 65
(Medial Frontal Gyrus)
D) Rostral Area 6 0.001 | -48 2 29
(Precentral Gyrus)
q) Area PF Opercular 0.001 -59 -22 25
LH (Post Central Gyrus)
Z Area PF Complex 0.001 -50 -40 26
(Inferior Parietal Lobule)
: Supplementary and 0.001 -9 14 49

Cingulate Eye Field
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(Medial Frontal Gyrus)

Area 6 Anterior 0.001 -29 -5 48
(Middle Frontal Gyrus)
Anterior Intraparietal Area 0.002 -47 -35 42
(Inferior Parietal Lobule)
Anterior Intraparietal Area 0.002 -35 -44 40

(Inferior Parietal Lobule)




Table 3

HCP-MMP1.0 ROI Cluster | Center of Mass Coordinates (MNI)
Seed ROl | Hemi | (Talairach-Tournoux Atlas) | p-Value X y z
1S2 Insular Granular Complex 0.001 40 -17 11
RH (Insula)
Auditory 5 Complex 0.001 63 -22 7
(Superior Temporal Gyrus)
LH Primary Motor Cortex 0.012 -40 -19 42
(Precentral Gyrus)
ISTG RH Lateral Belt Complex 0.001 53 -18 6
(Superior Temporal Gyrus)
rS2 RH Posterior Insular Area 2 0.017 37 -8 6
(Insula)
LH Area OP2-3/VS 0.026 -42 -16 20
(Insula)
rISTG Area PF¢n, 0.026 -55 -28 21
LH (Postcentral Gyrus)
Lateral Belt Complex 0.044 -50 -19 7
(Superior Temporal Gyrus)
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