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Abstract—Recently, rate-1/n zero-terminated (ZT) and tail-
biting (TB) convolutional codes (CCs) with cyclic redundancy
check (CRC)-aided list decoding have been shown to closely
approach the random-coding union (RCU) bound for short
blocklengths. This paper designs CRC polynomials for rate-
(n− 1)/n ZT and TB CCs with short blocklengths. This paper
considers both standard rate-(n−1)/n CC polynomials and rate-
(n − 1)/n designs resulting from puncturing a rate-1/2 code.
The CRC polynomials are chosen to maximize the minimum
distance dmin and minimize the number of nearest neighbors
Admin . For the standard rate-(n− 1)/n codes, utilization of the
dual trellis proposed by Yamada et al. lowers the complexity of
CRC-aided serial list Viterbi decoding (SLVD). CRC-aided SLVD
of the TBCCs closely approaches the RCU bound at a blocklength
of 128. This paper compares the FER performance (gap to the
RCU bound) and complexity of the CRC-aided standard and
punctured ZTCCs and TBCCs. This paper also explores the
complexity-performance trade-off for three TBCC decoders: a
single-trellis approach, a multi-trellis approach, and a modified
single-trellis approach with pre-processing using the wrap around
Viterbi algorithm.

I. INTRODUCTION

The structure of concatenating a convolutional code (CC)

with a cyclic redundancy check (CRC) code has been a

popular paradigm since 1994 when it was proposed in the

context of hybrid automatic repeat request (ARQ) [2]. It was

subsequently adopted in the cellular communication standards

of both 3G [3] and 4G LTE [4]. In general, the CRC code

serves as an outer error-detecting code that verifies if a

codeword has been correctly received, whereas the CC serves

as an inner error-correcting code to combat channel errors.

Recently, there has been a renewed interest in designing

powerful short blocklength codes. This renewed interest is

mainly driven by the development of finite blocklength in-

formation theory by Polyanskiy et al., [5] and the strin-

gent requirement of ultra-reliable low-latency communication

(URLLC) for mission-critical IoT (Internet of Things) services
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[6]. In [5], Polyanskiy et al. developed a new achievability

bound known as the random-coding union (RCU) bound and

a new converse bound, known as the meta-converse (MC)

bound. Together, these two bounds characterize the error

probability range for the best short blocklength code of length

N with M codewords. The URLLC for mission-critical IoT

requires that the time-to-transmit latency is within 500 µs

while maintaining a block error rate no greater than 10−5.

Several short blocklength code designs have been proposed

in the literature. Important examples include the tail-biting

(TB) convolutional codes decoded using the wrap around

Viterbi algorithm (WAVA) [7], extended BCH codes under

ordered statistics decoding [8], [9], non-binary low-density

parity-check (LDPC) codes [10], non-binary turbo codes [11],

and polar codes under CRC-aided successive-cancellation list

decoding [12]. Recent advances also include the polarization

adjusted convolutional codes proposed by Arıkan [13]. As a

comprehensive overview, Coşkun et al. [8] surveyed most of

the contemporary short blocklength code designs in the recent

decade. We refer the reader to [8] for additional information.

In [14], Yang et al. proposed CRC-aided CCs as a powerful

short blocklength code for binary-input (BI) additive white

Gaussian noise (AWGN) channels. The convolutional encoder

of interest has rate-1/n and is either zero-terminated (ZT) or

TB. Yang et al. seek to design a distance-spectrum optimal

(DSO) CRC polynomial that minimizes frame error rate (FER)

at a specified signal-to-noise ratio. For high SNR this is often

equivalent to selecting the CRC polynomial that maximizes

the minimum distance and minimizes the number of nearest

neighbors for the resulting concatenated code. This design

follows the approach of Lou et. al. [15] for designing CRC

polynomials matched to the CC for improved error detection.

The presence of a CRC facilitates the use of the serial

list Viterbi decoding (SLVD), an efficient algorithm originally

proposed by Seshadri and Sundberg [16]. Yang et al. [14]

showed that the expected list rank of SLVD of the CRC-

aided CC is small at high SNR, thus achieving a low average

decoding complexity at operating points of common interest.

Yang et al. [14] demonstrated that these concatenated codes

can approach the RCU bound. In [17], [18], Schiavone ex-

tended this line of work by looking at the parallel list Viterbi

decoding and applying this perspective to legacy coding. In our

precursor conference paper [1], this framework is extended to

rate-(n−1)/n CCs and the resulting concatenated code is able

to approach the RCU bound with a low decoding complexity

as well.

http://arxiv.org/abs/2212.04064v4
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A. Contributions

This paper presents designs of CRC-aided ZT and TB

CCs for rate-(n − 1)/n CCs at short blocklengths for the

BI-AWGN channel. Each CRC polynomial is selected to

maximize the minimum distance and minimizes the number

of nearest neighbors for the resulting concatenated code. If

SLVD is performed with a sufficiently large maximum list

size such that finding a CRC-passing codeword is guaranteed,

then SLVD is an implementation of maximum-likelihood (ML)

decoding for these concatenated codes.

We consider standard, systematic, rate-(n− 1)/n feedback

convolutional encoders [19], as well as encoders obtained by

puncturing the output of a rate-1/2 convolutional encoder, as

proposed by Cain et al. [20]. The resulting concatenated codes

are called a standard or punctured CRC-ZTCC or CRC-TBCC,

respectively.

For the standard CCs, SLVD on the primal trellis requires

high decoding complexity due to the 2n−1 outgoing branches

at each node. SLVD implementation becomes exponentially

more complicated when there are more than two outgoing

branches per state. In order to simplify SLVD implementation

and reduce complexity, we utilize the dual trellis pioneered by

Yamada et al. [21]. The dual trellis expands the length of the

primal trellis by a factor of n, while reducing the number of

outgoing branches at each node from 2n−1 to at most two.

For the punctured codes, Cain et al. [20] were the first to

propose obtaining high-rate CCs through puncturing a rate-1/2
code to allow the use of a simple primal trellis for decoding. In

[22], Haccoun and Bégin presented optimal encoder generators

of the original rate-1/2 codes and the corresponding punctur-

ing matrices for the rate-(n − 1)/n punctured codes. A list-

decoding sieve [23] is used to identify the CRC polynomials

that maximize the minimum distance and minimize the number

of nearest neighbors for the Haccoun and Bégin punctured

codes.

For ZTCCs, a work related to this line of research is that

of Karimzadeh and Vu [24]. They considered designing the

optimal CRC polynomial for multi-input ZTCCs. In their

framework, the information sequence is first divided into

(n − 1) streams, one for each input rail, and they aim

at designing an optimal CRC polynomial for each rail. In

contrast, this paper encodes the information sequence with

a single CRC polynomial and is then divided into (n − 1)
streams for the standard rate-(n − 1)/n encoder. Simulation

results indicate the new approach improves FER performance

at high SNRs.

For TBCCs, simulations show that for both the standard and

punctured rate-(n− 1)/n TBCCs with blocklength N = 128,

the FER performance of our CRC-aided TBCCs approaches

the RCU bound as the degree m of the CRC polynomial

increases.

This paper considers three architectures to enforce the

TB condition for CRC-TBCCs. One approach performs list

decoding on a single trellis that allows all initial states. As

the list decoder identifies possible trellis paths, non-tail-biting

paths are rejected. At low SNR, SLVD on the single trellis

requires a large list size to identify the ML TB codeword, with

a majority of trellis paths not satisfying the TB condition.

An alternative is a multi-trellis approach that initializes

multiple copies of the dual trellis, one for each possible

starting and ending state pair. The multi-trellis approach re-

quires a much smaller list size because only TB paths are

added to the list. This approach avoids the decoding time

complexity of potentially exploring a large list at the cost

of the computational and space complexity of creating and

storing multiple trellises. It can provide a benefit over the

single-trellis approach in low-SNR environments.

A third approach to TB decoding that can be applied in

the context of the single-trellis list decoder is the wrap-

around Viterbi algorithm (WAVA). Introduced in [25], WAVA

is a near-ML decoding algorithm for TBCCs. To achieve the

balance of decoding time and space efficiency, this paper

combines the wrap-around behavior of WAVA with SLVD

for TBCCs. The decoding process is completed in two steps:

the WAVA step with at most 2 trellis iterations, and the list

decoding step with a sufficiently large list size such that there

are no negative acknowledgment signals. Simulation results

demonstrate that this decoding method reduces the average

list size as compared with the single-trellis decoder without

WAVA, but this reduction comes at a cost of degraded FER

performance.

This paper culminates by providing plots that show the

trade-off between decoder complexity and FER performance

computed as the gap from the RCU bound at FER 10−4

and FER vs. SNR results that show both punctured and

standard TBCCs performing within 0.1 dB of the RCU bound

with a degree-10 CRC polynomial designed to maximize

the minimum distance and minimize the number of nearest

neighbors.

B. Organization

The remainder of this paper is organized as follows. Sec. II

reviews systematic encoding with feedback for (n, n − 1, v)
convolutional codes and describes the dual trellis construction.

Sec. III introduces various serial list decoders for rate-(n −
1)/n CCs. Sec. IV presents optimal CRC polynomial designs

for standard and punctured high-rate codes using a trellis event

enumeration method and a sieve method. Sec. V analyzes the

trade-off between complexity and decoding performance of

these designs. Sec. VI presents simulation results comparing

FER performance of our designs to the RCU bound and to the

Karimzadeh and Vu approach. Finally, Sec. VII concludes the

paper.

II. THE DUAL TRELLIS

This section describes systematic encoding for (n, n− 1, v)
convolutional codes and introduces the dual trellis proposed

by Yamada et al. [21] for high-rate CCs generated with an

(n, n− 1, v) convolutional encoder, where v is the number of

memory elements in the encoder. This section also discusses

the tree-trellis algorithm for list decoding and its benefits.

Let K and N denote the information length and blocklength

in bits. Let R = K/N denote the rate of the CRC-aided CC.

A degree-m CRC polynomial is of the form p(x) = 1+p1x+
· · ·+pm−1x

m−1+xm, where pi ∈ {0, 1}, i = 1, 2, . . . ,m−1.
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For brevity, a CRC polynomial is represented in hexadecimal

where its binary coefficients are written from the highest to

lowest order. For instance, 0xD represents x3 + x2 + 1. The

codewords are BPSK modulated. The SNR is defined as γs ,
10 log10(A

2) (dB), where A represents the BPSK amplitude

and the noise is distributed as a standard normal. This SNR

can also be written as 2Ec

No

= 2REb

No

, where Ec is the channel

symbol energy, Eb is the bit energy, and No

2 is the two-sided

power spectral density of noise.

A. Systematic Encoding

We briefly follow [19, Chapter 11, p. 482] in describing

a systematic (n, n− 1, v) convolutional encoder with reverse

input and output labelling1. A systematic (n, n− 1, v) convo-

lutional encoder can be represented by its parity check matrix

H(D) = [h(n−1)(D), h(n−2)(D), . . . , h(0)(D)], (1)

where each h(i)(D) is a polynomial of degree up to v in delay

element D associated with the i-th code stream, i.e.,

h(i)(D) = h(i)
v Dv + h

(i)
v−1D

v−1 + · · ·+ h
(i)
0 , (2)

where h
(i)
j ∈ {0, 1}. For convenience, we represent each

h(i)(D) in octal form. For instance, H(D) = [D3 + D2 +
D + 1, D3 + D2 + 1, D3 + D + 1] can be concisely writ-

ten as H = (17, 15, 13). Let h(i) , [h
(i)
v , h

(i)
v−1, . . . , h

(i)
0 ],

i = 0, 1, . . . , n− 1. Since the 0th code stream corresponds to

the parity check bit and the ith code stream corresponds to

the ith input bit for 1 ≤ i ≤ n − 1, the systematic encoding

matrix G(D) associated with H(D) is thus given by

G(D) =















h(1)(D)
h(0)(D)

1 0 · · · 0
h(2)(D)
h(0)(D)

0 1 · · · 0

...
...

...
. . .

...
h(n−1)(D)

h(0)(D)
0 0 · · · 1















. (3)

To satisfy the TB condition for the feedback encoder, we

use a similar procedure as that for turbo codes [26]. First, we

use a pre-encoding operation to encode from the all-zero state

and obtain a final state. Depending on that final state, an initial

state is selected and the message re-encoded from this state

satisfies the TB condition.

B. Constructing the Dual Trellis

The primal trellis associated with a rate-(n − 1)/n ZTCC

has 2n−1 outgoing branches per state. Performing SLVD over

the primal trellis when n > 2 is highly complex. In [14], the

low decoding complexity of SLVD for rate-1/n convolutional

codes relies on the fact that each state only has 2 outgoing

branches. In order to efficiently perform SLVD, we consider

the dual trellis proposed by Yamada et al. [21].

We briefly explain the dual trellis construction for parity

check matrix

1The reverse input (resp. output) labeling means that the labels from top to
bottom of the input (resp. output) streams are arranged in decreasing order.

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

S0 S1 S2 S3
S4/S0

y0k y1k y2k y3k

000

001

010

011

100

101

110

111

root

S4

Fig. 1. Dual trellis diagram for rate-3/4 TBCC with a root node at the end
for encoder H = (7, 5, 2, 6) with v = 2. Solid lines represent 0 paths and
dashed lines represent 1 paths.

H(D) = [h(n−1)(D), h(n−2)(D), . . . , h(0)(D)]. First, we de-

fine the maximum instant response order λ as

λ , max{j ∈ {0, 1, . . . , n− 1} : h
(j)
0 = 1}. (4)

The state of the dual trellis is represented by the partial sums

of (v+1) adders in the observer canonical form of H(D). At

time index j, j = 0, 1, . . . , n− 1, the state is given by

s(j) = [s(j)v , s
(j)
v−1, . . . , s

(j)
0 ]. (5)

Next, we show how the state s(j) evolves in terms of the

output bits yk = [y
(0)
k , y

(1)
k , . . . , y

(n−1)
k ], k = 1, 2, . . . , N/n,

so that a dual trellis can be established.

Dual trellis construction for yk = [y
(0)
k , y

(1)
k , . . . , y

(n−1)
k ]:

1) At time j = 0, s(0) = [0, s
(j)
v−1, s

(j)
v−2, . . . , s

(j)
0 ], where

s
(0)
i ∈ {0, 1}. Namely, only 2v states exist at j = 0.

2) At time j, j < n− 1, draw branches from each state s(j)

to the states s(j+1) that satisfy

s(j+1) = s(j) + y
(j)
k h(j), y

(j)
k ∈ {0, 1}. (6)

3) At time j = n−1, draw branches from each state s(n−1)

to state s(n) by

s(n) =
(

s(n−1) + y
(n−1)
k h(n−1)

)r

, y
(n−1)
k ∈ {0, 1},

(7)

where (av, av−1, . . . , a1, a0)
r = (0, av, av−1, . . . , a1).

4) For time j = λ, draw a branch from each state s(λ)

according to (6) only for y
(λ)
k = s

(λ)
0 .

After repeating the above construction for each yk, k =
1, 2, . . . , N/n, we obtain the dual trellis associated with the

(n, n − 1, v) convolutional code. Since the primal trellis is

of length N/n, whereas the dual trellis is of length N , the

dual trellis can be thought of as expanding the primal trellis

length by a factor of n, while reducing the number of outgoing

branches per state from 2n−1 to less than or equal to 2. Fig.

1 illustrates the dual trellis structure for a rate-3/4 code with

2 memory elements.

For an (n, n−1, v) CC, zero termination over the dual trellis

requires at most n⌈v/(n − 1)⌉ steps. In our implementation,
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Fig. 2. Comparison of the parametric approximation [14] of the expected
list rank E[L] with the simulated results for the v = 4, m = 3 CRC-TBCC
generated by H = (33, 25, 37, 31) with blocklength of 128. The optimal
CRC used is 0x9.

a breadth-first search identifies the zero-termination input and

output bit patterns that provide a trajectory from each possible

state s to the zero state. The input and output bit patterns have

lengths (n− 1)⌈v/(n− 1)⌉ and n⌈v/(n− 1)⌉ respectively.

III. SERIAL LIST VITERBI DECODING FOR TBCCS

This section considers three SLVD methods that apply to

both the standard and punctured high-rate TBCCs. SLVD

enumerates possible paths through the trellis, starting from the

lowest weight path, stopping once the first path that satisfies

both the CRC and the TB condition is reached. Information

about the previously investigated paths and path metrics is

required to find the next optimal path.

To efficiently implement SLVD, we use the tree-trellis

algorithm (TTA) [27], which maintains a sorted list of nodes

indexed by path metric. These nodes either correspond to

a previously unexplored ending state in the trellis or to a

previously explored path and a detour. This approach allows

the efficient determination of the next path to be explored if the

current one does not satisfy both the CRC and TB conditions.

In order to efficiently maintain the sorted list of nodes, this

paper uses a Min Heap [28], which is easier to implement than

the Red-Black tree [29] [30] and has the same O(log ℓ) time

complexity, where ℓ is the number of elements in the heap.

This simpler Min Heap implementation comes at the cost of

an increased memory requirement compared to the Red-Black

Tree since the heap has to maintain every element, as opposed

to the best L elements for the tree.

A. Single Trellis Decoder

To adapt SLVD to handle the multiple terminating states

that are possible with a TBCC, a root node is added as shown

in Fig. 1. The root node connects to all terminating states of

the trellis. The Hamming distance of the branch metric for

the branch connecting any state to this root node is zero. This

additional root node allows the trellis to end in a single state.

Fig. 3. Cumulative distribution function (CDF) of list ranks for the single-
trellis, multi-trellis, and WAVA decoding approaches at SNR γs = 2 and 5
dB for the (33, 25, 37, 31) TBCC with blocklength of 128.

B. Multi-Trellis Decoder

Decoding on a single dual trellis (single-trellis approach)

leads to complexity issues, because the decoder goes through

a number of paths that pass neither the TB check nor CRC,

resulting in high expected list ranks at low SNRs. To decode

more efficiently, we propose a multi-trellis approach that

includes only TB paths in the list.

The multi-trellis approach constructs 2v trellises. Each

multi-trellis follows the same structure as the original punc-

tured or dual trellis, but with only one starting and ending

state to enforce the TB condition. In a conceptually similar

manner to how a root node was added to the dual trellis in

Fig. 1, a root node is also added to the multi-trellis approach,

but paths to the root node only come from the single ending

state in each trellis that guarantees the TB condition.

Since all paths found using this approach will be TB,

this significantly reduces the expected list size at low SNRs.

However, at high SNRs, the multi-trellis approach has a

substantially higher decoding complexity due to the additional

upfront cost of constructing the dual trellises. In this case, the

extra resources taken to initialize the multi-trellis approach

bring down the overall decoder efficiency.

C. Wrap-Around Viterbi Algorithm Decoder

As the constraint length of a TBCC increases, the number of

states grows exponentially. The multi-trellis approach becomes

impractical due to both time and memory for constructing the

trellises. Thus, we consider a non-ML single-trellis decoder

that uses WAVA [25] to reduce the average list rank. In [31],

the authors show that a WAVA-inspired parallel list Viterbi

decoder achieves good performance with low complexity.

Fig. 2 extends the parametric approximation of the expected

list rank shown in [14] to the single-trellis decoding of high-

rate CRC-TBCCs. The approximation lines up well with the

simulation results for a v = 4 TBCC with a degree-3 CRC. In

addition, an initial examination of the list rank distributions

for the three decoding schemes at SNR points of 2 and 5
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dB is presented in Fig. 3. At a low SNR, the multi-trellis

approach maintains an extremely small list rank compared

to the other approaches. The WAVA approach also has a

substantially larger probability of a small list rank compared to

the single-trellis, but not as small as the multi-trellis. Although

the ordering is preserved as SNR increases, additional pre-

processing to reduce list rank is inconsequential since the list

ranks of all three approaches are low. Considering the extra

complexity of constructing the multi-trellis approach and the

non-ML nature of the WAVA approach, we use the single-

trellis SLVD for simulations. Different distributions lead to

different E[I] and E[L] values when evaluating the decoding

complexity, where E[I] is the expected number of insertions

to maintain the sorted list of path metric differences.

The non-ML decoder with WAVA proceeds in two steps. In

the first step, the algorithm initializes each state of a single

dual or punctured trellis with all zero metrics. It then performs

two iterations of add-compare-select (ACS) along the trellis.

Each time the end of the trellis is encountered, the initial states

of the trellis are initialized to the cumulative metrics in the

final states. At the end of the first iteration, if the optimal path

satisfies TB and CRC conditions, the algorithm outputs this

path and stops decoding. In the second step, SLVD runs on the

ending metrics of the second trellis iteration. This decoding

algorithm improves the reliability of the final decision for

the optimal traceback path and decreases the expected list

rank while keeping the complexity low. The WAVA metrics

are not ML and this algorithm has slightly worse decoding

performance than the other two ML approaches.

IV. OPTIMAL CRC POLYNOMIAL DESIGN

This section presents two approaches for designing CRC

polynomials that maximize the minimum distance and mini-

mize the number of nearest neighbors: a trellis enumeration

method extended from [14] and a list decoding sieve method

proposed in [23]. As a case study, this paper mainly focuses on

the rate-3/4 systematic feedback convolutional codes in [19,

Table 12.1(e)] and the punctured rate-3/4 convolutional codes

in [22].

A. CRC Polynomials for Standard Zero-Terminated Codes

In this paper, we focus on the low FER regime. Thus, the

CRC polynomials identified in this paper simply maximize

the minimum distance dmin of the concatenated code and

minimizes the number of nearest neighbors. Examples in

[14] indicate that CRC polynomials designed in this way can

provide optimal or near-optimal performance for a wide range

of SNRs.

We apply the CRC polynomial design algorithm in [14] to

identify CRC polynomials for high-rate ZTCCs. The first step

is to collect the irreducible error events (IEEs), which are ZT

paths on the trellis that deviate from the zero state once and

rejoin it once. IEEs with a very large output Hamming weight

do not affect the choice of optimal CRC polynomials. In order

to reduce the runtime of the CRC optimization algorithm,

IEEs with output Hamming weight greater than or equal

to a threshold d̃ are not considered. Dynamic programming

TABLE I
OPTIMAL CRC POLYNOMIALS FOR STANDARD RATE-3/4 ZTCC AT

BLOCKLENGTH N = 128 GENERATED BY H = (33, 25, 37, 31) WITH

v = 4, BY H = (47, 73, 57, 75) WITH v = 5,
AND BY H = (107, 135, 133, 141) WITH v = 6

K m v = 4 v = 5 v = 6
CRC dmin Admin

CRC dmin Admin
CRC dmin Admin

90 0 0x1 4 60 0x1 5 200 0x1 6 736
89 1 0x3 4 30 0x3 5 113 0x3 6 331
88 2 0x7 5 85 0x7 5 56 0x7 6 106
87 3 0x9 5 1 0x9 5 1 0xB 6 34
86 4 0x1B 6 251 0x15 6 54 0x1D 6 3
85 5 0x25 6 32 0x25 7 156 0x25 7 27
84 6 0x4D 7 155 0x7B 7 76 0x6F 7 1
83 7 0xF3 7 45 0xED 8 194 0x97 8 12
82 8 0x1E9 8 145 0x1B7 8 25 0x1B5 9 375
81 9 0x31B 8 27 0x3F1 8 1 0x2F1 9 65
80 10 0x5C9 9 168 0x66F 9 2 0x59F 10 490
79 11 0xC2B 10 1015 0xE8D 10 293 0xD2D 10 42

constructs all ZT paths of length equal to N/n and output

weight less than d̃. Finally, we use the resulting set of ZT

paths to identify the degree-m optimal CRC polynomial for

the rate-(n− 1)/n CC.

In [14], Yang et al. provided a useful result for selecting

threshold d̃.

Theorem 1 (Th. 2, [14]): Define the higher-rate code Ch by

Ch ,
{

c ∈ {0, 1}n : c = vG, ∀v ∈ {0, 1}k+m
}

, (8)

where G ∈ {0, 1}(k+m)×n is the matrix representation of the

convolutional encoder. Given a specified CRC degree m and

a higher-rate code Ch with distance spectrum Bdh

min
, . . . , Bn,

define w∗ as the minimum w for which
∑w

d=dh

min
Bd ≥ 2m.

For any degree-m CRC polynomial, we have dlmin ≤ 2w∗.

Theorem 1 shows that it suffices to choose d̃ = 2w∗ + 1
to identify the degree-m CRC polynomial that maximizes

the minimal distance. In practice, the weight w∗ can be

efficiently determined from the weight enumerating function

of a convolutional code [19, p. 488].

Table I presents the optimal CRC polynomials for ZTCCs

generated with H = (33, 25, 37, 31), H = (47, 73, 57, 75),
and H = (107, 135, 133, 141). Table I also shows the mini-

mum distance dmin and number of nearest neighbors Admin

of the CRC-ZTCCs. The design assumes a fixed blocklength

N = 128 bits. Due to the overhead caused by the CRC bits

and by zero termination, the rates of CRC-ZTCCs are less

than 3/4. Specifically, for a given information length K , CRC

degree m and an (n, n− 1, v) encoder, the blocklength N for

a CRC-ZTCC is given by

N =

(

K +m+ (n− 1)

⌈

v

n− 1

⌉)

n

n− 1
, (9)

giving

R =
K

N
=

n− 1

n

K

K +m+ (n− 1)⌈ v
n−1⌉

. (10)

We see from (9) that the (n, n − 1, v) convolutional encoder

can accept any CRC degree m as long as K +m is divisible

by (n− 1).
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TABLE II
OPTIMAL CRC POLYNOMIALS FOR PUNCTURED RATE-3/4 ZTCC AT

BLOCKLENGTH N = 128 GENERATED BY G = (23, 25) WITH v = 4, BY

G = (53, 75) WITH v = 5, AND BY G = (133, 171) WITH v = 6

K + v m v = 4 v = 5 v = 6
CRC dmin Admin

CRC dmin Admin
CRC dmin Admin

96 0 0x1 3 31 0x1 4 29 0x1 5 223
95 1 0x3 4 29 0x3 5 224 0x3 5 112
94 2 0x7 6 2173 0x7 5 83 0x7 6 427
93 3 0xF 6 597 0x9 6 379 0x9 6 135
92 4 0x11 6 323 0x1F 6 53 0x13 7 245
91 5 0x27 6 101 0x39 7 213 0x23 8 1206
90 6 0x71 7 286 0x79 7 46 0x65 8 590
89 7 0xC7 7 54 0x85 8 216 0xFD 8 122
88 8 0x199 8 407 0x153 8 22 0x163 8 17
87 9 0x20B 8 68 0x353 9 247 0x247 10 2158
86 10 0x439 9 400 0x7CD10 1631 0x4E7 10 342

B. CRC Polynomials for Punctured Zero-Terminated Codes

In [23], the authors proposed an efficient list decoding

sieve method to identify the distance-optimal CRC polynomial

of a given degree. This approach takes a noiseless all-zeros

codeword as the received signal and performs serial list

Viterbi decoding to explore codewords in order of increasing

Hamming weight. For each new codeword added to the list,

we check if it passes any of the degree-m CRC polynomi-

als. If a CRC polynomial can eliminate all codewords of a

certain Hamming weight, the sieve approach keeps this CRC

polynomial and codewords of the next greater weight are

explored. The list decoding sieve continues until it reaches

a codeword weight where all CRC polynomials check at least

one codeword. This weight is the largest dmin that a degree-

m CRC polynomial can achieve. The CRC polynomial that

checks the least number of codewords at dmin is selected as the

optimal CRC polynomial. This approach is computationally

more efficient than the error event construction method of

Yang [14] while producing the same results.

We follow the puncturing patterns provided [22] for rate-

3/4 CCs with v = 4, 5, 6. These punctured CCs are obtained

from puncturing 4 out of every 6 bits (3 symbols) for rate-

1/2 convolutional codes. The blocklength of all CRC-CCs is

N = 128 bits.

Table II shows the optimal CRC polynomials obtained

by the list decoding sieve approach for punctured ZTCCs

generated with G = (23, 25), G = (53, 75), G = (133, 171),
as well as the corresponding dmin and Admin of the CRC-

ZTCCs. For a feedforward code, the ZT condition is satisfied

by inputting v zero bits at the end of the information sequence.

Thus, for a given information length K , the blocklength N of

the punctured code is given by

N = (K +m+ v)
n

n− 1
. (11)

The real rate of this code is given by

R =
K

N
=

n− 1

n

K

K +m+ v
. (12)

In general, the punctured CRC-ZTCCs have smaller dmin

values and more nearest neighbors than the standard CRC-

ZTCCs.

TABLE III
OPTIMAL CRC POLYNOMIALS FOR STANDARD RATE-3/4 TBCC AT

BLOCKLENGTH N = 128 GENERATED BY H = (33, 25, 37, 31) WITH

v = 4, BY H = (47, 73, 57, 75) WITH v = 5,
AND BY H = (107, 135, 133, 141) WITH v = 6

K m v = 4 v = 5 v = 6
CRC dmin Admin

CRC dmin Admin
CRC dmin Admin

96 0 0x1 4 64 0x1 5 224 0x1 6 864
95 1 0x3 4 32 0x3 5 128 0x3 6 384
94 2 0x7 5 96 0x7 5 64 0x7 6 128
93 3 0x9 6 736 0x9 6 192 0xB 6 36
92 4 0x1B 6 320 0x15 6 64 0x1D 6 6
91 5 0x25 6 31 0x37 6 2 0x23 7 49
90 6 0x4D 6 1 0x4F 7 98 0x53 8 326
89 7 0xA3 7 70 0xD1 8 446 0xB1 8 76
88 8 0x10D 8 411 0x149 8 73 0x1D3 8 8
87 9 0x2ED 8 138 0x255 8 14 0x3F7 9 208
86 10 0x63B 8 23 0x70F 8 1 0x529 9 90
85 11 0xCA5 9 125 0xD57 9 17 0x9BD 10 387
84 12 0x1ED7 10 904 0x1B41 10 339 0x10AF 10 53

C. CRC Polynomials for Standard Tail-Biting Codes

The design of CRC polynomials for standard high-rate

TBCCs follows the two-phase design algorithm shown in [14].

This algorithm is briefly explained below.

Consider a TB trellis T = (V,E,A) of length N , where A
denotes the set of output alphabet, V denotes the set of states,

and E denotes the set of edges described in an ordered triple

(s, a, s′) with s, s′ ∈ V and a ∈ A [32]. Assume |V | = 2v

and let V0 = {0, 1, . . . , 2v−1}. Define the set of IEEs at state

σ ∈ V as

IEE(σ) ,
⋃

l=1,2,...,N

IEE(σ, l), (13)

where

IEE(σ, l) ,{(s,a) ∈ V l+1
0 ×Al : s0 = sl = σ;

∀j, 0 < j < l, sj /∈ {0, 1, . . . , σ}}.
(14)

By concatenating elements in IEE(σ), one can build an

arbitrarily long TB path that starts and ends at state σ. The

first phase is called the collection phase, during which the

algorithm collects IEE(σ) with output Hamming weight less

than the threshold d̃ over a sufficiently long TB trellis. The

second phase is called the search phase, during which the

algorithm first reconstructs all TB paths of length N/n and

output weight less than d̃ via concatenation of the IEEs

and circular shifting of the resulting path. Then, using these

TB paths, the algorithm searches for the degree-m optimal

CRC polynomial by maximizing the minimum distance of the

undetected TB path.

Table III presents the optimal CRC polynomials for TBCCs

generated with H = (33, 25, 37, 31), H = (47, 73, 57, 75),
and H = (107, 135, 133, 141). 2 The design assumes a fixed

blocklength N = 128. TB encoding avoids the rate loss caused

by the overhead of zero termination. Specifically, for a given

information length K , CRC degree m and an (n, n − 1, v)
encoder, the blocklength N for a CRC-TBCC is given by

N = (K +m)
n

n− 1
, (15)

2This table is updated from [1], as an error was discovered in the previous
CRC polynomial design procedure.
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Fig. 4. Distribution of dmin of all CRC polynomials of degree 5 (top) and
10 (bottom) when concatenated with the v = 4 standard TBCC generated b
H = (33, 25, 37, 31).

giving

R =
K

N
=

n− 1

n

K

K +m
. (16)

Fig. 4 shows the distribution of minimum distances for all

degree-5 and 10 CRC polynomials for v = 4 CRC-TBCCs.

While multiple CRC polynomials have the same maximized

dmin, their Admin differ. The optimal CRC polynomial designs

have the minimal Admin value. This range of dmin values

validates the effectiveness of our CRC polynomial design

approach in the high-rate scenario.

D. CRC Polynomials for Punctured Tail-Biting Codes

The sieve method described in Sec. IV-B is extended to

TBCCs efficiently with the application of the multi-trellis

SLVD, since all codewords discovered by the multi-trellis

satisfy the tail-biting condition. Table IV shows the optimal

CRC polynomial designs for v = 4, 5, 6 punctured TBCCs

generated with G = (23, 25), G = (53, 75), G = (133, 171).
Since there is no overhead of terminations, the punctured

TBCCs have the same blocklength and rate at a given informa-

tion length. Similar to the ZT case, a rate-1/2 code punctured

to rate-3/4 has slightly worse dmin and Admin values compared

to a standard rate-3/4 TBCC.

V. COMPLEXITY ANALYSIS

In this section, we will discuss the decoding complexity

for all SLVD methods presented in Sec. III. Section V-A

covers the complexity analysis of rate-(n − 1)/n standard

ZTCCs and TBCCs on a dual trellis. Section V-B provides

the decoding complexity equations for punctured CCs. Finally,

section V-C visualizes the performance-complexity trade-offs

between the standard and punctured codes. The WAVA decoder

is a low-complexity alternative for TBCCs, and we explore its

complexity and performance for standard TBCCs.

TABLE IV
OPTIMAL CRC POLYNOMIALS FOR PUNCTURED RATE-3/4 TBCC AT

BLOCKLENGTH N = 128 GENERATED BY G = (23, 25) WITH v = 4, BY

G = (53, 75) WITH v = 5, AND BY G = (133, 171) WITH v = 6

K m v = 4 v = 5 v = 6
CRC dmin Admin

CRC dmin Admin
CRC dmin Admin

96 0 0x1 3 32 0x1 4 32 0x1 5 256
95 1 0x3 4 32 0x3 5 256 0x3 5 128
94 2 0x7 6 2512 0x7 5 96 0x7 6 512
93 3 0xF 6 688 0x9 6 448 0x9 6 160
92 4 0x11 6 368 0x15 6 96 0x1B 6 64
91 5 0x33 6 176 0x25 6 7 0x3F 8 1637
90 6 0x71 6 7 0x55 7 224 0x77 8 767
89 7 0xD5 6 2 0xC3 8 1166 0xBD 8 365
88 8 0x1EB 7 20 0x129 8 281 0x101 8 27
87 9 0x343 8 211 0x367 8 79 0x2B7 8 4
86 10 0x677 8 69 0x41D 8 4 0x40D 8 1

A. Dual Trellis SLVD for Standard ZTCC and TBCC

In [14], the authors provided the complexity expression for

SLVD of CRC-ZTCCs and CRC-TBCCs, where the convo-

lutional encoder is of rate 1/n. Observe that the dual trellis

has no more than 2 outgoing branches per state, similar to

the trellis of a rate-1/n CC. Thus, we directly apply their

complexity expression to SLVD over the dual trellis.

As noted in [14], the overall average complexity of SLVD

can be decomposed into three components:

CSLVD = CSSV + Ctrace + Clist, (17)

where CSSV denotes the complexity of a standard soft Viterbi

(SSV), Ctrace denotes the complexity of the additional trace-

back operations required by SLVD, and Clist denotes the

average complexity of inserting new elements to maintain an

ordered list of path metric differences.

CSSV is the complexity of ACS operations and the initial

traceback operation. For CRC-ZTCCs,

CSSV = (2v+1 − 2) + 1.5(2v+1 − 2) + 1.5(K +m− v)2v+1

+ c1[2(K +m+ v) + 1.5(K +m)]. (18)

For CRC-TBCCs decoded using the single-trellis, this quantity

is given by

CSSV = 1.5(K +m)2v+1 + 2v + 3.5c1(K +m). (19)

For CRC-TBCCs with the multi-trellis approach,

CSSV = 2v[1.5(K +m)2v+1] + 3.5c1(K +m). (20)

The second component Ctrace for CRC-ZTCC is given by

Ctrace = c1(E[L]− 1)[2(K +m+ v) + 1.5(K +m)]. (21)

For CRC-TBCCs, Ctrace is given by

Ctrace = 3.5c1(E[L]− 1)(K +m), (22)

for both single-trellis and multi-trellis approaches.

The third component, which is identical for ZT and TB, is

Clist = c2E[I] log(E[I]). (23)

For CRC-ZTCCs,

E[I] ≤ (K +m)E[L], (24)
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Fig. 5. The overall complexity comparison of the single-trellis, multi-trellis,
and WAVA decoders for the TBCC generated with the (4, 3, 4) encoder H =
(33, 25, 37), with blocklength of 128. The CRC polynomial of degree 3 is
0x9. All complexity values are normalized with respect to the single-trellis
CSSV at different list sizes.

and for CRC-TBCCs with either single-trellis or multi-trellis

approach,

E[I] ≤ (K +m)E[L] + 2v − 1. (25)

In the above expressions, c1 and c2 are two computer-

specific constants that characterize implementation-specific

differences in the implemented complexity of traceback and

list insertion (respectively) as compared to the ACS operations

of Viterbi decoding. In this paper, we assume that c1 = c2 = 1
and use (24) and (25) to estimate E[I] for CRC-ZTCCs and

CRC-TBCCs.

Note that E[I] and E[L] values vary depending on whether

the single-trellis or multi-trellis approach is used. Using the

multi-trellis approach significantly reduces Ctrace and Clist

because only TB paths are included. On the other hand, as seen

from (19) and (20), the multi-trellis approach amplifies the first

component CSSV by nearly 2v. The overall trade-off is depicted

in Fig. 5, which shows the complexity comparison of the three

proposed SLVD methods for a v = 4,m = 3 standard CRC-

TBCC decoded using the dual trellis. Random codewords with

blocklength N = 128 are generated and their single-trellis list

sizes are measured by passing through a single-trellis SLVD.

The runtime of each complexity component is normalized with

respect to the value of single-trellis CSSV. When the single-

trellis list size is 1, the multi-trellis SLVD has an overall

runtime that is over 10 times greater than that of the single-

trellis SLVD. At low noise levels, the list size of a single trellis

is almost always 1, resulting in a substantially lower runtime

compared to that of a multi-trellis. As SNR decreases, there is

an exponential growth in the complexity terms Ctrace and Clist

for the single-trellis decoder. The list size grows much more

slowly for the mutli-trellis decoder because it does not include

non-TB codewords in the list. As a result, trellis construction

is the main contributor to the complexity of multi-trellis. Thus

the multi-trellis decoder has similar complexity across all SNR

levels. At a single-trellis list size of around 5 × 102, the

overall runtime CSLVD of both approaches becomes the same.

This indicates that at high SNRs, single-trellis is the optimal

approach. But when the noise level is high, the multi-trellis

approach has a more favorable runtime since it guarantees to

satisfy the TB condition.

Upon applying WAVA, the overall average complexity for

CRC-TBCC is incremented by ACS operations during the

additional forward pass, if needed. Let the probability that the

optimal path of the initial traceback does not satisfy either TB

or CRC condition be PWAVA. The list rank of the decoder is

1 with a probability of 1− PWAVA. Thus we have the updated

complexity:

CSLVD = CSSV + PWAVA(CWAVA + Ctrace + Clist), (26)

where

CWAVA = 1.5(K +m)2v+1 + 2v. (27)

The yellow data points in Fig. 5 represent the overall

complexity of the WAVA decoder normalized with respect

to the single-trellis CSSV. The complexity for initializing the

WAVA decoder is about 2 times of that for the single-trellis

decoder, giving it a disadvantage at low SNRs. When list size

is 1, the WAVA decoder matches the complexity of the single-

trellis decoder since one iteration is sufficient. At a list size

of around 50, the overall complexity of the WAVA decoder

reaches the same level as the single-trellis decoder. The WAVA

decoder always operates at a complexity lower than the multi-

trellis decoder.

B. Primal Trellis SLVD for Punctured ZTCC and TBCC

A punctured convolutional code of rate (n−1)/n is obtained

from puncturing the outputs of a rate-1/2 code. Therefore, the

complexity of the SLVD for the punctured and original codes

are the same, which is presented in [14]. To keep this section

self-contained, we will show the rate-1/n complexity analysis

here.

The overall complexity of the punctured SLVD consists of

the same three components as that of the standard SLVD in

17.

For CRC-ZTCCs,

CSSV = 5(2v − 1) + 3(K +m− v)2v

+ c1[2(K +m+ v) + 1.5(K +m)].
(28)

For CRC-TBCCs,

CSSV = (3K + 3m+ 1)2v + 3.5c1(K +m). (29)

The other two components Ctrace and Clist, as well as the

expected number of insertions E[I], remain the same for

punctured SLVD as the dual-trellis SLVD (Eq. 21 - 25).

C. Complexity Comparison

Fig. 6 and 7 display the trade-off between the SNR gap to

the RCU bound and the average decoding complexity at the

target FER of 10−4 for CRC-ZTCCs designed in Table I and

CRC-TBCCs designed in Table III. In addition, these figures

directly compare the proposed dual trellis decoding scheme
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Fig. 6. The SNR gap to the RCU bound vs. the average complexity of SLVD
of standard CRC-ZTCC codes in Table I and punctured CRC-ZTCC codes
in Table II for target FER of 10−4. Markers from top to bottom with the
same color correspond to CRC polynomials with m = 0, . . . , 11 for standard
CRC-ZTCCs, and m = 0, . . . , 10 for punctured CRC-ZTCCs. For punctured
ZTCC with v = 4,m = 0, the gap to RCU bound is substantially high at
2.8262 dB.

with the punctured scheme. The average decoding complexity

of SLVD is evaluated according to the expressions in Sec.

V-A and V-B. We see that for a fixed v (ZT or TB, standard or

punctured), increasing the CRC degree m significantly reduces

the gap to the RCU bound, at the cost of a small increase in

complexity. CRC-TBCCs generally have greater complexity

than CRC-ZTCCs because the list decoder goes through many

non-TB codewords. The minimum gap of 0.25 dB is achieved

by the standard CRC-ZTCC with v = 6 and m = 10, and

the minimum gap of 0.05 dB is achieved by the CRC-TBCC

with v = 6 and m = 10. For CRC-TBCCs, the gap to RCU

bound continues to decrease when CRCs of higher degrees are

applied, but the complexity grows substantially. For a more

legible figure, we only show CRC polynomials of degrees up

to 10 in Fig. 7.

For the same CRC degree m, increasing the overall con-

straint length v dramatically increases the complexity, while

achieving a minimal reduction in the SNR gap to the RCU

bound. On the other hand, the performance of CRC-ZTCC

can be improved drastically by applying CRC polynomials of

higher degrees. Both Fig. 6 and 7 demonstrate that for all three

cases of constraint lengths v, one additional bit in the CRC

benefits the decoding performance by moving closer to the

RCU gap with a minimal cost in complexity.

Additionally, for the same CRC degree m and constraint

length v, the standard high-rate codes generally perform better

than the punctured codes while maintaining a similar decoding

complexity. As the CRC degree increases, the performance and

complexity of these two coding schemes draw nearer. Note that

for CRC-ZTCCs, the rates for standard and punctured codes

are different for v = 4 and v = 5, where the punctured codes

have a higher rate due to fewer termination overhead bits.

Fig. 8 shows the trade-off of complexity and performance

for decoding CRC-TBCCs with a single trellis SLVD and a

WAVA-based SLVD. The CRC-TBCCs used are of rate-3/4

Fig. 7. The SNR gap to the RCU bound vs. the average complexity of
SLVD of standard CRC-TBCC codes in Table III and punctured CRC-TBCC
codes in Table IV for target FER of 10−4. Markers from top to bottom with
the same color correspond to CRC polynomials with m = 0, . . . , 10. For
punctured TBCC with v = 4, m = 0, the gap to RCU bound is substantially
high at 2.4257 dB.

Fig. 8. The SNR gap to the RCU bound vs. the average complexity of
SLVD of CRC-TBCC codes in Table III for target FER of 10−4. The results
for both single-trellis decoding and WAVA decoding are demonstrated. Each
color represents a specific CRC-aided CC shown in the table. Markers from
top to bottom with the same color correspond to CRC polynomials with m
= 3, . . . , 10, where m = 0 represents the convolutional codes without CRC.

for m = 3, . . . 10 in III. The WAVA decoder has a larger

gap to RCU bound than the single-trellis decoder due to the

extra ACS operations during the first traceback. However,

the complexity of the WAVA decoder is smaller than that of

the single-trellis decoder, and the difference increases as the

CRC degree increases. For all constraint lengths v, the WAVA

decoder at m = 10 has a similar complexity as the single-

trellis decoder at m = 6.

VI. RESULTS AND DISCUSSION

In this section, we will report and discuss the FER vs SNR

performances of the CRC-CCs. Section VI-A compares the

standard CRC-ZTCC with the punctured CRC-ZTCC, as well

as shows the performance difference between using a single
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Fig. 9. FER vs. SNR for v = 6, m = 10 standard and punctured
CRC-ZTCCs. The standard ZTCC is generated with the (4, 3, 6) encoder
H = (107, 135, 133, 141) and the punctured ZTCC is generated by
G = (133, 171) . The optimal CRC polynomials of degree 10 are 0x59F
and 0x4E7, respectively. For the RCU and MC bounds, values in parenthesis
denote blocklength N and information length K , respectively.

longer CRC and multiple shorter CRCs. Section VI-B covers

the performance of standard and punctured CRC-TBCCs.

A. CRC-ZTCC Results

Fig. 9 shows the performance comparison of standard and

punctured v = 6 CRC-ZTCCs with degree-10 CRC polynomi-

als. For both CRC-ZTCCs, the blocklength is 128 bits and the

information length is 80 bits, yielding a code rate of 0.625.

The standard CRC-ZTCC has slightly better FER performance

than the punctured code. At the target FER of 10−4, the gap

between the two schemes is around 0.08 dB.

In [24], Karimzadeh et al. considered designing optimal

CRC polynomials for each input rail of a multi-input CC.

In their setup, an information sequence for an (n, n − 1, v)
encoder needs to be split into (n − 1) subsequences before

CRC encoding. In contrast, the entire information sequence

in our framework is encoded with a single CRC polynomial.

Then the resulting sequence is evenly divided into (n − 1)
subsequences, one for each rail. To compare the performance

between these two schemes, we design three degree-3 op-

timal CRC polynomials, one for each rail, for ZTCC with

H = (107, 135, 133, 141). The three CRC polynomials jointly

maximize the minimum distance of the CRC-ZTCC. For the

single-CRC design, we use the single degree-9 optimal CRC

polynomial for the same encoder from Table I. Both CRC-

ZTCCs have an information length K = 81 and blocklength

N = 128. Fig. 10 shows the performance comparison between

these two codes, showing that at high SNRs, a single degree-9
optimal CRC polynomial outperforms three degree-3 optimal

CRC polynomials, one for each rail. This suggests that a single

optimal CRC polynomial may suffice to provide superior

protection for each input rail. The decoding complexity is

similar regardless of the CRC scheme.

Fig. 10. FER vs. SNR for v = 6, m = 9 CRC-ZTCCs designed under
Karimzadeh et al.’s scheme [24] and our scheme. Both CRC-ZTCCs have
information length K = 81 and blocklength N = 128.

Fig. 11. FER vs. SNR for v = 6, m = 10 standard and punctured
CRC-TBCCs. The standard TBCC is generated with the (4, 3, 6) encoder
H = (107, 135, 133, 141) and the punctured TBCC is generated by
G = (133, 171) . The optimal CRC polynomials of degree 10 are 0x529
and 0x40D, respectively. A single-trellis list decoder is used.

B. CRC-TBCC Results

The performance of CRC-aided list decoding of ZTCCs

relative to the RCU bound is constrained by the termination

bits appended to the end of the original message, which are

required to bring the trellis back to the all-zero state. TBCCs

avoid this overhead by replacing the zero termination condition

with the TB condition, which states that the final state of the

trellis is the same as the initial state of the trellis [33].

Fig. 11 shows the FER vs. SNR for standard and punctured

v = 6 CRC-TBCCs with degree-10 CRC polynomials at a

fixed blocklength of 128 and information length of 86. Both

codes are able to closely approach the RCU bound. At the

target FER of 10−4, the gap between the two schemes is

within 0.05 dB. Compared to the CRC-TBCCs with the same

v and m, the CRC-ZTCCs have a rate loss of around 0.04 dB

because of the termination overhead.
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VII. CONCLUSION

This paper shows that both standard and punctured high-

rate CRC-aided CCs are able to approach the RCU bound

for the BI-AWGN channel. The best CRC-TBCCs with the

single-trellis ML decoder approach the RCU bound within 0.1
dB for a target FER of 10−4 at a blocklength of N = 128
bits. Concatenated with optimal CRC polynomials, the per-

formance and complexity of the standard and punctured high-

rate convolutional codes are similar. In addition, adding one

bit to the CRC can improve the FER more than adding an

additional memory element to the CC does for both standard

and punctured CRC-CC schemes.

For rate-(n− 1)/n TBCCs concatenated with optimal CRC

polynomials, this paper considers three list decoding algo-

rithms: a multi-trellis approach, a single-trellis approach, and

a modified single trellis approach with pre-processing using

the Wrap Around Viterbi Algorithm (WAVA). For the cases

of standard codes, on which our simulations focused, all three

algorithms use the dual trellis to reduce complexity. The multi-

trellis approach achieves the smallest expected list rank, but

it suffers from a significantly larger overall complexity than

the single-trellis approach. For the single trellis approach, we

consider both an ML decoder and a non-ML decoder that

uses WAVA pre-processing. WAVA pre-processing achieves a

significantly smaller expected list size at the price of a worse

FER performance.

REFERENCES

[1] W. Sui, H. Yang, B. Towell, A. Asmani, and R. D. Wesel, “High-
rate convolutional codes with CRC-aided list decoding for short block-
lengths,” in ICC 2022 - IEEE International Conference on Communica-

tions, 2022, pp. 98–103.

[2] M. Rice, “Comparative analysis of two realizations for hybrid-ARQ error
control,” in 1994 IEEE Global Commun. Conf., 1994, pp. 115–119.

[3] “Universal mobile telecommunications system (UMTS); multiplexing
and channel coding (FDD); 3GPP TS 25.212 version 7.0.0 release 7,”
European Telecommunications Standards Institute, Tech. Rep., 2006.

[4] “LTE; evolved universal terrestrial radio access (E-UTRA); multiplexing
and channel coding; 3GPP TS 36.212 version 15.2.1 release 15,”
European Telecommunications Standards Institute, Tech. Rep., 2018.

[5] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
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