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Abstract—Recently, rate-1/n zero-terminated (ZT) and tail-
biting (TB) convolutional codes (CCs) with cyclic redundancy
check (CRC)-aided list decoding have been shown to closely
approach the random-coding union (RCU) bound for short
blocklengths. This paper designs CRC polynomials for rate-
(n —1)/n ZT and TB CCs with short blocklengths. This paper
considers both standard rate-(n—1) /n CC polynomials and rate-
(n — 1)/n designs resulting from puncturing a rate-1/2 code.
The CRC polynomials are chosen to maximize the minimum
distance dnin and minimize the number of nearest neighbors
Aaq,,,. For the standard rate-(n — 1)/n codes, utilization of the
dual trellis proposed by Yamada ef al. lowers the complexity of
CRC-aided serial list Viterbi decoding (SLVD). CRC-aided SLVD
of the TBCC:s closely approaches the RCU bound at a blocklength
of 128. This paper compares the FER performance (gap to the
RCU bound) and complexity of the CRC-aided standard and
punctured ZTCCs and TBCCs. This paper also explores the
complexity-performance trade-off for three TBCC decoders: a
single-trellis approach, a multi-trellis approach, and a modified
single-trellis approach with pre-processing using the wrap around
Viterbi algorithm.

I. INTRODUCTION

The structure of concatenating a convolutional code (CC)
with a cyclic redundancy check (CRC) code has been a
popular paradigm since 1994 when it was proposed in the
context of hybrid automatic repeat request (ARQ) [2]. It was
subsequently adopted in the cellular communication standards
of both 3G [3] and 4G LTE [4]. In general, the CRC code
serves as an outer error-detecting code that verifies if a
codeword has been correctly received, whereas the CC serves
as an inner error-correcting code to combat channel errors.

Recently, there has been a renewed interest in designing
powerful short blocklength codes. This renewed interest is
mainly driven by the development of finite blocklength in-
formation theory by Polyanskiy et al., [5] and the strin-
gent requirement of ultra-reliable low-latency communication
(URLLC) for mission-critical IoT (Internet of Things) services
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[6]. In [5], Polyanskiy et al. developed a new achievability
bound known as the random-coding union (RCU) bound and
a new converse bound, known as the meta-converse (MC)
bound. Together, these two bounds characterize the error
probability range for the best short blocklength code of length
N with M codewords. The URLLC for mission-critical IoT
requires that the time-to-transmit latency is within 500 us
while maintaining a block error rate no greater than 1075.

Several short blocklength code designs have been proposed
in the literature. Important examples include the tail-biting
(TB) convolutional codes decoded using the wrap around
Viterbi algorithm (WAVA) [7], extended BCH codes under
ordered statistics decoding [8], [9], non-binary low-density
parity-check (LDPC) codes [10], non-binary turbo codes [11],
and polar codes under CRC-aided successive-cancellation list
decoding [12]. Recent advances also include the polarization
adjusted convolutional codes proposed by Arikan [13]. As a
comprehensive overview, Cogkun et al. [8] surveyed most of
the contemporary short blocklength code designs in the recent
decade. We refer the reader to [8] for additional information.

In [14], Yang et al. proposed CRC-aided CCs as a powerful
short blocklength code for binary-input (BI) additive white
Gaussian noise (AWGN) channels. The convolutional encoder
of interest has rate-1/n and is either zero-terminated (ZT) or
TB. Yang et al. seek to design a distance-spectrum optimal
(DSO) CRC polynomial that minimizes frame error rate (FER)
at a specified signal-to-noise ratio. For high SNR this is often
equivalent to selecting the CRC polynomial that maximizes
the minimum distance and minimizes the number of nearest
neighbors for the resulting concatenated code. This design
follows the approach of Lou et. al. [15] for designing CRC
polynomials matched to the CC for improved error detection.

The presence of a CRC facilitates the use of the serial
list Viterbi decoding (SLVD), an efficient algorithm originally
proposed by Seshadri and Sundberg [16]. Yang et al. [14]
showed that the expected list rank of SLVD of the CRC-
aided CC is small at high SNR, thus achieving a low average
decoding complexity at operating points of common interest.
Yang et al. [14] demonstrated that these concatenated codes
can approach the RCU bound. In [17], [18], Schiavone ex-
tended this line of work by looking at the parallel list Viterbi
decoding and applying this perspective to legacy coding. In our
precursor conference paper [1], this framework is extended to
rate-(n—1)/n CCs and the resulting concatenated code is able
to approach the RCU bound with a low decoding complexity
as well.
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A. Contributions

This paper presents designs of CRC-aided ZT and TB
CCs for rate-(n — 1)/n CCs at short blocklengths for the
BI-AWGN channel. Each CRC polynomial is selected to
maximize the minimum distance and minimizes the number
of nearest neighbors for the resulting concatenated code. If
SLVD is performed with a sufficiently large maximum list
size such that finding a CRC-passing codeword is guaranteed,
then SLVD is an implementation of maximum-likelihood (ML)
decoding for these concatenated codes.

We consider standard, systematic, rate-(n — 1)/n feedback
convolutional encoders [19], as well as encoders obtained by
puncturing the output of a rate-1/2 convolutional encoder, as
proposed by Cain et al. [20]. The resulting concatenated codes
are called a standard or punctured CRC-ZTCC or CRC-TBCC,
respectively.

For the standard CCs, SLVD on the primal trellis requires
high decoding complexity due to the 2"~! outgoing branches
at each node. SLVD implementation becomes exponentially
more complicated when there are more than two outgoing
branches per state. In order to simplify SLVD implementation
and reduce complexity, we utilize the dual trellis pioneered by
Yamada et al. [21]. The dual trellis expands the length of the
primal trellis by a factor of n, while reducing the number of
outgoing branches at each node from 2"~ to at most two.

For the punctured codes, Cain et al. [20] were the first to
propose obtaining high-rate CCs through puncturing a rate-1/2
code to allow the use of a simple primal trellis for decoding. In
[22], Haccoun and Bégin presented optimal encoder generators
of the original rate-1/2 codes and the corresponding punctur-
ing matrices for the rate-(n — 1)/n punctured codes. A list-
decoding sieve [23] is used to identify the CRC polynomials
that maximize the minimum distance and minimize the number
of nearest neighbors for the Haccoun and Bégin punctured
codes.

For ZTCCs, a work related to this line of research is that
of Karimzadeh and Vu [24]. They considered designing the
optimal CRC polynomial for multi-input ZTCCs. In their
framework, the information sequence is first divided into
(n — 1) streams, one for each input rail, and they aim
at designing an optimal CRC polynomial for each rail. In
contrast, this paper encodes the information sequence with
a single CRC polynomial and is then divided into (n — 1)
streams for the standard rate-(n — 1)/n encoder. Simulation
results indicate the new approach improves FER performance
at high SNRs.

For TBCCs, simulations show that for both the standard and
punctured rate-(n — 1) /n TBCCs with blocklength N = 128,
the FER performance of our CRC-aided TBCCs approaches
the RCU bound as the degree m of the CRC polynomial
increases.

This paper considers three architectures to enforce the
TB condition for CRC-TBCCs. One approach performs list
decoding on a single trellis that allows all initial states. As
the list decoder identifies possible trellis paths, non-tail-biting
paths are rejected. At low SNR, SLVD on the single trellis
requires a large list size to identify the ML TB codeword, with
a majority of trellis paths not satisfying the TB condition.

An alternative is a multi-trellis approach that initializes
multiple copies of the dual trellis, one for each possible
starting and ending state pair. The multi-trellis approach re-
quires a much smaller list size because only TB paths are
added to the list. This approach avoids the decoding time
complexity of potentially exploring a large list at the cost
of the computational and space complexity of creating and
storing multiple trellises. It can provide a benefit over the
single-trellis approach in low-SNR environments.

A third approach to TB decoding that can be applied in
the context of the single-trellis list decoder is the wrap-
around Viterbi algorithm (WAVA). Introduced in [25], WAVA
is a near-ML decoding algorithm for TBCCs. To achieve the
balance of decoding time and space efficiency, this paper
combines the wrap-around behavior of WAVA with SLVD
for TBCCs. The decoding process is completed in two steps:
the WAVA step with at most 2 trellis iterations, and the list
decoding step with a sufficiently large list size such that there
are no negative acknowledgment signals. Simulation results
demonstrate that this decoding method reduces the average
list size as compared with the single-trellis decoder without
WAVA, but this reduction comes at a cost of degraded FER
performance.

This paper culminates by providing plots that show the
trade-off between decoder complexity and FER performance
computed as the gap from the RCU bound at FER 10~*
and FER vs. SNR results that show both punctured and
standard TBCCs performing within 0.1 dB of the RCU bound
with a degree-10 CRC polynomial designed to maximize
the minimum distance and minimize the number of nearest
neighbors.

B. Organization

The remainder of this paper is organized as follows. Sec. II
reviews systematic encoding with feedback for (n,n — 1,v)
convolutional codes and describes the dual trellis construction.
Sec. III introduces various serial list decoders for rate-(n —
1)/n CCs. Sec. IV presents optimal CRC polynomial designs
for standard and punctured high-rate codes using a trellis event
enumeration method and a sieve method. Sec. V analyzes the
trade-off between complexity and decoding performance of
these designs. Sec. VI presents simulation results comparing
FER performance of our designs to the RCU bound and to the
Karimzadeh and Vu approach. Finally, Sec. VII concludes the

paper.

II. THE DUAL TRELLIS

This section describes systematic encoding for (n,n — 1, v)
convolutional codes and introduces the dual trellis proposed
by Yamada et al. [21] for high-rate CCs generated with an
(n,n —1,v) convolutional encoder, where v is the number of
memory elements in the encoder. This section also discusses
the tree-trellis algorithm for list decoding and its benefits.

Let K and N denote the information length and blocklength
in bits. Let R = K/N denote the rate of the CRC-aided CC.
A degree-m CRC polynomial is of the form p(x) = 1+piz+
ot 1™ 2™, where p; € {0,1},i=1,2,...,m—1.



For brevity, a CRC polynomial is represented in hexadecimal
where its binary coefficients are written from the highest to
lowest order. For instance, 0xD represents 23 + 22 + 1. The
codewords are BPSK modulated. The SNR is defined as v, =
101log;o(A?) (dB), where A represents the BPSK amplitude
and the noise is distributed as a standard normal. This SNR
can also be written as 25—2 = 2RJ€—Z, where E. is the channel
symbol energy, Ej is the bit energy, and % is the two-sided
power spectral density of noise.

A. Systematic Encoding

We briefly follow [19, Chapter 11, p. 482] in describing
a systematic (n,n — 1,v) convolutional encoder with reverse
input and output labelling!. A systematic (n,n — 1,v) convo-
lutional encoder can be represented by its parity check matrix

H(D) = [h"=Y(D),h"=2(D),....h (D), (1)

where each h(?) (D) is a polynomial of degree up to v in delay
element D associated with the i-th code stream, i.e.,

(D) =P DY + b D" 4 4B ()
where h;i) € {0,1}. For convenience, we represent each

R@(D) in octal form. For instance, H(D) = [D* 4+ D? +
D +1,D3+ D? +1,D% + D + 1] can be concisely writ-

ten as H = (17,15,13). Let A 2 [n{) n .. B,
1 =20,1,...,n— 1. Since the Oth code stream corresponds to

the parity check bit and the ith code stream corresponds to
the ith input bit for 1 < ¢ < n — 1, the systematic encoding
matrix G(D) associated with H (D) is thus given by

rY (D)
() 10 --- 0
AP g 1 ... 0
Goy=| " e
h<"*.1>(D) .
oy 00 e

To satisfy the TB condition for the feedback encoder, we
use a similar procedure as that for turbo codes [26]. First, we
use a pre-encoding operation to encode from the all-zero state
and obtain a final state. Depending on that final state, an initial
state is selected and the message re-encoded from this state
satisfies the TB condition.

B. Constructing the Dual Trellis

The primal trellis associated with a rate-(n — 1)/n ZTCC
has 2"~! outgoing branches per state. Performing SLVD over
the primal trellis when n > 2 is highly complex. In [14], the
low decoding complexity of SLVD for rate-1/n convolutional
codes relies on the fact that each state only has 2 outgoing
branches. In order to efficiently perform SLVD, we consider
the dual trellis proposed by Yamada et al. [21].

We briefly explain the dual trellis construction for parity
check matrix

IThe reverse input (resp. output) labeling means that the labels from top to
bottom of the input (resp. output) streams are arranged in decreasing order.

g
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Fig. 1. Dual trellis diagram for rate-3/4 TBCC with a root node at the end
for encoder H = (7,5,2,6) with v = 2. Solid lines represent 0 paths and
dashed lines represent 1 paths.

H(D) = [h»=Y(D), h"=2(D), ..., h®(D)]. First, we de-
fine the maximum instant response order A\ as

A2 max{je{0,1,....n—1}: hY) =1}, 4)

The state of the dual trellis is represented by the partial sums
of (v+ 1) adders in the observer canonical form of H (D). At
time index 7, j =0,1,...,n — 1, the state is given by

s = [s(), s &) 6)

ClseeesS

Next, we show how the state s(¥) evolves in terms of the

output bits y = [y,(co),y,(:), ... ,y,(gnfl)], k=1,2,...,N/n,
so that a dual trellis can be established.
Dual trellis construction for yy, = [y,(g ), y,(C ), .. 73/,(6"71)]:
1) At tlme j =0, 80 = 0,57 7 Y] where

) e {0, 1}. Namely, only 2¥ states exist at j = 0.
2) At time 7, j < n— 1, draw branches from each state s(/)
to the states st that satisfy

Ut — g +y,(j)h<ﬂ'>,

yef{0.1}.  (©
3) Attime j = n—1, draw branches from each state g(n=1)
to state s(™ by

5 = (501 4t IR e e fo.1)
@)

where (ay, Gy—1,...,a1,a9)" = (0,ay,ay-1,...,01).
4) For time j = A, draw a branch from each state s(*)
according to (6) only for y,(f) = 3(())‘).
After repeating the above construction for each yi, &k =
1,2,...,N/n, we obtain the dual trellis associated with the
(n,n — 1,v) convolutional code. Since the primal trellis is
of length N/n, whereas the dual trellis is of length N, the
dual trellis can be thought of as expanding the primal trellis
length by a factor of n, while reducing the number of outgoing
branches per state from 2" 7! to less than or equal to 2. Fig.
1 illustrates the dual trellis structure for a rate-3/4 code with
2 memory elements.
For an (n,n—1,v) CC, zero termination over the dual trellis
requires at most n[v/(n — 1)] steps. In our implementation,
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Fig. 2. Comparison of the parametric approximation [14] of the expected

list rank E[L] with the simulated results for the v = 4, m = 3 CRC-TBCC
generated by H = (33,25,37,31) with blocklength of 128. The optimal
CRC used is 0x9.

a breadth-first search identifies the zero-termination input and
output bit patterns that provide a trajectory from each possible
state s to the zero state. The input and output bit patterns have
lengths (n — 1)[v/(n — 1)] and n[v/(n — 1)] respectively.

III. SERIAL LIST VITERBI DECODING FOR TBCCs

This section considers three SLVD methods that apply to
both the standard and punctured high-rate TBCCs. SLVD
enumerates possible paths through the trellis, starting from the
lowest weight path, stopping once the first path that satisfies
both the CRC and the TB condition is reached. Information
about the previously investigated paths and path metrics is
required to find the next optimal path.

To efficiently implement SLVD, we use the tree-trellis
algorithm (TTA) [27], which maintains a sorted list of nodes
indexed by path metric. These nodes either correspond to
a previously unexplored ending state in the trellis or to a
previously explored path and a detour. This approach allows
the efficient determination of the next path to be explored if the
current one does not satisfy both the CRC and TB conditions.
In order to efficiently maintain the sorted list of nodes, this
paper uses a Min Heap [28], which is easier to implement than
the Red-Black tree [29] [30] and has the same O(log{) time
complexity, where ¢ is the number of elements in the heap.
This simpler Min Heap implementation comes at the cost of
an increased memory requirement compared to the Red-Black
Tree since the heap has to maintain every element, as opposed
to the best L elements for the tree.

A. Single Trellis Decoder

To adapt SLVD to handle the multiple terminating states
that are possible with a TBCC, a root node is added as shown
in Fig. 1. The root node connects to all terminating states of
the trellis. The Hamming distance of the branch metric for
the branch connecting any state to this root node is zero. This
additional root node allows the trellis to end in a single state.

—— Single-Trellis, SNR = 2dB
—— WAVA, SNR = 2dB 7
—— Multi-Trellis, SNR = 2dB
— — Single-Trellis, SNR = 5dB| |
— — WAVA, SNR = 5dB J
— — Multi-Trellis, SNR = 5dB

. 7 7 7 7
10 20 30 40 50 60 70 80 90 100
List Rank L

Fig. 3. Cumulative distribution function (CDF) of list ranks for the single-
trellis, multi-trellis, and WAVA decoding approaches at SNR s = 2 and 5
dB for the (33,25,37,31) TBCC with blocklength of 128.

B. Multi-Trellis Decoder

Decoding on a single dual trellis (single-trellis approach)
leads to complexity issues, because the decoder goes through
a number of paths that pass neither the TB check nor CRC,
resulting in high expected list ranks at low SNRs. To decode
more efficiently, we propose a multi-trellis approach that
includes only TB paths in the list.

The multi-trellis approach constructs 2 trellises. Each
multi-trellis follows the same structure as the original punc-
tured or dual trellis, but with only one starting and ending
state to enforce the TB condition. In a conceptually similar
manner to how a root node was added to the dual trellis in
Fig. 1, a root node is also added to the multi-trellis approach,
but paths to the root node only come from the single ending
state in each trellis that guarantees the TB condition.

Since all paths found using this approach will be TB,
this significantly reduces the expected list size at low SNRs.
However, at high SNRs, the multi-trellis approach has a
substantially higher decoding complexity due to the additional
upfront cost of constructing the dual trellises. In this case, the
extra resources taken to initialize the multi-trellis approach
bring down the overall decoder efficiency.

C. Wrap-Around Viterbi Algorithm Decoder

As the constraint length of a TBCC increases, the number of
states grows exponentially. The multi-trellis approach becomes
impractical due to both time and memory for constructing the
trellises. Thus, we consider a non-ML single-trellis decoder
that uses WAVA [25] to reduce the average list rank. In [31],
the authors show that a WAVA-inspired parallel list Viterbi
decoder achieves good performance with low complexity.

Fig. 2 extends the parametric approximation of the expected
list rank shown in [14] to the single-trellis decoding of high-
rate CRC-TBCCs. The approximation lines up well with the
simulation results for a v = 4 TBCC with a degree-3 CRC. In
addition, an initial examination of the list rank distributions
for the three decoding schemes at SNR points of 2 and 5



dB is presented in Fig. 3. At a low SNR, the multi-trellis
approach maintains an extremely small list rank compared
to the other approaches. The WAVA approach also has a
substantially larger probability of a small list rank compared to
the single-trellis, but not as small as the multi-trellis. Although
the ordering is preserved as SNR increases, additional pre-
processing to reduce list rank is inconsequential since the list
ranks of all three approaches are low. Considering the extra
complexity of constructing the multi-trellis approach and the
non-ML nature of the WAVA approach, we use the single-
trellis SLVD for simulations. Different distributions lead to
different E[I] and E[L] values when evaluating the decoding
complexity, where E[I] is the expected number of insertions
to maintain the sorted list of path metric differences.

The non-ML decoder with WAVA proceeds in two steps. In
the first step, the algorithm initializes each state of a single
dual or punctured trellis with all zero metrics. It then performs
two iterations of add-compare-select (ACS) along the trellis.
Each time the end of the trellis is encountered, the initial states
of the trellis are initialized to the cumulative metrics in the
final states. At the end of the first iteration, if the optimal path
satisfies TB and CRC conditions, the algorithm outputs this
path and stops decoding. In the second step, SLVD runs on the
ending metrics of the second trellis iteration. This decoding
algorithm improves the reliability of the final decision for
the optimal traceback path and decreases the expected list
rank while keeping the complexity low. The WAVA metrics
are not ML and this algorithm has slightly worse decoding
performance than the other two ML approaches.

IV. OPTIMAL CRC POLYNOMIAL DESIGN

This section presents two approaches for designing CRC
polynomials that maximize the minimum distance and mini-
mize the number of nearest neighbors: a trellis enumeration
method extended from [14] and a list decoding sieve method
proposed in [23]. As a case study, this paper mainly focuses on
the rate-3/4 systematic feedback convolutional codes in [19,
Table 12.1(e)] and the punctured rate-3/4 convolutional codes
in [22].

A. CRC Polynomials for Standard Zero-Terminated Codes

In this paper, we focus on the low FER regime. Thus, the
CRC polynomials identified in this paper simply maximize
the minimum distance d,,;, of the concatenated code and
minimizes the number of nearest neighbors. Examples in
[14] indicate that CRC polynomials designed in this way can
provide optimal or near-optimal performance for a wide range
of SNRs.

We apply the CRC polynomial design algorithm in [14] to
identify CRC polynomials for high-rate ZTCCs. The first step
is to collect the irreducible error events (IEEs), which are ZT
paths on the trellis that deviate from the zero state once and
rejoin it once. IEEs with a very large output Hamming weight
do not affect the choice of optimal CRC polynomials. In order
to reduce the runtime of the CRC optimization algorithm,
IEEs with output Hamming weight greater than or equal
to a threshold d are not considered. Dynamic programming

TABLE I
OPTIMAL CRC POLYNOMIALS FOR STANDARD RATE-3/4 ZTCC AT
BLOCKLENGTH N = 128 GENERATED BY H = (33, 25,37, 31) WITH
v=4,BY H = (47,73,57,75) WITHv = 5,
AND BY H = (107,135,133,141) WITHv = 6

K m v=4 v=>5 v=206
CRC  dumin Aq,,;, CRC  dnin Ag,;, CRC  dmin Aq,;,

90 O 0Ox1 4 60 0x1 5 200  Ox1 6 736
89 1 0x3 4 30 0x3 5 113 0x3 6 331
88 2 0x7 5 85 0x7 5 56 0x7 6 106
87 3 0x9 5 1 0x9 5 1 0xB 6 34
8 4 0xIB 6 251 O0x15 6 54 0xID 6 3
85 5 0x25 6 32 0x25 7 156 0x25 7 27
84 6 0x4D 7 155 0x7B 7 76 Ox6F 7 1
83 7 OxF3 7 45 OxED 8 194  0x97 8 12
82 8 Ox1E9 8 145 0xI1B7 8 25 0x1B5 9 375
81 9 0x31B 8 27  O0x3F1 8 1 0x2F1 9 65
80 10 0x5C9 9 168  Ox66F 9 2 0x59F 10 490
79 11 0xC2B 10 1015 OxE8D 10 293 0xD2D 10 42

constructs all ZT paths of length equal to N/n and output
weight less than d. Finally, we use the resulting set of ZT
paths to identify the degree-m optimal CRC polynomial for
the rate-(n — 1)/n CC.

In [14], Yang et al. provided a useful result for selecting
threshold d.

Theorem 1 (Th. 2, [14]): Define the higher-rate code Cy, by

Crh 2 {ce{0,1}":c=vG,Yv € {0,1}"™},  (8)

where G € {0, 1}(F+™)x" is the matrix representation of the
convolutional encoder. Given a specified CRC degree m and
a higher-rate code C;, with distance spectrum Bgn ..., By,
define w* as the minimum w for which Z;U:dh m%d > 2™,

For any degree-m CRC polynomial, we have dﬂ;n < 2w*.

Theorem 1 shows that it suffices to choose d = 2w* + 1
to identify the degree-m CRC polynomial that maximizes
the minimal distance. In practice, the weight w* can be
efficiently determined from the weight enumerating function
of a convolutional code [19, p. 488].

Table I presents the optimal CRC polynomials for ZTCCs
generated with H = (33,25,37,31), H = (47,73,57,75),
and H = (107,135,133,141). Table I also shows the mini-
mum distance dyin and number of nearest neighbors A,
of the CRC-ZTCCs. The design assumes a fixed blocklength
N = 128 bits. Due to the overhead caused by the CRC bits
and by zero termination, the rates of CRC-ZTCCs are less
than 3/4. Specifically, for a given information length K, CRC
degree m and an (n,n — 1,v) encoder, the blocklength N for
a CRC-ZTCC is given by

Nz(K—i—m—i—(n—l){nil-D%, 9)

giving

K n-1 K
R:—: .
N n K4+m+(n—1)]-%]

n—1

(10)

We see from (9) that the (n,n — 1,v) convolutional encoder
can accept any CRC degree m as long as K + m is divisible
by (n —1).



TABLE I
OPTIMAL CRC POLYNOMIALS FOR PUNCTURED RATE-3/4 ZTCC AT
BLOCKLENGTH N = 128 GENERATED BY GG = (23, 25) WITHv = 4, BY
G = (53,75) WITHv = 5, ANDBY G = (133,171) WITHv = 6

TABLE III
OPTIMAL CRC POLYNOMIALS FOR STANDARD RATE-3/4 TBCC AT
BLOCKLENGTH N = 128 GENERATED BY H = (33, 25,37, 31) WITH
v=4,BY H = (47,73,57,75) WITHv = 5,
AND BY H = (107,135,133,141) WITHv = 6

K+wv m v=4 v=>5 v==6
CRC dmin Ad,,, CRC dmin Aq .. CRC dmin Aq . K m v=4 v=>5 v =
96 0 OoxI 3 31 O0xI 4 29 OxI 5 223 CRC  dmin  Adpi, CRC dmin  Adyy, CRC  dmin Ady,
95 1 0x3 4 29 0x3 5 224 0x3 5 112 796 0 OxI 1 64 O0xI_ 5 24  0xI 6 864
94 2 0x7 6 2173 0x7 5 83 O0x7 6 427 95 1 0x3 4 32 0x3 5 128 0x3 6 384
93 3 O0xF 6 597 0x9 6 379 0x9 6 135 94 2 Ox7 5 9 0x7 5 64 0x7 6 128
92 4 O0xll 6 323 OxIF 6 53 OxI3 7 245 93 3 0x9 6 736 0x9 6 192 0xB 6 36
91 5 0x27 6 101 0x39 7 213 0x23 8 1206 92 4 OxIB 6 320 0x15 6 64 O0xID 6 6
90 6 O0x71 7 286 0x79 7 46 0x65 8 590 91 5 0x25 6 31 0x37 6 2 0x23 7 49
89 7 0xC7 7 54 0x8 8 216 OxFD 8 122 90 6 Ox4D 6 1 Ox4F 7 98  0x53 8 326
88 8 0x199 8 407 0xI153 8 22 0x163 8 17 89 7 0xA3 7 70 0xD1 8 446 0xB1 8 76
87 9 0x20B 8 68 0x353 9 247 0x247 10 2158 88 8 0x10D 8 411 0x149 8 73 0xID3 8 8
36 10 0x439 9 400 O0x7CDI0 1631 Ox4E7 10 342 87 9 Ox2ED 8 138 0x255 8 14 O0x3F7 9 208
86 10 0x63B 8 23 Ox70F 8 1 0x529 9 90
85 11 0xCAS 9 125  0xD57 9 17 0x9BD 10 387
84 12 OxIED7 10 904 O0xI1B4110 339 OxIOAF10 53

B. CRC Polynomials for Punctured Zero-Terminated Codes

In [23], the authors proposed an efficient list decoding
sieve method to identify the distance-optimal CRC polynomial
of a given degree. This approach takes a noiseless all-zeros
codeword as the received signal and performs serial list
Viterbi decoding to explore codewords in order of increasing
Hamming weight. For each new codeword added to the list,
we check if it passes any of the degree-m CRC polynomi-
als. If a CRC polynomial can eliminate all codewords of a
certain Hamming weight, the sieve approach keeps this CRC
polynomial and codewords of the next greater weight are
explored. The list decoding sieve continues until it reaches
a codeword weight where all CRC polynomials check at least
one codeword. This weight is the largest dy,;, that a degree-
m CRC polynomial can achieve. The CRC polynomial that
checks the least number of codewords at d,,,;,, is selected as the
optimal CRC polynomial. This approach is computationally
more efficient than the error event construction method of
Yang [14] while producing the same results.

We follow the puncturing patterns provided [22] for rate-
3/4 CCs with v = 4,5, 6. These punctured CCs are obtained
from puncturing 4 out of every 6 bits (3 symbols) for rate-
1/2 convolutional codes. The blocklength of all CRC-CCs is
N = 128 bits.

Table II shows the optimal CRC polynomials obtained
by the list decoding sieve approach for punctured ZTCCs
generated with G = (23,25), G = (53,75), G = (133,171),
as well as the corresponding dpin and Ag,,, of the CRC-
ZTCCs. For a feedforward code, the ZT condition is satisfied
by inputting v zero bits at the end of the information sequence.
Thus, for a given information length K, the blocklength N of
the punctured code is given by

N = (K . 11

( +m+v)n_1 (11)
The real rate of this code is given by
K n-1 K

R=—= . 12

N n K+m+w (12)

In general, the punctured CRC-ZTCCs have smaller di,
values and more nearest neighbors than the standard CRC-
ZTCCs.

C. CRC Polynomials for Standard Tail-Biting Codes

The design of CRC polynomials for standard high-rate
TBCCs follows the two-phase design algorithm shown in [14].
This algorithm is briefly explained below.

Consider a TB trellis T' = (V, E, A) of length N, where A
denotes the set of output alphabet, V' denotes the set of states,
and F denotes the set of edges described in an ordered triple
(s,a,s") with 5,8’ € V and a € A [32]. Assume |V| = 2
and let Vo = {0, 1,...,2Y —1}. Define the set of IEEs at state

oceV as
[EE(c) £ | TEE(s,0), (13)
1=1,2,...,.N
where
IEE(0,1) £{(s,a) € V' x A" : 50 = 51 = 0; (14)

Vi, 0<j<l, s; ¢{0,1,...,0}}.

By concatenating elements in IEE(c), one can build an
arbitrarily long TB path that starts and ends at state 0. The
first phase is called the collection phase, during which the
algorithm collects IEE(o) with output Hamming weight less
than the threshold d over a sufficiently long TB trellis. The
second phase is called the search phase, during which the
algorithm first reconstructs all TB paths of length N/n and
output weight less than d via concatenation of the IEEs
and circular shifting of the resulting path. Then, using these
TB paths, the algorithm searches for the degree-m optimal
CRC polynomial by maximizing the minimum distance of the
undetected TB path.

Table III presents the optimal CRC polynomials for TBCCs
generated with H = (33,25,37,31), H = (47,73,57,75),
and H = (107,135,133,141). > The design assumes a fixed
blocklength N = 128. TB encoding avoids the rate loss caused
by the overhead of zero termination. Specifically, for a given
information length K, CRC degree m and an (n,n — 1,v)
encoder, the blocklength N for a CRC-TBCC is given by

N = (K +m) ——, (15)

n—1

2This table is updated from [1], as an error was discovered in the previous
CRC polynomial design procedure.
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giving
K n-1 K

R=_ = )
N n K+m

(16)

Fig. 4 shows the distribution of minimum distances for all
degree-5 and 10 CRC polynomials for v = 4 CRC-TBCCs.
While multiple CRC polynomials have the same maximized
dmin, their Ag, . differ. The optimal CRC polynomial designs
have the minimal A4, value. This range of duin values
validates the effectiveness of our CRC polynomial design
approach in the high-rate scenario.

D. CRC Polynomials for Punctured Tail-Biting Codes

The sieve method described in Sec. IV-B is extended to
TBCCs efficiently with the application of the multi-trellis
SLVD, since all codewords discovered by the multi-trellis
satisfy the tail-biting condition. Table IV shows the optimal
CRC polynomial designs for v = 4,5,6 punctured TBCCs
generated with G = (23,25), G = (53,75), G = (133,171).
Since there is no overhead of terminations, the punctured
TBCCs have the same blocklength and rate at a given informa-
tion length. Similar to the ZT case, a rate-1/2 code punctured
to rate-3/4 has slightly worse din and Ag,,, values compared
to a standard rate-3/4 TBCC.

V. COMPLEXITY ANALYSIS

In this section, we will discuss the decoding complexity
for all SLVD methods presented in Sec. III. Section V-A
covers the complexity analysis of rate-(n — 1)/n standard
ZTCCs and TBCCs on a dual trellis. Section V-B provides
the decoding complexity equations for punctured CCs. Finally,
section V-C visualizes the performance-complexity trade-offs
between the standard and punctured codes. The WAVA decoder
is a low-complexity alternative for TBCCs, and we explore its
complexity and performance for standard TBCCs.

TABLE IV
OPTIMAL CRC POLYNOMIALS FOR PUNCTURED RATE-3/4 TBCC AT
BLOCKLENGTH N = 128 GENERATED BY GG = (23, 25) WITHv = 4, BY
G = (53,75) WITHv = 5, ANDBY G = (133,171) WITHv = 6

K m v=4 v=>5 v==6

CRC  dmin Ad,,;, CRC dunin A4,;, CRC dnin Aa_;,
96 0 Ox1 3 32 Ox1 4 32 0x1 5 256
95 1 0x3 4 32 0x3 5 256  0x3 5 128
94 2 0x7 6 2512 0x7 5 96 0x7 6 512
93 3 OxF 6 688  0x9 6 448  0x9 6 160
92 4 0x11 6 368 Ox15 6 96 0xIB 6 64
91 5 0x33 6 176 0x25 6 7 0x3F 8 1637
90 6 O0x71 6 7 0x55 7 224 0x77 8 767
89 7 O0xD5 6 2 0xC3 8 1166 0xBD 8 365
88 8 Ox1EB 7 20 0x129 8 281  Ox101 8 27
87 9 0x343 8 211 0x367 8 79 0x2B7 8 4
86 10 0x677 8 69 0x41D 8 4 0x40D 8 1

A. Dual Trellis SLVD for Standard ZTCC and TBCC

In [14], the authors provided the complexity expression for
SLVD of CRC-ZTCCs and CRC-TBCCs, where the convo-
lutional encoder is of rate 1/n. Observe that the dual trellis
has no more than 2 outgoing branches per state, similar to
the trellis of a rate-1/n CC. Thus, we directly apply their
complexity expression to SLVD over the dual trellis.

As noted in [14], the overall average complexity of SLVD
can be decomposed into three components:

CSLVD = CSSV + Ctrace + Clisl; (17)

where Cssy denotes the complexity of a standard soft Viterbi
(SSV), Ciace denotes the complexity of the additional trace-
back operations required by SLVD, and Cj denotes the
average complexity of inserting new elements to maintain an
ordered list of path metric differences.

Cssy is the complexity of ACS operations and the initial
traceback operation. For CRC-ZTCCs,

Cssv = (271 —2) + 1.5(2"" — 2) + 1.5(K +m —v)2" !
+c1[2(K +m+v) 4+ 1.5(K + m)]. (18)

For CRC-TBCCs decoded using the single-trellis, this quantity
is given by

Cssy = 1.5(K +m)2 T +2Y + 3.5¢1 (K +m).  (19)
For CRC-TBCCs with the multi-trellis approach,
Cssv = 2°[1.5(K +m)2° T +3.5¢, (K +m).  (20)

The second component Cy,ee for CRC-ZTCC is given by
Cirace = c1(E[L] = )[2(K +m +v) + 1.5(K +m)]. (21)
For CRC-TBCCs, Ciyyce is given by
Cluace = 3.5¢1(E[L] = 1)(K + m), (22)

for both single-trellis and multi-trellis approaches.
The third component, which is identical for ZT and TB, is

Ciise = c2E[I]log(E[1]). (23)
For CRC-ZTCCs,

E[I] < (K +m)E[L], (24)
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Fig. 5. The overall complexity comparison of the single-trellis, multi-trellis,
and WAVA decoders for the TBCC generated with the (4, 3, 4) encoder H =
(33,25, 37), with blocklength of 128. The CRC polynomial of degree 3 is
0x9. All complexity values are normalized with respect to the single-trellis
Cssy at different list sizes.

and for CRC-TBCCs with either single-trellis or multi-trellis
approach,

E[l] < (K +m)E[L]+2°—1. (25)

In the above expressions, c; and cp are two computer-
specific constants that characterize implementation-specific
differences in the implemented complexity of traceback and
list insertion (respectively) as compared to the ACS operations
of Viterbi decoding. In this paper, we assume thatc; = co =1
and use (24) and (25) to estimate E[I] for CRC-ZTCCs and
CRC-TBCCs.

Note that E[/] and E[L] values vary depending on whether
the single-trellis or multi-trellis approach is used. Using the
multi-trellis approach significantly reduces Ciaee and Ciig
because only TB paths are included. On the other hand, as seen
from (19) and (20), the multi-trellis approach amplifies the first
component Csgy by nearly 2V. The overall trade-off is depicted
in Fig. 5, which shows the complexity comparison of the three
proposed SLVD methods for a v = 4, m = 3 standard CRC-
TBCC decoded using the dual trellis. Random codewords with
blocklength N = 128 are generated and their single-trellis list
sizes are measured by passing through a single-trellis SLVD.
The runtime of each complexity component is normalized with
respect to the value of single-trellis C'ssy. When the single-
trellis list size is 1, the multi-trellis SLVD has an overall
runtime that is over 10 times greater than that of the single-
trellis SLVD. At low noise levels, the list size of a single trellis
is almost always 1, resulting in a substantially lower runtime
compared to that of a multi-trellis. As SNR decreases, there is
an exponential growth in the complexity terms Ciee and Ciig
for the single-trellis decoder. The list size grows much more
slowly for the mutli-trellis decoder because it does not include
non-TB codewords in the list. As a result, trellis construction
is the main contributor to the complexity of multi-trellis. Thus
the multi-trellis decoder has similar complexity across all SNR
levels. At a single-trellis list size of around 5 X 102, the

overall runtime Cgpyp of both approaches becomes the same.
This indicates that at high SNRs, single-trellis is the optimal
approach. But when the noise level is high, the multi-trellis
approach has a more favorable runtime since it guarantees to
satisfy the TB condition.

Upon applying WAVA, the overall average complexity for
CRC-TBCC is incremented by ACS operations during the
additional forward pass, if needed. Let the probability that the
optimal path of the initial traceback does not satisfy either TB
or CRC condition be Pyava. The list rank of the decoder is
1 with a probability of 1 — Pyaya. Thus we have the updated
complexity:

Csivp = Cssv + Pwava (Cwava + Cirace + Clist) (26)

where

Cwava = 1.5(K 4+m)2vT! +2v. 27)

The yellow data points in Fig. 5 represent the overall
complexity of the WAVA decoder normalized with respect
to the single-trellis Csgy. The complexity for initializing the
WAVA decoder is about 2 times of that for the single-trellis
decoder, giving it a disadvantage at low SNRs. When list size
is 1, the WAVA decoder matches the complexity of the single-
trellis decoder since one iteration is sufficient. At a list size
of around 50, the overall complexity of the WAVA decoder
reaches the same level as the single-trellis decoder. The WAVA
decoder always operates at a complexity lower than the multi-
trellis decoder.

B. Primal Trellis SLVD for Punctured ZTCC and TBCC

A punctured convolutional code of rate (n—1)/n is obtained
from puncturing the outputs of a rate-1/2 code. Therefore, the
complexity of the SLVD for the punctured and original codes
are the same, which is presented in [14]. To keep this section
self-contained, we will show the rate-1/n complexity analysis
here.

The overall complexity of the punctured SLVD consists of
the same three components as that of the standard SLVD in
17.

For CRC-ZTCCs,

Cssv =5(2" — 1)+ 3(K +m —v)2"

28
+ci[2(K +m+v) + 1.5(K +m)]. (28)

For CRC-TBCCs,
Cssv = BK +3m +1)2° +3.5¢1(K +m).  (29)

The other two components Ciee and Ciig, as well as the
expected number of insertions E[I], remain the same for
punctured SLVD as the dual-trellis SLVD (Eq. 21 - 25).

C. Complexity Comparison

Fig. 6 and 7 display the trade-off between the SNR gap to
the RCU bound and the average decoding complexity at the
target FER of 10~* for CRC-ZTCCs designed in Table I and
CRC-TBCCs designed in Table III. In addition, these figures
directly compare the proposed dual trellis decoding scheme
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Fig. 6. The SNR gap to the RCU bound vs. the average complexity of SLVD
of standard CRC-ZTCC codes in Table I and punctured CRC-ZTCC codes
in Table 1T for target FER of 10~%. Markers from top to bottom with the
same color correspond to CRC polynomials with m =0, ..., 11 for standard
CRC-ZTCCs, and m =0, .. ., 10 for punctured CRC-ZTCCs. For punctured
ZTCC with v = 4, m = 0, the gap to RCU bound is substantially high at
2.8262 dB.

with the punctured scheme. The average decoding complexity
of SLVD is evaluated according to the expressions in Sec.
V-A and V-B. We see that for a fixed v (ZT or TB, standard or
punctured), increasing the CRC degree m significantly reduces
the gap to the RCU bound, at the cost of a small increase in
complexity. CRC-TBCCs generally have greater complexity
than CRC-ZTCCs because the list decoder goes through many
non-TB codewords. The minimum gap of 0.25 dB is achieved
by the standard CRC-ZTCC with v = 6 and m = 10, and
the minimum gap of 0.05 dB is achieved by the CRC-TBCC
with v = 6 and m = 10. For CRC-TBCCs, the gap to RCU
bound continues to decrease when CRCs of higher degrees are
applied, but the complexity grows substantially. For a more
legible figure, we only show CRC polynomials of degrees up
to 10 in Fig. 7.

For the same CRC degree m, increasing the overall con-
straint length v dramatically increases the complexity, while
achieving a minimal reduction in the SNR gap to the RCU
bound. On the other hand, the performance of CRC-ZTCC
can be improved drastically by applying CRC polynomials of
higher degrees. Both Fig. 6 and 7 demonstrate that for all three
cases of constraint lengths v, one additional bit in the CRC
benefits the decoding performance by moving closer to the
RCU gap with a minimal cost in complexity.

Additionally, for the same CRC degree m and constraint
length v, the standard high-rate codes generally perform better
than the punctured codes while maintaining a similar decoding
complexity. As the CRC degree increases, the performance and
complexity of these two coding schemes draw nearer. Note that
for CRC-ZTCCs, the rates for standard and punctured codes
are different for v = 4 and v = 5, where the punctured codes
have a higher rate due to fewer termination overhead bits.

Fig. 8 shows the trade-off of complexity and performance
for decoding CRC-TBCCs with a single trellis SLVD and a
WAVA-based SLVD. The CRC-TBCCs used are of rate-3/4
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Fig. 7. The SNR gap to the RCU bound vs. the average complexity of
SLVD of standard CRC-TBCC codes in Table III and punctured CRC-TBCC
codes in Table IV for target FER of 10~%. Markers from top to bottom with
the same color correspond to CRC polynomials with m = 0, ..., 10. For
punctured TBCC with v = 4, m = 0, the gap to RCU bound is substantially
high at 2.4257 dB.
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Fig. 8. The SNR gap to the RCU bound vs. the average complexity of
SLVD of CRC-TBCC codes in Table IIT for target FER of 10~%. The results
for both single-trellis decoding and WAVA decoding are demonstrated. Each
color represents a specific CRC-aided CC shown in the table. Markers from
top to bottom with the same color correspond to CRC polynomials with m
=3, ..., 10, where m = O represents the convolutional codes without CRC.

for m = 3,...10 in III. The WAVA decoder has a larger
gap to RCU bound than the single-trellis decoder due to the
extra ACS operations during the first traceback. However,
the complexity of the WAVA decoder is smaller than that of
the single-trellis decoder, and the difference increases as the
CRC degree increases. For all constraint lengths v, the WAVA
decoder at m = 10 has a similar complexity as the single-
trellis decoder at m = 6.

VI. RESULTS AND DISCUSSION

In this section, we will report and discuss the FER vs SNR
performances of the CRC-CCs. Section VI-A compares the
standard CRC-ZTCC with the punctured CRC-ZTCC, as well
as shows the performance difference between using a single
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Fig. 9.  FER vs. SNR for v = 6,m = 10 standard and punctured

CRC-ZTCCs. The standard ZTCC is generated with the (4,3,6) encoder
H = (107,135,133,141) and the punctured ZTCC is generated by
G = (133,171) . The optimal CRC polynomials of degree 10 are 0x59F
and 0x4E7, respectively. For the RCU and MC bounds, values in parenthesis
denote blocklength NV and information length K, respectively.

longer CRC and multiple shorter CRCs. Section VI-B covers
the performance of standard and punctured CRC-TBCCs.

A. CRC-ZTCC Results

Fig. 9 shows the performance comparison of standard and
punctured v = 6 CRC-ZTCCs with degree-10 CRC polynomi-
als. For both CRC-ZTCCs, the blocklength is 128 bits and the
information length is 80 bits, yielding a code rate of 0.625.
The standard CRC-ZTCC has slightly better FER performance
than the punctured code. At the target FER of 10~%, the gap
between the two schemes is around 0.08 dB.

In [24], Karimzadeh et al. considered designing optimal
CRC polynomials for each input rail of a multi-input CC.
In their setup, an information sequence for an (n,n — 1,v)
encoder needs to be split into (n — 1) subsequences before
CRC encoding. In contrast, the entire information sequence
in our framework is encoded with a single CRC polynomial.
Then the resulting sequence is evenly divided into (n — 1)
subsequences, one for each rail. To compare the performance
between these two schemes, we design three degree-3 op-
timal CRC polynomials, one for each rail, for ZTCC with
H = (107,135,133, 141). The three CRC polynomials jointly
maximize the minimum distance of the CRC-ZTCC. For the
single-CRC design, we use the single degree-9 optimal CRC
polynomial for the same encoder from Table I. Both CRC-
ZTCCs have an information length K = 81 and blocklength
N = 128. Fig. 10 shows the performance comparison between
these two codes, showing that at high SNRs, a single degree-9
optimal CRC polynomial outperforms three degree-3 optimal
CRC polynomials, one for each rail. This suggests that a single
optimal CRC polynomial may suffice to provide superior
protection for each input rail. The decoding complexity is
similar regardless of the CRC scheme.
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Fig. 10. FER vs. SNR for v = 6, m = 9 CRC-ZTCCs designed under

Karimzadeh et al.’s scheme [24] and our scheme. Both CRC-ZTCCs have
information length K = 81 and blocklength NV = 128.
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CRC-TBCCs. The standard TBCC is generated with the (4,3,6) encoder
H = (107,135,133,141) and the punctured TBCC is generated by
G = (133,171) . The optimal CRC polynomials of degree 10 are 0x529
and 0x40D, respectively. A single-trellis list decoder is used.

B. CRC-TBCC Results

The performance of CRC-aided list decoding of ZTCCs
relative to the RCU bound is constrained by the termination
bits appended to the end of the original message, which are
required to bring the trellis back to the all-zero state. TBCCs
avoid this overhead by replacing the zero termination condition
with the TB condition, which states that the final state of the
trellis is the same as the initial state of the trellis [33].

Fig. 11 shows the FER vs. SNR for standard and punctured
v = 6 CRC-TBCCs with degree-10 CRC polynomials at a
fixed blocklength of 128 and information length of 86. Both
codes are able to closely approach the RCU bound. At the
target FER of 1074, the gap between the two schemes is
within 0.05 dB. Compared to the CRC-TBCCs with the same
v and m, the CRC-ZTCCs have a rate loss of around 0.04 dB
because of the termination overhead.



VII. CONCLUSION

This paper shows that both standard and punctured high-
rate CRC-aided CCs are able to approach the RCU bound
for the BI-AWGN channel. The best CRC-TBCCs with the
single-trellis ML decoder approach the RCU bound within 0.1
dB for a target FER of 10~* at a blocklength of N = 128
bits. Concatenated with optimal CRC polynomials, the per-
formance and complexity of the standard and punctured high-
rate convolutional codes are similar. In addition, adding one
bit to the CRC can improve the FER more than adding an
additional memory element to the CC does for both standard
and punctured CRC-CC schemes.

For rate-(n — 1) /n TBCCs concatenated with optimal CRC
polynomials, this paper considers three list decoding algo-
rithms: a multi-trellis approach, a single-trellis approach, and
a modified single trellis approach with pre-processing using
the Wrap Around Viterbi Algorithm (WAVA). For the cases
of standard codes, on which our simulations focused, all three
algorithms use the dual trellis to reduce complexity. The multi-
trellis approach achieves the smallest expected list rank, but
it suffers from a significantly larger overall complexity than
the single-trellis approach. For the single trellis approach, we
consider both an ML decoder and a non-ML decoder that
uses WAVA pre-processing. WAVA pre-processing achieves a
significantly smaller expected list size at the price of a worse
FER performance.
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