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AL-SAR: Active Learning for Skeleton-based
Action Recognition

Jingyuan Li, Trung Le and Eli Shlizerman

Abstract—Action recognition from temporal multi-variate se-
quences of features, such as identifying human actions, is typically
approached by supervised training as it requires many ground
truth annotations to reach high recognition accuracy. Unsuper-
vised methods for the organization of sequences into clusters
have been introduced, however, such methods continue to require
annotations to associate clusters with actions. The challenges in
annotation necessitate an effective classification methodology that
minimizes the required number of labels. Active Learning (AL)
approaches have been proposed to address these challenges and
were able to establish robust results on image classification. Such
approaches are not directly applicable to sequences, since for se-
quences, the variations are in both spatial and temporal domains.
In this paper, we introduce a novel method for active learning
for sequences, called "AL-SAR", which combines unsupervised
training with sparsely supervised annotation. In particular, AL-
SAR employs a multi-head mechanism for robust uncertainty
evaluation of the latent space learned by an encoder-decoder
framework. It aims to iteratively select a sparse set of samples,
which annotation contributes the most to the disentanglement of
the latent space. We evaluate our system on common benchmark
datasets with multiple sequences and actions, such as NW-UCLA,
NTU RGB+D 60, and UWA3D. Our results indicate that AL-
SAR coupled with encoder-decoder network outperforms other
AL methods coupled with the same network structure.

Index Terms—SKkeleton-based Action Recognition, Active
Learning, Uncertainty Sampling, Human Action Recognition

I. INTRODUCTION

CTION recognition from spatio-temporal sequences is

a key component in ubiquitous applications such as
action recognition of human movements, understanding subject
interaction, and robotic control. Unlike video-based action
recognition approaches, which perform classification on image
frames, skeleton-based methods operate on pose estimation
features, such as skeleton joints or contours, and offer a more
concise representation of the action by filtering unnecessary
information from the scenes.

Several systems have been introduced for action recognition
from body-skeleton keypoints. Such systems attempt to learn
spatial and temporal relations for sequences and translate each
of them to an association of an action. The majority of the
methods require a fully supervised approach [1], [2], [3], [4].
While the recognition accuracy of these methods has been
shown to be effective, such approaches rely on the availability
of a large number of annotations in the training set. Acquiring
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ground truth annotations for sequences is a time-consuming
process and requires human expertise. These challenges hinder
the possibility to scale up the approaches and apply them
to novel scenarios of actions and subjects. To address these
challenges, unsupervised methods have been proposed. They
demonstrate the potential of a framework that includes two
network components, an encoder, and a decoder, cooperating to
reconstruct spatiotemporal sequences of keypoints [S], [6], [7].
These networks were found to self-organize the latent space
shared between the encoder and the decoder to form clusters
that correspond to actions. While these methods appear to be
promising, the association of clusters with actions continues to
require a large number of labels and underperform supervised
methods.

Few-shots learning and semi-supervised learning for skeleton-
based action recognition were proposed to reduce the required
number of annotations while not compromising the action
recognition accuracy. The few-shot learning methods propose
to "meta-train” a base model on auxiliary action classes, for
which there is a large amount of annotated samples. Such
training aims to learn a set of general model parameters such
that the base model can be efficiently adapted to unseen classes
which are not included in auxiliary action classes, via further
training on a few examples of these classes [8], [9], [10],
[L1]. However, the auxiliary classes with abundant annotated
samples are not always on deck. Besides, the auxiliary and
unseen classes are expected to follow similar data distribution.
This expectation limits the application of few-shot learning
to various practical problems, since in practice data quality,
style, the number of skeleton keypoints, or even subjects, e.g.,
human subjects vs. animal subjects, significantly vary from one
dataset to another. Alternatively, semi-supervised methods have
been proposed for situations where well-annotated auxiliary
classes are unavailable. Examples of semi-supervised methods
for skeleton based action recognition include ASSL [12],
MS?L [13], and SC3D [14], which learn the informative
representations for both labeled and unlabeled samples in
addition to correctly classifying labeled samples.

Importantly, these semi-supervised learning methods do not
consider that not all annotated samples contribute equally to
the training of a classifier, and therefore, it is advantageous
to select for annotation the samples that dominantly represent
their classes. Such selection could improve the effectiveness
of the classifier and at the same time minimize the number
of annotations needed for training. Active Learning (AL)
algorithms [135], [16], [17] have been established based on
this principle and showed promising results when applied
to image classification tasks [18], [19], [20]. Indeed, a vari-
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Fig. 1. AL-SAR system overview. A multi-head mechanism (middle) operates on a learned hidden representation of an encoder-decoder (left) network,
which extracts the latent representation using the reconstruction task. Consequently, these latent representations are grouped into Latent Space Clusters. The
multi-head mechanism (middle) computes the uncertainty of samples through the estimation of the collective confidence of the heads on the prediction output.
By incorporating the latent space information and the uncertainty evaluation, the active learning algorithm ensures that the selected samples are diversified and

informative.

ety of AL selection strategies have been developed. These
include approaches based on principles of diversity [18],
uncertainty [20], [21], [22], and model decision [23]. While
AL is widely adopted for image data, only a handful of studies
have investigated the applicability of AL to sequential data
that is spatio-temporal [24], [25], [26], and application of these
methods show no superiority over the random selection of
samples.

To propose a more effective selection paradigm, we introduce
a novel active learning approach, termed AL-SAR, for action
recognition from spatio-temporal skeleton sequences. AL-SAR
selects sequences for annotation according to the clustering
information in the latent space along with robust estimation of
uncertainty. Our approach is a novel extension of the margin-
based uncertainty selection strategy with a multi-head mecha-
nism. Beyond applicability to skeleton-based action recognition,
our approach provides a generally effective algorithm for un-
supervised sequence reconstruction and classification methods
to perform learning with efficient annotations. Validation of
AL-SAR on three extensive common benchmarks of skeleton-
based human action recognition (UWA3D, NW-UCLA, NTU-
RGB+D) shows that AL-SAR allows for significant improve-
ment over state-of-the-art unsupervised and semi-supervised
methods, especially when only a sparse number of annotations
can be obtained.

II. RELATED WORK

Various skeleton-based action recognition approaches have
been proposed. These include supervised methods which
analyze action related physical statistics [27], |28, [29], deep
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learning with CNNs [30], [31], [32], RNNs and their vari-
ants [ 1], [33], [34], and graph convolutional networks [4], [35],
[36], [37], [38]. Unsupervised methods have been introduced
as well. Such approaches build a latent representation through
learning to reconstruct input sequences with an encoder-decoder
network structure. The latent space of such networks is shown
to self-organize into clusters enabling a simple classifier such
as K-Nearest Neighbour (KNN) to identify action types [6],
[7]. However, the KNN component still remains supervised
and annotations are necessary to identify actions. To avoid
supervision and improve action recognition accuracy, semi-
supervised approaches have been proposed. These approaches
learn the recognition task by leveraging annotations from
a randomly selected subset of samples. Examples include
methods such as ASSL [12], MS2L [13], SC3D [14]. These
methods do not deal with the selection of sequences for
annotation and instead assume a given random annotated set.
In applications, it is critical to optimize such a selection and
to seek samples that are more informative for learning actively.
Such a selection would need to be achieved with AL methods.

AL methods typically belong to three categories: (i) sample
synthesis, (ii) stream-based selective sampling, and (iii) pool-
based sampling [15], [16], [39]. Sample synthesis is based
on generating additional samples of action sequences. These
generated sequences are typically of lower quality, making
them challenging candidates for annotation [40]. Stream-based
and pool-based sampling methods work with real data. The
stream-based selection considers one sample at a time, decides
whether to annotate the sample at that time, and is applicable
in online learning scenarios [16]. Pool-based methods select a
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set of samples at each stage and are therefore expected to be
more efficient for applications with a dataset already prepared.
Such methods are widely used in classical machine learning
techniques such as support vector machine and logistic regres-
sion, and take into consideration aspects such as diversity [41],
[42], 143], and uncertainty (based on entropy [44], confidence
estimation [45], and margin estimation [46], [47]). The idea
of enforcing diversity or uncertainty for sample selection has
been adapted to deep learning as well. For example, diversity is
incorporated by selecting a sample batch that covers the whole
space with a minimum covering radius for each sample [18].
Uncertainty metrics with deep learning models are computed
with techniques such as dropout [22], [44], [48], the ensemble
of models [19], and image augmentation [20]. These techniques
compute the prediction entropy or the variance among ‘multiple-
outputs’ for a sample. In many scenarios, it is advantageous
to consider both diversity and uncertainty [49], [50], [51],
since diversity reduces redundancy of selected samples and
uncertainty focuses on samples where the model is less
confident. In addition to these methods, a new branch of deep
learning pool-based AL methods has been introduced, solving
AL from a different aspect by learning a Discriminator (DIS)
where samples which DIS is least confident in are selected
for annotation [23], [25]. These methods rely on a network
to learn the characteristics of unlabeled samples instead of
measuring the uncertainty or the diversity with hand-designed
features like the aforementioned approaches do.

Our method, AL-SAR, belongs to pool-based AL methods
and selects samples based on diversity and uncertainty esti-
mations. In contrast to the aforementioned methods, where
the diversity is imposed by computing similarity [50], [51], in
our work, the diversity is incorporated by annotating samples
located in different clusters in the organized latent space
formed during the training process. Several methods have
exploited the preservation of similarity among samples in the
latent space and demonstrated success on downstream tasks
such as video-based person re-identification [52] and vehicle
re-identification [43]. The representation are flourishingly
generated by the encoder-decoder structure [S3], [S], [6],
GAN [54], [55], contrastive learning [14], [S6] and multi-
view learning [57], [S8], [59]. Here, we use the encoder-
decoder structure [6] to learn the representation. However,
other methods could be used to generate representations, such
as contrastive learning methods, e.g., SC3D [14]. Apart from
the organized latent representation, the uncertainty is measured
for the guidance of active selection. Estimation of uncertainty
is related to methods that consider ‘multiple-outputs’ [19], [20],
[48], [50]. Unlike earlier approaches, we generate multiple-
outputs through a single forward pass using a novel multi-
head mechanism. Multi-heads are composed of several parallel,
randomly initialized, and fixed heads (fully connected layers).
The heads are injected right before the last classification layer
(classifier), as shown in the middle part of Fig.|1} Multiple-
outputs are obtained through the alteration of the connectivity
weights of the classifier with different heads. All heads take the
same input computed from the earlier module. With the average
prediction from multiple-outputs, we compute the margin-based
uncertainty metric by measuring the difference between the
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predicted probabilities of two most likely classes. Entropy and
variance computation proposed in earlier for the guidance of
sample selection works [20], [47], [48] could be biased, e.g.,
there are cases where prediction variance on a sample is small
but predictions are inconsistent across inference passes. In
these cases, it is beneficial to annotate such samples.

To address these aspects, we implement a margin-based
selection that is coupled with diversity filtering that operates
on samples represented in the latent space. The margin based
selection is expected to perform more optimally in cases such
as the aforementioned scenario. Indeed, our experiments on
standard benchmarks show that AL-SAR can achieve enhanced
action recognition performance and requires fewer samples
when compared with other AL methods.

III. METHODS

AL-SAR works with datasets of multi-dimensional time
series specifying the coordinates of body keypoints at each
given time. We denote the times-series as X' = {X, | X;},
with X, representing the sequences in the unlabeled set and
X in the labeled set. At first, X has only unlabeled samples
(X = X,). A sample x; € X is represented as a sequence
x; = [x1, X2, .., X¢, ...x7], where x; is the vector of coordinates
of the keypoints at time ¢, x; € RP*“, Here p is the number
of keypoints, d is the dimension of the keypoints (typically
d = 3). p is expected to vary across datasets. For datasets with
keypoints obtained from video frames recorded from multiple
views (e.g., NW-UCLA, UWA3D), we follow the procedure of
transforming them to a view invariant representation [6], [60].

The proposed AL-SAR system includes three main com-
ponents: (i) Learning the latent representation of skeleton se-
quences, (ii) The multi-head mechanism for robust computation
of the margin-based metric, (iii) AL selection which integrates
location information in the latent space and the margin-based
metric to select samples for annotation. In this paper, we focus
on advancing components (ii), and (iii) since, for (i), there
are powerful pre-existing methods available. An overview of
AL-SAR system architecture is depicted in Fig.

(i) Preliminary: Learning Meaningful Latent Representa-
tions. In AL-SAR, we embed the spatial-temporal body key-
points into latent representation space with the encoder-decoder
framework introduced by [6], [7], which has been shown to
achieve meaningful latent representation. The encoder uses
bidirectional Gated Recurrent Units (GRU) and receives x; € X
as input. The vector h! is the latent code transferred from the
encoder at the last time step 7' to the decoder. It encodes the
dynamic properties of the whole sequence x; and lies in the
latent space V, where V' = {hT|hT = encoder(x;),x; € X},
i.e., the space spanned by the latent codes of all sequences. The
unidirectional GRU-based decoder receives h7 and reconstructs
the original input sequences by minimizing the reconstruction
loss

(D

Notably, AL-SAR is not limited to the encoder-decoder frame-
work and training strategy of P&C [6], and as we demonstrate
in Experiments & Results, AL-SAR could achieve successful

£7‘e = |)A(Z — Xi'-
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sample selection and classification with latent representation
learned by other encoders.

(i) Multi-head Mechanism. Pool-based AL with uncertainty
strategies is susceptible to biased classification predictions,
especially when access to annotated instances is limited. The
prediction of the classifier is affected by many factors including
network initialization and training strategy. Furthermore, as
shown in earlier work, the classifier can be over-confident
about specific samples [61]. Therefore, direct measurement
of the uncertainty from classification predictions could be
misleading. The multi-head mechanism is designed to reduce
these effects to provide a robust measurement of uncertainty.
Notably, the multi-head mechanism introduced here differs from
those widely used in Transformer networks for computing a set
of attention weights [62] or ones used in CNN for spectrogram
inversion [63]. The differences are in how multi-heads are
structured, their training scheme and purpose. We keep the
name due to the similarity of introducing parallel blocks. In
particular, the proposed multi-heads are randomly initialized
as a fully connected layer, fixed, and parallelly inserted right
before the last classification layer. We train the classifier to
correctly classify labeled samples from the output of any head
it is connected to. In the sample selection phase, we average
the classifier’s outputs as it connects to each head for robust
uncertainty estimation.

We describe the detailed the multi-head network as follows.

We consider the classifier C as a single fully connected layer
with weights Wjy. The multi-head mechanism is constructed as
multiple additional heads receiving h! as input and sending
outputs to the classifier. Each head is a single fully connected
layer with weights W; initialized according to the uniform
distribution, i.e., W5 ~ U (—W, dim(hfs’ and kept fixed
throughout the training process. Here dim(h!) denotes the
dimension of the latent code. During training and testing,
a single head is randomly chosen to be activated at each
time. During operation, i.e., at the sampling phase, all heads
are activated and average predictions are used to evaluate
the uncertainty of the input samples. We show in Results
(Section [IV) that by generating multiple transformations of
h7" and collectively contributing their different confidence to
the knowledge of the unlabeled samples, the heads effectively
reduce artifacts in estimation of uncertainty and improve the
performance of the overall system. We use the margin-based
uncertainty metric [46], [47], i.e., marginal index (MI), which
evaluates the probability prediction p, from each head z

pL(xi) = pL (i = [|We, W5) = C(H(x1))
z€[1,Np];and [ € [1,C],

where pl denotes the probability of a sample which belongs to
class [ predicted by the classifier C when the head z is activated.
For C' possible classes, C and #, indicate the transformation
with the classifier and the 2" head respectively. N}, denotes
the number of heads. Given probability predictions, MI is
computed as the measure of the confidence difference between
the most probable class and the second most probable class,
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using the average probability prediction of the heads, i.e.,

1 O 1 &
Ml = max | — . | — max — 21, 2
le[1:c) \ Ny, ;p 1e([1:C1\1*) \ Np ;p @
Where, p, = i7.~,Plzw~apo]v
1
[* = argmax [ — P
tefi:c] \ Na ;

Given the classifier output, the classification loss is computed
as
c
o= —yilog(pl(x:)), z =rand(1: Ny), (3)
=1

where y! = 1 if x; belongs to class [, and y! = 0 otherwise.
The loss, incurred for each sample x;, is composed from the
reconstruction loss £, and the classification loss £, for the
labeled samples. The full model is trained according to the

total loss
> L., 4

x;EX

L= L+ %
X;EAX)
where |X| is the total number of samples in the dataset.

(iii) Active Selection. In addition to the margin-based
uncertainty measure (MI), we incorporate diversity filtering
by leveraging clustering information in the latent space to
enhance coverage and effectiveness of selected samples. We
indeed observe that the inclusion of clustering information in
AL boosts the overall classification. It presumably brings closer
samples in the latent space that belong to the same class, while
increasing the distances between distinct classes, as shown
in Fig.|2| In each iteration, a new set of unlabeled samples
is selected for annotation and then all samples (labeled and
unlabeled) are used to refine the latent code and enhance the
classifier. The selection can be subdivided into two scenarios:
1) Initial Selection, ii) Subsequent Selection.

Initial Selection is regarded as the ‘cold-start’ problem,
where neither ground truth annotation nor the predictions
of the classifier are available [64], [65]. For effective initial
selection, we form samples into clusters according to latent
representation h! generated by the encoder and then the
samples in each cluster center are selected for annotation based
on the assumption that these samples represent the clusters.
Specifically, we use K-Means clustering to transform the latent
representation into a collection of clusters /. The number of
clusters k

k:

x percentage X |X|, 35
Niter
is chosen based on the total number of selection iterations
Niter and the selection budget (the percentage of data we
want to annotate). k is fixed across selection stages and is
the budget for each selection. With the labeled samples, the
classifier is trained until the classification accuracy on these
labeled samples converges.
For subsequent selections, we combine cluster information
and MI computed by the multi-head structure. We choose
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Fig. 2. Illustration of latent space organization when the encoder-decoder network is trained with AL. Three training iterations depict that clusters in the latent
space self-organize and co-adapt during training and annotation process. Gray points are unlabeled points, blue points are samples selected for annotation. In
each iteration, clusters are formed in the latent space. The samples closest to the center of each cluster are annotated in the initial selection. In subsequent
iterations, samples for annotation are chosen from each cluster according to AL-SAR strategy. The process is repeated for multiple iterations until it reaches

the maximal annotation budget.

TABLE I
COMPARISON OF FULLY SUPERVISED (FS), SEMI-SUPERVISED (SS) IN TOP SECTION, SOTA AL (MID SECTION) ACCURACY WITH AL-SAR (BOTTOM
SECTION) ON THREE BENCHMARKS OF ACTION RECOGNITION.

UWA3D VIEW3 NW-UCLA NTU RGB+D 60 CS
%Labels 5% 10% 20% 50% || 5% 15% 30% 40% || 1% 2% 5% 10%
#Labels 25 50 100 250 || 50 150 300 400 | 400 800 2K 4K

2, C 200 233 373 500 || 427 579 709 685 || 21.8 372 49.6 56.7

g g RC 209 322 383 488 | 551 509 721 770 || 338 416 478 60.0

£2 IRC 217 296 415 554 | 507 593 786 780 | 367 427 539 612

‘f g ASSL 12 - - - - 526 748 780 8.4 - - 573 643

E & MSZL[13] - - - - - - - 331 - - 652
SC3D [14] - - - - - - - 357 - 596 659
DIS 193 287 402 538 | 477 71.8 766 80.5 || 349 395 538 604
CS 21,5 299 403 526 || 573 694 773 806 || 17.6 23.1 37.0 49.6
AUG 219 302 408 562 | 482 658 77.0 817 || 207 335 504 602

= U 234 305 421 534 | 523 704 784 808 || 346 438 563 612
Ours

AL-SAR 257 353 457 539 | 61.0 759 825 84.1 | 388 476 579 63.7

tvs U 123 148 136 105 || 187 155 41 133 || 142 138 117 125

the samples (s) with the minimum M/ within every cluster
K; (i € [1,k]). The selected samples are then passed to the
‘Oracle’ for annotation. A new set of k annotated samples
is subsequently added to the labeled set and the model is
continually trained with the loss of Eq. [4| We summarize the
complete procedure in Algorithm

IV. EXPERIMENTS & RESULTS

Datasets. We evaluate the performance of AL-SAR on three
common benchmark datasets, UWA3D Multiview Activity II
(UWA3D) |66l, North-Western UCLA (NW-UCLA) (67], NTU
RGB+D 60 [33]. These three datasets contain the different
numbers of actions, with cross-view (CV) and cross-subject

(CS) sequences. UWA3D contains 30 human action categories.

Each action is performed 4 times by 10 subjects recorded from
frontal, left, right, and top views. We selected the first two
views as the training set and the third view as the test set, which
appears to be a more challenging task according to related
work [6], [68]. Results on view 4 are shown in Supplementary
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Material. NW-UCLA is captured by three Kinect V1 cameras
containing depth and human skeleton data from three different
views. The dataset includes 10 different action categories
performed by 10 different subjects repeated 1-10 times. We
use the first two views to form the training set, and the third
view as the test set, following the same procedure as in [6],
[30], [67]. NTU RGB+D 60 includes both video and skeleton
sequences performed by 40 different subjects recorded using 3
different cameras across different views. The dataset includes
60 different classes. We evaluate the performance in both CS
and CV settings (CV results are in Supplementary Material).
For the CV setting, samples from cameras 2 and 3 are used
for training, and samples from camera 1 are used for testing.
CS setting splits subjects into 2 groups, 20 subjects are used
for training and the other 20 subjects are used for testing. It
is a harder task compared to CV, especially for unsupervised
and semi-supervised methods [6], [12].

Implementation Details. For experiments, we use three-layer
bi-GRU cells that constitute the encoder with 1024 hidden
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TABLE II
COMPARING AL-SAR WITH ITS ABLATION VERSIONS: UNIFORM WITH MULTI-HEAD (UH), NO CLUSTER WITH MULTI-HEAD (NKH), AVERAGE MI
COMPUTED WITH DROPOUT (DROP), USING CLUSTER WITHOUT HEAD (KNH).

UWA3D VIEW3 NW-UCLA NTU 60 CS

% Labels  Cluster- Multi- 5% 20% 5% 30% 1% 5%

# Labels ing (K) Head (H) 25 100 50 300 400 2K

Random Selection

U X X 23.4 42.1 523 784 346 56.3

UH X v 25.1 41.3 549 769 338 54.9
Margin Based Selection

MK v X 23.8 49.7 557 819 382 57.4

MKD v Dropout  23.2 452 576 813 37.1 57.2

MH X v 23.2 42.5 572 81.0 349 56.6

AL-SAR v v 25.9 454 594 822 389 57.9

Algorithm 1 AL-SAR Iterative Sample Selection Procedure
1: procedure AL-SAR
2: Number of training epochs N, hZ latent representa-
tion for all unlabeled samples. Standard Deviationn (std).
Inputs: unlabeled samples X,,, labeled samples X; =
0, niter =0
4 h?' < Encoder(X,)
5: K < K-Means(hl k)
6: s < Oracle([center(K;) for K; in K])
7
8
9

(95}

X+ X;Us
Xy — Xy\s
: for 7 = 1:N,, do
10: ACC, < Classification Accuracy
11 if std(ACC,_1,ACC._5,ACC,_35) < 0.01,
7 2> 3 and Njter < Niter then
12: hT « Encoder(X.,,)
13: K < K-Means(hZl k)
14: s < Oracle([argmin(MI(K;)),
15: for K; in K))
16: X+ X;Us
17: Xy Xy \s
18: Niter < Niter + 1

units for each direction. Hidden units from both directions are
concatenated to a 2048 dimensional latent representation h?,
and then h? is sent to the decoder. The decoder is chosen
to be a uni-GRU with the hidden size of 2048. Each head is
instantiated as a 2048x1024 fully connected layer. The classifier
C is a single fully connected layer and receives input that is
the output from the heads and predicts class probabilities of
samples. We use the Adam optimizer for optimization. The
learning rate is set to 10~ and then decays by 0.95 for every
10 epochs on UWA3D and NW-UCLA, and every 3 epochs on
NTU RGB+D. We use 5 heads for UAW3D and NW-UCLA.
For NTU RGB+D 3 heads are used with 1% and 2% annotation
budgets, and 5 heads are used with 5% and 10% budgets.
Comparison with SOTA AL Methods. Since AL methods
specifically designed for action recognition are limited, we
compared AL-SAR with SOTA AL generic techniques and
those that were proposed for other tasks. In particular, we
implement and examine Uniform sampling (U), Core-Set
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(CS) [18]], Discriminator based selection (DIS) [23], and
Consistency-based AL under Augmentation (AUG) [20]. We
compare these AL methods against the margin-based selection
with multi-head mechanism in AL-SAR. In U, samples are
randomly selected for annotation among the entire dataset. CS
aims to cover the whole space using selected samples with
minimized coverage range [18]. DIS leverages a discriminator
to distinguish if a sample is labeled or not (as we describe
in Related work) [23], [25]. With AUG, we apply the aug-
mentation strategies for skeleton sequences introduced in [69]
together with the proposed consistency-based AL technique
in [20].

The evaluation is shown in Table [Ij for UWA3D VIEW3,
NW-UCLA, NTU RGB+D 60 CS. We observe that AL-SAR
consistently outperforms existing AL methods (see increase
vs U). Notably, when the annotation budget is small, as with
5% and 10% of UWA3D View3, AL-SAR outperforms U,
the best baseline method on UWA3D dataset, by 2.3 and 4.8
in accuracy respectively. On NW-UCLA with 5% and 15%
labeled samples, the performance of AL-SAR surpasses the
best methods (CS and DIS respectively) by 3.7 and 4.1. Similar
behavior is found for NTU RGB+D 60 CS, where the difference
between AL-SAR and DIS is 3.9 with 1% labeled samples. As
the annotation budget increases, the improvement vs U is still
significant. For instance, with 10% (400K on NTU RGB+D
60 CS), AL-SAR surpasses U by 2.5. In general, AL-SAR
consistently demonstrates high efficiency across benchmarks.
Similar conclusion is drawn from Fig.|3] where the number of
labels required for achieving 80% accuracy is measured for AL-
SAR and other AL methods (U, CS, DIS), and baseline non-AL
methods such as C: the encoder accompanied by the classifier
trained with classification loss only, RC: enhancing C with the
decoder and strengthening the training with the reconstruction
loss, IRC: a variation of RC which initializes RC with a pre-
trained encoder-decoder model [6]]. As can be inspected from
Fig.|3|(left), AL-SAR requires only 20% of annotated samples
to achieve 80% accuracy, which is significantly less than C
(which requires 70% of labels). Other baselines such as RC
and IRC are more optimal than C, but still require 40%-50%
labels. By inspecting the training process with a sparse set of
5% of annotated samples (Fig.right), we observe that one of
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Fig. 3. Left: Annotation (% of labeled samples) required to achieve 80%
percent accuracy on NW-UCLA. Comparisons are made for C, RC, IRC, U,
DIS, AL-SAR. Right: Training trajectory with 5% annotated samples for C,
U, and AL-SAR on NW-UCLA showing that AL-SAR continues to improve
with each new set of samples being selected for annotation. Selections are
performed at epoch 1, 22, 29, 36, 41.

TABLE III
EVALUATION OF ORIGINAL SPACE (OS), BETA-VARIATIONAL
AUTOENCODER (8-VAE), VANILLA ENCODER-DECODER (ED) AND
PREDICT&CLUSTER (P&C) IN TERMS OF ABILITY TO PRODUCE
MEANINGFUL LATENT STATES FOR CLASSIFICATION.

B-VAE
41.5

(O]
66.5

ED P&C
829 836

KNN Accuracy

the reasons that AL-SAR requires fewer labels is that AL-SAR
continues to learn over selected samples in multiple iterations
in comparison to methods like C or U which reach a plateau
after several learning epochs. These analyses confirm that AL-
SAR is significantly efficient in leveraging sparsely annotated
data for the improvement of the overall action classification.

Comparison with SOTA Semi-Supervised Methods. In
addition to comparing AL-SAR with other AL methods, it is of
interest to compare AL-SAR with semi-supervised approaches
for skeleton-based action recognition, such as ASSL [12],
MS2L [13], and SC3D [14], even though these methods
assume a given set of annotated samples and do not deal with
active sample selection. Results in Tableshow that AL-SAR
outperforms these methods when the number of annotated
samples is small (# Labels < 800). With more annotated
samples, for instance 4000 samples (10% labels) on NTU
RGB+D, ASSL and MS?L perform slightly better than AL-
SAR. This is not surprising since the techniques employed
by ASSL and MS2L specialize in accumulating the benefits
obtained from each additional annotated sample. Similarly,
SC3D with 2000 annotated samples exceeds AL-SAR largely
due to its significantly larger and more complex network which
includes two sub-networks based on GRU and an additional
graph convolution neural network. However, in Ablation Study,
we demonstrate that SC3D can be enhanced with AL-SAR
active sample selection strategy.

This comparison elucidates that the main application of AL-
SAR is when the annotation budget is small and when the
annotation is performed iteratively along with inspection of
the action clusters.

Ablation Study. We test how aspects of AL-SAR, such
as latent space clustering with k-Means (K), multi-head
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A

First Iteration Final Iteration

Fig. 4. T-SNE embeddings of the latent space for the first iteration (left)
and the final iteration (right) on UCLA dataset. Two representative classes
belonging to actions of ‘two hand punching’ (red) and ‘squatting’ (blue) are
marked. The first iteration is initialized with 10% annotated samples, where in
each iteration additional 10% of samples are annotated. At the final iteration,
the same class samples are gathered into more enhanced clusters

structure (H), and margin-based selection (M) contribute to its
overall performance. First, we test the influence of multi-head
mechanism as an additional component to U, in abbreviation
UH. Results in Table show that UH is comparable to or
underperforms U in many cases, e.g., UH accuracy is 1.5 and
1.4 lower than U on 30% NW-UCLA and 5% NTU RGB+D
CS, respectively. We thus observe that integration of multi-
head structure without marginal selection is not optimal. We,
therefore, examine variants of marginal selection and test the
effectiveness of multi-head components and clustering. In AL-
SAR, MI is used as the uncertainty measure defined in Eq.
When the multi-head mechanism is removed, MK variant), the
equation for MI becomes

(6)

ey )
where p is the probability output of the classifier taking as
input the latent representation h?. As shown in Table n AL-
SAR surpasses MK across datasets and annotation budgets.
The Ablation study of the number of heads in the AL-SAR
is presented in Supplementary Material. Another variation of
multi-head mechanism is Dropout |70] which induces noise into
the network and estimates the probability outputs in multiple
runs. Our comparison shows that MKD does not perform as
well as AL-SAR in classification accuracy. This could be due to
Dropout noise induction is not systemic compared to the multi-
head mechanism performing the predefined transformation.

We study the effectiveness of clustering in latent space
with MH variant in Table [[I} where clustering is ablated from
AL-SAR. MH underperforms AL-SAR by an average of 2.7.
Indeed, clustering in the latent space is considered for diversity
selection since the space has been shown to self-organize
into meaningful structures [6]. As we show in Fig.|4] t-SNE
representation of the latent space in the first and final iteration
of AL indicates that training that leverages clustering succeeds
to form clusters of samples that are clearly identified with
action, and thus ensures selection diversity.

Different methods to construct latent space can potentially
influence the final accuracy. We assess how well the latent
space obtained by beta-variational autoencoder (3-VAE) [53],
vanilla encoder-decoder (ED), and Predict&Cluster (P&C)
[6] construct discriminative clusters. In all three variants,
we evaluate the accuracy of KNN (k=1) on NW-UCLA

MI = _
max, (p)
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Fig. 5. Visualization of the classifier predictions in t-SNE embedded latent space. The predictions are obtained from the well-trained classifier as it is connected
to different heads, and colors indicate class labels. The classifier makes consistent predictions across three heads except for a few examples (denoted by black

dashed circles).

TABLE IV
COMPARISON OF VANILLA SC3D, AL-SAR WITH THE ENCODER-DECODER
OF P&C (AL-SAR-PC), AND AL-SAR WITH THE ENCODER IN SC3D
(AL-SAR-SC3D) oN NTU RGB+D 60 CS.

% Labels 1% 5% 10%
SC3D 357 596 659
AL-SAR-PC 388 579 637
AL-SAR-SC3D  40.0 63.8 72.7

and use the same encoder and decoder for comparison. We
report the performance in Table [ITI] along with the baseline
of KNN accuracy (k=1) on the original input space (OS).
P&C architecture yields the highest accuracy and thus we
choose this architecture for AL-SAR. In addition, we are
interested in whether a powerful semi-supervised learning
method could benefit AL-SAR. One such method is SC3D
[14], which shows satisfying action recognition accuracy on
NTU RGB+D dataset under 5% and 10% annotation budget
(Table . SC3D’s primary relevance to our work is in learning
the data representation for AL-SAR as an alternative to P&C
[6]. Therefore, we substituted the encoder of SC3D for the
encoder-decoder of P&C to test with whether this substitution
will enhance the results of AL-SAR with P&C and/or the
results of SC3D alone. The results are shown in Table We
denote the original AL-SAR as AL-SAR-PC to distinguish
with SC3D substituted AL-SAR (AL-SAR-SC3D). AL-SAR-
SC3D surpasses the performance of both vanilla SC3D and
AL-SAR-PC on three annotation budgets 1%, 5%, and 10%.
Specifically, at 10%, the improvement is 6.8 and 9.0 over vanilla
SC3D and AL-SAR-PC, respectively. The results indicate
that incorporating a more complex model in AL-SAR, such
as SC3D, could improve the accuracy and demonstrates the
versatility of AL-SAR in discovering informative samples from
latent representations embedded with different encoders.

The Multi-head Mechanism. As aforementioned, the multi-
heads is a set of randomly initialized and fixed fully connected
layers inserted right before the last classification layer. It
would be interesting to know the effects of these heads on
the prediction of the classifier. Thus in Fig. El we visu-
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Fig. 6. Misclassification ratio within selected samples. Comparisons are made
between the AL-SAR (blue bar) and MK (red bar) in four iterations: iteration
1 (I1), iteration 2 (I2), iteration 3 (I3), iteration 4 (I4), and integration of the
four iterations (I1-14). In most cases, AL-SAR has a higher misclassification
ratio indicating the preference of AL-SAR for selecting more informative
misclassified samples.

alize predictions of the well-trained classifier in the latent
representation space as it is connected to different heads.
The figure shows that the classifier makes almost the same
predictions as it is connected to each of the three heads.
This verifies that the classifier generalizes to outputs from
different heads and makes consistent predictions. To better
interpret the effectiveness of the multi-head mechanism for
active selection, we further quantitatively analyze the ability
of AL-SAR (Eq.[2) and MK (Egq.[6) to identify misclassified
samples. Specifically, we compute the misclassification ratio
within the selected samples in the four selections where MI
is computed in Fig |§| Unlike MK, AL-SAR has a higher
misclassification ratio in most iterations, except iteration 4
(I4). Overall, AL-SAR still selects more misclassified samples
integrated over all four iterations (I1-14). This indicates the
advantages of AL-SAR, since, compared to correctly classified
samples, these misclassified samples are supposed to be more
valuable for correcting and providing additional information
to the classifiers. We additionally visualized the location and
correctness of selected samples in Supplementary Material.
As previous works indicate, classifiers can be overconfident



content may cnange prior 1o Tinal pupiicaton. uitauon intormaton: DUl 1U. 1 1UY/ 1 NNLD.2UZ3.32Y /803

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

First Iteration Second lteration

o === /0 Heads = /0 Heads

@0_03 w Heads w Heads

Q

o

£0.02

2 \ )

£0.01 ) Mw-’\/\

E [}

00 02 04 06 08 00 02 04 06 08

MI MI

Fig. 7. MI distribution among the mis-classified samples in the presence (w)
and absence (w/0) of multi-head structure at two stages: first iteration (left)
and second iteration (right). Compared to w/o Heads, MI computed with heads
is less likely to be larger than 0.6.

about the misclassified samples [61], [71] in which cases the
computed M1 could be misleadingly high (low uncertainty). We
thus study whether the multi-head mechanism computed MI
can mitigate the artifact caused by the overconfident classifier.
Here, we estimate the MI distribution of misclassified samples
using the multi-head mechanism and without the multi-head
mechanism in two selection iterations (Fig . The density at
the high MI regime could indicate the extent of over-confidence
since, presumably, the M1 of misclassified samples should be
low. As shown in Fig in the high MI regime, the density of
MI generated by the multi-head mechanism is lower (orange
curve) than the one without the multi-head mechanism (blue
curve). This indicates that, with the multi-head mechanism that
integrates the classifier outputs from all the heads to guide the
sample selection, the estimated MI is less likely to be affected
by the overconfident classifier, thus constituting a more robust
uncertainty estimation.

V. CONCLUSION

We have introduced a novel approach for Active Learn-
ing for Skeleton-based Action Recognition (AL-SAR). The
approach connects unsupervised learning with sparse active
selection of sequences for annotation and boosts the action
recognition performance. AL-SAR introduces a novel approach
of measuring uncertainty, through multi-head mechanism, and
leverages the unsupervised latent space to ensure diversity. We
apply our approach to skeleton-based human action recognition
benchmarks and compare the performance with current semi-
supervised methods. We show that our proposed method
outperforms these approaches in sparse annotation scenarios,
i.e., when only a handful of samples are selected for annotation
in an iterative way.
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