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a b s t r a c t 

Self-rewetting fluids (SRFs), such as aqueous solutions of long-chain alcohols, exhibit anomalous quadratic 

dependence of surface tension on temperature having a minimum and with a positive gradient. When 

compared to the normal fluids (NFs) that have negative gradient of surface tension on temperature, the 

SRFs can be associated with significantly modified interfacial dynamics, which have recently been ex- 

ploited to enhance flow and thermal transport in various applications. In this work, first, we develop a 

new analytical solution of thermocapillary convection in superimposed two SRF layers confined within a 

microchannel that is sinusoidally heated on one side and maintained at a uniform temperature on the 

other side. Then, a robust central moment lattice Boltzmann method using a phase-field model involving 

the Allen-Cahn equation for interface tracking, two-fluid motion, and the energy transport for numerical 

simulations of SRFs is constructed. The analytical and computational techniques are generally shown to 

be in good quantitative agreement with one another. Moreover, the effect of the various characteristic 

parameters on the magnitude and the distribution thermocapillary-driven motion is studied. The ther- 

mocapillary flow patterns in SRFs are shown to be strikingly different when compared to the NFs: For 

otherwise the same conditions, the SRFs result in eight periodic counterrotating thermocapillary convec- 

tion rolls, while the NFs exhibit only four such vortices. Moreover, the direction of the circulating fluid 

motion in such vortical structures for the SRFs is found to be towards the hotter zones on the interfaces, 

which is opposite to that in NFs. These features are found to be sustained even as the interfaces deforms 

in simulations. By tuning the sensitivity coefficients of the surface tension on temperature, it is shown 

that not only the magnitude of the thermocapillary velocity can be significantly manipulated, but also 

the overall flow patterns as well. It is also demonstrated that the thermocapillary convection can be en- 

hanced if the SRF layer adjacent to the nonuniformly heated wall is made relatively thinner or has higher 

thermal conductivity ratio or has smaller viscosity when compared to that of the other fluid layer. The 

peak Marangoni velocity is found to be increased by a factor of 2 by doubling the dimensionless quadratic 

surface tension sensitivity coefficient and by about an order of magnitude as the fluid thickness ratio is 

changed from 1/3 to 3. 

© 2023 Elsevier Ltd. All rights reserved. 

1

p

p

c

m

t

o

i

t

t

o

i

e

o

e

t

t

n

u

e

h

0

. Introduction 

Surface tension forces arising at the interface between fluids 

lay prominent role in many multiphase and thermal transport 

rocesses [1] . Their variations can be caused by changes in the lo- 

al interfacial temperature or with the addition of surface active 

aterials (i.e., surfactants). The surface tension gradients result in 

he so-called Marangoni stresses [2] , which, via the viscous effects 

f the fluids, induce their convective motions in the vicinity of the 

nterfaces [3] . If they are set up due to local temperature varia- 

ions, they are referred to as the thermocapillary convection. Since 
∗ Corresponding author. 
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017-9310/© 2023 Elsevier Ltd. All rights reserved. 
he seminal study by Young et al. [4] , who demonstrated the ability 

f a bubble to migrate towards hot regions in the absence of grav- 

ty due to Marangoni stresses, thermocapillary effects have been 

xploited in controlling the motion of dispersed phases (bubbles 

r drops) in fluids, especially in microgravity applications [5] (see 

.g., Welch [6] , Ma and Bothe [7] for related numerical investiga- 

ions). On the other hand, in micro-electro-mechanical-systems, as 

he scales of the devices are reduced, the interfacial forces domi- 

ate, and the thermocapillary convection can be utilized to manip- 

late the motion of fluid streams and thermal transport phenom- 

na in microchannels (see e.g., Darhuber and Troian [8] , Karbalaei 

t al. [9] , Pendse and Esmaeeli [10] , Gambaryan-Roisman [11] ). 

Common fluids have the property of surface tension that de- 

reases somewhat linearly with increasing temperatures. On the 
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Fig. 1. (a) Surface tension variation with respect to temperature for a normal fluid (NF) and for a self-rewetting fluid (SRF). The parabolic variation of the surface tension for 

the example SRF with temperature is based on a curve fit of the data given in Savino et al. [18] . (b) Differences in the thermocapillary motions in the vicinity of interfaces 

for NFs and SRFs. 
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ther hand, certain fluids, such as aqueous solutions of long-chain 

i.e., “fatty”) alcohols, some liquid metallic alloys, and nematic liq- 

id crystals exhibit anomalous nonlinear parabolic dependence of 

urface tension on temperature with a range involving its posi- 

ive gradient. In particular, Vochten and Petre [12] performed mea- 

urements in non-azeotropic, high-carbon alcohol solutions (such 

s n-butanol), and demonstrated that beyond a certain threshold 

emperature, their surface tension will increase with further in- 

rease in temperature; the surface tension becomes a minimum 

t this threshold temperature, whose value increases for alcohols 

ith longer carbon chains; and for a particular alcohol, the mini- 

um surface tension decreases monotonically with its concentra- 

ion. These findings were corroborated by follow on experimental 

tudies reported in Petre and Azouni [13] , Limbourg-Fontaine et al. 

14] , Villers and Platten [15] , and such fluids have been named 

s “self-rewetting” fluids (SRFs) by Abe et al. [16] due to a sig- 

ificantly altered thermocapillary convection promoting a desired 

etting effect when compared to the common or normal fluids 

NFs). In particular, the Marangoni stresses induce the motion of 

uids in the vicinity of the interfaces towards higher temperatures 

n SRFs, which is opposite to that observed in NFs (see Fig. 1 ). As

uch, the self-rewetting fluids have the ability to generate vigorous 

nflow of liquids near high temperature regions, e.g., towards nu- 

leating sites during boiling thereby preventing the onset of dry 

atches at such hot spots. These and other peculiar features of 

RFs have provided strong impetus for their investigations as novel 

lasses of fluids to enhance transport in various thermal manage- 

ent applications during the last two decades. They have been 

roposed as working fluids in various applications in both terres- 

rial and microgravity environments [16,17] . The use of SRFs has 

een shown to improve heat transfer efficiency in heat pipes [18–

3] , flow boiling [24] and evaporation [25] in microchannels, pool 

oiling processes [26–29] , and two-phase heat transfer devices 

sing self-rewetting gold nanofluids [30] . Moreover, the peculiar 

haracteristics of the migration of bubbles in SRFs have been ex- 

erimentally studied in Shanahan and Sefiane [31] , Mamalis et al. 

32] . 

As noted in a recent review involving the use of SRFs [33] , only

imited analytical and numerical studies involving the SRFs, which 

an provide fundamental insights into the details of the transport 

henomena, have been performed. Analytical investigations into 

he behavior of thin films of SRFs were presented in Oron and 

osenau [34] , Batson et al. [35] , Yu [36] and a similarity solu-

ion of the motion of SRFs in an unbounded domain was discussed 

n Slavtchev and Miladinova [37] . Theoretical analysis of the migra- 

ion of a bubble in a SRF was presented in Tripathi et al. [38] and
2 
hat of an elongated slug in Duffy et al. [39] . More recently, nu- 

erical studies on the migration of a bubble in SRFs were per- 

ormed in Balla et al. [40] , Majidi et al. [41] , Mitchell et al. [42] .

mong the various computational methods, the lattice Boltzmann 

LB) method, a technique inspired from kinetic theory [43–45] , has 

hown promising capabilities for simulating multiphase flows (see 

.g., He et al. [46] , He and Doolen [47] , Lee and Lin [48] , Premnath

nd Abraham [49] , Hajabdollahi et al. [50] ). The LB methods have 

lso been applied to simulate thermocapillary flow problems (see 

.g., Majidi et al. [41] , Mitchell et al. [42] , Liu et al. [51] ). More re-

ently, using robust collision models [52] , the LB method has been 

xtended to simulate multiphase flows at high density ratios and 

ncluding Marangoni stresses [50] , which will serve as a basis for 

urther extension for its application to an interesting configuration 

nvolving thermocapillary flows in SRFs as discussed below. 

One of the important applications of exploiting thermocapillar- 

ty is in manipulating the motion of continuous streams of fluids 

onfined within microchannels. In this regard, in the case of two 

uperimposed normal fluids (NFs), Pendse and Esmaeeli [10] pre- 

ented a theoretical analysis for thermocapillary convection driven 

y periodic heating from the bounding walls, representing, for ex- 

mple, micropatterned walls. 

In this work, we generalize the above mentioned configura- 

ion reported in Ref. [10] and develop a new analytical solution 

or thermocapillary convection in two superimposed layers of self- 

ewetting fluids (SRFs) confined within a microchannel and sub- 

ected to periodic heating on the lateral walls. Such an investiga- 

ion yields a new pathway to enhance mixing and transport by 

uning thermocapillary effects in SRFs when compared to NFs in 

ifferentially heated microchannels. We derive analytical solutions 

or the thermocapillary convection currents in SRFs under the as- 

umptions of small capillary and Marangoni numbers and in the 

reeping flow limit, which are representative of situations in mi- 

rochannels. The solution will be parameterized by the thickness 

atio of the fluids and the ratios of the thermal conductivities as 

ell as that of viscosities, and the coefficients of the functional de- 

endence of surface tension on temperature. As a second objective, 

e will also present a numerical simulation approach based on a 

obust central moment LB scheme using a phase field model based 

n the conservative Allen–Cahn equation by extending and improv- 

ng our recent work [50] . It involves computing the evolution of 

hree distribution functions, one each for the flow field, tempera- 

ure field and the capturing of the interfaces via a order parameter, 

nd with an attendant surface tension equation of state for SRFs. 

s a third objective, we will compare the predictions based on our 

nalytical solution against the results from our LB computational 
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Fig. 2. Schematic of the geometric setup for two superimposed self-rewetting fluid 

(SRF) layers within a horizontal microchannel with a periodic heating at the bottom 

wall. 
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pproach, thereby demonstrating qualitative as well as quantita- 

ive consistency between the two approaches, and thus establish- 

ng the validity of our analysis. Finally, we aim to present a study 

f the effect of the various characteristic parameters on the vortical 

onvection patterns in SRFs, in terms of both the number of con- 

ection cells and their sense of direction of motion and compar- 

ng and contrasting them with that of NFs, and on the magnitude 

f the thermal convection velocities. These contributions not only 

erve in elucidating the physics in a fundamental configuration, 

ut the analytical solutions developed herein could also serve as 

 benchmark for any new computational techniques for simulating 

hermocapillary flows in SRFs in future. Moreover, the numerical 

lgorithm based on the LB method presented in this work, while 

pplied here in what follows for SRF layers in a microchannel, can 

lso be readily extended for other situations including those in- 

olving tracking the motion of any dispersed phase in SRFs. 

This paper is organized as follows. In the next sec- 

ion ( Section 2 ), we will discuss the problem setup of the thermo- 

apillary flow in superimposed layers of SRFs in a microchannel 

nd the attendant governing equations for incompressible two- 

uid motion, energy transport and the interfacial equation of 

tate. The new analytical solution is derived in Section 3 . The 

omputational model equations for the LB schemes for multi- 

hase flows using a phase field model are given in Section 4 . 

he discretized central moment LB algorithms for simulating 

ultiphase flows of SRFs are summarized in various subsections of 

he Appendix A with additional supporting details in Appendix B . 

ection 5 presents a numerical validation of the computational 

pproach. The results and discussion of the effect of various 

haracteristic parameters are presented in Section 6 ; moreover, 

he utility of the computational method in simulating such flows 

ith interfacial deformations at higher capillary numbers is also 

emonstrated. The main findings and contributions of this work 

re summarized in Section 7 . 

. Problem setup, governing equations, and interface 

quation of state 

.1. Problem setup 

A schematic of the geometric configuration of two superim- 

osed SRF layers confined within a microchannel is shown in 

ig. 2 . The channel is of horizontal length l and whose walls are 

eparated by a lateral distance ( a + b). A sinusoidal temperature 

ariation is imposed on the hot bottom wall side, while cold bot- 

om wall side is maintained at a uniform temperature. The chan- 

el is filled with two immiscible SRFs, fluid ‘a’ on the top side 

nd fluid ‘b’ on the bottom side with thicknesses a and b, respec- 

ively; the viscosities and thermal conductivities of the top fluid 
3 
re denoted by μa and k a , respectively, while those for the bottom 

uid are represented by μb and k b , respectively. The upper wall is 

et with a constant reference cold temperature T c , while the lower 

all is prescribed with a spatially varying hot temperature based 

n a sinusoidal profile involving a reference temperature T h and a 

eak amplitude �T for the variation. Thus, the boundary condi- 

ions at these two sides can be written as 

 
a (x, a ) = T c , (1) 

nd 

 
b (x, −b) = T h + �T cos (ωx ) , (2) 

here ω = 2 π/l is the wavenumber based on the channel length 

, and assume T b (x, −b) ≥ T a (x, a ) for any x and �T > 0 . Here, and

n what follows, we use a superscript notation with ‘a’ or ‘b’ to 

abel any quantity associated with a top or bottom fluid, respec- 

ively. Heat diffusion into the bulk regions of the fluids then sets 

p a nonuniform distribution of the temperature along the inter- 

ace. The surface tension σ = σ (T ) at the interface between the 

RFs also then varies locally, which, via the viscous actions in the 

ulk fluids, induce a thermocapillary convection. The resulting flow 

eld is then subject to the no-slip condition for the velocity com- 

onents at the bounding walls. 

.2. Bulk fluid motion and energy transport 

The thermocapillary convection in the SRFs obey the equa- 

ions of mass and momentum (i.e., Navier-Stokes equations (NSE)) 

nd the energy transport. They can be respectively written as fol- 

ows: 

 · u = 0 , (3a) 

(
∂u 

∂t 
+ ∇ · (uu ) 

)
= −∇p + ∇ ·

[
μ(∇u + ∇u 

† ) 
]
, (3b) 

∂T 

∂t 
+ u · ∇T = ∇ ·

(
α∇T 

)
, (3c) 

here ρ , μ and α are the fluid density, dynamic viscosity, and 

hermal diffusivity of the fluid, respectively, with α = k/ (ρc p ) 

ased on the thermal conductivity k and specific heat c p . In the 

bove, u , p, and T denote the velocity, pressure, and temperature 

elds of the fluids, respectively, and the superscript symbol † rep- 

esents taking transpose. 

.3. Interface equation of state for surface tension 

At the interface, we need to impose an equation for the sur- 

ace tension relating it to the variations in the local temperature. 

or the SRF, we consider the following nonlinear (parabolic) de- 

endence of surface tension on temperature: 

(T ) = σ0 + σT (T − T re f ) + σT T (T − T re f ) 
2 , (4) 

here σ0 denotes the value of the surface tension at a reference 

emperature T re f , σT = 
dσ
dT 

∣∣
T re f 

and σT T = 
1 
2 
d 2 σ
dT 2 

∣∣
T re f 

are the coeffi- 

ients of the surface equation of state, expressing the sensitivity of 

he surface tension on temperature. It should be noted that for a 

RF, σT T � = 0 , while for a NF, σT T = 0 where only σT is non-zero. In

eneral, σ0 , T re f , σT , and σT T are properties, which are unique to 

 chosen SRF. In addition, at the interface, a relation between the 

arangoni stress due to the nonuniform tangential surface tension 

radient and the viscous fluid stress, along with the interfacial con- 

inuity conditions need to be imposed. These will be accounted for 

n what follows. 
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When the above governing equations are nondimensionalized 

sing a reference velocity scale U and a length scale b correspond- 

ng to the thickness of the bottom SRF layer, we obtain the follow- 

ng dimensionless groups: Reynolds number Re , Marangoni num- 

er Ma , and the capillary number Ca , which can be defined as 

Re = 

Ub 

νb 

, Ma = 

Ub 

αb 

= Re Pr , and Ca = 

Uμb 

σ0 

. (5) 

espectively. Here, ν = μ/ρ is the kinematic viscosity, and Pr is the 

randtl number ( Pr = ν/α). In addition, the thermocapillary con- 

ection in SRFs is governed by the following ratios of the bulk ma- 

erial properties 

˜ ρ = 

ρa 

ρb 

, ˜ μ = 

μa 

μb 

, ˜ k = 

k a 

k b 
, and ˜ c p = 

c p a 
c p b 

, (6) 

nd the dimensionless parameters for the interface equation of 

tate for the surface tension 

M 1 = σT 

(
�T 

σ0 

)
, M 2 = σT T 

(
�T 2 

σ0 

)
. (7) 

s in the above, taking reference values for the properties using 

hose for the bottom fluid, by balancing the scale for the viscous 

hear stress μb U/b with that of the Marangoni stress due to the 

urface tension gradient | d σ/d T | (�T /l) , we can estimate the scale

or the reference velocity U of thermocapillary convection used in 

he above via U ∼ | d σ/d T | (�T /μb )(b/l) , where �T is set to be

qual to the maximum amplitude in the spatial variation in the 

mposed temperature at the bottom wall T 0 , and | d σ/d T | follows

rom Eq. (4) . 

. Analytical solution for thermocapillary convection in 

uperimposed SRF layers in a microchannel 

We will now derive a new analytical solution for thermocap- 

llary convection in superimposed SRF layers in the Stokes flow 

egime relevant to microchannels. In this regard, we consider the 

uids to be incompressible, immiscible, and Newtonian, and as- 

ume that the Reynolds and Marangoni numbers are much less 

han one (i.e., Re � 1 and Ma � 1 ), so that the convective trans- 

ort of momentum and energy can be neglected. Also, the capil- 

ary number is also taken to be much less than one (i.e., Ca � 1 ),

o that we can consider the interface to be nearly flat, and the 

stablished thermocapillary convection patterns are steady. Based 

n these considerations, all the conservation equations given above 

implify considerably. The mass conservation read as 

 · u = 0 , (8) 

hile the momentum equation now reduces to 

∇ p + μ∇ 
2 u = 0 , (9) 

nd the balance of thermal energy equation is given as 

 
2 T = 0 , (10) 

here ∇ 
2 = 

∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 
. These bulk transport equations need to be 

olved in conjunction with the interface continuity conditions for 

he flow and temperature fields and the Marangoni stress condi- 

ion at the interface between the SRFs (see below for details). 

.1. Temperature field 

The thermal energy equation Eq. (10) , which satisfies the wall 

oundary conditions given in the previous section, can be solved 

eadily and is independent of the nature of the fluid; the specific 

etails are given in Appendix C of this paper. The solution for the 
4 
emperature field is summarized here as follows: In the upper fluid 

 , 

 
a (x, y ) = 

(T c − T h ) y + T c ̃  k b + T h a 

(a + b ̃ k ) 

+�T f ( ̃  a , ̃  b , ̃  k ) sinh ( ̃  a − ω y ) cos (ω x ) , (11) 

nd in the lower fluid b, 

 
b (x, y ) = 

˜ k (T c − T h ) y + T c ̃  k b + T h a 

(a + b ̃ k ) 

+�T f ( ̃  a , ̃  b , ̃  k ) [ sinh ( ̃  a ) cosh (ωy ) 

−˜ k sinh (ωy ) cosh ( ̃  a ) 
]
cos (ωx ) , (12) 

here ˜ k = k a /k b , ˜ a = aω, and ˜ b = bω are the dimensionless pa- 

ameters, and the expression for the function f ( ̃  a , ̃  b , ̃  k ) is given in

q. (61) in Appendix C . 

.2. Flow field: stream function 

Next, for obtaining the flow field driven by thermocapillary ef- 

ects in SRFs, for convenience, we introduce the stream function ψ
efined based on the components of the velocity field u = (u, v ) as

u = −∂ψ 

∂y 
, and v = −∂ψ 

∂x 
, (13) 

o that the continuity equation Eq. (8) is satisfied automatically, 

nd the momentum equation ( Eq. (9) ) can be entirely rewritten in 

erms of a single scalar variable ψ . For the latter purpose, taking 

he of ‘curl’ Eq. (9) and using ∇ × ∇p = 0 and invoking Eq. (13) ,

e finally obtain the following biharmonic equation for the stream 

unction [53] : 

∇ 
4 ψ = ∇ 

2 (∇ 
2 ψ) = 0 . (14) 

ince Eq. (14) is linear, we can apply the method of separation 

f variables by assuming the solution of ψ to be product of two 

olutions X(x ) and Y (x ) as 

ψ(x, y ) = X (x ) Y (y ) . 

ince the thermocapillary flow is established by the tangential 

tress at the interface, we can establish the form of the solution 

(x ) by considering the Marangoni interfacial condition reflecting 

 balance between the viscous shear stress and the surface tension 

radient given by (
τ b 
xy − τ a 

xy 

)∣∣∣∣
y =0 

= 

dσ

dT 

∂T 

∂x 

∣∣∣∣
y =0 

, (15) 

here τxy = μ
(

∂u 
∂y 

+ 
∂v 
∂x 

)
is the viscous shear stress and d σ/d T for 

RFs follows from Eq. (4) as 

dσ

dT 
= σT + 2 σT T 

(
T − T re f 

)
= 

(
σT − 2 σT T T re f 

)
+ 2 σT T T . 

ow, from Eq. (11) , it follows that ∂T 
∂x 

∣∣
y =0 

∼ sin (ωx ) and from 

he last equation together with using Eq. (11) for T (x, y = 0) , we

ave d σ/d T ∼ cos (ωx ) . Using these two estimates for the horizon-

al spatial variations in Eq. (15) , it can be readily inferred that 

xy ∼ α1 sin (ωx ) + α2 sin (ωx ) cos (ωx ) , where α1 and α2 are some 

umped constants; this suggests that the stream function to be 

plit into a linear combination of two distinct product solutions 

ith known spatial distribution in the x direction as in 

(x, y ) = f (y ) sin (ωx ) + g(y ) sin (ω x ) cos (ω x ) , (16)

here f (y ) and g(y ) are the two unknown functions, which will 

o be determined in what follows. Here, it should be noted that 
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he first term in the last equation ( Eq. (16) ), f (y ) sin (ωx ) arises

rom the linear part of the surface tension equation of state (which 

ecovers the special case of the NFs given in Pendse and Esmaeeli 

10] ), while the second term g(y ) cos (ωx ) sin (ωx ) emerges from in-

luding the quadratic term for σ (T ) to encompass the more gen- 

ral SRFs. 

Substituting Eq. (16) in Eq. (14) and simplifying results in 

he following two 4th order differential equations for the unknown 

unctions f (y ) and g(y ) : 

f ′′′′ − 2 ω 
2 f ′′ + ω 

4 f = 0 , (17a) 

 
′′′′ − 8 ω 

2 g ′′ + 16 ω 
4 g = 0 . (17b) 

Equation (17a) has solutions of the form f (y ) = e my , where 

 is a constant to be determined from the characteristic equa- 

ion (m 
2 − ω 

2 ) 2 = 0 , giving m = ±ω. The four solutions of f (y ) are

 
ωy , ye ωy , e −ωy , and ye −ωy because it has double roots. Similarly, for

q. (17b) , the solutions are of the form g(y ) = e ny , with the char-

cteristic equation (n 2 − 4 ω 
2 ) 2 = 0 , yielding the four possible solu-

ions of g(y ) as e 2 ωy , ye 2 ωy , e −2 ωy , and ye −2 ωy . Because the vertical

irection is finite, it is convenient to employ hyperbolic functions 

n lieu of the exponential functions. As a result, the general form 

f the stream function ψ(x, y ) for the upper fluid can be written

s 

 
a = U t [(C 

a 
1 + C a 2 y ) cosh (ωy ) + (C a 3 + C a 4 y ) sinh (ωy )] sin (ωx ) 

+ 

1 

2 
U tt [(D 

a 
1 + D 

a 
2 y ) cosh (2 ωy ) + (D 

a 
3 + D 

a 
4 y ) sinh (2 ωy )] 

sin (2 ωx ) , (18) 

nd for the lower fluid, it reads as 

 
b = U t [(C 

b 
1 + C b 2 y ) cosh (ωy ) + (C b 3 + C b 4 y ) sinh (ωy )] sin (ωx ) 

+ 

1 

2 
U tt [(D 

b 
1 + D 

b 
2 y ) cosh (2 ωy ) + (D 

b 
3 + D 

b 
4 y ) sinh (2 ωy )] 

sin (2 ωx ) . (19) 

ere, C 
γ
j 

and U t (for the first term in each of the last two equa-

ions), and D 

γ
j 
and U tt (for the corresponding second term), where 

= a, b and j = 1 , 2 , 3 , 4 , are the constants which will be deter-

ined through the specification of the boundary conditions next. 

The constants C 
γ
j 

and D 

γ
j 
, where γ = a, b and j = 1 , 2 , 3 , 4 can

e evaluated by using the following boundary conditions: 

i) No-slip, no-through flow boundary condition at the lower wall: 

u b (x, −b) = v b (x, −b) = 0 . 

ii) No-slip, no-through flow boundary condition at the upper wall: 

u a (x, a ) = v a (x, a ) = 0 . 

ii) Continuity of the tangential component of the velocity at the 

interface: 

u a (x, 0) = u b (x, 0) = U t sin (ω x ) + 

1 

2 
U tt sin (2 ω x ) . 

v) No through flow boundary condition at the interface: 

v a (x, 0) = v b (x, 0) = 0 . 

As a result, we obtain the following expressions: 

C b 1 = C a 1 = 0 , 

C b 2 = 

sinh 
2 
( ̃ b ) 

sinh 
2 
( ̃ b ) − ˜ b 2 

, C a 2 = 

sinh 
2 
( ̃  a ) 

sinh 
2 
( ̃  a ) − ˜ a 2 

, 
5 
C b 3 = 

−b ̃ b 

sinh 
2 
( ̃ b ) − ˜ b 2 

, C a 3 = 

−a ̃  a 

sinh 
2 
( ̃  a ) − ˜ a 2 

, 

C b 4 = 

sinh (2 ̃ b ) − 2 ̃ b 

2( sinh 
2 
( ̃ b ) − ˜ b 2 ) 

, C a 4 = − sinh (2 ̃  a ) − 2 ̃  a 

2( sinh 
2 
( ̃  a ) − ˜ a 2 ) 

. 

and 

D 
b 
1 = D 

a 
1 = 0 , 

D 
b 
2 = 

sinh 
2 
(2 ̃ b ) 

sinh 
2 
(2 ̃ b ) − 4 ̃ b 2 

, D 
a 
2 = 

sinh 
2 
(2 ̃  a ) 

sinh 
2 
(2 ̃  a ) − 4 ̃  a 2 

, 

D 
b 
3 = 

−2 b ̃ b 

sinh 
2 
(2 ̃ b ) − 4 ̃ b 2 

, D 
a 
3 = 

−2 a ̃  a 

sinh 
2 
(2 ̃  a ) − 4 ̃  a 2 

, 

D 
b 
4 = 

sinh (4 ̃ b ) − 4 ̃ b 

2( sinh 
2 
(2 ̃ b ) − 4 ̃ b 2 ) 

, D 
a 
4 = − sinh (4 ̃  a ) − 4 ̃  a 

2( sinh 
2 
(2 ̃  a ) − 4 ̃  a 2 ) 

. 

where ˜ a = aω and ˜ b = bω. 

Lastly, by applying the following fifth boundary condition cor- 

responding to the Marangoni stress balance condition at the 

interface, which is applied to both parts of the solution for 

ψ(x, y ) given above simultaneously, the proportionality con- 

stants U t and U tt can be obtained in terms of the other con- 

stants and dimensionless parameters given above: 

v) Balance of net viscous shear stress and Marangoni stress: 

μb 

∂u b 

∂y 

∣∣∣∣
y =0 

− μa 
∂u a 

∂y 

∣∣∣∣
y =0 

= 

{ 

σT + 2 σT T [ T (x, y = 0) − T re f ] 

} 

∂T 

∂x 

∣∣∣∣
y =0 

. 

Then, the expression for U t reads as 

U t = −
(

�T 

μb 

)
g( ̃  a , ̃  b , ̃  k ) h ( ̃  a , ̃  b , ˜ μ) [

σT + 2 σT T 

(
T c ̃  k b + T h a 

(a + b ̃ k ) 
− T re f 

)]
, (20) 

where 

g( ̃  a , ̃  b , ̃  k ) = sinh ( ̃  a ) f ( ̃  a , ̃  b , ̃  k ) . 

Here, the function f ( ̃  a , ̃  b , ̃  k ) is given in Eq. (61) , and h ( ̃  a , ̃  b , ˜ μ)
n Eq. (20) reads as 

 ( ̃ a , ̃ b , ̃  μ) = 

(
sinh 

2 
( ̃ a ) − ˜ a 2 

)(
sinh 

2 
( ̃ b ) − ˜ b 2 

)
˜ μ
(
sinh 

2 
( ̃ b ) − ˜ b 2 

)
( sinh (2 ̃ a ) − 2 ̃ a ) + 

(
sinh 

2 
( ̃ a ) − ˜ a 2 

)(
sinh (2 ̃ b ) − 2 ̃ b 

) . 

Moreover, the functional relationship for U tt is given by 

U tt = −
(

σT T �T 2 

μb 

)
g 2 ( ̃  a , ̃  b , ̃  k ) ̃ h 1 ( ̃  a , ̃  b , ˜ μ) , (21) 

here 

˜ 
 1 ( ̃ a , ̃ b , ̃  μ) 

= 

(
sinh 

2 
(2 ̃ a ) − 4 ̃ a 2 

)(
sinh 

2 
(2 ̃ b ) − 4 ̃ b 2 

)
˜ μ
(
sinh 

2 
(2 ̃ b ) − 4 ̃ b 2 

)
( sinh (4 ̃ a ) − 4 ̃ a ) + 

(
sinh 

2 
(2 ̃ a ) − 4 ̃ a 2 

)(
sinh (4 ̃ b ) − 4 ̃ b 

) . 

That is, ˜ h 1 ( ̃  a , ̃  b , ˜ μ) = ̃
 h (2 ̃  a , 2 ̃ b , ˜ μ) . Finally, substituting for the con-

tants in Eqs. (18) and (19) , we can arrive at the following analyt- 

cal solution for the stream function in the upper and lower fluids: 

 
a = 

U t /ω 

sinh 
2 
( ̃  a ) − ˜ a 2 

×
{
sinh 

2 
( ̃  a )(ωy ) cosh (ωy ) 

−1 

2 

[
2 ̃  a 2 + ( sinh (2 ̃  a ) − 2 ̃  a ) (ωy ) 

]
sinh (ωy ) 

} 

sinh (ωy ) 
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+ 

1 

2 

U tt /ω 

sinh 
2 
(2 ̃  a ) − 4 ̃  a 2 

×
{
sinh 

2 
(2 ̃  a )(ωy ) cosh (2 ωy ) 

−1 

2 

[
4 ̃  a 2 + ( sinh (4 ̃  a ) − 4 ̃  a ) (ωy ) 

]
sinh (2 ωy ) 

} 

sinh (2 ωy ) , 

nd 

 
b = 

U t /ω 

sinh 
2 
( ̃ b ) − ˜ b 2 

×
{
sinh 

2 
( ̃ b )(ωy ) cosh (ωy ) 

−1 

2 

[
2 ̃ b 2 −

(
sinh (2 ̃ b ) − 2 ̃ b 

)
(ωy ) 

]
sinh (ωy ) 

} 

sinh (ωy ) . 

+ 

1 

2 

U tt /ω 

sinh 
2 
(2 ̃ b ) − 4 ̃ b 2 

×
{
sinh 

2 
(2 ̃ b )(ωy ) cosh (2 ωy ) 

−1 

2 

[
4 ̃ b 2 −

(
sinh (4 ̃ b ) − 4 ̃ b 

)
(ωy ) 

]
sinh (2 ωy ) 

} 

sinh (2 ωy ) . 

n addition, the analytical solutions for thermocapillary-driven ve- 

ocity field components in SRFs u γ (x, y ) and v γ (x, y ) (for γ = a, b)

an be recovered from the stream function via Eq. (13) , i.e., using 

 
γ = −∂ ψ 

γ /∂ y and v γ = −∂ ψ 
γ /∂ x , which yields the following for

he upper fluid 

 
a (x, y ) = U t { [ C a 2 + ω(C a 3 + C a 4 y ) ] cosh (ωy ) 

+(C a 4 + ωC a 2 y ) sinh (ωy ) } sin (ωx ) 

+ 

1 

2 
U tt { [ D 

a 
2 + 2 ω(D 

a 
3 + D 

a 
4 y ) ] cosh (2 ωy ) 

+(D 
a 
4 + 2 ωD 

a 
2 y ) sinh (2 ωy ) } sin (2 ωx ) , 

 
a (x, y ) = −ω U t [ C 

a 
2 y cosh (ω y ) + (C a 3 + C a 4 y ) sinh (ωy ) ] 

cos (ωx ) − ωU tt [ D 
a 
2 y cosh (2 ωy ) + (D 

a 
3 + D 

a 
4 y ) 

sinh (2 ωy ) ] cos (2 ωx ) , (22) 

nd for the lower fluid as 

 
b (x, y ) = U t { [ C b 2 + ω(C b 3 + C b 4 y )] cosh (ωy ) 

+(C b 4 + ωC b 2 y ) sinh (ωy ) } sin (ωx ) 

+ 

1 

2 
U tt { [ D 

b 
2 + 2 ω(D 

b 
3 + D 

b 
4 y )] cosh (2 ωy ) 

+(D 
b 
4 + 2 ωD 

b 
2 y ) sinh (2 ωy ) } sin (2 ωx ) , 

 
b (x, y ) = ‘ −ω U t [ C 

b 
2 y cosh (ω y ) + (C b 3 + C b 4 y ) sinh (ωy )] 

cos (ωx ) − ωU tt 

[
D 
b 
2 y cosh (2 ωy ) 

+(D 
b 
3 + D 

b 
4 y ) sinh (2 ωy ) 

]
cos (2 ωx ) . (23) 

rom Eqs. (22) , (23) , it can be inferred that the parameters U t and

 tt represent measures of the scales for the thermocapillary veloc- 

ty contributions arising from the linear and quadratic part of the 

urface tension variation with the temperature σ (T ) for the SRFs. 

hen the coefficient σT T for the quadratic contribution in σ (T ) 

ecomes zero (see Eq. (4) ), the above results reduce to that pre- 

ented in Pendse and Esmaeeli [10] applicable for the NFs. 

. Computational modeling for LBM: interface capturing and 

otion of binary fluids driven by thermocapillary effects 

We will now discuss a modeling formulation suitable for the 

evelopment of a numerical approach based on the LBM for simu- 

ation of thermocapillary convection in SRFs presented in the next 

ection. The phase-field lattice Boltzmann approach based on the 

onservative Allen-Cahn equation (ACE) [54] is considered in this 

tudy to capture interfacial dynamics, which is an improvement 

ver an earlier model [55] based on a counter term approach [56] . 

he binary fluids are distinguished by an order parameter or the 
6 
hase field variable φ. The fluid A is identified by φ = φA , while 

uid B by φ = φB . The interface-tracking equation based on the 

onservative ACE in terms of the phase field variable is given as 

∂φ

∂t 
+ ∇ · (φu ) = ∇ · [ M φ(∇φ − θn )] , (24) 

here u is the fluid velocity, M φ is the mobility, and n is the unit

ormal vector, which can be calculated using the order parame- 

er φ as n = ∇ φ/ | ∇ φ| . Here, the parameter θ can be expressed as

= −4 ( φ − φA ) ( φ − φB ) / [ W ( φA − φB ) ] , where W is the width of 

he interface. Essentially, the term M φθn in Eq. (24) serves as the 

nterface sharpening term counteracting the diffusive flux −M φ∇φ
ollowing the advection of φ by the fluid velocity. 

Now, for ease of implementations, the interfacial surface ten- 

ion effects can be incorporated within a diffuse interface via a 

istributed or smoothed volumetric force term in a single-field for- 

ulation representing the motion of binary fluids. Then, the cor- 

esponding single-field incompressible Navier-Stokes equations for 

inary fluids can be written as 

 · u = 0 , (25) 

(
∂u 

∂t 
+ ∇ · (uu ) 

)
= −∇p + ∇ ·

[
μ(∇u + ∇u 

† ) 
]

+ F s + F ext , 

(26) 

here F s is the surface tension force, and F ext is any external body 

orce. Here, the surface tension force effectively exerts itself in both 

he normal and tangential directions to the interface as surface 

ension varies with temperature. To accommodate this, a geometric 

echnique known as the continuous surface force approach [57] can 

e used, which can be expressed by the following equation involv- 

ng the Dirac delta function δs : 

 s = 

(
σκn + ∇ s σ

)
δs , (27) 

here n and κ are the unit vector normal and the interface cur- 

ature, respectively; they can be obtained from the order parame- 

er via n = ∇ φ/ | ∇ φ| and κ = ∇ · n . In the right side of Eq. (27) ,

he first term is the normal or capillary force, and the second 

erm involving the surface gradient operator ∇ s is the tangen- 

ial or Marangoni force. One formulation of δs , which localizes 

he smoothed surface tension force suitable within the phase-field 

odeling framework and thus satisfying 
∫ + ∞ 

−∞ 
δs dy = 1 is given by 

s = 1 . 5 W | ∇φ| 2 . 
The surface gradient ∇ s in Eq. (27) is given by ∇ s = ∇ − n (n ·

) . Therefore, the Cartesian components of the surface tension 

orce in Eq. (27) can then be expressed as 

 sx = −σ (T ) | ∇φ| 2 (∇ · n ) n x + | ∇ 

φ| 2 [(1 − n 2 x ) ∂ x σ (T ) − n x n y ∂ y σ (T ) 
]
, 

 sy = −σ (T ) | ∇φ| 2 (∇ · n ) n y + | ∇φ| 2 [
(1 − n 2 y ) ∂ y σ (T ) − n x n y ∂ x σ (T ) 

]
. (28) 

ere, the functional dependence of the surface tension on temper- 

ture for the SRF is obtained from the nonlinear (parabolic) equa- 

ion given in Eq. (4) . In numerical implementations, in this work, 

he required spatial gradients ∂ x σ (T ) and ∂ y σ (T ) in Eq. (28) are

alculated using an isotropic finite differencing scheme [58] . Here, 

e note that the temperature field T is computed by solving the 

nergy transport equation given earlier in Eq. (3c) . Finally, the 

umps in fluid properties across the interface, such as density and 

iscosity can be expressed as a continuous function of the phase 

eld variable, and use the following linear interpolation to account 

or the interfacial variations of fluid properties in this study (see 
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Fig. 3. The drop migration velocity for a 2D droplet at Re = Ma = 0 . 1 normalized 

by the analytical prediction velocity U YGB versus the dimensionless time t ∗ = tU/R . 

The other reference numerical solution for a 2D droplet is taken from Ref. [61] . 
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.g., Ding et al. [59] ): 

= ρB + 

φ − φA 

φA − φB 
( ρA − ρB ) , μ = μB + 

φ − φA 

φA − φB 
( μA − μB ) , 

(29) 

here ρA , ρB and μA , μB are the densities and the dynamic vis- 

osities in the fluid phases, respectively and denoted by φA and φA . 

n equation similar to Eq. (29) will also be utilized for distribut- 

ng the interfacial jump in the thermal conductivity in solving the 

nergy equation. In this study, we use φA = 0 and φB = 1 . 

The numerical algorithms based on LB schemes using cen- 

ral moments for interface tracking, two fluid motion, and energy 

ransport are presented in Appendix A with additional attendant 

etails in Appendix B . 

. Numerical validation 

.1. Thermocapillary migration of a droplet of a normal fluid under a 

emperature gradient 

The first validation problem that we consider is the thermocap- 

llary migration of a droplet of a normal fluid in the field of a lin-

ar variation in temperature or a uniform gradient in temperature. 

oung et al. [4] presented an analytical solution of the droplet mi- 

ration velocity in the creeping flow limit and at small Marangoni 

umbers. Taking σ (T ) = σ0 + σT (T − T re f ) for the surface tension 

ariation, consider a droplet of radius R with a density ρb , viscosity 

b , and thermal conductivity k b in the presence of a uniform tem- 

erature gradient ∇T ∞ , then the characteristic velocity U ∗ obtained 

nder a balance of the thermocapillary force and the viscous force 

an be written as 

 ∗ = −σT |∇T ∞ | R 
μb 

. (30) 

efining the Reynolds number and the Marangoni number as Re = 

b U ∗R/μb and Ma = U ∗R/k b , respectively, in the limit Re � 1 and 

a � 1 , Young et al. performed a theoretical analysis and derived 

n expression for the terminal migration velocity of the droplet 

 YGB given by 

 YGB = 

2 U ∗
(2 + ̃

 k )(2 + 3 ̃  μ) 
, (31) 

here ˜ k and ˜ μ are the property ratios defined in Eq. (6) . 

For performing the numerical simulation using the LB schemes 

resented in the previous sections, here and in what follows for 

he rest of this paper, when required, the no-slip velocity bound- 

ry condition is prescribed using the standard half-way bounce- 

ack condition, while the specification of the scalar field such as 

he temperature on the boundaries is carried out using the anti- 

ounce back scheme; the no-gradient conditions on any boundary 

re imposed using the free-slip condition; finally, as is typical for 

he LB method, all the values are specified in the lattice units. See 

ef. [60] for further details. 

We consider a droplet of radius R = 20 initially kept at the 

enter of a 2D domain of size 8 R × 16 R . No slip boundary con-

itions are imposed on the top and bottom walls while periodic 

oundary conditions are used on the left and right walls. In the 

irection normal to the bottom and top walls, a linear variation 

n the temperature field with T bot = 0 on the bottom wall and 

 top = 32 on the top wall is imposed, resulting in a constant tem- 

erature gradient in the far field ∇T ∞ = 0 . 1 . For the fluid proper-

ies, we take ρa,b = c p a,b = 1 , μa,b = k a,b = 0 . 2 , T re f = 16 , σ0 = 2 . 5 ×
0 −3 , and σT = −10 −4 and the values of the parameters are such 

hat the assumption of the negligible convection in deriving the 
7 
nalytical solution is satisfied. For the above choice, the theoret- 

cally predicted value of the terminal velocity of the droplet is 

 YGB = 1 . 333 × 10 −4 , and both Re and Ma are 0.1. 

Figure 3 shows the temporal variations of the normalized drop 

igration velocity U/U YGB as a function of the dimensionless time 

 
� = tU/R computed using the LB schemes presented earlier along 

ith the theoretical prediction, as well as results from another ref- 

rence numerical solution involving a 2D droplet [61] . It should be 

oted that the theory assumed a 3D axisymmetric, non-deformable 

pherical droplet, while the present LB results as well as the ref- 

rence numerical results are based on considering a 2D droplet. 

s a result, all the numerical schemes shown consistently attain 

/U YGB ≈ 0 . 80 or about 80% of the theoretical value. Nevertheless, 

he present results are in good quantitative agreement with the 

eference results given in Guo and Lin [61] for similar conditions. 

oreover, this trend is also consistent with the results obtained by 

he use of different numerical methods for this problem involving 

 2D droplet (see e.g., Guo and Lin [61] , Zheng et al. [62] , Nabav-

zadeh et al. [63] ). 

.2. Thermocapillary-driven flow in a heated microchannel with two 

uperimposed normal fluids 

As a second benchmark problem, we will test our LB schemes 

or the simulation of the thermocapillary-driven flow in a sinu- 

oidally heated microchannel which confines two supperimposed 

ormal fluids (NFs) [10] . The problem setup for this case is the 

ame as the one presented in Section 2.1 (see Fig. 2 for the ge-

metric set up). The wall temperatures are applied according to 

qs. (1) and (2) . The dimensionless parameters Re , Ma , and Ca 

or this case are defined in Eq. (5) and the ratio of the material 

roperties are given in Eq. (6) . For Re � 1 , Ma � 1 , and Ca � 1 ,

nd considering the flow is driven by a surface tension gradient, 

here the surface tension decreases linearly with the increasing 

emperature for the NF as σ (T ) = σ0 + σT (T − T re f ) , Ref. [10] de-

ived analytical solutions for the temperature T (x, y ) , stream func- 

ion ψ(x, y ) , and the components of the velocity field u (x, y ) and

 (x, y ) . It can also be obtained as a special case of the analyti-

al solution derived in this work by setting the coefficient for the 

uadratic term for the surface tension variation with temperature 

o be zero, i.e., σT T = 0 . 

We performed LB simulations by considering two normal fluids 

f equal thickness a = b = 50 in a microchannel of length l = 200 .

eriodic boundary conditions are used on the left and right sides 

f the domain, while no-slip boundary conditions are imposed on 

he top and bottom walls, and the wall temperatures are applied 

sing Eqs. (1) and (2) with T h = T c = T re f = �T = 1 . 0 for simplicity.
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Fig. 4. (a) Temperature contours of the NF in thermocapillary flow within a heated microchannel with thermal conductivity ratio ˜ k = 1 and viscosity ratio ˜ μ = 1 obtained 

from the LB simulation results (solid green lines) and the analytical solution (dashed blue lines). (b) Velocity vectors due to thermocapillary flow of the NF obtained from 

the LB simulation results (blue arrows) and the analytical solution (purple arrows). (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 5. Streamlines of the thermocapillary flow in NFs within a heated microchannel with thermal conductivity ratio ˜ k = 1 and viscosity ratio ˜ μ = 1 obtained from the 

analytical solution (left) and the LB simulation results (right). The arrows indicate the direction of the thermocapillary convection. 

Fig. 6. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow of a NF in a heated microchannel. 

The purple diamond symbols shown are obtained from the analytical solution given by Pendse and Esmaeeli [10] and the blue lines are the LB simulation results. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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he various fluid properties are chosen as follows: σ0 = 1 . 0 × 10 −2 ,

 1 = −5 . 0 × 10 −2 , M 2 = 0 , ˜ k = 1 , and ˜ μ = 1 ; moreover, the dimen-

ionless parameters are Re = 1 . 59 × 10 −1 , Ma = 3 . 83 × 10 −2 , and

a = 1 . 26 × 10 −2 , so that the assumptions made in deriving the an-

lytical solution are satisfied. For the phase-field model, the values 

f the interface thickness and the mobility parameter are W = 5 

nd M φ = 0 . 02 , respectively. 

Figure 4 (a) shows the equispaced contours of the tempera- 

ure field for ˜ k = 1 and ˜ μ = 1 obtained by the LB simulation as

ell as from the analytical solution [10] ; Moreover, Fig. 4 (b) pro- 

ides a similar comparison of the thermocapillary velocity vectors 

hich shows that the fluid motion occurring in the direction away 

rom the higher temperature zones on the interface as would be 

xpected for NFs. Clearly, the simulation results agree well with 

he analytical solution. The overall flow pattern for the thermo- 

apillary convection in NFs is shown in Fig. 5 , which consists of 

our periodic counter-rotating vortices in the two superimposed 

uids. The numerical results based on the LB schemes are seen 

o be qualitatively consistent with the analytical solution [10] for 

he streamline contours. Finally, Figs. 6 and 7 present quantita- 

ive comparisons between our numerical approach and the ana- 

i

8 
ytical solution for the profiles of the temperature and the com- 

onents of the thermocapillary velocity field along the centerlines 

f the domain in both the horizontal ( x ) and vertical ( y ) direc-

ions, respectively. In these figures, the temperature profiles are 

on-dimensionalized using the bottom wall temperature, while the 

elocity profiles are normalized using a characteristic velocity scale 

 s given in Eq. (32) by setting σT T = 0 which is appropriate for 

Fs considered here. Again, they are fairly in good agreement 

ith each other, thereby validating the implementation of our LB 

chemes presented earlier. 

. Results and discussion 

We will now study the effect of various characteristic param- 

ters on the physics of thermocapillary convection in superim- 

osed layers of two self-rewetting fluids (SRFs) confined with a 

icrochannel, where the bottom wall is nonuniformly heated by 

mposing a sinusoidal variation in temperature, while the top wall 

s maintained at a lower, but uniform temperature (see Fig. 2 ). In 

his regard, we will utilize the new analytical solution developed 

n Section 3 and consider cases, where the quadratic coefficient 
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Fig. 7. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow of a NF in a heated microchannel. 

The purple diamond symbols shown are obtained from the analytical solution given by Pendse and Esmaeeli [10] and the blue lines are the LB simulation results. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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f the surface tension variation with the temperature is non-zero, 

.e., σT T � = 0 or M 2 � = 0 to demonstrate the role of SRFs, and com-

are both the qualitative and quantitative differences in their be- 

avior when compared with the normal fluids, where only the lin- 

ar coefficient exists. Also, the LB schemes, which were validated 

n the previous section, will be used in conjunction with the an- 

lytical solution for providing additional confirmation of the ap- 

licability as well as for ensuring quantitative accuracy of the lat- 

er via numerical simulations of thermocapillary-driven flows in 

RFs. For clarification, it suffices to mention that three distribu- 

ion functions are used in our LB formulation to compute the two- 

uid motion, interface capturing, as well as the transport of the 

nergy within the SRFs. The temperature-dependent surface ten- 

ion, which is used as a regularized volumetric body force in a 

ingle-field formulation for the fluid motion is used to couple the 

atter with the temperature field. The values of the bulk fluid prop- 

rties such as the viscosity and the thermal conductivity are cho- 

en such that the resulting flow and transport occurs in the creep- 

ng regime and at small Marangoni and capillary numbers (i.e., 

e � 1 , Ma � 1 , and Ca � 1 ) in numerical simulations, where the 

atter also ensures that the interface is naturally maintained as flat, 

hich is valid in situations in microchannel flows. 

We perform simulations in a 2D computational domain with 

00 × 100 , thereby the length l of the microchannel is 200 and 

he total thickness of both the SRFs ( a + b) is 100. Periodic bound-

ry conditions are used in the horizontal direction, while no-slip 

oundary conditions are imposed on the top and bottom walls, and 

he wall temperatures are applied from Eqs. (1) and (2) where we 

hoose T h = T c = T re f = �T = 1 . 0 for simplicity. The reference sur-

ace tension is taken is σ0 = 1 × 10 −2 . Thermocapillary flow pat- 

erns and their strengths are determined by the choice of the di- 

ensionless linear and quadratic coefficients of the surface tension 

ariation with temperature, i.e., M 1 and M 2 , respectively. For the 

odel parameters in the conservative ACE for interface tracking, 

e chose W = 5 and M φ = 0 . 02 . 

First, we consider cases with two superimposed fluids having 

he same thickness or a/b = 1 and with property ratios ˜ k = 1 and

˜ = 1 . To provide a perspective and a basis for comparison, we will

rst show the streamlines for a case with NFs in Fig. 8 by consid-

ring M 1 = −5 × 10 −2 and M 2 = 0 . 0 . We treat these choices for the

imensionless surface tension coefficients as the baseline case for 

Fs. Moreover, the choices of the other fluid properties are such 

hat Re = 1 . 59 × 10 −1 , Ma = 3 . 83 × 10 −2 , and Ca = 1 . 26 × 10 −2 . In

efining these dimensionless parameters here and in what follows, 

 characteristic velocity U s derived in Appendix D is used. Clearly, 

f the quadratic coefficient for the surface tension is absent (i.e., 

T T = 0 or M 2 = 0 ), then four periodic counterrotating vortices are 

nduced, where the fluids move away from the hotter region on the 

nterface at the center of the domain. 

On the other hand, by turning off the linear coefficient of sur- 

ace tension (i.e., σT = 0 ) and keeping only the quadratic coefficient 

p

9 
on-zero, i.e., σT T � = 0 , for otherwise the same property ratios, we 

imulate the thermocapillary convection in SRFs. In dimensionless 

orm, we take M 1 = 0 and M 2 = 1 × 10 −1 , which we consider as

he choices for the baseline case for SRFs; the rest of the dimen- 

ionless parameters resulting from specifying the other fluid prop- 

rties are Re = 1 × 10 −1 , Ma = 3 × 10 −2 , and Ca = 9 . 9 × 10 −3 . The

esults given in terms of the streamlines are plotted in Fig. 9 . It

s evident that the thermocapillary flow pattern in SRFs is strik- 

ngly different from that in NFs: First, eight periodic counterrotating 

ortices are generated in SRFs, which is double the number of the 

onvection rolls in NFs. Second, the fluids on the interface seek to 

ove towards the hotter region on the interface at the center of the 

omain. Such differences in direction of the thermocapillary flow 

elds between the NFs and SRFs are more explicit in the velocity 

ector diagrams shown in Fig. 10 , which is a manifestation of flow 

rising from the Marangoni stress generated due to a positive (neg- 

tive) surface tension gradient on the interface for SRFs (NFs). The 

oubling of the vortical structures in the case of the SRFs can be 

nterpreted from an earlier and simpler form of the analytical so- 

ution given in terms of the streamfunction in Eq. (16) : this equa- 

ion contains the ‘fundamental solution’ related to sin (ωx ) arising 

rom the linear part surface tension coefficient σT and a ‘first order 

armonic solution’ related to sin (ωx ) cos (ωx ) generated from the 

uadratic part surface tension coefficient σT T . The latter is of the 

orm sin (2 ωx ) / 2 , which has double the wavenumber compared to 

he former case. Thus, fluids with surface tension such that σT T � = 0 

or SRFs) would result in double the number of thermocapillary 

onvection rolls when compared to fluids with only linear varia- 

ions in the surface tension, i.e., only σT � = 0 (or NFs). 

Finally, we note that in all cases, the side-by-side comparisons 

etween the analytical solution and the numerical results based on 

he LB schemes show very good agreement with each other. 

.1. Effect of relative magnitudes of dimensionless linear M 1 and 

uadratic M 2 surface tension coefficients of SRF layers 

In the previous case, we considered a particular type of SRF for 

hich only the quadratic coefficient is non-zero, while the linear 

art of the coefficient is absent, i.e., M 2 � = 0 , but M 1 = 0 . While this

s a plausible assumption, it doesn’t encompass all types of SRFs, 

or which it is possible to have both M 2 � = 0 and M 1 � = 0 , and the

nique nature of the flow patterns associated with the SRFs can 

till be manifested provided that the overall surface tension gradi- 

nt is positive in the flow domain of interest. To test this hypoth- 

sis, we used the following parameters for SRFs with both the lin- 

ar and quadratic coefficients: σ0 = 1 × 10 −3 , M 1 = 1 × 10 −5 , and

 2 = 5 × 10 −1 . Based on such more general forms of surface ten- 

ion coefficients, results from the analytical solution and well as 

he LB simulations are obtained and the corresponding thermo- 

apillary convection patterns given in terms of the streamlines are 

resented in Fig. 11 . Again, we notice here that eight counterrotat- 
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Fig. 8. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in NFs for the case of aspect ratio of a/b = 1 , 

thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are 

M 1 = −5 × 10 −2 and M 2 = 0 , respectively. 

Fig. 9. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b = 1 , 

thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are 

M 1 = 0 and M 2 = 1 × 10 −1 , respectively. 

Fig. 10. Velocity vectors due to thermocapillary convection for the case of (a) NFs ( M 1 = −5 × 10 −2 and M 2 = 0 ) and (b) SRFs ( M 1 = 0 and M 2 = 1 × 10 −1 ). Here, the aspect 

ratio is a/b = 1 , thermal conductivity ratio is ̃  k = 1 , and the viscosity ratio is ˜ μ = 1 . The blue arrows are for the LBM simulation while the purple arrows are for the analytical 

solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ng convection rolls are generated, where the fluid motion along 

he interface is directed towards the higher temperatures, which 

onfirms our hypothesis mentioned above. Moreover, the theoreti- 

al prediction is consistent with the numerical results based on LB 

chemes. 

This last example concerned a situation where the dimension- 

ess linear coefficient of surface tension is much smaller than 

hat of the quadratic coefficient. Let’s now explore another case 

y inverting this situation where the linear coefficient is much 

arger than the quadratic coefficient in SRF layers. In particular, we 

ake M 1 = 1 × 10 −1 and M 2 = 1 × 10 −4 , and the streamline patterns

ased on the analytical solution and the LBM simulation results 

re shown in Fig. 12 . Interestingly, in this case only four periodic 

ounterrotating vortices are generated; however, unlike those ob- 

erved for the NFs in the previous section where the fluids on the 

nterface move away from the center (see Fig. 8 ), here the thermo- 

apillary motion along the interface is directed towards the higher 

emperature zones at the center of the microchannel, which is con- 

istent withe expected behavior of SRFs. Now, the presence of four 

ortices for the present case where M � M and eight vortices 
2 1 

10 
or the previous case where M 2 � M 1 can be explained as follows. 

he analytical solution derived in a previous section consists of the 

uperposition of two results: one that arises from the linear coef- 

cient of the surface tension M 1 and the other is generated from 

he quadratic coefficient M 2 , which contains contribution of ther- 

ocapillary flow with a wavenumber that is twice as the former 

ase. Moreover, the resulting magnitudes of the flow in each case 

s proportional to the magnitude of the respective coefficient of the 

urface tension. Thus, the overall solution, in terms of the domi- 

ant flow pattern, is then dictated by the contribution of the part 

f the solution which has the largest magnitude arising between 

he two surface tension coefficients. 

Indeed, in view of the above considerations, we performed a 

ystematic study to deduce the parameter space M 1 − M 2 that de- 

ineates the cases with four vortices with those of eight vortices 

n SRFs. Figure 13 presents a parametric regime map in terms of 

he linear and quadratic surface tension coefficients, when all the 

ther characteristic parameters are fixed as follows: a/b = 1 , ˜ k = 1 ,

nd ˜ μ = 1 . We find for all cases where M 2 > M 1 with the above

arametric choices, the thermocapillary convection in SRFs mani- 
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Fig. 11. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b = 1 , 

thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are 

M 1 = 1 × 10 −5 and M 2 = 5 × 10 −1 , respectively. 

Fig. 12. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b = 1 , 

thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are 

M 1 = 1 × 10 −1 and M 2 = 1 × 10 −4 , respectively. 

Fig. 13. Parametric regime map given in terms of the dimensionless linear M 1 and 

quadratic M 2 surface tension coefficients for the four and eight vortex convection 

roll cases induced by thermocapillary effects in SRFs in a nonuniformly heated mi- 

crochannel. Here, the aspect ratio is a/b = 1 , the thermal conductivity ratio is ̃  k = 1 , 

and viscosity ratio is ˜ μ = 1 . The symbols correspond to our analytical prediction, 

with the shaded region encompassing the eight vortex cases. 
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ests in the form of eight counterrotating vortex cells as shown by 

he shaded region in Fig. 13 ; otherwise the SRFs exhibit four vor- 

ex cells. Moreover, unlike in NFs, the SRFs, regardless of the choice 

f M 1 and M 2 , always seek to move towards the hotter regions at 

he center on the interface. These findings may be exploited in cre- 

ting new pathways to specifically promote certain targeted mix- 

ng patterns in microfluidic channels subjected to nonuniform wall 

eating by tuning surface tension coefficients, i.e., by synthesizing 

RFs with appropriate interfacial properties σT and σT T (or equiva- 

ently, M and M ), e.g., by selecting appropriate number of carbon 
1 2 

11 
toms in the molecular chain arrangements in aqueous solutions 

f alcohols. 

.2. Effect of relative thickess ratio a/b of SRF layers 

Next, let’s examine the effect of changing the relative thick- 

esses a and b of the top and bottom fluids or the aspect ra- 

io a/b on thermocapillary flow patterns for both NFs and SRFs. 

igure 14 shows the streamlines in NFs when the aspect ratio 

/b = 1 / 3 , while the corresponding result for the SRFs is presented

n Fig. 15 . By contrast, Figs. 16 and 17 illustrate the streamlines 

n the thermocapillary-driven flow in NFs and SRFs, respectively, 

hen the aspect ratio a/b = 3 . 

In general, changing the thickness ratio a/b does not modify the 

umber of vortices generated either for NFs or SRFs, which are pri- 

arily influenced by the surface tension sensitivity coefficients M 1 

nd M 2 , as discussed earlier. However, the shape of the vortices 

re profoundly influenced by the a/b ratio as seen in Figs. 14–

7 . When a/b = 1 / 3 (see Figs. 14 and 15 ), the interface is farther

ay from the heated bottom wall when compared to the previous 

ases with a/b = 1 ; with smaller prevailing thermal gradients this 

educes the heat diffusion from the bottom to the interface and its 

onsequent nonuniform thermal distribution; in turn, this sets up 

elatively weaker thermocapillary currents. Moreover, in this case 

ith the bottom fluid being thicker, their vortical centers are also 

ushed farther away from the bottom wall. In the case of NF layers 

see Fig. 14 ), the motion is directed away from the interface, while 

ith SRF layers (see Fig. 15 ) the fluids seek to migrate towards the 

otter zones around the center of the interface thereby setting up 

verall asymmetrical flow patterns in each case. 

On the other hand, for the thickness ratio a/b = 3 (see 

igs. 16 and 17 ), the interface is significantly closer to the nonuni- 

ormly heated bottom wall when compared to the above cases. 

s a result of greater thermal transport towards the interface, 

arangoni convection becomes more intense, which is accompa- 
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Fig. 14. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in NFs for the case of aspect ratio of a/b = 1 / 3 , 

thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are 

M 1 = −5 × 10 −2 and M 2 = 0 , respectively. 

Fig. 15. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b = 

1 / 3 , thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature 

are M 1 = 0 and M 2 = 1 × 10 −1 , respectively. 

Fig. 16. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in NFs for the case of aspect ratio of a/b = 3 , 

thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are 

M 1 = −5 × 10 −2 and M 2 = 0 , respectively. 

Fig. 17. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b = 3 , 

thermal conductivity ratio of ˜ k = 1 , and viscosity ratio of ˜ μ = 1 . Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are 

M 1 = 0 and M 2 = 1 × 10 −1 , respectively. 

12 
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Fig. 18. Profiles of the horizontal velocity component along the interface in the x direction for thermocapillary flow in SRFs for three different values of the aspect ratio 

a/b: a/b = 1 / 3 (left), a/b = 1 (middle), and a/b = 3 (right). The purple diamond symbols shown are obtained from the analytical solution and the lines are the LB simu- 

lation results. Here, the thermal conductivity ratio is ˜ k = 1 , viscosity ratio is ˜ μ = 1 , and the dimensionless surface tension coefficients are M 1 = 0 and M 2 = 1 × 10 −1 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ied by the centers of the bottom standing vortex cells shifting fur- 

her towards the bottom wall, i.e., the corresponding flow pattern 

n that layer becoming more squished; nevertheless, the direction 

f the motion of the counterrotating vortices in such asymmetri- 

al flow distribution for the NFs and the SRFs remains the same 

s mentioned above. These observations can be further interpreted 

ore quantitatively by examining the variations in the magnitude 

f the interfacial thermocapillary convection currents at different 

/b ratios as discussed next in Fig. 18 . 

Hence, by focusing on the interface, let’s now investigate the 

ariations in the distribution of the horizontal component of the 

hermocapillary velocity field u x in SRFs due to changes in the as- 

ect ratio a/b, which we will normalize by a suitable character- 

stic velocity arising from the surface tension gradient. Based on 

he scaling argument given below Eq. (7) involving a balance of 

he Marangoni stress and the viscous stress and using the aver- 

ge temperature on the interface in estimating the attendant tem- 

erature gradient, we can obtain the following characteristic ve- 

ocity for thermocapillary convection in SRFs (see Appendix D for 

etails): 

 s ∼ �T 

μb 

(
b 

l 

)[ 

σT + 2 σT T 

( 

T h 
(
a 
b 

)
+ T c ̃  k (

a 
b 

)
+ ̃

 k 

+ 

�T sinh ( ̃  a ) 

˜ k cosh ( ̃  a ) sinh ( ̃ b ) + cosh ( ̃ b ) sinh ( ̃  a ) 
− T re f 

)]
. (32) 

hen, taking W = a + b as the width of the microchannel, 

ig. 18 presents the dimensionless horizontal velocity component 

 x /U s on the interface in SRFs as a function of the dimension- 

ess coordinate x/W for three different aspect ratios a/b = 1 / 3 , 1

nd 3. It can be seen that while the velocity profiles are quali- 

atively similar, there are dramatic differences in the strength of 

he Marangoni convection currents in the interface depending on 

he aspect ratio. When the interface is far from the nonuniformly 

eated bottom wall, which occurs for the case a/b = 1 / 3 , the mag-

itude of the thermocapillary convection is found to be relatively 

eak; by contrast, when the interface is closer to the interface 

t a/b = 3 than the other two cases, the Marangoni velocities are 

uch larger, by at least an order of magnitude. This is consistent 

ith our arguments given earlier that the closer the interface is 

o the heated wall side, the greater is the heat transport by dif- 

usion from the latter to the former, which in turn intensifies the 

eneration of thermocapillary velocity currents via the surface ten- 

ion gradient resulting from a nonuniform temperature distribu- 

ion on the interface. Thus, the aspect ratio a/b of the superim- 

osed layers of SRFs has a major effect on not just in setting up 

symmetrical thermocapillary convection roll cells, but also, and 

ore importantly, in determining the resulting magnitude of the 

elocities of the fluids around interfaces. For the purpose of clari- 

cation, it should be noted that the length scale b used in deter- 
13 
ining the shear stress used in obtaining a scale for the character- 

stic velocity U s (see Appendix D for its derivation), while a con- 

istent scaling definition following [10] , is an overestimate. Hence, 

he dimensionless velocity profiles u x /U s shown are generally sig- 

ificantly smaller than unity. 

.3. Effect of thermal conductivity ratio ˜ k of SRF layers 

Next, we will perform another quantitative study involving the 

ffect of the thermal conductivity ratio ˜ k = k a /k b on the profiles 

f temperature and the components of the velocity field in ther- 

ocapillary convection in SRFs. In this regard, we fix SRF layers 

o be of equal thickness, i.e., a/b = 1 , and set ˜ μ = 1 , M 1 = 0 and

 2 = 1 × 10 −1 , and then vary ˜ k by considering three representa- 

ive choices: ˜ k = 0 . 1 , 1 . 0 and 5.0. Figures 19 and 20 show the pro-

les of the temperature and the components of the velocity field 

long the centerline of the domain in the x and y directions, re- 

pectively, for ˜ k = 0 . 1 . Similar plots are shown in Figs. 21 and 22

or ˜ k = 1 . 0 and in Figs. 23 and 24 for ˜ k = 5 . 0 . First, focusing on

he dimensionless temperature profiles T /T H , we notice that ˜ k gen- 

rally does not change their overall magnitudes; however, it does 

hange the shape of the temperature profiles in the direction ver- 

ical to the interface: while for ˜ k = 1 . 0 (see Fig. 22 ) it exhibits a

ontinuous variation, when ˜ k � = 1 , a discontinuity in the slopes of 

he temperatures at the interface at y/W = 0 . 5 can be observed

see Figs. 20 and 24 ), which can be interpreted simply based on 

he continuity of the heat flux and using the Fourier’s law. This 

lso explains the observation that for the case when the top fluid 

ayer is significantly more conducting than the bottom fluid layer 

i.e., ˜ k = 5 . 0 ), the temperature field changes much more in the 

ormer when compared to the latter (see Fig. 24 ). More impor- 

antly, the thermal conductivity ratio has more profound influence 

n the magnitude of the thermocapillary flow fields. While the 

verall shapes of the components of the velocity fields are gen- 

rally invariant with ˜ k , it can be seen that when bottom fluid is 

hermally more conducting, i.e., when ˜ k < 1 . 0 , the magnitudes of 

he thermocapillary velocity currents are significantly increased; 

or example, comparing Figs. 19 and 20 (for ˜ k = 0 . 1 ) with the cor-

esponding Figs. 23 and 24 (for ˜ k = 5 . 0 ), it can be observed that

he Marangoni velocities are significantly larger for the former case 

hen compared the latter. This is a consequence of the fact that 

hen ˜ k < 1 . 0 , the thermal conductivity of the bottom fluid layer is

ignificantly larger relative to the top fluid layer thereby enhancing 

eat diffusion to the interface, which in turn sets up significantly 

arger surface tension gradient induced fluid motion. It is also con- 

istent with the scaling equation for the characteristic thermocap- 

llary velocity U s given above in Eq. (32) based on a stress bal- 

nce on the interface, which parameterizes it with ˜ k , among other 

haracteristic parameters. Finally, we also note that the theoretical 

redictions for the temperature fields as well as the velocity fields 
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Fig. 19. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow in SRFs for thermal conductivity 

ratio ̃  k = 0 . 1 . The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1 , viscosity ratio 

is ˜ μ = 1 , and the dimensionless surface tension coefficients are M 1 = 0 and M 2 = 1 × 10 −1 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 20. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow in SRFs for thermal conductivity 

ratio ̃  k = 0 . 1 . The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1 , viscosity ratio 

is ˜ μ = 1 , and the dimensionless surface tension coefficients are M 1 = 0 and M 2 = 1 × 10 −1 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 21. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow in SRFs for thermal conductivity 

ratio ̃  k = 1 . 0 . The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1 , viscosity ratio 

is ˜ μ = 1 , and the dimensionless surface tension coefficients are M 1 = 0 and M 2 = 1 × 10 −1 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 22. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow in SRFs for thermal conductivity 

ratio ̃  k = 1 . 0 . The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1 , viscosity ratio 

is ˜ μ = 1 , and the dimensionless surface tension coefficients are M 1 = 0 and M 2 = 1 × 10 −1 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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t

n SRFs based on our new analytical solution derived earlier are in 

ood quantitative agreement with the numerical results based on 

he central moment LB schemes constructed in the previous sec- 

ions. 
o

U

14 
.4. Effect of characteristic parameters on peak interfacial 

hermocapillary velocity U max in SRF layers 

Let’s now study the effect of various dimensionless variables 

n the magnitude of the peak velocity generated on the interface 

 max , as a global parameter indicating the strength of the thermo- 
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Fig. 23. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow in SRFs for thermal conductivity 

ratio ̃  k = 5 . 0 . The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1 , viscosity ratio 

is ˜ μ = 1 , and the dimensionless surface tension coefficients are M 1 = 0 and M 2 = 1 × 10 −1 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 24. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow in SRFs for thermal conductivity 

ratio ̃  k = 5 . 0 . The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1 , viscosity ratio 

is ˜ μ = 1 , and the dimensionless surface tension coefficients are M 1 = 0 and M 2 = 1 × 10 −1 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 25. Effect of the thermal conductivity ratio ̃  k on the maximum thermocapillary 

velocity at the interface in SRFs for three different values of the aspect ratio a/b. The 

results from the analytical solution are shown as lines and LBM results are shown 

as symbols. Here, the viscosity ratio is ˜ μ = 1 , the dimensionless surface tension 

coefficients are M 1 = 0 and M 2 = 5 × 10 −2 , and σ0 = 1 × 10 −3 . 
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Fig. 26. Effect of the viscosity ratio ˜ μ on the maximum thermocapillary velocity 

at the interface in SRFs for three different values of the aspect ratio a/b. The re- 

sults from the analytical solution are shown as lines and LBM results are shown 

as symbols. Here, the thermal conductivity ratio is ̃  k = 1 , the dimensionless surface 

tension coefficients are M 1 = 0 and M 2 = 5 × 10 −2 , and σ0 = 1 × 10 −3 . 
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apillary convection in SRFs. First, we investigate the effect of the 

hermal conductivity ratio ˜ k on U max . Figure 25 shows the varia- 

ion of the dimensionless peak velocity on the interface as a func- 

ion of the thermal conductivity ratio for three different choices 

f the aspect ratio, viz., a/b = 1 / 3 , 1, and 3, when ˜ μ = 1 . For a

xed a/b, it can be observed that as the thermal conductivity ra- 

io increases, or the top fluid layer is thermally more conducting 

han the bottom fluid layer, U max is found to decrease monotoni- 

ally; conversely, notice that the peak thermocapillary convection 

urrent can be enhanced by decreasing ˜ k or, equivalently, by main- 

aining the thermal conductivity of the top fluid layer constant and 

ncreasing the thermal conductivity of the bottom fluid layer; the 

atter increases the heat flux from the bottom SRF layer, which re- 

ults in a more pronounced nonuniform temperature distribution 
15 
long the interface; in turn, greater Marangoni stresses are gener- 

ted, which result in stronger fluid motions around the interfaces. 

n addition, it is evident from Fig. 25 that the ratio of fluid thick- 

esses a/b has a significant effect on U max . In general, for a fixed 

hermal conductivity ratio, when the bottom fluid layer is thinner 

han the top fluid layer, i.e., a/b > 1 , their interface lies closer to

he heated bottom wall, which in turn enhances thermocapillary 

onvection due to its stronger nonuniform heating, which results 

n a larger peak Marangoni velocity. For example, when ˜ k = 1 . 0 , by

hanging a/b from 1 / 3 to 3 increases U r by more than ten times. 

Next, Fig. 26 shows the effect of the dimensionless viscosity 

atio ˜ μ = μa /μb on the peak thermocapillary velocity U max for 

/b = 1 / 3 , 1, and 3 at a fixed ˜ k = 1 . Clearly, the viscosities of the

RFs have profound influence on the strength of thermocapillary 
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Fig. 27. Effect of the dimensionless linear coefficient of surface tension M 1 on the 

maximum velocity at the interface in SRFs for three different values of the aspect 

ratio a/b at ̃  k = 1 , ˜ μ = 1 , and M 2 = 5 × 10 −2 . The results from the analytical solution 

are shown as lines and LBM results are shown as symbols. 

Fig. 28. Effect of the dimensionless quadratic coefficient of surface tension M 2 on- 

the maximum velocity at the interface in SRFs for three different values of the as- 

pect ratio a/b at ˜ k = 1 , ˜ μ = 1 , and M 1 = 1 × 10 −5 . The results from the analytical 

solution are shown as lines and LBM results are shown as symbols. 
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onvection. In particular, if the bottom fluid layer is less viscous 

han the top fluid layer, or ˜ μ > 1 , it more readily promotes the ex-

hange of momentum transfer between the interface and the lay- 

rs of the bottom fluid due to weaker flow resistance, which is 

hen accompanied by larger peak thermocapillary velocities. Thus, 

he increasing the viscosity ratio has an opposite effect when com- 

ared to the thermal conductivity ratio. On the other hand, for a 

xed viscosity ratio, the variations in the thickness ratio a/b has a 

imilar influence as noticed in the previous case. 

Finally, Figs. 27 and 28 present the effects of the dimensionless 

inear and quadratic coefficients, M 1 and M 2 , respectively, on the 

eak thermocapillary velocity U max for a/b = 1 / 3 , 1, and 3 at fixed
˜ 
 = 1 and ˜ μ = 1 (see Eq. (7) for their definitions based on σT and

T T ). Evidently, increasing either M 1 or M 2 increases the strength 

f the Marangoni velocity. This is due to the fact that M 1 and M 2 

epresent the sensitivities of the surface tension on the temper- 

ture. The larger the magnitude of these parameters the greater 

s the surface tension gradient or the Marangoni stress on the in- 

erface, which then manifest as thermocapillary flow with higher 

eak velocities. Generally, such effects are more pronounced when 

he interface is located closer to the heated bottom wall or with 

ncreasing a/b which is consistent with the observations made ear- 

ier in Section 6.2 . Interestingly, it is noted that the effect of varia-

ions in the linear surface tension coefficient M 1 on U max for fixed 

 = 5 × 10 −2 is greater at a/b = 1 / 3 when compared to the other
2 

16 
ases; on the other hand, for a fixed M 1 = 1 × 10 −5 , U max increases

n direct proportion with an increase in the quadratic coefficient 

 2 with a constant slope (which is consistent with the charac- 

eristic velocity dependence on σT T or, equivalently, M 2 given in 

q. (32) ) for all choices of the aspect ratio a/b. 

.5. Beyond the analytical solution: Interfacial deformations at higher 

apillary numbers using lattice Boltzmann simulations 

In the derivation of the new analytical solution for thermo- 

apillary convection in SRF layers, it was assumed that the inter- 

ace remains flat which is a reasonable assumption at relatively 

mall capillary numbers and applicable for microchannel config- 

rations. It is consistent with those considered in prior work (see 

.g., Pendse and Esmaeeli [10] ) and, as shown in the previous sec- 

ion, the results obtained from such a theoretical analysis were in 

ood quantitative agreement with the numerical simulations un- 

er similar conditions. However, it should be pointed out that the 

omputational approach discussed in Section Appendix A is not 

estricted by such assumptions and is applicable for more gen- 

ral situations, where the interfaces between the SRFs can deform, 

hich can arise at relatively large capillary numbers. In order to 

imply illustrate this viewpoint, we have performed some addi- 

ional simulations involving SRF layers at progressively increasing 

alues of the capillary number Ca while maintaining M 1 = 0 and 

0 = 1 × 10 −3 with a/b = 3 with thermal conductivity ratio ˜ k = 1 

nd viscosity ratio ˜ μ = 1 . We chose the interface to be closer to 

he heated bottom wall by fixing a/b = 3 so that more pronounced 

hermocapillary convection are generated, whose magnitudes are 

ontrolled by varying the parameter M 2 which in turn determines 

he characteristic velocity used in defining the capillary number. 

Figure 29 shows the contours of the pressure field and the 

treamline patterns in SRF layers computed using the LB schemes 

t Ca = 0 . 34 , 0 . 57 , 1 . 15 , and 2.29 via varying M 2 as M 2 = 3 , 5 , 10 ,

nd 20, respectively. In the results discussed earlier where Ca < 

 . 1 , the interface was found to be essentially flat and both the

nalytical solution and the numerical simulations were consistent 

ith each other. By contrast, according to Fig. 29 , as Ca is increased 

o 0.34, the simulations show that the interfaces undergo rela- 

ively small deformations. As Ca is progressively increased further, 

he interfaces deform more significantly. These result from the dif- 

erences in the pressure fields between the bottom and top SRF 

ayers which is accompanied by local variations in the curvatures 

r the normal capillary forces as seen from the pressure contour 

lots. Clearly, larger the capillary number, the larger is the pres- 

ure differences or the greater is the interfacial deformations. In- 

erestingly, despite such interfacial deformations, the thermocapil- 

ary flow patterns are seen to be qualitatively similar to that of the 

at interface cases considered earlier in that the SRF layers are ac- 

ompanied with eight counterrotating vortex cells. As such, these 

emonstrate the capabilities of the central moment LB schemes 

n computing local variations in the interfacial topologies naturally 

nd their potential of going beyond the possible parametric space 

f the analytical solution in simulating thermocapillary flow in SRF 

ayers. 

Before we conclude, let us now provide some selection sug- 

estions for SRF applications as an extension of this study. First, 

he surface tension variation with temperature σ (T ) obtained em- 

irically should be curve fitted to a parabolic profile according 

o Eq. (4) to deduce the linear σT and quadratic σT T sensitiv- 

ty coefficients of the surface tension on temperature. Moreover, 

ther thermophysical properties as noted in Section 2.3 should 

e chosen. Then, the computational formulation discussed in 

ection 4 and further elaborated for computing the fluid motions, 

nterface tracking, and the energy transport in the attendant ap- 

endices ( Appendices Appendix A and Appendix B ) can be used 
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Fig. 29. Simulations of interfacial deformations using the central moment LB schemes at higher capillary numbers in SRF layers. (a) Pressure contours and (b) streamlines 

of the thermocapillary flow for aspect ratio a/b = 3 with thermal conductivity ratio ˜ k = 1 and viscosity ratio ˜ μ = 1 at different capillary numbers Ca . 
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o investigate the underlying physics in a variety of SRF applica- 

ions. In this regard, some selection suggestions include the ther- 

ocapillary convection of multilayer SRFs microchannels, manipu- 

ating the drop or bubble migration dynamics, and enhancement of 

hermal transport in heat pipes and pool boiling processes. The lat- 

ice Boltzmann formulation presented in this work is general and 

an be readily used to incorporate a variety of thermal and flow 

onfigurations in such SRF applications and to study the details of 

hermocapillary flow and mixing patterns, interfacial deformations, 

nd the heat transfer rates. 
17 
. Summary and conclusions 

Surface tension in fluids is a temperature dependent property 

nd is among the main drivers of interfacial transport phenom- 

na. In contrast to the normal fluids (NFs), the self-rewetting flu- 

ds (SRFs) exhibit anomalous nonlinear (quadratic) dependence of 

urface tension on temperature with a minimum and involving a 

ositive gradient. As a result, they are accompanied by certain de- 

irable aspects, such as interfacial fluid motions towards high tem- 

erature regions, which can be potentially exploited in various mi- 

rogravity and terrestrial applications, including microfluidics. 
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In this paper, we have derived a new analytical solution for 

hermocapillary convection in superimposed two SRF fluid layers 

onfined within a microchannel that is heated on its bottom side 

ith a sinusoidally varying temperature. The derived streamfunc- 

ion from solving a biharmonic equation consists of a fundamen- 

al solution resulting from the linear part of the surface tension 

nd a higher order harmonic solution with a wavenumber that is 

wice that of the former and arises from the quadratic part of the 

urface tension variation on the temperature. Moreover, we have 

lso developed and validated a robust numerical technique based 

n central moment lattice Boltzmann (LB) schemes for interface 

racking based on a conservative Allen-Cahn equation, two-fluid 

otion, and energy transport to simulate thermocapillary convec- 

ion in SRFs. 

It is found that the two SRF layers are accompanied by a set of 

ight, periodic counterrotating convection cells with the interfacial 

uid motion directed towards the high temperature at the center; 

y contrast, in the two NF layers, only four periodic counterrotat- 

ng vortices are generated with the fluids moving away from the 

enter along the interface. Such striking differences are well repro- 

uced by both our analytical and computational approaches, and 

hey are found to be in good quantitative agreement. The presence 

f double the number of convection cells in SRFs when compared 

hat in NFs can be theoretically interpreted as arising from the 

igher order harmonic solution as noted above. It is shown that 

he magnitude of the linear coefficient of the surface tension vari- 

tion with temperature relative to that of the quadratic coefficient 

f SRFs not only affects the strength of thermocapillary velocities, 

ut also the character of the overall convection patterns. Moreover, 

 study of the effect of various characteristic parameters such as 

he thickness ratio of the fluids, thermal conductivity ratio and the 

iscosity ratio on the magnitude of thermocapillary convection was 

erformed. It is found that the thermocapillary convection currents 

re more intense when the interface is closer to the heated bot- 

om wall, or if the bottom fluid layer has higher thermal conduc- 

ivity or lower viscosity when compared to those in the top fluid 

ayer. In particular, as the thickness ratio is changed from 1/3 to 

, the maximum thermocapillary velocity is found to increase by 

bout an order of magnitude; moreover, the latter is found to dou- 

le as the dimensionless quadratic surface tension sensitivity co- 

fficient increases by a factor of 2. By going beyond the analytical 

olution regime, computations show that at relatively larger capil- 

ary numbers the interfaces undergo deformation while maintain- 

ng the general flow patterns in SRFs as noted above. Since both 

ur analytical and computational approaches are developed and 

tilized based on a general parabolic equation of state for surface 

ension containing the linear and quadratic terms, the results of 

his work are readily applicable to various SRF formulations. 

The analytical solution for thermocapillary convection in SRFs 

erived in this work is useful not only in clarifying the essential 

ransport physics involved, including its ability to predict the dou- 

ling of the number of vortex cells in SRFs when compared to that 

n NFs, but may also serve as a benchmark solution in constructing 

ew numerical techniques for simulating thermocapillary flows in 

RFs. The central moment LB schemes are not only quantitatively 

n agreement with such a solution, but provides an approach to 

xtend it to more general situations involving interfacial deforma- 

ions. The ability to modulate both the surface-tension driven flow 

atterns and their magnitudes in SRFs in certain unique manner 

elative to NFs, such as those shown in this work, could provide 

ew approaches in manipulating interfacial transport phenomena 

n microfluidic applications. 
i

18 
eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Bashir Elbousefi: Data curation, Formal analysis, Investiga- 

ion, Methodology, Software, Visualization, Writing – original draft. 

illiam Schupbach: Data curation, Formal analysis, Investiga- 

ion, Methodology, Software, Visualization, Writing – original draft. 

annan N. Premnath: Conceptualization, Formal analysis, Fund- 

ng acquisition, Investigation, Methodology, Supervision, Writing –

eview & editing. Samuel W.J. Welch: Methodology, Supervision, 

riting – review & editing. 

ata availability 

Data will be made available on request. 

cknowledgments 

The authors would like to acknowledge the support of the US 

ational Science Foundation (NSF) for research under Grant CBET- 

705630 . The third author (KNP) would also like to thank the NSF 

or support of the development of a computer cluster ‘Alderaan’ 

osted at the Center for Computational Mathematics at the Uni- 

ersity of Colorado Denver under Grant OAC-2019089 (Project “CC ∗

ompute: Accelerating Science and Education by Campus and Grid 

omputing”), which was used in performing the simulations. 

ppendix A. Numerical algorithms: central moment lattice 

oltzmann schemes for interface tracking, two-fluid motion 

nd energy transport 

In this section, we will present a numerical LB approach 

ased on more robust collision models involving central mo- 

ents [49,50,52,64] for solving the equations of the phase-field 

odel for tracking the interface ( Eq. (24) ) and the binary fluid 

otions ( Eqs. (25) –(28) ) given in the previous section, along with 

he transport of energy presented in Eq. (3c) earlier. Solving these 

hree equations requires evolving three separate distribution func- 

ions on the standard two-dimensional, square lattice (D2Q9) lat- 

ice, which involve performing a collision step based on the relax- 

tion of different central moments of the distribution function to 

heir equilibria, which is followed by a lock-step advection of the 

istribution functions to their adjacent nodes along the character- 

stic directions in the streaming step . Then, the macroscopic vari- 

bles, viz., the order parameter, the fluid pressure and velocity, 

s well as the temperature field, are obtained via taking the mo- 

ents of the respective distribution functions. It should be noted 

hat since the collision step is performed using central moments 

hile the streaming step is performed by means of the distribu- 

ion functions, this requires the use of appropriate mappings that 

ransform between these quantities pre- and post-collision step. 

he central moment LB methods are shown to be more robust 

e.g., enhanced numerical stability) when compared to the other 

ollision models in the LB framework (see Hajabdollahi et al. [50] , 

ahia and Premnath [65] , Yahia et al. [66] for recent examples). 

hile the recent central moment LB scheme for two-fluid interfa- 

ial flows [50] was constructed using an orthogonal moment basis, 

n what follows, we will present an improved formulation involv- 

ng the non-orthogonal moment basis. 

https://doi.org/10.13039/100000001
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1. LB scheme for phase-field based interface capturing 

We will now discuss a central moment LB technique to solve 

he conservative ACE given in Eq. (24) by evolving a distribu- 

ion function f α , where α = 0 , 1 , 2 , . . . , 8 represent the discrete

article directions, on the D2Q9 lattice. Generally, during colli- 

ion, the set of distribution functions f = ( f 0 , f 1 , f 2 , . . . , f 8 ) 
† re-

ax to the corresponding equilibrium distribution functions given 

y f eq = ( f eq 
0 

, f 
eq 
1 

, f 
eq 
2 

, . . . , f 
eq 
8 

) † , which needs to be implement via

heir central moments in what follows. 

In this regard, first, the components of the particle velocities of 

his lattice can be represented by the following vectors in standard 

irac’s bra-ket notation as 

 e x 〉 = (0 , 1 , 0 , −1 , 0 , 1 , −1 , −1 , 0) † , 

| e y 〉 = (0 , 0 , 1 , 0 , −1 , 1 , 1 , −1 , −1) † . 

e also need the following 9-dimensional vector to define the ze- 

oth moment of f α: 

 1 〉 = (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) † . 

hat is, its inner product with the set of distribution functions 〈 f | 1 〉
hould yield the order parameter φ of the phase-field model. The 

entral moment LB will then be constructed based on the follow- 

ng set of nine non-orthogonal basis vectors (which differs from 

he approach presented in Hajabdollahi et al. [50] ): 

 P 0 〉 = | 1 〉 , | P 1 〉 = | e x 〉 , | P 2 〉 = | e y 〉 , 
 P 3 〉 = 

∣∣e 2 x + e 2 y 
〉
, | P 4 〉 = 

∣∣e 2 x − e 2 y 
〉
, | P 5 〉 = | e x e y 〉 , 

 P 6 〉 = 

∣∣e 2 x e y 〉, | P 7 〉 = 

∣∣e x e 2 y 〉, | P 8 〉 = 

∣∣e 2 x e 2 y 〉. 
ymbols like 

∣∣e 2 x e y 〉 = | e x e x e y 〉 signify a vector that results from the 

lement-wise vector multiplication of vectors | e x 〉 , | e x 〉 and | e y 〉 . 
hey can be grouped together in the form of the following matrix 

hat maps the distribution functions to the raw moments in terms 

f the above moment basis vectors: 

 = [ 〈 P 0 | , 〈 P 1 | , 〈 P 2 | , 〈 P 3 | , 〈 P 4 | , 〈 P 5 | , 〈 P 6 | , 〈 P 7 | , 〈 P 8 | ] . (34) 

ere, it should be noted that the central moments are obtained 

rom the distribution moments by shifting the particle velocity e α
y the fluid velocity u . Given these, we can then formally define 

he raw moments of the distribution function f α as well as its 

quilibrium f 
eq 
α as 

 

κ ′ 
mn 

κ ′ eq 
mn 

) 

= 

8 ∑ 

α=0 

(
f α

f eq α

)
e m 

αx e 
n 
αy , (35a) 

nd the corresponding central moments as 

κmn 

κeq 
mn 

)
= 

8 ∑ 

α=0 

(
f α

f eq α

)
(e αx − u x ) 

m (e αy − u y ) 
n . (35b) 

Thus, κ ′ 
mn represents the raw moment of order (m + n ) , while 

he corresponding central moment is κmn . For convenience, we can 

roup all the possible raw moments and the central moments for 

he D2Q9 lattice via the following two vectors as 

′ = (κ
′ 
00 , κ

′ 
10 , κ

′ 
01 , κ

′ 
20 , κ

′ 
02 , κ

′ 
11 , κ

′ 
21 , κ

′ 
12 , κ

′ 
22 ) , (36a) 

= ( κ00 , κ10 , κ01 , κ20 , κ02 , κ11 , κ21 , κ12 , κ22 ) . (36b) 

It should be noted that one can readily map from the dis- 

ribution functions to the raw moments via κ
′ = P f , which can 

hen be transformed into the central moments through κ = F κ
′ 
, 

here the F follows readily from binomial expansions of (e αx −
19
 x ) 
m (e αy − u y ) 

n to relate to e m 

αx e 
n 
αy etc. Similarly, the inverse map-

ings from central moments to raw moments, from which the 

istribution functions can be recovered via the matrices F −1 and 

 
−1 , respectively. All these mapping relations are explicitly listed 

n Appendix B . 

As mentioned above, a key aspect of our approach is to per- 

orm the collision step such that different central moments shown 

bove relax to their corresponding central moment equilibria. The 

iscrete central moment equilibria κeq 
mn defined above can be ob- 

ained by matching them to the corresponding central moments of 

he continuous Maxwell distribution function after replacing the 

ensity ρ with the order parameter φ; furthermore, the interface 

harpening flux terms in the conservative ACE ( Eq. (24) ) need to 

e accounted for by augmenting the first order central moment 

quilibrium components with M φθn x and M φθn y [50] . Thus, we 

ave 

eq 
00 = φ, κeq 

10 = M φθn x , κeq 
01 = M φθn y , 

eq 
20 = c 2 sφφ, κeq 

02 = c 2 sφφ, κeq 
11 = 0 , 

eq 
21 = 0 , κeq 

12 = 0 , κeq 
22 = c 4 sφφ, (37) 

here c 2 
sφ

= 1 / 3 . 

Based on the above considerations, inspired from the al- 

orithmic implementation presented in Geier et al. [67] (see 

lso [65,66] ), we can now summarize the central moment LB algo- 

ithm for solving the conservative ACE for a time step �t starting 

rom f α = f α(x , t) as follows: 

• Compute pre-collision raw moments from distribution func- 

tions via κ
′ = P f (see Eq. (51) in Appendix B for P ) 

• Compute pre-collision central moments from raw moments via 

κ = F κ
′ 
(see Eq. (52) in Appendix B for F ) 

• Perform collision step via relaxation of central moments κmn to 

their equilibria κeq 
mn : 

˜ κmn = κmn + ω 
φ
mn 

(κeq 
mn 

− κmn ) , (38) 

where (mn ) = (00) , (10) , (01) , (20) , (02) , (11) , (21) , (12) , and

(22), and ω 

φ
mn is the relaxation parameter for moment of or- 

der ( m + n ). Here, the implicit summation convention of re- 

peated indices is not assumed. The relaxation parameters of the 

first order moments ω 

φ
10 

= ω 

φ
01 

= ω 
φ are related to the mobility 

coefficient M φ in Eq. (24) via M φ = c 2 
sφ

(
1 

ω φ
− 1 

2 

)
�t , and the 

rest of the relaxation parameters are typically set to unity, i.e., 

ω 

φ
mn = 1 . 0 , where (m + n ) ≥ 2 . The results of Eq. (38) are then

grouped in ˜ κ. 
• Compute post-collision raw moments from post-collision cen- 

tral moments via ˜ κ
′ = F −1 ˜ κ (see Eq. (53) in Appendix B for 

F −1 ) 
• Compute post-collision distribution functions from post- 

collision raw moments via ˜ f = P 
−1 ˜ κ

′ 
(see Eq. (54) in 

Appendix B for P 
−1 ) 

• Perform streaming step via f α(x , t + �t) = 
˜ f α(x − e α�t) , where

α = 0 , 1 , 2 , . . . , 8 . 
• Update the order parameter φ of the phase-field model for in- 

terface capturing through 

φ = 

8 ∑ 

α=0 

f α. (39) 

2. LB scheme for two-fluid motion with capillary and Marangoni 

orces 

Next, we will present a central moment LB scheme to solve 

he motion of binary fluids with interfacial forces represented in 
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qs. (25) –(28) by evolving another distribution function g α , where 

= 0 , 1 , 2 , . . . , 8 . Our approach is based on a discretization of the

odified continuous Boltzmann equation and obtaining the dis- 

rete central moment equilibria and central moments of the source 

erms for the body forces via a matching principle with their con- 

inuous counterparts as detailed in Ref. [50] . However, in contrast 

o Ref. [50] , where an orthogonal moment basis is employed re- 

ulting in the so-called cascaded LB approach, in the following, 

e consider the simpler, non-orthogonal moment basis vectors as 

iven earlier in Eq. (34) . 

As in the previous section, we first define the following raw 

oments and the central moments of the distribution function g α , 

ts equilibrium g 
eq 
α , as well as the source term S α , where the latter

ccounts for the surface tension and body forces, as well as those 

hat arising from the application of a transformation to simulate 

ows at high density ratios in the incompressible limit (see He 

t al. [46] , Hajabdollahi et al. [50] ): 
 

 

η′ 
mn 

η′ eq 
mn 

σ ′ 
mn 

⎞ 

⎠ = 

8 ∑ 

α=0 

⎛ 

⎝ 

g α

g eq α

S α

⎞ 

⎠ e m 

αx e 
n 
αy , (40a) 

 

 

ηmn 

η eq 
mn 

σmn 

⎞ 

⎠ = 

8 ∑ 

α=0 

⎛ 

⎝ 

g α

g eq α

S α

⎞ 

⎠ (e αx − u x ) 
m (e αy − u y ) 

n . (40b) 

For conveniences, we can group the elements of the distri- 

ution function, its equilibrium, and the source term for the 

2Q9 lattice as the following vectors: g = (g 0 , g 1 , g 2 , . . . , g 8 ) 
† , g eq =

g 
eq 
0 

, g 
eq 
1 

, g 
eq 
2 

, . . . , g 
eq 
8 

) † , and S = (S 0 , S 1 , S 2 , . . . , S 8 ) 
† . Moreover, we

roup all the possible raw moments and the central moments de- 

ned above for the D2Q9 lattice via the following: 

′ = (η
′ 
00 , η

′ 
10 , η

′ 
01 , η

′ 
20 , η

′ 
02 , η

′ 
11 , η

′ 
21 , η

′ 
12 , η

′ 
22 ) , (41a) 

= ( η00 , η10 , η01 , η20 , η02 , η11 , η21 , η12 , η22 ) , (41b) 

nd similarly for raw moments and the central moments the equi- 

ibrium and the source term. 

The collision step will be performed such that different cen- 

ral moments shown above relax to their corresponding central 

oment equilibria, which are augmented by changes in the cen- 

ral moments due to the net forces; the latter is given by sum 

he surface tension force F s = (F sx , F sy ) , which can have contribu-

ions from both the capillary and Marangoni forces as represented 

n Eq. (28) , and any external force F ext = (F ext,x , F ext,y ) , i.e., F t =
 s + F ext or (F tx , F ty ) = (F sx + F ext,x , F sy + F ext,y ) . Moreover, the use of

n incompressible transformation as mentioned above leads to a 

ressure-based formulation, involving the incorporation of a net 

ressure force F p arising from ϕ(ρ) = p − ρc 2 s , i.e., F p = −∇ϕ, or

F px , F py ) = (−∂ x ϕ , −∂ y ϕ ) (see Hajabdollahi et al. [50] for details).

hen, the discrete central moment equilibria ηmn defined above 

an be obtained by matching them to the corresponding continu- 

us central moments of the equilibrium that arise from the incom- 

ressible transformation, and similarly for the central moments of 

he source term σmn , which then results in the following expres- 

ions for the D2Q9 lattice [50] : 

eq 
00 

= p, ηeq 
10 

= −ϕ(ρ) u x , ηeq 
01 

= −ϕ(ρ) u y , 
eq 
20 

= pc 2 s + ϕ(ρ) u 2 x , ηeq 
02 

= pc 2 s + ϕ (ρ) u 2 y , ηeq 
11 

= ϕ (ρ) u x u y , 

ηeq 
21 

= −ϕ(ρ)(u 2 x + c 2 s ) u y , ηeq 
12 

= −ϕ(ρ)(u 2 y + c 2 s ) u x , 

eq 
22 

= c 6 s ρ + ϕ(ρ)(u 2 x + c 2 s )(u 
2 
y + c 2 s ) . (42) 

nd 

00 = �p 
, σ10 = c 2 s F tx − u x �

p 
, 
00 00 

20 
01 = c 2 s F ty − u y �
p 
00 

, 

20 = 2 c 2 s F px u x + (u 2 x + c 2 s )�
p 
00 

, 

02 = 2 c 2 s F py u y + (u 2 y + c 2 s )�
p 
00 

, 

σ11 = c 2 s (F px u y + F py u x ) + u x u y �
p 
00 

, σ21 = 0 , 

σ12 = 0 , σ22 = 0 , (43) 

here �p 
00 

= (F px u x + F py u y ) . 

Using the above developments, we can now summarize the 

entral moment LB algorithm for computing the two-fluid mo- 

ion with interfacial forces for a time step �t starting from g α = 

 α(x , t) as follows: 

• Compute pre-collision raw moments from distribution func- 

tions via η
′ = P g (see Eq. (51) in Appendix B for P ) 

• Compute pre-collision central moments from raw moments via 

η = F η
′ 
(see Eq. (52) in Appendix B for F ) 

• Perform collision step via relaxation of central moments ηmn to 

their equilibria ηeq 
mn and augmented with the source terms σmn : 

In order to allow for an independent specification of the shear 

viscosity ν from the bulk viscosity ζ , the trace of the second or- 
der moments η20 + η02 should be evolved independently from 

the other second order moments. To accomplish this, prior to 

collision, we combine the diagonal parts of the second order 

moments as follows (see e.g., Yahia and Premnath [65] , Yahia 

et al. [66] , Geier et al. [67] ): 

η2 s = η20 + η02 , ηeg 
2 s 

= ηeg 
20 s 

+ ηeg 
02 

, σ2 s = σ20 s + σ02 , 

η2 d = η20 − η02 , ηeg 

2 d 
= ηeg 

20 s 
− ηeg 

02 
, σ2 d = σ20 s − σ02 , 

and thus η2 s and η2 d will be evolved independently under colli- 

sion. Then, the post-collision central moments under relaxation 

and augmentation due to the forces can be computed via 

˜ ηmn = ηmn + ω mn 

(
ηeq 
mn − ηmn 

)
+ ( 1 − ω mn / 2 ) σmn �t, (44) 

where ω mn is the relaxation time correspond- 

ing to the central moment ηmn , and (mn ) = 

(00) , (10) , (01) , (2 s ) , (2 d) , (11) , (21) , (12) , and , (22) . Here,

the relaxation parameter ω 2 s is related to the bulk viscosity 

via ζ = c 2 s ( 1 /ω 2 s − 1 / 2 ) �t , while the relaxation parame- 

ters ω 2 d and ω 11 are related to the shear viscosity via 

ν = c 2 s 
(
1 /ω i j − 1 / 2 

)
�t where (i j) = (2 d) , (11) . Typically, 

c 2 s = 1 / 3 . In view of Eq. (29) it should be noted that if

the bulk fluid properties are different, the relaxation pa- 

rameters ω 2 d and ω 11 will then vary locally across the 

interface. The rest of the relaxation parameters of central 

moments are generally set to unity, i.e., ω i j = 1 . 0 , where

(i j) = (00) , (10) , (01) , (2 s ) , (21) , (12) , (22) . Also, the combined

forms of the post-collision central moments ˜ η2 s and ˜ η2 d are 

then segregated in their individual components ˜ η20 and ˜ η02 via 

˜ η20 = 

1 

2 
( ̃  η2 s + ˜ η2 d ) , ˜ η02 = 

1 

2 
( ̃  η2 s − ˜ η2 d ) . 

Finally, the results of Eq. (44) by accounting for the above seg- 

regation are then grouped in ˜ η. 
• Compute post-collision raw moments from post-collision cen- 

tral moments via ˜ η
′ = F −1 ˜ η (see Eq. (53) in Appendix B for 

F −1 ) 
• Compute post-collision distribution functions from post- 

collision raw moments via ˜ g = P 
−1 ˜ η

′ 
(see Eq. (54) in 

Appendix B for P 
−1 ) 

• Perform streaming step via g α(x , t + �t) = ˜ g α(x − e α�t) ,

where α = 0 , 1 , 2 , . . . , 8 . 
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• Update the pressure field p and the components of the fluid 

velocity u = (u x , u y ) through 

p = 

∑ 

α

g α + 

1 

2 
F p · u �t, ρc 2 s u = 

∑ 

α

g αe α + 

1 

2 
c 2 s F t �t.

(45) 

3. LB scheme for energy equation 

Finally, we will now discuss a central moment LB approach for 

he solution of the energy transport equation ( Eq. (3c) ) by evolv- 

ng a third distribution function h α , where α = 0 , 1 , 2 , . . . , 8 , on the

2Q9 lattice. Since Eq. (3c) is an advection-diffusion equation, its 

onstruction procedure is quite similar to that of the LB scheme 

or the conservative ACE presented earlier, albeit without the pres- 

nce of a term such as the interface sharpening flux term which 

ppears in the latter case. As before, we first define the following 

aw moments and central moments, respectively, of the distribu- 

ion function h α , as well as its equilibrium h 
eq 
α : 

 

χ ′ 
mn 

χ ′ eq 
mn 

) 

= 

8 ∑ 

α=0 

(
h α

h eq α

)
e m 

αx e 
n 
αy , (46a) 

χmn 

χ eq 
mn 

)
= 

8 ∑ 

α=0 

(
h α

h eq α

)
(e αx − u x ) 

m (e αy − u y ) 
n . (46b) 

For convenience, we list the components of the distri- 

ution function and its equilibrium, respectively, using h = 

h 0 , h 1 , h 2 , . . . , h 8 ) 
† and h 

eq = (h eq 
0 

, h 
eq 
1 

, h 
eq 
2 

, . . . , h 
eq 
8 

) † , and analo-

ously for the raw moments and central moments via 
′ = (χ

′ 
00 , χ

′ 
10 , χ

′ 
01 , χ

′ 
20 , χ

′ 
02 , χ

′ 
11 , χ

′ 
21 , χ

′ 
12 , χ

′ 
22 ) , (47a) 

= ( χ00 , χ10 , χ01 , χ20 , χ02 , χ11 , χ21 , χ12 , χ22 ) . (47b) 

To construct a central moment-based collision model for solv- 

ng the energy equation, similar to Section A.1 , we obtain the dis- 

rete equilibrium central moments from the corresponding con- 

inuous counterpart of the Maxwellian by replacing the density ρ
ith the temperature T , and the results read as 

eq 
00 

= T , χ eq 
10 

= 0 , χ eq 
01 

= 0 , 

eq 
20 

= c 2 sT T , χ eq 
02 

= c 2 sT T , χ eq 
11 

= 0 , 

21 = 0 , χ eq 
12 

= 0 , χ eq 
22 

= c 4 sT T , (48) 

here, typically, c 2 sT = 1 / 3 . Then, the computational procedure for 

olving the energy equation for a time step �t starting from h α = 

 α(x , t) can be summarized as follows: 

• Compute pre-collision raw moments from distribution func- 

tions via χ
′ = P h (see Eq. (51) in Appendix B for P ) 

• Compute pre-collision central moments from raw moments via 

χ = F χ
′ 
(see Eq. (52) in Appendix B for F ) 

• Perform collision step via relaxation of central moments χmn to 

their equilibria χ eq 
mn : 

˜ χmn = χmn + ω 
T 
mn (χ

eq 
mn − χmn ) , (49) 

where (mn ) = (00) , (10) , (01) , (20) , (02) , (11) , (21) , (12) , and

(22), and ω 
T 
mn is the relaxation parameter for moment of or- 

der ( m + n ). The relaxation parameters of the first order mo-

ments ω 
T 
10 = ω 

T 
01 = ω 

T are related to the thermal diffusivity 

α = k/ (ρc p ) via α = c 2 
sT 

(
1 /ω 

T − 1 / 2 
)
�t , and the rest of the re-

laxation parameters of higher central moments are typically set 

to unity. The results of Eq. (49) are then grouped in ˜ χ. 
21 
• Compute post-collision raw moments from post-collision cen- 

tral moments via ˜ χ
′ = F −1 ˜ χ (see Eq. (53) in Appendix B for 

F −1 ) 
• Compute post-collision distribution functions from post- 

collision raw moments via ˜ h = P 
−1 ˜ χ

′ 
(see Eq. (54) in 

Appendix B for P 
−1 ) 

• Perform streaming step via h α(x , t + �t) = ̃
 h α(x − e α�t) ,

where α = 0 , 1 , 2 , . . . , 8 . 
• Update the temperature field T is obtained from 

T = 

8 ∑ 

α=0 

h α. (50) 

While the central moment LB schemes outlined here are appli- 

able for a general class surface-tension driven flows with thermo- 

apillary effects, in this work, they will be mainly applied, in con- 

unction with the analytical solution derived earlier, to study the 

ffect of various characteristic parameters on the flow patterns and 

he intensity of thermocapillary convention in superimposed layers 

f two self-rewetting fluids (SRFs) bounded within a microchannel 

onuniformly heated on one side. 

ppendix B. Mapping relations for the central moment LB 

cheme on a D2Q9 lattice 

Here, we summarize the various mapping relations that are 

eeded prior to and following the collision step, where different 

entral moments are relaxed to their equilibria, in the central mo- 

ent LB scheme on the D2Q9 lattice. 
The transformation matrix P mapping a vector of distribution 

unctions f to a vector of raw moments κ
′ 
is given by 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 1 1 1 1 

0 1 0 −1 0 1 −1 −1 1 

0 0 1 0 −1 1 1 −1 −1 

0 1 0 1 0 1 1 1 1 

0 0 1 0 1 1 1 1 1 

0 0 0 0 0 1 −1 1 −1 

0 0 0 0 0 1 1 −1 −1 

0 0 0 0 0 1 −1 −1 1 

0 0 0 0 0 1 1 1 1 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(51) 

Next, the transformation matrix F mapping a vector of raw mo- 

ents κ
′ 
to a vector of central moments κ reads as 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 0 0 0 

−u x 1 0 0 0 0 0 0 0 

−u y 0 1 0 0 0 0 0 0 

u 2 x −2 u x 0 1 0 0 0 0 0 

u 2 y 0 −2 u y 0 1 0 0 0 0 

u x u y −u y −u x 0 0 1 0 0 0 

−u 2 x u y 2 u x u y u 2 x −u y 0 −2 u x 1 0 0 

−u x u 
2 
y u 2 y 2 u x u y 0 −u x −2 u y 0 1 0 

u 2 x u 
2 
y −u x u 

2 
y −u 2 x u y u 2 y u 2 x 4 u x u y −2 u y −2 u x 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(52) 
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Then, the transformation matrix F −1 mapping a vector of (post- 
ollision) central moments ˜ κ to a vector of (post-collision) raw mo- 

ents ˜ κ
′ 
can be written as 

 
−1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 0 0 0 

u x 1 0 0 0 0 0 0 0 

u y 0 1 0 0 0 0 0 0 

u 2 x 2 u x 0 1 0 0 0 0 0 

u 2 y 0 2 u y 0 1 0 0 0 0 

u x u y u y u x 0 0 1 0 0 0 

u 2 x u y 2 u x u y u 2 x u y 0 2 u x 1 0 0 

u x u 
2 
y u 2 y 2 u x u y 0 u x 2 u y 0 1 0 

u 2 x u 
2 
y u x u 

2 
y u 2 x u y u 2 y u 2 x 4 u x u y 2 u y 2 u x 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(53) 

It may be noted that if F = F (u x , u y ) , then F −1 = F (−u x , −u y )

see Yahia and Premnath [65] ). 

Finally, we express the transformation matrix P 
−1 mapping a 

ector of (post-collision) raw moments ˜ κ
′ 
to a vector of (post- 

ollision) distribution functions ˜ f as 

 
−1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 −1 −1 0 0 0 1 

0 1 
2 

0 1 
2 

0 0 0 − 1 
2 

− 1 
2 

0 0 1 
2 

0 1 
2 

0 − 1 
2 

0 − 1 
2 

0 − 1 
2 

0 1 
2 

0 0 0 1 
2 

− 1 
2 

0 0 − 1 
2 

0 1 
2 

0 1 
2 

0 − 1 
2 

0 0 0 0 0 1 
4 

1 
4 

1 
4 

1 
4 

0 0 0 0 0 − 1 
4 

1 
4 

− 1 
4 

1 
4 

0 0 0 0 0 1 
4 

− 1 
4 

− 1 
4 

1 
4 

0 0 0 0 0 − 1 
4 

− 1 
4 

1 
4 

1 
4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(54) 

ppendix C. Analytical solution of the energy equation: 

emperature field 

The solution to the energy equation Eq. (10) is invariant with 

he nature of the fluid, i.e., whether it is for a NF or a SRF, and

ence the results reported in Pendse and Esmaeeli [10] for the 

emperature field is valid here as well. However, for completeness, 

e provide all the necessary details involved in the solution pro- 

edure in what follows. The energy equation is homogeneous and 

as periodic boundary conditions in the x -direction. Furthermore, 

he only non-homogeneities are in the upper and lower boundary 

onditions. To solve this problem, the non-homogeneous boundary 

onditions can be split across two solutions as we will see next. 

he energy equation is given as in Eq. (10) 

∂ 2 T 

∂x 2 
+ 

∂ 2 T 

∂y 2 
= 0 , (55) 

hich is subject to the following boundary conditions 

 
b (x, −b) = T h + �T cos (ωx ) , 

nd 

 
a (x, a ) = T c . 

ecause of the homogeneity and linearity of the differential equa- 

ion and that the temperature is periodic in the horizontal direc- 

ion, the method of separation of variables is used to solve the 
22 
emperature equation, 

 
i (x, y ) = P i (x, y ) + Q 

i (y ) , i = a, b, (56)

here P i (x, y ) and Q 
i (y ) are the perturbation and linear tempera-

ure fields, respectively. Substituting Eq. (56) into the energy equa- 

ion ( Eq. (55) ) gives the following separated equations that we 

eed to solve 

∂ 2 P i 

∂x 2 
+ 

∂ 2 P i 

∂y 2 
= 0 , and 

∂ 2 Q 
i 

∂y 2 
= 0 , i = a, b, 

hich are subject to the following boundary conditions. 

i) The temperature is specified at the lower wall: 

P b (x, −b) = �T cos (ωx ) , and Q 
b (x, −b) = T h . 

ii) The temperature is specified at the upper wall: 

P a (x, a ) = 0 , and Q 
a (x, a ) = T c . 

ii) The temperature is continuous at the interface: 

P a (x, 0) = P b (x, 0) , and Q 
a (x, 0) = Q 

b (x, 0) . 

v) The heat flux is continuous at the interface: 

−k b 
∂P b 

∂y 

∣∣∣∣
y =0 

= −k a 
∂P a 

∂y 

∣∣∣∣
y =0 

, ] 

and − k b 
∂Q 

b 

∂y 

∣∣∣∣
y =0 

= −k a 
∂Q 

a 

∂y 

∣∣∣∣
y =0 

. 

The solution for the linear temperature field is Q 
i (y ) = A i 

1 
y +

 
i 
2 
. Applying the above boundary conditions to get the constants 

f integration which yields in the solution for the lower wall 

 
b (y ) = 

k a (T c − T h ) y + T c k a b + T h k b a 

(ak b + bk a ) 
. (57) 

imilarly, the solution for the upper wall is: 

 
a (y ) = 

k b (T c − T h ) y + T c k a b + T h k b a 

(ak b + bk a ) 
. (58) 

Then by the standard separation of variables method, and by 

ooking at the lower boundary condition, the solution for the per- 

urbation in the temperature field P i (x, y ) for the lower fluid is 

 
b (x, y ) = [ A b 1 cosh (ωy ) + A b 2 sinh (ω y )] cos (ω x ) . (59)

imilarly, for the solution for the upper fluid is, 

 
a (x, y ) = [ A a 1 cosh (ωy ) + A a 2 sinh (ω y )] cos (ω x ) . (60)

Now, by applying the above four boundary condition, we get 

he following constants 

 
a 
1 = A b 1 = �T sinh ( ̃  a ) f ( ̃  a , ̃  b , ̃  k ) , A a 2 = −�T cosh ( ̃  a ) f ( ̃  a , ̃  b , ̃  k ) , 

 
b 
2 = −�T ̃  k cosh ( ̃  a ) f ( ̃  a , ̃  b , ̃  k ) , 

here 

f ( ̃  a , ̃  b , ̃  k ) = 

[
˜ k sinh ( ̃ b ) cosh ( ̃  a ) + sinh ( ̃  a ) cosh ( ̃ b ) 

]−1 
, (61) 

here ˜ a = aω, and ˜ b = bω, and ˜ k = k a /k b . Substitution of the 

bove constants ( A a 
1 
, A a 

2 
, A b 

1 
, and A b 

2 
) in Eqs. (59) and (60) results

n the final solution of the perturbation temperature P i (x, y ) in the

ower fluid as 

 
b (x, y ) = �T f ( ̃  a , ̃  b , ̃  k )[ sinh ( ̃  a ) cosh (ωy ) − ˜ k sinh (ωy ) cosh ( ̃  a )] 

cos (ωx ) . (62) 

imilarly, for the upper fluid, 

 
a (x, y ) = �T f ( ̃  a , ̃  b , ̃  k ) sinh ( ̃  a − ω y ) cos (ω x ) . (63)



B. Elbousefi, W. Schupbach, K.N. Premnath et al. International Journal of Heat and Mass Transfer 208 (2023) 124049 

A

t

t

s

τ

w

c

t

w

a

E

T

t

e

U

H

w  

r

f

T

a

T

w

C

H  

m

fi

S

U

R

 

[  

[

[  

[

[  

[  

[  

[

[  

[

[

[  

[

[

[

[

[

[

[

[

ppendix D. Characteristic thermocapillary velocity scale on 

he interface in self-rewetting fluids 

The characteristic velocity scale can be derived by considering 

he balance of shear stress with the Marangoni stress due to the 

urface tension gradient on the interface. The shear stress scales as 

b 
μ ∼ μb U s 

b 
, 

here b is the thickness of the lower fluid and U s is the unknown 

haracteristic velocity scale to be determined in what follows. Fur- 

hermore, the surface tension gradient scales as 

dσ

dx 
∼ dσ

dT 

�T 

l 
, 

here l is the length of the microchannel, and for SRFs with 

 quadratic dependence of surface tension on temperature (see 

q. (4) ) 

dσ

dT 
= σT + 2 σT T 

(
T − T re f 

)
. 

hus, the velocity scale can be deduced by from the first two equa- 

ions above by setting τ b 
μ ∼ d σ/d x and then substituting the last 

quation for d σ/d T as 

 s ∼ �T 

μb 

(
b 

l 

)
dσ

dT 
= 

�T 

μb 

(
b 

l 

)[
σT + 2 σT T 

(
T − T re f 

)]
(64) 

ere, we need a scale for the temperature on the interface, which 

e take it to be temperature field at x = 0 and y = 0 , where it

eaches a maximum. Now, using the temperature along the inter- 

ace given as (see Appendix C ) 

 (x, y = 0) = C 1 + C 2 cos ( ωx ) , 

nd evaluating it at x = 0 , we get 

 (x = 0 , y = 0) = C 1 + C 2 , (65) 

here 

 1 = 

T h 
(
a 
b 

)
+ T c ̃  k (

a 
b 

)
+ ̃

 k 
, C 2 = 

�T sinh ( ̃  a ) 

˜ k cosh ( ̃  a ) sinh ( ̃ b ) + cosh ( ̃ b ) sinh ( ̃  a ) 
, 

(66) 

ere, ˜ k = k a /k b , ˜ a = aω , and ˜ b = bω . Substituting the above esti-

ate for the temperature scale on the interface in Eq. (64) , we 

nally obtain the characteristic thermocapillary velocity scale in 

RFs as 

 s ∼ �T 

μb 

(
b 

l 

)[
σT + 2 σT T 

(
C 1 + C 2 − T re f 

)]
. (67) 
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