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ABSTRACT

Self-rewetting fluids (SRFs), such as aqueous solutions of long-chain alcohols, exhibit anomalous quadratic
dependence of surface tension on temperature having a minimum and with a positive gradient. When
compared to the normal fluids (NFs) that have negative gradient of surface tension on temperature, the
SRFs can be associated with significantly modified interfacial dynamics, which have recently been ex-
ploited to enhance flow and thermal transport in various applications. In this work, first, we develop a
new analytical solution of thermocapillary convection in superimposed two SRF layers confined within a
microchannel that is sinusoidally heated on one side and maintained at a uniform temperature on the
other side. Then, a robust central moment lattice Boltzmann method using a phase-field model involving
the Allen-Cahn equation for interface tracking, two-fluid motion, and the energy transport for numerical
simulations of SRFs is constructed. The analytical and computational techniques are generally shown to
be in good quantitative agreement with one another. Moreover, the effect of the various characteristic
parameters on the magnitude and the distribution thermocapillary-driven motion is studied. The ther-
mocapillary flow patterns in SRFs are shown to be strikingly different when compared to the NFs: For
otherwise the same conditions, the SRFs result in eight periodic counterrotating thermocapillary convec-
tion rolls, while the NFs exhibit only four such vortices. Moreover, the direction of the circulating fluid
motion in such vortical structures for the SRFs is found to be towards the hotter zones on the interfaces,
which is opposite to that in NFs. These features are found to be sustained even as the interfaces deforms
in simulations. By tuning the sensitivity coefficients of the surface tension on temperature, it is shown
that not only the magnitude of the thermocapillary velocity can be significantly manipulated, but also
the overall flow patterns as well. It is also demonstrated that the thermocapillary convection can be en-
hanced if the SRF layer adjacent to the nonuniformly heated wall is made relatively thinner or has higher
thermal conductivity ratio or has smaller viscosity when compared to that of the other fluid layer. The
peak Marangoni velocity is found to be increased by a factor of 2 by doubling the dimensionless quadratic
surface tension sensitivity coefficient and by about an order of magnitude as the fluid thickness ratio is
changed from 1/3 to 3.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

the seminal study by Young et al. [4], who demonstrated the ability
of a bubble to migrate towards hot regions in the absence of grav-

Surface tension forces arising at the interface between fluids
play prominent role in many multiphase and thermal transport
processes [1]. Their variations can be caused by changes in the lo-
cal interfacial temperature or with the addition of surface active
materials (i.e., surfactants). The surface tension gradients result in
the so-called Marangoni stresses [2], which, via the viscous effects
of the fluids, induce their convective motions in the vicinity of the
interfaces [3]. If they are set up due to local temperature varia-
tions, they are referred to as the thermocapillary convection. Since
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ity due to Marangoni stresses, thermocapillary effects have been
exploited in controlling the motion of dispersed phases (bubbles
or drops) in fluids, especially in microgravity applications [5] (see
e.g., Welch [6], Ma and Bothe [7] for related numerical investiga-
tions). On the other hand, in micro-electro-mechanical-systems, as
the scales of the devices are reduced, the interfacial forces domi-
nate, and the thermocapillary convection can be utilized to manip-
ulate the motion of fluid streams and thermal transport phenom-
ena in microchannels (see e.g., Darhuber and Troian [8], Karbalaei
et al. [9], Pendse and Esmaeeli [10], Gambaryan-Roisman [11]).
Common fluids have the property of surface tension that de-
creases somewhat linearly with increasing temperatures. On the
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do
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Fig. 1. (a) Surface tension variation with respect to temperature for a normal fluid (NF) and for a self-rewetting fluid (SRF). The parabolic variation of the surface tension for
the example SRF with temperature is based on a curve fit of the data given in Savino et al. [18]. (b) Differences in the thermocapillary motions in the vicinity of interfaces

for NFs and SRFs.

other hand, certain fluids, such as aqueous solutions of long-chain
(i.e., “fatty”) alcohols, some liquid metallic alloys, and nematic lig-
uid crystals exhibit anomalous nonlinear parabolic dependence of
surface tension on temperature with a range involving its posi-
tive gradient. In particular, Vochten and Petre [12] performed mea-
surements in non-azeotropic, high-carbon alcohol solutions (such
as n-butanol), and demonstrated that beyond a certain threshold
temperature, their surface tension will increase with further in-
crease in temperature; the surface tension becomes a minimum
at this threshold temperature, whose value increases for alcohols
with longer carbon chains; and for a particular alcohol, the mini-
mum surface tension decreases monotonically with its concentra-
tion. These findings were corroborated by follow on experimental
studies reported in Petre and Azouni [13], Limbourg-Fontaine et al.
[14], Villers and Platten [15], and such fluids have been named
as “self-rewetting” fluids (SRFs) by Abe et al. [16] due to a sig-
nificantly altered thermocapillary convection promoting a desired
wetting effect when compared to the common or normal fluids
(NFs). In particular, the Marangoni stresses induce the motion of
fluids in the vicinity of the interfaces towards higher temperatures
in SRFs, which is opposite to that observed in NFs (see Fig. 1). As
such, the self-rewetting fluids have the ability to generate vigorous
inflow of liquids near high temperature regions, e.g., towards nu-
cleating sites during boiling thereby preventing the onset of dry
patches at such hot spots. These and other peculiar features of
SRFs have provided strong impetus for their investigations as novel
classes of fluids to enhance transport in various thermal manage-
ment applications during the last two decades. They have been
proposed as working fluids in various applications in both terres-
trial and microgravity environments [16,17]. The use of SRFs has
been shown to improve heat transfer efficiency in heat pipes [18-
23], flow boiling [24] and evaporation [25] in microchannels, pool
boiling processes [26-29], and two-phase heat transfer devices
using self-rewetting gold nanofluids [30]. Moreover, the peculiar
characteristics of the migration of bubbles in SRFs have been ex-
perimentally studied in Shanahan and Sefiane [31], Mamalis et al.
[32].

As noted in a recent review involving the use of SRFs [33], only
limited analytical and numerical studies involving the SRFs, which
can provide fundamental insights into the details of the transport
phenomena, have been performed. Analytical investigations into
the behavior of thin films of SRFs were presented in Oron and
Rosenau [34], Batson et al. [35], Yu [36] and a similarity solu-
tion of the motion of SRFs in an unbounded domain was discussed
in Slavtchev and Miladinova [37]. Theoretical analysis of the migra-
tion of a bubble in a SRF was presented in Tripathi et al. [38] and

that of an elongated slug in Duffy et al. [39]. More recently, nu-
merical studies on the migration of a bubble in SRFs were per-
formed in Balla et al. [40], Majidi et al. [41], Mitchell et al. [42].
Among the various computational methods, the lattice Boltzmann
(LB) method, a technique inspired from kinetic theory [43-45], has
shown promising capabilities for simulating multiphase flows (see
e.g., He et al. [46], He and Doolen [47], Lee and Lin [48], Premnath
and Abraham [49], Hajabdollahi et al. [50]). The LB methods have
also been applied to simulate thermocapillary flow problems (see
e.g., Majidi et al. [41], Mitchell et al. [42], Liu et al. [51]). More re-
cently, using robust collision models [52], the LB method has been
extended to simulate multiphase flows at high density ratios and
including Marangoni stresses [50], which will serve as a basis for
further extension for its application to an interesting configuration
involving thermocapillary flows in SRFs as discussed below.

One of the important applications of exploiting thermocapillar-
ity is in manipulating the motion of continuous streams of fluids
confined within microchannels. In this regard, in the case of two
superimposed normal fluids (NFs), Pendse and Esmaeeli [10] pre-
sented a theoretical analysis for thermocapillary convection driven
by periodic heating from the bounding walls, representing, for ex-
ample, micropatterned walls.

In this work, we generalize the above mentioned configura-
tion reported in Ref. [10] and develop a new analytical solution
for thermocapillary convection in two superimposed layers of self-
rewetting fluids (SRFs) confined within a microchannel and sub-
jected to periodic heating on the lateral walls. Such an investiga-
tion yields a new pathway to enhance mixing and transport by
tuning thermocapillary effects in SRFs when compared to NFs in
differentially heated microchannels. We derive analytical solutions
for the thermocapillary convection currents in SRFs under the as-
sumptions of small capillary and Marangoni numbers and in the
creeping flow limit, which are representative of situations in mi-
crochannels. The solution will be parameterized by the thickness
ratio of the fluids and the ratios of the thermal conductivities as
well as that of viscosities, and the coefficients of the functional de-
pendence of surface tension on temperature. As a second objective,
we will also present a numerical simulation approach based on a
robust central moment LB scheme using a phase field model based
on the conservative Allen-Cahn equation by extending and improv-
ing our recent work [50]. It involves computing the evolution of
three distribution functions, one each for the flow field, tempera-
ture field and the capturing of the interfaces via a order parameter,
and with an attendant surface tension equation of state for SRFs.
As a third objective, we will compare the predictions based on our
analytical solution against the results from our LB computational
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Fig. 2. Schematic of the geometric setup for two superimposed self-rewetting fluid
(SRF) layers within a horizontal microchannel with a periodic heating at the bottom
wall.

approach, thereby demonstrating qualitative as well as quantita-
tive consistency between the two approaches, and thus establish-
ing the validity of our analysis. Finally, we aim to present a study
of the effect of the various characteristic parameters on the vortical
convection patterns in SRFs, in terms of both the number of con-
vection cells and their sense of direction of motion and compar-
ing and contrasting them with that of NFs, and on the magnitude
of the thermal convection velocities. These contributions not only
serve in elucidating the physics in a fundamental configuration,
but the analytical solutions developed herein could also serve as
a benchmark for any new computational techniques for simulating
thermocapillary flows in SRFs in future. Moreover, the numerical
algorithm based on the LB method presented in this work, while
applied here in what follows for SRF layers in a microchannel, can
also be readily extended for other situations including those in-
volving tracking the motion of any dispersed phase in SRFs.

This paper is organized as follows. In the next sec-
tion (Section 2), we will discuss the problem setup of the thermo-
capillary flow in superimposed layers of SRFs in a microchannel
and the attendant governing equations for incompressible two-
fluid motion, energy transport and the interfacial equation of
state. The new analytical solution is derived in Section 3. The
computational model equations for the LB schemes for multi-
phase flows using a phase field model are given in Section 4.
The discretized central moment LB algorithms for simulating
multiphase flows of SRFs are summarized in various subsections of
the Appendix A with additional supporting details in Appendix B.
Section 5 presents a numerical validation of the computational
approach. The results and discussion of the effect of various
characteristic parameters are presented in Section 6; moreover,
the utility of the computational method in simulating such flows
with interfacial deformations at higher capillary numbers is also
demonstrated. The main findings and contributions of this work
are summarized in Section 7.

2. Problem setup, governing equations, and interface
equation of state

2.1. Problem setup

A schematic of the geometric configuration of two superim-
posed SRF layers confined within a microchannel is shown in
Fig. 2. The channel is of horizontal length [ and whose walls are
separated by a lateral distance (a+ b). A sinusoidal temperature
variation is imposed on the hot bottom wall side, while cold bot-
tom wall side is maintained at a uniform temperature. The chan-
nel is filled with two immiscible SRFs, fluid ‘a’ on the top side
and fluid ‘b’ on the bottom side with thicknesses a and b, respec-
tively; the viscosities and thermal conductivities of the top fluid
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are denoted by u, and kg, respectively, while those for the bottom
fluid are represented by w, and kj, respectively. The upper wall is
set with a constant reference cold temperature T, while the lower
wall is prescribed with a spatially varying hot temperature based
on a sinusoidal profile involving a reference temperature T, and a
peak amplitude AT for the variation. Thus, the boundary condi-
tions at these two sides can be written as

T%(x,0) =T, (M
and
Tb(x, —b) = Ty, + AT cos(wx), (2)

where w = 27/l is the wavenumber based on the channel length
I, and assume Tb(x, —b) > T%(x, a) for any x and AT > 0. Here, and
in what follows, we use a superscript notation with ‘a’ or ‘b’ to
label any quantity associated with a top or bottom fluid, respec-
tively. Heat diffusion into the bulk regions of the fluids then sets
up a nonuniform distribution of the temperature along the inter-
face. The surface tension o = o (T) at the interface between the
SRFs also then varies locally, which, via the viscous actions in the
bulk fluids, induce a thermocapillary convection. The resulting flow
field is then subject to the no-slip condition for the velocity com-
ponents at the bounding walls.

2.2. Bulk fluid motion and energy transport

The thermocapillary convection in the SRFs obey the equa-
tions of mass and momentum (i.e., Navier-Stokes equations (NSE))
and the energy transport. They can be respectively written as fol-
lows:

V.u:O, (33)
p<%'t‘+v.(uu)> =-Vp+ V. [u(Vu+Vuh)], (3b)
%—ZJru-VT:V.(aVT), (3¢0)

where p, u and o are the fluid density, dynamic viscosity, and
thermal diffusivity of the fluid, respectively, with a =k/(pocp)
based on the thermal conductivity k and specific heat cp. In the
above, u, p, and T denote the velocity, pressure, and temperature
fields of the fluids, respectively, and the superscript symbol T rep-
resents taking transpose.

2.3. Interface equation of state for surface tension

At the interface, we need to impose an equation for the sur-
face tension relating it to the variations in the local temperature.
For the SRF, we consider the following nonlinear (parabolic) de-
pendence of surface tension on temperature:

0 (T) =00 + (T = Tref) + 077 (T — Trep)?, (4)

where o denotes the value of the surface tension at a reference
_ do _1d¢ -
temperature T, o7 = 42 |Tref and orp = 348 ‘Tref are the coeffi

cients of the surface equation of state, expressing the sensitivity of
the surface tension on temperature. It should be noted that for a
SRF, or1 # 0, while for a NF, orr = 0 where only o7 is non-zero. In
general, 0o, T..s, or, and oy are properties, which are unique to
a chosen SRF. In addition, at the interface, a relation between the
Marangoni stress due to the nonuniform tangential surface tension
gradient and the viscous fluid stress, along with the interfacial con-
tinuity conditions need to be imposed. These will be accounted for
in what follows.
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When the above governing equations are nondimensionalized
using a reference velocity scale U and a length scale b correspond-
ing to the thickness of the bottom SRF layer, we obtain the follow-
ing dimensionless groups: Reynolds number Re, Marangoni num-
ber Ma, and the capillary number Ca, which can be defined as

= ub Ma = U—b =RePr, and Ca= % (5)

Re = —,
Vp ap 0o

respectively. Here, v = 1/ p is the kinematic viscosity, and Pr is the
Prandtl number (Pr = v/«). In addition, the thermocapillary con-
vection in SRFs is governed by the following ratios of the bulk ma-
terial properties

~_ P

p=""

Pb

and the dimensionless parameters for the interface equation of
state for the surface tension

AT AT?
M; =or (%)’ M, = orr (Uo)‘ (7)

As in the above, taking reference values for the properties using
those for the bottom fluid, by balancing the scale for the viscous
shear stress w,U/b with that of the Marangoni stress due to the
surface tension gradient |do /dT|(AT/l), we can estimate the scale
for the reference velocity U of thermocapillary convection used in
the above via U ~ |do /dT|(AT/up)(b/1), where AT is set to be
equal to the maximum amplitude in the spatial variation in the
imposed temperature at the bottom wall Ty, and |do/dT| follows
from Eq. (4).

~ _ Ha x Cpq
==, k=—, and ¢, = , (6)
b= ky P cp,

3. Analytical solution for thermocapillary convection in
superimposed SRF layers in a microchannel

We will now derive a new analytical solution for thermocap-
illary convection in superimposed SRF layers in the Stokes flow
regime relevant to microchannels. In this regard, we consider the
fluids to be incompressible, immiscible, and Newtonian, and as-
sume that the Reynolds and Marangoni numbers are much less
than one (i.e,, Re « 1 and Ma « 1), so that the convective trans-
port of momentum and energy can be neglected. Also, the capil-
lary number is also taken to be much less than one (i.e., Ca « 1),
so that we can consider the interface to be nearly flat, and the
established thermocapillary convection patterns are steady. Based
on these considerations, all the conservation equations given above
simplify considerably. The mass conservation read as

V-u=0, (8)
while the momentum equation now reduces to
~Vp+uViu=0, (9)
and the balance of thermal energy equation is given as

V2T =0, (10)
where V2 = ;722 + 8722. These bulk transport equations need to be

solved in conjunction with the interface continuity conditions for
the flow and temperature fields and the Marangoni stress condi-
tion at the interface between the SRFs (see below for details).

3.1. Temperature field

The thermal energy equation Eq. (10), which satisfies the wall
boundary conditions given in the previous section, can be solved
readily and is independent of the nature of the fluid; the specific
details are given in Appendix C of this paper. The solution for the
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temperature field is summarized here as follows: In the upper fluid
a,

(T. — Tp)y + Tkb + Ta
(a + bk)
+ATf(d, b, k) sinh(d — wy) cos(wx), (11)
and in the lower fluid b,
k(T, — T,)y + T.kb + T,a
(a+ bk)
+ATf(d, b, k)[sinh(d) cosh(wy)
—ksinh(wy) cosh(@) ] cos(wx), (12)

T9x.y) =

TP (x,y) =

where k = ka/kp, @ =aw, and b=bw are the dimensionless pa-
rameters, and the expression for the function f(d, b, k) is given in
Eq. (61) in Appendix C.

3.2. Flow field: stream function

Next, for obtaining the flow field driven by thermocapillary ef-
fects in SRFs, for convenience, we introduce the stream function ¥
defined based on the components of the velocity field u = (u, v) as
—%, and v:—M, (13)

ay ax
so that the continuity equation Eq. (8) is satisfied automatically,
and the momentum equation (Eq. (9)) can be entirely rewritten in
terms of a single scalar variable /. For the latter purpose, taking
the of ‘curl’ Eq. (9) and using V x Vp =0 and invoking Eq. (13),
we finally obtain the following biharmonic equation for the stream
function [53]:

V4 = V2(V2y) = 0. (14)

Since Eq. (14) is linear, we can apply the method of separation
of variables by assuming the solution of Y to be product of two
solutions X (x) and Y (x) as

YV (x.y) =XX)Y ().

Since the thermocapillary flow is established by the tangential
stress at the interface, we can establish the form of the solution
X(x) by considering the Marangoni interfacial condition reflecting
a balance between the viscous shear stress and the surface tension
gradient given by

(my - 75)

U=

do oT
0: T 9% , (15)

y=0

y=

where 7xy = g—; + %)

SRFs follows from Eq. (4) as

do

dTr
Now, from Eq. (11), it follows that ?Tuy:o ~ sin(wx) and from
the last equation together with using Eq. (11) for T(x,y =0), we
have do /dT ~ cos(wx). Using these two estimates for the horizon-
tal spatial variations in Eq. (15), it can be readily inferred that
Tyxy ~ a1 sin(wx) + a; sin(wx) cos(wx), where oy and «;, are some
lumped constants; this suggests that the stream function to be
split into a linear combination of two distinct product solutions
with known spatial distribution in the x direction as in

Y (x,y) = f(y) sin(wx) + g(y) sin(wx) cos(wx), (16)

where f(y) and g(y) are the two unknown functions, which will
to be determined in what follows. Here, it should be noted that

is the viscous shear stress and do /dT for

= o7 + 2077 (T - Tref) = (O’T - ZUTTTref) + 20771T.
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the first term in the last equation (Eq. (16)), f(y)sin(wx) arises
from the linear part of the surface tension equation of state (which
recovers the special case of the NFs given in Pendse and Esmaeeli
[10]), while the second term g(y) cos(wx) sin(wx) emerges from in-
cluding the quadratic term for o (T) to encompass the more gen-
eral SRFs.

Substituting Eq. (16) in Eq. (14) and simplifying results in
the following two 4th order differential equations for the unknown

functions f(y) and g(y):
f//// _ 2w2f// + (1)4f =0, (17&)

— 8w + 16w"g = 0.
g" — 8w?g" + 16wig =0 (17b)

Equation (17a) has solutions of the form f(y)=e™, where
m is a constant to be determined from the characteristic equa-
tion (m? — w?)2 = 0, giving m = +w. The four solutions of f(y) are
e®y, ye®Y e~®Y and ye~®Y because it has double roots. Similarly, for
Eq. (17b), the solutions are of the form g(y) = eV, with the char-
acteristic equation (n? — 4w?)? = 0, yielding the four possible solu-
tions of g(y) as e2®¥, ye2®¥ e~2»¥ and ye~2®¥, Because the vertical
direction is finite, it is convenient to employ hyperbolic functions
in lieu of the exponential functions. As a result, the general form
of the stream function ¥ (x,y) for the upper fluid can be written
as

Y = U[(C§ + CGy) cosh(wy) + (G5 + C4y) sinh(wy)] sin(wx)
1 .
+5Ual (D + D3y) cosh(2wy) + (D§ + Dgy) sinh 2y)]
sin(2wx), (18)
and for the lower fluid, it reads as
Y = U[(CP + CBy) cosh(wy) + (C2 + Chy) sinh(wy)] sin(wx)
1 .
+jUn[(D‘]’ + Dby) cosh(2wy) + (D5 + DSy) sinh(2wy)]
sin(2wx). (19)
Here, C}’ and U; (for the first term in each of the last two equa-

tions), and D}' and Uy (for the corresponding second term), where

y =a,b and j=1,2,3,4, are the constants which will be deter-
mined through the specification of the boundary conditions next.

The constants C¥ and D}’, where y =a,b and j=1,2,3,4 can
be evaluated by using the following boundary conditions:

i) No-slip, no-through flow boundary condition at the lower wall:

ub(x, —=b) = V*(x, —=b) = 0.

ii) No-slip, no-through flow boundary condition at the upper wall:

u?(x,a) =v*(x,a) =0.

iii) Continuity of the tangential component of the velocity at the
interface:

u®(x,0) = u®(x, 0) = U; sin(wx) + %UH sin(2wx).

iv) No through flow boundary condition at the interface:
1 (x,0) =1°(x,0) = 0.
As a result, we obtain the following expressions:
ct=cy=0,
= sinh?(b) o sinh? (@)

" sinh?(b) — b2’ 27 sinh’@) — @’
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sinh”(b) — b2
CRLLCL L O
2(sinh”(b) — b?)

_ —ad

 sinh?(@) — @’
sinh(2d) — 2d

~ 2(sinh2(@) — @)

and
Db=D9¢=0,
o sinh”(2b) . sinh’(2d)
> sinh?®(2b) — 4B’ > sinh?(2d) — 4@’
Dg _ 2—2~bb _ Ds = 2—2aa ’
sinh”(2b) — 4b2 sinh”(2d) — 442
»  sinh(4b) —4b D sinh(4d) — 4d

2(sinh?(2b) — 4h2)’ 2(sinh?(2d) — 4a2)
where d = aw and b = bw.
Lastly, by applying the following fifth boundary condition cor-
responding to the Marangoni stress balance condition at the
interface, which is applied to both parts of the solution for
¥ (x,y) given above simultaneously, the proportionality con-
stants U; and Ui can be obtained in terms of the other con-
stants and dimensionless parameters given above:

v) Balance of net viscous shear stress and Marangoni stress:

aT

—{or + 20Ty =0) - Tyl | 5

y=0

Then, the expression for U; reads as

U - _<M>g(a, B, kyh(a.b, jv)

122
Tciéb + T,.,a
or + 20 — T R 20
|: T TT( (Cl-‘rbk) ref>i| ( )
where
g(d, b, k) = sinh(d) f(@, b, k).

Here, the function f(d, b, k) is given in Eq. (61), and h(d, b, )
in Eq. (20) reads as

(sinh?(@) — @) (sinh® (B) — B?)
fi(sinh® (B) — b?)(sinh(2@) — 2d) + (sinh® (@) — a2) (sinh(2b) — 2b) "

h(a,b, i) =
Moreover, the functional relationship for Uy is given by

Uy = —("Tﬁp)gz(a, b, ki (@ b, ), (21)

where
hi(@.b. it)
B (sinh? (2d) — 44?) (sinh® (2b) — 4B?)
B fi(sinh* (2b) — 4b2) (sinh(44) — 4d) + (sinh’ (2d) — 4d2) (sinh(4b) — 4b) "

That is, iy (4, b, 1) = h(2d, 2b, ii). Finally, substituting for the con-
stants in Eqs. (18) and (19), we can arrive at the following analyt-
ical solution for the stream function in the upper and lower fluids:

a_ sinhzuzﬁ x {sinh2 (@) (wy) cosh(wy)

—%[252 + (sinh(2d) — 2a) (wy) | sinh(wy)} sinh(wy)
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1 Utt/w . ) .
2 sinh?(2a) _ 422 {sinh? (2a) (wy) cosh2wy)

- % [4@° + (sinh(4d) — 4d) (wy)] Sinh(Zwy)} sinh2wy),
and

wb _ Ut/a)

—%[252 — (sinh(2B) — 25) ()] sinh(a)y)} sinh(wy).
SN R—

2 sinh?(2b) — 4b2
[4b* — (sinh(4b) — 4b) (wy)] sinh(Za)y)} sinhQwy).

x {sinh2 (b) (wy) cosh(wy)

x {sinh? (2b) (wy) cosh(2wy)

1
2
In addition, the analytical solutions for thermocapillary-driven ve-
locity field components in SRFs u” (x,y) and vV (x,y) (for y = a, b)
can be recovered from the stream function via Eq. (13), i.e., using
u¥ = —9vy¥¥ /0y and vV = —9dy¥ /0x, which yields the following for
the upper fluid
u’(x,y) = U{[CS + w(C§ + Cy)] cosh(wy)
+(C§ + wC3y) sinh(wy)} sin(wx)

1
+5Uee (D5 + 20(D§ + D3y)] cosh(2wy)
+(Dg + 2wD5jy) sinh(2wy)} sin(2wx),

v'(x,y) = —wU;[Cy cosh(wy) + (C§ + C{y) sinh(wy)]
cos(wx) — wU[D3y cosh(2wy) + (D§ + D3y)
sinh(2wy)] cos(2wx), (22)
and for the lower fluid as
ub(x,y) = U{[C + o (CE + Cly)] cosh(wy)
+(C + wCly) sinh(wy)} sin(wx)

1
+§Utt{[D’§ + 2w(D5 + Dby)] cosh(Qwy)

+(D + 2wDby) sinh(2wy)} sin(2wx),

1P (x,y) = —wU[Chy cosh(wy) + (C2 + Cly) sinh(wy)]
cos(wx) — wUy [ D3y cosh(2wy)
+(D} + Djy) sinh(2wy)] cos (2wx). (23)

From Eqgs. (22), (23), it can be inferred that the parameters U; and
Us: represent measures of the scales for the thermocapillary veloc-
ity contributions arising from the linear and quadratic part of the
surface tension variation with the temperature o (T) for the SRFs.
When the coefficient opr for the quadratic contribution in o (T)
becomes zero (see Eq. (4)), the above results reduce to that pre-
sented in Pendse and Esmaeeli [10] applicable for the NFs.

4. Computational modeling for LBM: interface capturing and
motion of binary fluids driven by thermocapillary effects

We will now discuss a modeling formulation suitable for the
development of a numerical approach based on the LBM for simu-
lation of thermocapillary convection in SRFs presented in the next
section. The phase-field lattice Boltzmann approach based on the
conservative Allen-Cahn equation (ACE) [54] is considered in this
study to capture interfacial dynamics, which is an improvement
over an earlier model [55] based on a counter term approach [56].
The binary fluids are distinguished by an order parameter or the

International Journal of Heat and Mass Transfer 208 (2023) 124049

phase field variable ¢. The fluid A is identified by ¢ = ¢4, while
fluid B by ¢ = ¢p. The interface-tracking equation based on the
conservative ACE in terms of the phase field variable is given as

%—‘f +V.(pu) =V . [My(V¢ —0On)], (24)
where u is the fluid velocity, My is the mobility, and n is the unit
normal vector, which can be calculated using the order parame-
ter ¢ as n= V¢/|V|. Here, the parameter 6 can be expressed as
0 =—4(¢d — Pa)(@P — Pp)/IW (da — Pp)], where W is the width of
the interface. Essentially, the term My6n in Eq. (24) serves as the
interface sharpening term counteracting the diffusive flux —My V¢
following the advection of ¢ by the fluid velocity.

Now, for ease of implementations, the interfacial surface ten-
sion effects can be incorporated within a diffuse interface via a
distributed or smoothed volumetric force term in a single-field for-
mulation representing the motion of binary fluids. Then, the cor-
responding single-field incompressible Navier-Stokes equations for
binary fluids can be written as

V.u=0, (25)

p(%’:_i_v . (uu)) — _Vp+V . [M(Vu—i—VuT)]"FFs + Foxt,

(26)

where F; is the surface tension force, and F is any external body
force. Here, the surface tension force effectively exerts itself in both
the normal and tangential directions to the interface as surface
tension varies with temperature. To accommodate this, a geometric
technique known as the continuous surface force approach [57] can
be used, which can be expressed by the following equation involv-
ing the Dirac delta function §s:

F = (okn+V0)és, (27)

where n and k are the unit vector normal and the interface cur-
vature, respectively; they can be obtained from the order parame-
ter via n=V¢/|V¢| and k = V -n. In the right side of Eq. (27),
the first term is the normal or capillary force, and the second
term involving the surface gradient operator Vg is the tangen-
tial or Marangoni force. One formulation of &, which localizes
the smoothed surface tension force suitable within the phase-field
modeling framework and thus satisfying ffof §sdy =1 is given by
8s = 1.5W|Vo|2.

The surface gradient Vs in Eq. (27) is given by Vs =V —n(n-
V). Therefore, the Cartesian components of the surface tension
force in Eq. (27) can then be expressed as

Fx = =0 (T)|V$[*(V -m)n, + |V
o[ =n})do (T) — nynydyo (T)].
Ey = = (T)|V@|*(V -m)ny + |[V|?
[(1=n})dyo (T) — nynydso (T)]. (28)

Here, the functional dependence of the surface tension on temper-
ature for the SRF is obtained from the nonlinear (parabolic) equa-
tion given in Eq. (4). In numerical implementations, in this work,
the required spatial gradients dxo (T) and dyo (T) in Eq. (28) are
calculated using an isotropic finite differencing scheme [58]. Here,
we note that the temperature field T is computed by solving the
energy transport equation given earlier in Eq. (3c). Finally, the
jumps in fluid properties across the interface, such as density and
viscosity can be expressed as a continuous function of the phase
field variable, and use the following linear interpolation to account
for the interfacial variations of fluid properties in this study (see
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e.g.,, Ding et al. [59]):

_ d—ba _ d—Pa 3
P—PB+7¢A_¢B(PA 08), M—MB+7¢A_¢B(/LA UB),

(29)

where p,4, pp and 4, up are the densities and the dynamic vis-
cosities in the fluid phases, respectively and denoted by ¢4 and ¢a.
An equation similar to Eq. (29) will also be utilized for distribut-
ing the interfacial jump in the thermal conductivity in solving the
energy equation. In this study, we use ¢4 =0 and ¢g = 1.

The numerical algorithms based on LB schemes using cen-
tral moments for interface tracking, two fluid motion, and energy
transport are presented in Appendix A with additional attendant
details in Appendix B.

5. Numerical validation

5.1. Thermocapillary migration of a droplet of a normal fluid under a
temperature gradient

The first validation problem that we consider is the thermocap-
illary migration of a droplet of a normal fluid in the field of a lin-
ear variation in temperature or a uniform gradient in temperature.
Young et al. [4] presented an analytical solution of the droplet mi-
gration velocity in the creeping flow limit and at small Marangoni
numbers. Taking o (T) = 0¢ + o7 (T — Ty) for the surface tension
variation, consider a droplet of radius R with a density pj, viscosity
Mp, and thermal conductivity kj, in the presence of a uniform tem-
perature gradient VT, then the characteristic velocity U, obtained
under a balance of the thermocapillary force and the viscous force
can be written as

_UT|VT00|R
Mp

Defining the Reynolds number and the Marangoni number as Re =
ppUR/ 1L, and Ma = U,R/kj, respectively, in the limit Re < 1 and
Ma « 1, Young et al. performed a theoretical analysis and derived
an expression for the terminal migration velocity of the droplet
Uycp given by

B 2U,
Q+k)Q2+3i)

Uycs (31)

where k and fi are the property ratios defined in Eq. (6).

For performing the numerical simulation using the LB schemes
presented in the previous sections, here and in what follows for
the rest of this paper, when required, the no-slip velocity bound-
ary condition is prescribed using the standard half-way bounce-
back condition, while the specification of the scalar field such as
the temperature on the boundaries is carried out using the anti-
bounce back scheme; the no-gradient conditions on any boundary
are imposed using the free-slip condition; finally, as is typical for
the LB method, all the values are specified in the lattice units. See
Ref. [60] for further details.

We consider a droplet of radius R =20 initially kept at the
center of a 2D domain of size 8R x 16R. No slip boundary con-
ditions are imposed on the top and bottom walls while periodic
boundary conditions are used on the left and right walls. In the
direction normal to the bottom and top walls, a linear variation
in the temperature field with T, =0 on the bottom wall and
Ttop = 32 on the top wall is imposed, resulting in a constant tem-
perature gradient in the far field VT, = 0.1. For the fluid proper-
ties, we take pgp = Cp,, =1, Ugp = kg = 0.2, Ty = 16, 09 = 2.5 x
1073, and o7 = —10~* and the values of the parameters are such
that the assumption of the negligible convection in deriving the
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Fig. 3. The drop migration velocity for a 2D droplet at Re = Ma = 0.1 normalized
by the analytical prediction velocity Uygg versus the dimensionless time t* = tU/R.
The other reference numerical solution for a 2D droplet is taken from Ref. [61].

analytical solution is satisfied. For the above choice, the theoret-
ically predicted value of the terminal velocity of the droplet is
Uycp = 1.333 x 104, and both Re and Ma are 0.1.

Figure 3 shows the temporal variations of the normalized drop
migration velocity U/Uygg as a function of the dimensionless time
t* = tU/R computed using the LB schemes presented earlier along
with the theoretical prediction, as well as results from another ref-
erence numerical solution involving a 2D droplet [61]. It should be
noted that the theory assumed a 3D axisymmetric, non-deformable
spherical droplet, while the present LB results as well as the ref-
erence numerical results are based on considering a 2D droplet.
As a result, all the numerical schemes shown consistently attain
U/Uygg ~ 0.80 or about 80% of the theoretical value. Nevertheless,
the present results are in good quantitative agreement with the
reference results given in Guo and Lin [61] for similar conditions.
Moreover, this trend is also consistent with the results obtained by
the use of different numerical methods for this problem involving
a 2D droplet (see e.g., Guo and Lin [61], Zheng et al. [62], Nabav-
izadeh et al. [G3]).

5.2. Thermocapillary-driven flow in a heated microchannel with two
superimposed normal fluids

As a second benchmark problem, we will test our LB schemes
for the simulation of the thermocapillary-driven flow in a sinu-
soidally heated microchannel which confines two supperimposed
normal fluids (NFs) [10]. The problem setup for this case is the
same as the one presented in Section 2.1 (see Fig. 2 for the ge-
ometric set up). The wall temperatures are applied according to
Egs. (1) and (2). The dimensionless parameters Re, Ma, and Ca
for this case are defined in Eq. (5) and the ratio of the material
properties are given in Eq. (6). For Re < 1, Ma « 1, and Ca « 1,
and considering the flow is driven by a surface tension gradient,
where the surface tension decreases linearly with the increasing
temperature for the NF as o (T) = o + o7 (T — Tref), Ref. [10] de-
rived analytical solutions for the temperature T(x,y), stream func-
tion ¥ (x,y), and the components of the velocity field u(x,y) and
v(x,y). It can also be obtained as a special case of the analyti-
cal solution derived in this work by setting the coefficient for the
quadratic term for the surface tension variation with temperature
to be zero, i.e., ory = 0.

We performed LB simulations by considering two normal fluids
of equal thickness a = b =50 in a microchannel of length ! = 200.
Periodic boundary conditions are used on the left and right sides
of the domain, while no-slip boundary conditions are imposed on
the top and bottom walls, and the wall temperatures are applied
using Egs. (1) and (2) with Ty = Tc = T,y = AT = 1.0 for simplicity.
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(a) Temperature contours (b) Velocity vectors

Fig. 4. (a) Temperature contours of the NF in thermocapillary flow within a heated microchannel with thermal conductivity ratio k = 1 and viscosity ratio ji = 1 obtained
from the LB simulation results (solid green lines) and the analytical solution (dashed blue lines). (b) Velocity vectors due to thermocapillary flow of the NF obtained from
the LB simulation results (blue arrows) and the analytical solution (purple arrows). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 5. Streamlines of the thermocapillary flow in NFs within a heated microchannel with thermal conductivity ratio k = 1 and viscosity ratio fi =1 obtained from the
analytical solution (left) and the LB simulation results (right). The arrows indicate the direction of the thermocapillary convection.
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Fig. 6. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow of a NF in a heated microchannel.
The purple diamond symbols shown are obtained from the analytical solution given by Pendse and Esmaeeli [10] and the blue lines are the LB simulation results. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The various fluid properties are chosen as follows: oy = 1.0 x 1072,
M; = -5.0x 1072, M, =0, k = 1, and /i = 1; moreover, the dimen-
sionless parameters are Re = 1.59 x 10~1, Ma = 3.83 x 1072, and
Ca = 1.26 x 1072, so that the assumptions made in deriving the an-
alytical solution are satisfied. For the phase-field model, the values
of the interface thickness and the mobility parameter are W =5
and My = 0.02, respectively.

Figure 4 (a) shows the equispaced contours of the tempera-
ture field for k=1 and fi =1 obtained by the LB simulation as
well as from the analytical solution [10]; Moreover, Fig. 4(b) pro-
vides a similar comparison of the thermocapillary velocity vectors
which shows that the fluid motion occurring in the direction away
from the higher temperature zones on the interface as would be
expected for NFs. Clearly, the simulation results agree well with
the analytical solution. The overall flow pattern for the thermo-
capillary convection in NFs is shown in Fig. 5, which consists of
four periodic counter-rotating vortices in the two superimposed
fluids. The numerical results based on the LB schemes are seen
to be qualitatively consistent with the analytical solution [10] for
the streamline contours. Finally, Figs. 6 and 7 present quantita-
tive comparisons between our numerical approach and the ana-

lytical solution for the profiles of the temperature and the com-
ponents of the thermocapillary velocity field along the centerlines
of the domain in both the horizontal (x) and vertical (y) direc-
tions, respectively. In these figures, the temperature profiles are
non-dimensionalized using the bottom wall temperature, while the
velocity profiles are normalized using a characteristic velocity scale
Us given in Eq. (32) by setting orr = 0 which is appropriate for
NFs considered here. Again, they are fairly in good agreement
with each other, thereby validating the implementation of our LB
schemes presented earlier.

6. Results and discussion

We will now study the effect of various characteristic param-
eters on the physics of thermocapillary convection in superim-
posed layers of two self-rewetting fluids (SRFs) confined with a
microchannel, where the bottom wall is nonuniformly heated by
imposing a sinusoidal variation in temperature, while the top wall
is maintained at a lower, but uniform temperature (see Fig. 2). In
this regard, we will utilize the new analytical solution developed
in Section 3 and consider cases, where the quadratic coefficient
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Fig. 7. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow of a NF in a heated microchannel.
The purple diamond symbols shown are obtained from the analytical solution given by Pendse and Esmaeeli [10] and the blue lines are the LB simulation results. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of the surface tension variation with the temperature is non-zero,
i.e., orr # 0 or My # 0 to demonstrate the role of SRFs, and com-
pare both the qualitative and quantitative differences in their be-
havior when compared with the normal fluids, where only the lin-
ear coefficient exists. Also, the LB schemes, which were validated
in the previous section, will be used in conjunction with the an-
alytical solution for providing additional confirmation of the ap-
plicability as well as for ensuring quantitative accuracy of the lat-
ter via numerical simulations of thermocapillary-driven flows in
SRFs. For clarification, it suffices to mention that three distribu-
tion functions are used in our LB formulation to compute the two-
fluid motion, interface capturing, as well as the transport of the
energy within the SRFs. The temperature-dependent surface ten-
sion, which is used as a regularized volumetric body force in a
single-field formulation for the fluid motion is used to couple the
latter with the temperature field. The values of the bulk fluid prop-
erties such as the viscosity and the thermal conductivity are cho-
sen such that the resulting flow and transport occurs in the creep-
ing regime and at small Marangoni and capillary numbers (i.e.,
Re « 1, Ma « 1, and Ca « 1) in numerical simulations, where the
latter also ensures that the interface is naturally maintained as flat,
which is valid in situations in microchannel flows.

We perform simulations in a 2D computational domain with
200 x 100, thereby the length | of the microchannel is 200 and
the total thickness of both the SRFs (a + b) is 100. Periodic bound-
ary conditions are used in the horizontal direction, while no-slip
boundary conditions are imposed on the top and bottom walls, and
the wall temperatures are applied from Eqs. (1) and (2) where we
choose Ty, = Tc = T,y = AT = 1.0 for simplicity. The reference sur-
face tension is taken is og =1 x 10~2. Thermocapillary flow pat-
terns and their strengths are determined by the choice of the di-
mensionless linear and quadratic coefficients of the surface tension
variation with temperature, i.e.,, M; and M,, respectively. For the
model parameters in the conservative ACE for interface tracking,
we chose W =5 and My = 0.02.

First, we consider cases with two superimposed fluids having
the same thickness or a/b =1 and with property ratios k = 1 and
fi = 1. To provide a perspective and a basis for comparison, we will
first show the streamlines for a case with NFs in Fig. 8 by consid-
ering M; = —5 x 1072 and M, = 0.0. We treat these choices for the
dimensionless surface tension coefficients as the baseline case for
NFs. Moreover, the choices of the other fluid properties are such
that Re = 1.59 x 10~1, Ma=3.83 x 102, and Ca=1.26 x 1072, In
defining these dimensionless parameters here and in what follows,
a characteristic velocity Us derived in Appendix D is used. Clearly,
if the quadratic coefficient for the surface tension is absent (i.e.,
orr = 0 or My =0), then four periodic counterrotating vortices are
induced, where the fluids move away from the hotter region on the
interface at the center of the domain.

On the other hand, by turning off the linear coefficient of sur-
face tension (i.e., oy = 0) and keeping only the quadratic coefficient

non-zero, i.e., oy # 0, for otherwise the same property ratios, we
simulate the thermocapillary convection in SRFs. In dimensionless
form, we take M; =0 and M, =1 x 10—, which we consider as
the choices for the baseline case for SRFs; the rest of the dimen-
sionless parameters resulting from specifying the other fluid prop-
erties are Re=1x 1071, Ma=3 x 1072, and Ca=9.9 x 10-3. The
results given in terms of the streamlines are plotted in Fig. 9. It
is evident that the thermocapillary flow pattern in SRFs is strik-
ingly different from that in NFs: First, eight periodic counterrotating
vortices are generated in SRFs, which is double the number of the
convection rolls in NFs. Second, the fluids on the interface seek to
move towards the hotter region on the interface at the center of the
domain. Such differences in direction of the thermocapillary flow
fields between the NFs and SRFs are more explicit in the velocity
vector diagrams shown in Fig. 10, which is a manifestation of flow
arising from the Marangoni stress generated due to a positive (neg-
ative) surface tension gradient on the interface for SRFs (NFs). The
doubling of the vortical structures in the case of the SRFs can be
interpreted from an earlier and simpler form of the analytical so-
lution given in terms of the streamfunction in Eq. (16): this equa-
tion contains the ‘fundamental solution’ related to sin(wx) arising
from the linear part surface tension coefficient o7 and a ‘first order
harmonic solution’ related to sin(wx) cos(wx) generated from the
quadratic part surface tension coefficient orr. The latter is of the
form sin(2wx)/2, which has double the wavenumber compared to
the former case. Thus, fluids with surface tension such that orr # 0
(or SRFs) would result in double the number of thermocapillary
convection rolls when compared to fluids with only linear varia-
tions in the surface tension, i.e., only o7 # 0 (or NFs).

Finally, we note that in all cases, the side-by-side comparisons
between the analytical solution and the numerical results based on
the LB schemes show very good agreement with each other.

6.1. Effect of relative magnitudes of dimensionless linear M, and
quadratic M, surface tension coefficients of SRF layers

In the previous case, we considered a particular type of SRF for
which only the quadratic coefficient is non-zero, while the linear
part of the coefficient is absent, i.e., M, # 0, but M; = 0. While this
is a plausible assumption, it doesn't encompass all types of SRFs,
for which it is possible to have both M, # 0 and M; # 0, and the
unique nature of the flow patterns associated with the SRFs can
still be manifested provided that the overall surface tension gradi-
ent is positive in the flow domain of interest. To test this hypoth-
esis, we used the following parameters for SRFs with both the lin-
ear and quadratic coefficients: op =1 x 1073, M; =1 x 10~>, and
M, =5 x 1071, Based on such more general forms of surface ten-
sion coefficients, results from the analytical solution and well as
the LB simulations are obtained and the corresponding thermo-
capillary convection patterns given in terms of the streamlines are
presented in Fig. 11. Again, we notice here that eight counterrotat-
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(a) Analytical Solution

(b) LBM Simulation

Fig. 8. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in NFs for the case of aspect ratio of a/b =1,
thermal conductivity ratio of k = 1, and viscosity ratio of i = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are

M; = -5 x 1072 and M, = 0, respectively.

(a) Analytical Solution

(b) LBM Simulation

Fig. 9. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b =1,
thermal conductivity ratio of k = 1, and viscosity ratio of ji = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are

M; =0 and M, =1 x 101, respectively.
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Fig. 10. Velocity vectors due to thermocapillary convection for the case of (a) NFs (M; = —5 x 1072 and M, = 0) and (b) SRFs (M; =0 and M, = 1 x 10~"). Here, the aspect
ratio is a/b = 1, thermal conductivity ratio is k = 1, and the viscosity ratio is /i = 1. The blue arrows are for the LBM simulation while the purple arrows are for the analytical
solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ing convection rolls are generated, where the fluid motion along
the interface is directed towards the higher temperatures, which
confirms our hypothesis mentioned above. Moreover, the theoreti-
cal prediction is consistent with the numerical results based on LB
schemes.

This last example concerned a situation where the dimension-
less linear coefficient of surface tension is much smaller than
that of the quadratic coefficient. Let’s now explore another case
by inverting this situation where the linear coefficient is much
larger than the quadratic coefficient in SRF layers. In particular, we
take M; =1 x 10~! and M, = 1 x 104, and the streamline patterns
based on the analytical solution and the LBM simulation results
are shown in Fig. 12. Interestingly, in this case only four periodic
counterrotating vortices are generated; however, unlike those ob-
served for the NFs in the previous section where the fluids on the
interface move away from the center (see Fig. 8), here the thermo-
capillary motion along the interface is directed towards the higher
temperature zones at the center of the microchannel, which is con-
sistent withe expected behavior of SRFs. Now, the presence of four
vortices for the present case where M, « M; and eight vortices

10

for the previous case where M, > M; can be explained as follows.
The analytical solution derived in a previous section consists of the
superposition of two results: one that arises from the linear coef-
ficient of the surface tension M; and the other is generated from
the quadratic coefficient M,, which contains contribution of ther-
mocapillary flow with a wavenumber that is twice as the former
case. Moreover, the resulting magnitudes of the flow in each case
is proportional to the magnitude of the respective coefficient of the
surface tension. Thus, the overall solution, in terms of the domi-
nant flow pattern, is then dictated by the contribution of the part
of the solution which has the largest magnitude arising between
the two surface tension coefficients.

Indeed, in view of the above considerations, we performed a
systematic study to deduce the parameter space M; — M, that de-
lineates the cases with four vortices with those of eight vortices
in SRFs. Figure 13 presents a parametric regime map in terms of
the linear and quadratic surface tension coefficients, when all the
other characteristic parameters are fixed as follows: a/b=1, k = 1,
and fi = 1. We find for all cases where M, > M; with the above
parametric choices, the thermocapillary convection in SRFs mani-
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(b) LBM Simulation

Fig. 11. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b =1,
thermal conductivity ratio of k = 1, and viscosity ratio of i = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are

M; =1x107% and M, =5 x 1071, respectively.

(a) Analytical Solution

(b) LBM Simulation

Fig. 12. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b =1,
thermal conductivity ratio of k = 1, and viscosity ratio of i = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are

M; =1x10"" and M, = 1 x 1074, respectively.
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Fig. 13. Parametric regime map given in terms of the dimensionless linear M; and
quadratic M, surface tension coefficients for the four and eight vortex convection
roll cases induced by thermocapillary effects in SRFs in a nonuniformly heated mi-
crochannel. Here, the aspect ratio is a/b = 1, the thermal conductivity ratio is k = 1,
and viscosity ratio is i = 1. The symbols correspond to our analytical prediction,
with the shaded region encompassing the eight vortex cases.

fests in the form of eight counterrotating vortex cells as shown by
the shaded region in Fig. 13; otherwise the SRFs exhibit four vor-
tex cells. Moreover, unlike in NFs, the SRFs, regardless of the choice
of M; and M,, always seek to move towards the hotter regions at
the center on the interface. These findings may be exploited in cre-
ating new pathways to specifically promote certain targeted mix-
ing patterns in microfluidic channels subjected to nonuniform wall
heating by tuning surface tension coefficients, i.e., by synthesizing
SRFs with appropriate interfacial properties or and o7y (or equiva-
lently, M; and M,), e.g., by selecting appropriate number of carbon

1

atoms in the molecular chain arrangements in aqueous solutions
of alcohols.

6.2. Effect of relative thickess ratio a/b of SRF layers

Next, let’s examine the effect of changing the relative thick-
nesses a and b of the top and bottom fluids or the aspect ra-
tio a/b on thermocapillary flow patterns for both NFs and SRFs.
Figure 14 shows the streamlines in NFs when the aspect ratio
a/b = 1/3, while the corresponding result for the SRFs is presented
in Fig. 15. By contrast, Figs. 16 and 17 illustrate the streamlines
in the thermocapillary-driven flow in NFs and SRFs, respectively,
when the aspect ratio a/b = 3.

In general, changing the thickness ratio a/b does not modify the
number of vortices generated either for NFs or SRFs, which are pri-
marily influenced by the surface tension sensitivity coefficients M,
and M,, as discussed earlier. However, the shape of the vortices
are profoundly influenced by the a/b ratio as seen in Figs. 14-
17. When a/b = 1/3 (see Figs. 14 and 15), the interface is farther
way from the heated bottom wall when compared to the previous
cases with a/b = 1; with smaller prevailing thermal gradients this
reduces the heat diffusion from the bottom to the interface and its
consequent nonuniform thermal distribution; in turn, this sets up
relatively weaker thermocapillary currents. Moreover, in this case
with the bottom fluid being thicker, their vortical centers are also
pushed farther away from the bottom wall. In the case of NF layers
(see Fig. 14), the motion is directed away from the interface, while
with SRF layers (see Fig. 15) the fluids seek to migrate towards the
hotter zones around the center of the interface thereby setting up
overall asymmetrical flow patterns in each case.

On the other hand, for the thickness ratio a/b=3 (see
Figs. 16 and 17), the interface is significantly closer to the nonuni-
formly heated bottom wall when compared to the above cases.
As a result of greater thermal transport towards the interface,
Marangoni convection becomes more intense, which is accompa-
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Fig. 14. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in NFs for the case of aspect ratio of a/b = 1/3,

thermal conductivity ratio of k=1, and viscosity ratio of {i = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are
M; = =5 x 1072 and M, = 0, respectively.

(a) Analytical Solution (b) LBM Simulation

Fig. 15. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b =

1/3, thermal conductivity ratio of k = 1, and viscosity ratio of ji = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature
are M; =0 and M, = 1 x 107!, respectively.

z/W
(a) Analytical Solution (b) LBM Simulation

Fig. 16. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in NFs for the case of aspect ratio of a/b = 3,

thermal conductivity ratio of k = 1, and viscosity ratio of ji = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are
M; = -5 x 1072 and M, = 0, respectively.

1

(a) Analytical Solution (b) LBM Simulation

Fig. 17. Comparison of the streamlines between the analytical solution with the LBM simulation of thermocapillary convection in SRFs for the case of aspect ratio of a/b = 3,

thermal conductivity ratio of k = 1, and viscosity ratio of [t = 1. Here, the dimensionless linear and quadratic coefficients of surface tension variation with temperature are
M; =0 and M, =1 x 10", respectively.
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Fig. 18. Profiles of the horizontal velocity component along the interface in the x direction for thermocapillary flow in SRFs for three different values of the aspect ratio
a/b: a/b=1/3 (left), a/b =1 (middle), and a/b = 3 (right). The purple diamond symbols shown are obtained from the analytical solution and the lines are the LB simu-
lation results. Here, the thermal conductivity ratio is k = 1, viscosity ratio is it =1, and the dimensionless surface tension coefficients are M; =0 and M, = 1 x 10~. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

nied by the centers of the bottom standing vortex cells shifting fur-
ther towards the bottom wall, i.e., the corresponding flow pattern
in that layer becoming more squished; nevertheless, the direction
of the motion of the counterrotating vortices in such asymmetri-
cal flow distribution for the NFs and the SRFs remains the same
as mentioned above. These observations can be further interpreted
more quantitatively by examining the variations in the magnitude
of the interfacial thermocapillary convection currents at different
a/b ratios as discussed next in Fig. 18.

Hence, by focusing on the interface, let's now investigate the
variations in the distribution of the horizontal component of the
thermocapillary velocity field uy in SRFs due to changes in the as-
pect ratio a/b, which we will normalize by a suitable character-
istic velocity arising from the surface tension gradient. Based on
the scaling argument given below Eq. (7) involving a balance of
the Marangoni stress and the viscous stress and using the aver-
age temperature on the interface in estimating the attendant tem-
perature gradient, we can obtain the following characteristic ve-
locity for thermocapillary convection in SRFs (see Appendix D for
details):

" (b> or + 2017 h(3) + Tk o

U~ =
e (1) +F

SIS ESITSY

AT sinh(@) )}
+= ———— ————— —Ter | |-
k cosh(d) sinh(b) + cosh(b) sinh(a)

Then, taking W =a+b as the width of the microchannel,
Fig. 18 presents the dimensionless horizontal velocity component
uy/Us on the interface in SRFs as a function of the dimension-
less coordinate x/W for three different aspect ratios a/b=1/3,1
and 3. It can be seen that while the velocity profiles are quali-
tatively similar, there are dramatic differences in the strength of
the Marangoni convection currents in the interface depending on
the aspect ratio. When the interface is far from the nonuniformly
heated bottom wall, which occurs for the case a/b = 1/3, the mag-
nitude of the thermocapillary convection is found to be relatively
weak; by contrast, when the interface is closer to the interface
at a/b =3 than the other two cases, the Marangoni velocities are
much larger, by at least an order of magnitude. This is consistent
with our arguments given earlier that the closer the interface is
to the heated wall side, the greater is the heat transport by dif-
fusion from the latter to the former, which in turn intensifies the
generation of thermocapillary velocity currents via the surface ten-
sion gradient resulting from a nonuniform temperature distribu-
tion on the interface. Thus, the aspect ratio a/b of the superim-
posed layers of SRFs has a major effect on not just in setting up
asymmetrical thermocapillary convection roll cells, but also, and
more importantly, in determining the resulting magnitude of the
velocities of the fluids around interfaces. For the purpose of clari-
fication, it should be noted that the length scale b used in deter-

(32)
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mining the shear stress used in obtaining a scale for the character-
istic velocity Us (see Appendix D for its derivation), while a con-
sistent scaling definition following [10], is an overestimate. Hence,
the dimensionless velocity profiles uy/Us shown are generally sig-
nificantly smaller than unity.

6.3. Effect of thermal conductivity ratio k of SRF layers

Next, we will perform another quantitative study involving the
effect of the thermal conductivity ratio k = ka/k, on the profiles
of temperature and the components of the velocity field in ther-
mocapillary convection in SRFs. In this regard, we fix SRF layers
to be of equal thickness, i.e., a/b=1, and set i =1, M; =0 and
M; =1 x 10-1, and then vary k by considering three representa-
tive choices: k = 0.1, 1.0 and 5.0. Figures 19 and 20 show the pro-
files of the temperature and the components of the velocity field
along the centerline of the domain in the x and y directions, re-
spectively, for k = 0.1. Similar plots are shown in Figs. 21 and 22
for k=1.0 and in Figs. 23 and 24 for k= 5.0. First, focusing on
the dimensionless temperature profiles T/Ty, we notice that k gen-
erally does not change their overall magnitudes; however, it does
change the shape of the temperature profiles in the direction ver-
tical to the interface: while for k = 1.0 (see Fig. 22) it exhibits a
continuous variation, when k # 1, a discontinuity in the slopes of
the temperatures at the interface at y/W = 0.5 can be observed
(see Figs. 20 and 24), which can be interpreted simply based on
the continuity of the heat flux and using the Fourier’s law. This
also explains the observation that for the case when the top fluid
layer is significantly more conducting than the bottom fluid layer
(ie., k=5.0), the temperature field changes much more in the
former when compared to the latter (see Fig. 24). More impor-
tantly, the thermal conductivity ratio has more profound influence
on the magnitude of the thermocapillary flow fields. While the
overall shapes of the components of the velocity fields are gen-
erally invariant with k, it can be seen that when bottom fluid is
thermally more conducting, i.e., when k < 1.0, the magnitudes of
the thermocapillary velocity currents are significantly increased;
for example, comparing Figs. 19 and 20 (for k = 0.1) with the cor-
responding Figs. 23 and 24 (for k = 5.0), it can be observed that
the Marangoni velocities are significantly larger for the former case
when compared the latter. This is a consequence of the fact that
when k < 1.0, the thermal conductivity of the bottom fluid layer is
significantly larger relative to the top fluid layer thereby enhancing
heat diffusion to the interface, which in turn sets up significantly
larger surface tension gradient induced fluid motion. It is also con-
sistent with the scaling equation for the characteristic thermocap-
illary velocity Us given above in Eq. (32) based on a stress bal-
ance on the interface, which parameterizes it with k, among other
characteristic parameters. Finally, we also note that the theoretical
predictions for the temperature fields as well as the velocity fields
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Fig. 19. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow in SRFs for thermal conductivity
ratio k = 0.1. The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1, viscosity ratio
is ft =1, and the dimensionless surface tension coefficients are M; =0 and M, = 1 x 10~ (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 20. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow in SRFs for thermal conductivity
ratio k = 0.1. The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1, viscosity ratio
is i =1, and the dimensionless surface tension coefficients are M; =0 and M, = 1 x 10-. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 21. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow in SRFs for thermal conductivity
ratio k = 1.0. The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1, viscosity ratio
is fi =1, and the dimensionless surface tension coefficients are M; =0 and M, = 1 x 10~ (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 22. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow in SRFs for thermal conductivity
ratio k = 1.0. The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1, viscosity ratio
is 1 =1, and the dimensionless surface tension coefficients are M; =0 and M, = 1 x 10~. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

in SRFs based on our new analytical solution derived earlier are in 6.4. Effect of characteristic parameters on peak interfacial
good quantitative agreement with the numerical results based on thermocapillary velocity Unax in SRF layers

the central moment LB schemes constructed in the previous sec-
tions. Let’s now study the effect of various dimensionless variables

on the magnitude of the peak velocity generated on the interface
Umax, as a global parameter indicating the strength of the thermo-

14
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Fig. 23. Profiles of the temperature and velocity components along the centerline of the domain in the x direction for thermocapillary flow in SRFs for thermal conductivity
ratio k = 5.0. The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1, viscosity ratio
is i = 1, and the dimensionless surface tension coefficients are M; =0 and M, = 1 x 10-. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 24. Profiles of the temperature and velocity components along the centerline of the domain in the y direction for thermocapillary flow in SRFs for thermal conductivity
ratio k = 5.0. The purple symbols shown are obtained from the analytical solution and the lines are the LB simulation results. Here, the aspect ratio is a/b = 1, viscosity ratio
is 1 = 1, and the dimensionless surface tension coefficients are M; =0 and M, = 1 x 10~. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 25. Effect of the thermal conductivity ratio k on the maximum thermocapillary Fig. 26. Effect of the viscosity ratio fi on the maximum thermocapillary velocity
velocity at the interface in SRFs for three different values of the aspect ratio a/b. The at the interface in SRFs for three different values of the aspect ratio a/b. The re-
results from the analytical solution are shown as lines and LBM results are shown sults from the analytical solution are shown as lines and LBM results are shown
as symbols. Here, the viscosity ratio is i =1, the dimensionless surface tension as symbols. Here, the thermal conductivity ratio is k = 1, the dimensionless surface
coefficients are M; =0 and M, =5 x 1072, and gp =1 x 1073, tension coefficients are M; =0 and M, =5 x 1072, and 0 = 1 x 103,

capillary convection in SRFs. First, we investigate the effect of the along the interface; in turn, greater Marangoni stresses are gener-
thermal conductivity ratio k on Umax. Figure 25 shows the varia- ated, which result in stronger fluid motions around the interfaces.
tion of the dimensionless peak velocity on the interface as a func- In addition, it is evident from Fig. 25 that the ratio of fluid thick-
tion of the thermal conductivity ratio for three different choices nesses a/b has a significant effect on Unax. In general, for a fixed
of the aspect ratio, viz.,, a/b=1/3, 1, and 3, when fi = 1. For a thermal conductivity ratio, when the bottom fluid layer is thinner

fixed a/b, it can be observed that as the thermal conductivity ra- than the top fluid layer, i.e., a/b > 1, their interface lies closer to
tio increases, or the top fluid layer is thermally more conducting the heated bottom wall, which in turn enhances thermocapillary
than the bottom fluid layer, Unax is found to decrease monotoni- convection due to its stronger nonuniform heating, which results
cally; conversely, notice that the peak thermocapillary convection in a larger peak Marangoni velocity. For example, when k = 1.0, by
current can be enhanced by decreasing k or, equivalently, by main- changing a/b from 1/3 to 3 increases U; by more than ten times.

taining the thermal conductivity of the top fluid layer constant and Next, Fig. 26 shows the effect of the dimensionless viscosity
increasing the thermal conductivity of the bottom fluid layer; the ratio fi = e/, on the peak thermocapillary velocity Umax for
latter increases the heat flux from the bottom SRF layer, which re- a/b=1/3, 1, and 3 at a fixed k = 1. Clearly, the viscosities of the

sults in a more pronounced nonuniform temperature distribution SRFs have profound influence on the strength of thermocapillary
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Fig. 27. Effect of the dimensionless linear coefficient of surface tension M; on the
maximum velocity at the interface in SRFs for three different values of the aspect
ratioa/bat k=1, it =1,and M, = 5 x 1072, The results from the analytical solution
are shown as lines and LBM results are shown as symbols.
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Fig. 28. Effect of the dimensionless quadratic coefficient of surface tension M, on-
the maximum velocity at the interface in SRFs for three different values of the as-
pect ratio a/b at k=1, fi=1, and M; =1 x 10-5. The results from the analytical
solution are shown as lines and LBM results are shown as symbols.

convection. In particular, if the bottom fluid layer is less viscous
than the top fluid layer, or i > 1, it more readily promotes the ex-
change of momentum transfer between the interface and the lay-
ers of the bottom fluid due to weaker flow resistance, which is
then accompanied by larger peak thermocapillary velocities. Thus,
the increasing the viscosity ratio has an opposite effect when com-
pared to the thermal conductivity ratio. On the other hand, for a
fixed viscosity ratio, the variations in the thickness ratio a/b has a
similar influence as noticed in the previous case.

Finally, Figs. 27 and 28 present the effects of the dimensionless
linear and quadratic coefficients, M; and M,, respectively, on the
peak thermocapillary velocity Unax for a/b =1/3, 1, and 3 at fixed
k=1and i =1 (see Eq. (7) for their definitions based on oy and
orr). Evidently, increasing either M; or M, increases the strength
of the Marangoni velocity. This is due to the fact that M; and M,
represent the sensitivities of the surface tension on the temper-
ature. The larger the magnitude of these parameters the greater
is the surface tension gradient or the Marangoni stress on the in-
terface, which then manifest as thermocapillary flow with higher
peak velocities. Generally, such effects are more pronounced when
the interface is located closer to the heated bottom wall or with
increasing a/b which is consistent with the observations made ear-
lier in Section 6.2. Interestingly, it is noted that the effect of varia-
tions in the linear surface tension coefficient My on Unax for fixed
M, =5 x 102 is greater at a/b = 1/3 when compared to the other
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cases; on the other hand, for a fixed My = 1 x 1073, Upayx increases
in direct proportion with an increase in the quadratic coefficient
M, with a constant slope (which is consistent with the charac-
teristic velocity dependence on o7t or, equivalently, M, given in
Eq. (32)) for all choices of the aspect ratio a/b.

6.5. Beyond the analytical solution: Interfacial deformations at higher
capillary numbers using lattice Boltzmann simulations

In the derivation of the new analytical solution for thermo-
capillary convection in SRF layers, it was assumed that the inter-
face remains flat which is a reasonable assumption at relatively
small capillary numbers and applicable for microchannel config-
urations. It is consistent with those considered in prior work (see
e.g., Pendse and Esmaeeli [10]) and, as shown in the previous sec-
tion, the results obtained from such a theoretical analysis were in
good quantitative agreement with the numerical simulations un-
der similar conditions. However, it should be pointed out that the
computational approach discussed in Section Appendix A is not
restricted by such assumptions and is applicable for more gen-
eral situations, where the interfaces between the SRFs can deform,
which can arise at relatively large capillary numbers. In order to
simply illustrate this viewpoint, we have performed some addi-
tional simulations involving SRF layers at progressively increasing
values of the capillary number Ca while maintaining M; = 0 and
00 =1 x 103 with a/b =3 with thermal conductivity ratio k = 1
and viscosity ratio i = 1. We chose the interface to be closer to
the heated bottom wall by fixing a/b = 3 so that more pronounced
thermocapillary convection are generated, whose magnitudes are
controlled by varying the parameter M, which in turn determines
the characteristic velocity used in defining the capillary number.

Figure 29 shows the contours of the pressure field and the
streamline patterns in SRF layers computed using the LB schemes
at Ca=0.34,0.57,1.15, and 2.29 via varying M, as M, = 3,5, 10,
and 20, respectively. In the results discussed earlier where Ca <
0.1, the interface was found to be essentially flat and both the
analytical solution and the numerical simulations were consistent
with each other. By contrast, according to Fig. 29, as Ca is increased
to 0.34, the simulations show that the interfaces undergo rela-
tively small deformations. As Ca is progressively increased further,
the interfaces deform more significantly. These result from the dif-
ferences in the pressure fields between the bottom and top SRF
layers which is accompanied by local variations in the curvatures
or the normal capillary forces as seen from the pressure contour
plots. Clearly, larger the capillary number, the larger is the pres-
sure differences or the greater is the interfacial deformations. In-
terestingly, despite such interfacial deformations, the thermocapil-
lary flow patterns are seen to be qualitatively similar to that of the
flat interface cases considered earlier in that the SRF layers are ac-
companied with eight counterrotating vortex cells. As such, these
demonstrate the capabilities of the central moment LB schemes
in computing local variations in the interfacial topologies naturally
and their potential of going beyond the possible parametric space
of the analytical solution in simulating thermocapillary flow in SRF
layers.

Before we conclude, let us now provide some selection sug-
gestions for SRF applications as an extension of this study. First,
the surface tension variation with temperature o (T) obtained em-
pirically should be curve fitted to a parabolic profile according
to Eq. (4) to deduce the linear o7 and quadratic orr sensitiv-
ity coefficients of the surface tension on temperature. Moreover,
other thermophysical properties as noted in Section 2.3 should
be chosen. Then, the computational formulation discussed in
Section 4 and further elaborated for computing the fluid motions,
interface tracking, and the energy transport in the attendant ap-
pendices (Appendices Appendix A and Appendix B) can be used
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Fig. 29. Simulations of interfacial deformations using the central moment LB schemes at higher capillary numbers in SRF layers. (a) Pressure contours and (b) streamlines
of the thermocapillary flow for aspect ratio a/b = 3 with thermal conductivity ratio k = 1 and viscosity ratio fi = 1 at different capillary numbers Ca.

to investigate the underlying physics in a variety of SRF applica-
tions. In this regard, some selection suggestions include the ther-
mocapillary convection of multilayer SRFs microchannels, manipu-
lating the drop or bubble migration dynamics, and enhancement of
thermal transport in heat pipes and pool boiling processes. The lat-
tice Boltzmann formulation presented in this work is general and
can be readily used to incorporate a variety of thermal and flow
configurations in such SRF applications and to study the details of
thermocapillary flow and mixing patterns, interfacial deformations,
and the heat transfer rates.
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7. Summary and conclusions

Surface tension in fluids is a temperature dependent property
and is among the main drivers of interfacial transport phenom-
ena. In contrast to the normal fluids (NFs), the self-rewetting flu-
ids (SRFs) exhibit anomalous nonlinear (quadratic) dependence of
surface tension on temperature with a minimum and involving a
positive gradient. As a result, they are accompanied by certain de-
sirable aspects, such as interfacial fluid motions towards high tem-
perature regions, which can be potentially exploited in various mi-
crogravity and terrestrial applications, including microfluidics.
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In this paper, we have derived a new analytical solution for
thermocapillary convection in superimposed two SRF fluid layers
confined within a microchannel that is heated on its bottom side
with a sinusoidally varying temperature. The derived streamfunc-
tion from solving a biharmonic equation consists of a fundamen-
tal solution resulting from the linear part of the surface tension
and a higher order harmonic solution with a wavenumber that is
twice that of the former and arises from the quadratic part of the
surface tension variation on the temperature. Moreover, we have
also developed and validated a robust numerical technique based
on central moment lattice Boltzmann (LB) schemes for interface
tracking based on a conservative Allen-Cahn equation, two-fluid
motion, and energy transport to simulate thermocapillary convec-
tion in SRFs.

It is found that the two SRF layers are accompanied by a set of
eight, periodic counterrotating convection cells with the interfacial
fluid motion directed towards the high temperature at the center;
by contrast, in the two NF layers, only four periodic counterrotat-
ing vortices are generated with the fluids moving away from the
center along the interface. Such striking differences are well repro-
duced by both our analytical and computational approaches, and
they are found to be in good quantitative agreement. The presence
of double the number of convection cells in SRFs when compared
that in NFs can be theoretically interpreted as arising from the
higher order harmonic solution as noted above. It is shown that
the magnitude of the linear coefficient of the surface tension vari-
ation with temperature relative to that of the quadratic coefficient
of SRFs not only affects the strength of thermocapillary velocities,
but also the character of the overall convection patterns. Moreover,
a study of the effect of various characteristic parameters such as
the thickness ratio of the fluids, thermal conductivity ratio and the
viscosity ratio on the magnitude of thermocapillary convection was
performed. It is found that the thermocapillary convection currents
are more intense when the interface is closer to the heated bot-
tom wall, or if the bottom fluid layer has higher thermal conduc-
tivity or lower viscosity when compared to those in the top fluid
layer. In particular, as the thickness ratio is changed from 1/3 to
3, the maximum thermocapillary velocity is found to increase by
about an order of magnitude; moreover, the latter is found to dou-
ble as the dimensionless quadratic surface tension sensitivity co-
efficient increases by a factor of 2. By going beyond the analytical
solution regime, computations show that at relatively larger capil-
lary numbers the interfaces undergo deformation while maintain-
ing the general flow patterns in SRFs as noted above. Since both
our analytical and computational approaches are developed and
utilized based on a general parabolic equation of state for surface
tension containing the linear and quadratic terms, the results of
this work are readily applicable to various SRF formulations.

The analytical solution for thermocapillary convection in SRFs
derived in this work is useful not only in clarifying the essential
transport physics involved, including its ability to predict the dou-
bling of the number of vortex cells in SRFs when compared to that
in NFs, but may also serve as a benchmark solution in constructing
new numerical techniques for simulating thermocapillary flows in
SRFs. The central moment LB schemes are not only quantitatively
in agreement with such a solution, but provides an approach to
extend it to more general situations involving interfacial deforma-
tions. The ability to modulate both the surface-tension driven flow
patterns and their magnitudes in SRFs in certain unique manner
relative to NFs, such as those shown in this work, could provide
new approaches in manipulating interfacial transport phenomena
in microfluidic applications.
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Appendix A. Numerical algorithms: central moment lattice
Boltzmann schemes for interface tracking, two-fluid motion
and energy transport

In this section, we will present a numerical LB approach
based on more robust collision models involving central mo-
ments [49,50,52,64] for solving the equations of the phase-field
model for tracking the interface (Eq. (24)) and the binary fluid
motions (Eqs. (25)-(28)) given in the previous section, along with
the transport of energy presented in Eq. (3c) earlier. Solving these
three equations requires evolving three separate distribution func-
tions on the standard two-dimensional, square lattice (D2Q9) lat-
tice, which involve performing a collision step based on the relax-
ation of different central moments of the distribution function to
their equilibria, which is followed by a lock-step advection of the
distribution functions to their adjacent nodes along the character-
istic directions in the streaming step. Then, the macroscopic vari-
ables, viz., the order parameter, the fluid pressure and velocity,
as well as the temperature field, are obtained via taking the mo-
ments of the respective distribution functions. It should be noted
that since the collision step is performed using central moments
while the streaming step is performed by means of the distribu-
tion functions, this requires the use of appropriate mappings that
transform between these quantities pre- and post-collision step.
The central moment LB methods are shown to be more robust
(e.g., enhanced numerical stability) when compared to the other
collision models in the LB framework (see Hajabdollahi et al. [50],
Yahia and Premnath [65], Yahia et al. [66] for recent examples).
While the recent central moment LB scheme for two-fluid interfa-
cial flows [50] was constructed using an orthogonal moment basis,
in what follows, we will present an improved formulation involv-
ing the non-orthogonal moment basis.
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Al. LB scheme for phase-field based interface capturing

We will now discuss a central moment LB technique to solve
the conservative ACE given in Eq. (24) by evolving a distribu-
tion function fy, where o =0,1,2,...,8 represent the discrete
particle directions, on the D2Q9 lattice. Generally, during colli-
sion, the set of distribution functions f= (fy, f1, fo. ..., fg)! re-
lax to the corresponding equilibrium distribution functions given
by 4 = (31, f19. f59..... fehT, which needs to be implement via
their central moments in what follows.

In this regard, first, the components of the particle velocities of
this lattice can be represented by the following vectors in standard
Dirac’s bra-ket notation as

lex) = (0,1,0,-1,0,1, -1, -1,0)",
ley) =(0,0,1,0,-1,1,1, -1, -1)T.

We also need the following 9-dimensional vector to define the ze-
roth moment of fy:

1) =(1,1,1,1,1,1,1,1, )"

That is, its inner product with the set of distribution functions (f|1)
should yield the order parameter ¢ of the phase-field model. The
central moment LB will then be constructed based on the follow-
ing set of nine non-orthogonal basis vectors (which differs from
the approach presented in Hajabdollahi et al. [50]):

[Py =1[1), |P1) =lex), [P) =ley),

Ps) = €k +€). |Pa) =|e;—e€)) |Ps) = |ecey),

Ps) = |eZe,). |Py) = |ee;). |Ps) = |eZe).

Symbols like |e,2(ey) = |exexey) signify a vector that results from the
element-wise vector multiplication of vectors |ex), |ex) and [ey).
They can be grouped together in the form of the following matrix
that maps the distribution functions to the raw moments in terms
of the above moment basis vectors:

P=[(Rol, (P1], (2|, (P51, (Pal, (Ps], (Ps|. (P71, (Ps] ]. (34)

Here, it should be noted that the central moments are obtained
from the distribution moments by shifting the particle velocity e,
by the fluid velocity u. Given these, we can then formally define
the raw moments of the distribution function f, as well as its
equilibrium f271 as

NS A
reg | = Z eq | CoxCay: (35a)
Kmn a=0 o
and the corresponding central moments as
Kmn 8 fa
( eq ) = Z ( eq) (eax — ux)m(eay - uy)n~ (35b)
Kmn o=0 o

Thus, «},, represents the raw moment of order (m + n), while
the corresponding central moment is k. For convenience, we can
group all the possible raw moments and the central moments for
the D2Q9 lattice via the following two vectors as

’ ’ ! ’ ! ! ! ’ ! ’
ke =(Koo, K105 Ko1> K20: Kozs K115 K21, K12, K22, (36a)

(36b)

It should be noted that one can readily map from the dis-
tribution functions to the raw moments via " = Pf, which can
then be transformed into the central moments through x = F«/,
where the F follows readily from binomial expansions of (eyx —

K=(K00, K10, K01, K20, K02, K11, K21, K12, K22).
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ux)™ (eqy — Uy)" to relate to egeq, etc. Similarly, the inverse map-
pings from central moments to raw moments, from which the
distribution functions can be recovered via the matrices F~! and
P~1, respectively. All these mapping relations are explicitly listed
in Appendix B.

As mentioned above, a key aspect of our approach is to per-
form the collision step such that different central moments shown
above relax to their corresponding central moment equilibria. The
discrete central moment equilibria x5! defined above can be ob-
tained by matching them to the corresponding central moments of
the continuous Maxwell distribution function after replacing the
density p with the order parameter ¢; furthermore, the interface
sharpening flux terms in the conservative ACE (Eq. (24)) need to
be accounted for by augmenting the first order central moment
equilibrium components with Mg6n, and My6n, [50]. Thus, we
have

Koeoq = d), K,eoq = M¢9nx, Koelq = M¢9ﬂy,

Kyl = Cszq)(f’, Koy = C32¢¢7 Kkl =0,

K1=0,  kF=0, Kk =cho (37)
where C52¢ =1/3.

Based on the above considerations, inspired from the al-
gorithmic implementation presented in Geier et al. [67] (see
also [65,66]), we can now summarize the central moment LB algo-
rithm for solving the conservative ACE for a time step At starting
from f, = fo(x,t) as follows:

e Compute pre-collision raw moments from distribution func-
tions via k' = Pf (see Eq. (51) in Appendix B for P)

o Compute pre-collision central moments from raw moments via

k =FK' (see Eq. (52) in Appendix B for F)

Perform collision step via relaxation of central moments xy; to

their equilibria kg

Kmn = Kmn + U)fn(K,ig — Kmn)’ (38)

where (mn) = (00), (10), (01), (20), (02), (11), (21), (12), and
(22), and a),‘ﬁ,, is the relaxation parameter for moment of or-
der (m+n). Here, the implicit summation convention of re-
peated indices is not assumed. The relaxation parameters of the

first order moments w?o = wéﬂ = w? are related to the mobility
coefficient M,, in Eq. (24) via My, = c§¢(j - %)At, and the

rest of the relaxation parameters are typically set to unity, i.e.,
a)ﬁn = 1.0, where (m +n) > 2. The results of Eq. (38) are then
grouped in K.

o Compute post-collision raw moments from post-collision cen-
tral moments via ¥ = F~'% (see Eq. (53) in Appendix B for
F1)

e Compute post-collision distribution functions from post-

collision raw moments via f=P'F (see Eq. (54) in

Appendix B for P~1)

Perform streaming step via fy (X, t + At) = fy (X — eg At), where

a=0,1,2,...,8.

o Update the order parameter ¢ of the phase-field model for in-
terface capturing through

8
$=>fa. (39)
a=0

A2. LB scheme for two-fluid motion with capillary and Marangoni
forces

Next, we will present a central moment LB scheme to solve
the motion of binary fluids with interfacial forces represented in
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Egs. (25)-(28) by evolving another distribution function g, where
a=0,1,2,...,8. Our approach is based on a discretization of the
modified continuous Boltzmann equation and obtaining the dis-
crete central moment equilibria and central moments of the source
terms for the body forces via a matching principle with their con-
tinuous counterparts as detailed in Ref. [50]. However, in contrast
to Ref. [50], where an orthogonal moment basis is employed re-
sulting in the so-called cascaded LB approach, in the following,
we consider the simpler, non-orthogonal moment basis vectors as
given earlier in Eq. (34).

As in the previous section, we first define the following raw
moments and the central moments of the distribution function g,
its equilibrium g, as well as the source term Sy, where the latter
accounts for the surface tension and body forces, as well as those
that arising from the application of a transformation to simulate
flows at high density ratios in the incompressible limit (see He
et al. [46], Hajabdollahi et al. [50]):

Ninn s [ 8«
Nonrt :Z o ngegy’ (40a)
O_r,rm *=0 sOt
Nmn g [ 8a
Mo | = Z 8 | (eax — Ux)™ (eay — )" (40b)
Omn @=0 \ S
For conveniences, we can group the elements of the distri-

bution function, its equilibrium, and the source term for the
D2Q9 lattice as the following vectors: g = (g9, 81,8, ..., 8s), g =
(ggl. g1, g5 ... gg)T, and S=(Sp.S1.55.....S)l. Moreover, we
group all the possible raw moments and the central moments de-
fined above for the D2Q9 lattice via the following:

77,=(772)07 ’7/107 77éns 77/207 'lé)za ’7;17 77’21, 77’12, 77’22)7 (41a)

=Moo, M10> No1> 120> Moz, N11> 21> N125 122), (41b)

and similarly for raw moments and the central moments the equi-
librium and the source term.

The collision step will be performed such that different cen-
tral moments shown above relax to their corresponding central
moment equilibria, which are augmented by changes in the cen-
tral moments due to the net forces; the latter is given by sum
the surface tension force F; = (Fx, Fsy), which can have contribu-
tions from both the capillary and Marangoni forces as represented
in Eq. (28), and any external force Foxt = (Foxtx, Fext,y), i.€., F =
F; + Foxe or (Fx, Fy) = (Fsx + Fext x, Fsy + Fext.y). Moreover, the use of
an incompressible transformation as mentioned above leads to a
pressure-based formulation, involving the incorporation of a net
pressure force F, arising from ¢(p) = p— pc?, ie, F,=—-Vg, or
(Fpx, Foy) = (—=0x@, —0yp) (see Hajabdollahi et al. [50] for details).
Then, the discrete central moment equilibria nm, defined above
can be obtained by matching them to the corresponding continu-
ous central moments of the equilibrium that arise from the incom-
pressible transformation, and similarly for the central moments of
the source term oy, which then results in the following expres-
sions for the D2Q9 lattice [50]:

Moo =D, N5 =—@(Pux, ng1 =—@(p)uy,
n5 = P2+ (Pt ngh =pc+e(p)ul, 5l =@(p)u,

n5l = —p(p) (W +cHuy, 1Y =-(P) Uy + )y,

n5y = cSp+ @)Wl + )l +c). (42)
and

000 = Iy, 010 = 2Ry — LY,

20
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oo = 2Ry —u, T},

020 = 262 Fptiy + (U2 + T,

o0 = 2¢2Fpytty + (U + c2)TE,.

on = ¢ (Fxlty + Foytiy) + uxuy B, 021 =0,

012 =0, 09p=0, (43)

where T} = (Futix + Fyyly).

Using the above developments, we can now summarize the
central moment LB algorithm for computing the two-fluid mo-
tion with interfacial forces for a time step At starting from g, =
go(x,t) as follows:

o Compute pre-collision raw moments from distribution func-
tions via ' = Pg (see Eq. (51) in Appendix B for P)

o Compute pre-collision central moments from raw moments via
7 =Fy (see Eq. (52) in Appendix B for F)

Perform collision step via relaxation of central moments nmun to
their equilibria ngd, and augmented with the source terms op:
In order to allow for an independent specification of the shear
viscosity v from the bulk viscosity ¢, the trace of the second or-
der moments 7, + g2 should be evolved independently from
the other second order moments. To accomplish this, prior to
collision, we combine the diagonal parts of the second order
moments as follows (see e.g., Yahia and Premnath [65], Yahia
et al. [66], Geier et al. [67]):

eg eg eg
T2s = 120 + No2, M35 = Na0s + Moz 025 = 0205 + 002,

— eg _ eg eg _
N2d = 120 — No2, Myq = Maos — Mo> 024 = 0205 — 002,

and thus 71,5 and 1,4 will be evolved independently under colli-
sion. Then, the post-collision central moments under relaxation
and augmentation due to the forces can be computed via

ﬁmn = nmn + Wmn (ng'?n - nmn) + (1 - U)mn/z)o-mnAt? (44)
where  wmn is the relaxation time correspond-
ing to the central moment ny, and (mn)=
(00), (10), (01), (2s), (2d), (11), (21), (12), and, (22). Here,

the relaxation parameter w,s is related to the bulk viscosity
via ¢ =c2(1/wy; —1/2)At, while the relaxation parame-
ters w,y and wq; are related to the shear viscosity via
V= csz(l/wij - 1/2)At where  (ij) = (2d), (11).  Typically,
¢z =1/3. In view of Eq. (29) it should be noted that if
the bulk fluid properties are different, the relaxation pa-
rameters w,; and w;; will then vary locally across the
interface. The rest of the relaxation parameters of central
moments are generally set to unity, ie, w;;=1.0, where
(ij) = (00), (10), (01), (2s), (21), (12), (22). Also, the combined
forms of the post-collision central moments #j,s and fj,; are
then segregated in their individual components #j,¢ and #jp, via

5 1 . - - 1 . ~

20 = 5 (M2s +12a).  floz = 5 (Tl2s = 72a)-

Finally, the results of Eq. (44) by accounting for the above seg-
regation are then grouped in .

e Compute post-collision raw moments from post-collision cen-
tral moments via §j = F~'§j (see Eq. (53) in Appendix B for
F1)

o Compute post-collision distribution functions
collision raw moments via §=P~ 1§ (see Eq.
Appendix B for P~1)

e Perform streaming step via gu(X,t+ At) =8y (X — ey At),
where ¢ =0,1,2,...,8.

from post-
(54) in
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e Update the pressure field p and the components of the fluid
velocity u = (ux, uy) through

1 1
p= ;ga +5F-uAt, pciu = ;gaea + EcsttAt.

(45)

A3. LB scheme for energy equation

Finally, we will now discuss a central moment LB approach for
the solution of the energy transport equation (Eq. (3c)) by evolv-
ing a third distribution function hy, where « =0, 1, 2, ..., 8, on the
D2Q9 lattice. Since Eq. (3c) is an advection-diffusion equation, its
construction procedure is quite similar to that of the LB scheme
for the conservative ACE presented earlier, albeit without the pres-
ence of a term such as the interface sharpening flux term which
appears in the latter case. As before, we first define the following
raw moments and central moments, respectively, of the distribu-
tion function hy, as well as its equilibrium h&l:

Xr/nn 8 h“ m .n
v ) = 3 pen ) Gy (46a)
Xmn a=0 o
Xmn 8 (ha
(Xeq) - Z (h80> (Eax — Ux)™ (Eay — Uy)". (46b)
mn a=0 «

For convenience, we list the components of the distri-
bution function and its equilibrium, respectively, using h =
(ho.h1,hy, ... hg)T and he = (hg?, h$T K51, ... hgh)T, and analo-
gously for the raw moments and central moments via

X'=(X(/)07 X1’0: X(/nv XéOv X(;2a X1,1v Xélv X1’2a X2,2)7 (47a)

X=(X00, X105 Xo1> X20, X025 X11> X21, X125 X22)- (47b)

To construct a central moment-based collision model for solv-
ing the energy equation, similar to Section A.1, we obtain the dis-
crete equilibrium central moments from the corresponding con-
tinuous counterpart of the Maxwellian by replacing the density p
with the temperature T, and the results read as

Xoo =T Xj5 =0.  Xxo =0,
X0 =cxT. Xxo3 =cxT. xyf =0,
xa1=0 x5 =0 x5 =c&T, (48)

where, typically, CSZT = 1/3. Then, the computational procedure for
solving the energy equation for a time step At starting from hy =
hy (x,t) can be summarized as follows:

o Compute pre-collision raw moments from distribution func-
tions via x' = Ph (see Eq. (51) in Appendix B for P)

Compute pre-collision central moments from raw moments via
x =Fx (see Eq. (52) in Appendix B for F)

Perform collision step via relaxation of central moments ), to
their equilibria x:

KXmn = Xmn + wr-l;m (Xne't% — Xmn), (49)

where (mn) = (00), (10), (01), (20), (02), (11), (21), (12), and
(22), and w?,, is the relaxation parameter for moment of or-
der (m+ n). The relaxation parameters of the first order mo-
ments ol = ], = T are related to the thermal diffusivity
a =k/(pcp) via a = cZ(1/w" —1/2) At, and the rest of the re-
laxation parameters of higher central moments are typically set
to unity. The results of Eq. (49) are then grouped in .

21
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o Compute post-collision raw moments from post-collision cen-
tra{ moments via ¥ =F~'§ (see Eq. (53) in Appendix B for
F)

e Compute post-collision distribution functions
collision raw moments via h=P~!'§ (see Eq.

Appendix B for P~1)

e Perform streaming step via hy(X, t+ At) = ho (x — eg AL),
where ¢ =0,1,2,...,8.

o Update the temperature field T is obtained from

T:Zho,.

a=0

from post-
(54) in

(50)

While the central moment LB schemes outlined here are appli-
cable for a general class surface-tension driven flows with thermo-
capillary effects, in this work, they will be mainly applied, in con-
junction with the analytical solution derived earlier, to study the
effect of various characteristic parameters on the flow patterns and
the intensity of thermocapillary convention in superimposed layers
of two self-rewetting fluids (SRFs) bounded within a microchannel
nonuniformly heated on one side.

Appendix B. Mapping relations for the central moment LB
scheme on a D2Q9 lattice

Here, we summarize the various mapping relations that are
needed prior to and following the collision step, where different
central moments are relaxed to their equilibria, in the central mo-

ment LB scheme on the D2Q9 lattice.
The transformation matrix P mapping a vector of distribution

functions f to a vector of raw moments &’ is given by

r1 1 1 1 1 1 1 1 17
o 1 0 -1 0 1 -1 -1 1
0o 0 1 0 -1 1 1 -1 -1
o 1 0 1 0 1 1 1 1
P=l0 o0 1 0 1 1 1 1 1
0 0 0 0 0 1 -1 1 -1
0 0 0 0 0 1 1 -1 -1
0 0 0 0 0 1 -1 -1 1
lo o o 0 0 1 1 1 1
(51)

Next, the transformation matrix F mapping a vector of raw mo-
ments k£ to a vector of central moments k reads as

! 0 0 0 0 0 0 0 07
—uy 1 0 0 0 0 0 0 0
—uy 0 1 0 0 0 0 0 0
u2 —2ux 0 1 0 0 0 0 0

F=|uf 0 —2uy 0 1 0 0 0 0 (52)

uxly —uy — Uy 0 0 1 0 0 0
—uuy 2uxuy  ud —uy 0 —2ux 1 0 0
—uy uj 2uxuy 0 —ux —2uy O 1 0

Lugud —uguy  —ufuy up o uf o duxuy —2uy  —2ux 1
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Then, the transformation matrix F~! mapping a vector of (post-
collision) central moments & to a vector of (post-collision) raw mo-

~7 .
ments £ can be written as

M1 0 0 0 0 0 0 0 07
uy 1 0 0 0 0 0 0 0
Uy 0 1 0 0 0 0 0 0
u2 2y 0 1 0 0 0 0 0
Fl=| u 0 2uy 0o 1 0 0 o of (53)
uxuy uy Ux 0 0 1 0 0 0
wduy  2uxuy u2 u 0 2uy 1 0 0
uxu uf 2uxly 0 Uy 2uy 0 1 0
L ufu? uxuf uZuy upoud o duxuy 2wy 2ux 1

It may be noted that if F=F(uy, uy), then F1 = F(—ux, —ly)
(see Yahia and Premnath [65]).
Finally, we express the transformation matrix P~! mapping a
vector of (post-collision) raw moments & to a vector of (post-
collision) distribution functions f as

1 0 0 -1 -1 0 0 0 1
o 3 0 1 0 0 o -3 -1
0 0 1 0 1 0 -1 0 -1
o -1 0 1 0 0 0 1 -1
pi=lo o -1 o 0 1 o -} (54)
0 0 0 0 0 1 1 1 1
0 0 0 0 0 -1 1 -1 1
0 0 0 0 0 1 -3 -3 1
e e I

Appendix C. Analytical solution of the energy equation:
temperature field

The solution to the energy equation Eq. (10) is invariant with
the nature of the fluid, i.e., whether it is for a NF or a SRF, and
hence the results reported in Pendse and Esmaeeli [10] for the
temperature field is valid here as well. However, for completeness,
we provide all the necessary details involved in the solution pro-
cedure in what follows. The energy equation is homogeneous and
has periodic boundary conditions in the x-direction. Furthermore,
the only non-homogeneities are in the upper and lower boundary
conditions. To solve this problem, the non-homogeneous boundary
conditions can be split across two solutions as we will see next.
The energy equation is given as in Eq. (10)

PT e
axz ~ 0y? ’

which is subject to the following boundary conditions
Tb(x, —=b) = T, + AT cos(wx),

and

T%(x,a) =T..

Because of the homogeneity and linearity of the differential equa-

tion and that the temperature is periodic in the horizontal direc-
tion, the method of separation of variables is used to solve the

(55)

22
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temperature equation,

T'(x,y) =P (x,y) +Q'(¥), (56)
where Pi(x,y) and Qi(y) are the perturbation and linear tempera-
ture fields, respectively. Substituting Eq. (56) into the energy equa-
tion (Eq. (55)) gives the following separated equations that we
need to solve

82Pi 82Pi 82 Qi
-+ o,

axz2  Jy? ay?
which are subject to the following boundary conditions.

i=a,b,

and =0, i=a,b,

i) The temperature is specified at the lower wall:

Pb(x, —b) = AT cos(wx), and  Q’(x,-b) =T.

ii) The temperature is specified at the upper wall:

PY(x,a) =0, and  Q%(x,a) =T.

iii) The temperature is continuous at the interface:

P%(x,0) = P’(x, 0), and  Q%x,0) =Qb(x,0).

iv) The heat flux is continuous at the interface:

K PP K ope ]
—Kp—m— =—Ka5—|
W, W,
b a
and - kb%& = —kq BaQ
Y20 Y 1o

The solution for the linear temperature field is Q'(y) = Aly +
Aiz. Applying the above boundary conditions to get the constants
of integration which yields in the solution for the lower wall

ka (Tc — Th)y + Tckab + Thkba

byy =
T = (ak, + bky,) (57)
Similarly, the solution for the upper wall is:
Qa(y) _ kb(TC - Th)y + Tckab + Thkba. (58)

(akb + bka)

Then by the standard separation of variables method, and by
looking at the lower boundary condition, the solution for the per-
turbation in the temperature field P'(x,y) for the lower fluid is

PP(x,y) = [A% cosh(wy) + A sinh(wy)] cos(wx). (59)
Similarly, for the solution for the upper fluid is,
P(x,y) = [A] cosh(wy) + Af sinh(wy)] cos(wx). (60)

Now, by applying the above four boundary condition, we get
the following constants

AY = A%’ = AT sinh(a) f(
Ab = —ATkcosh(d) f (@,
where

f(@b, k) = [ksinh(B) cosh(@) + sinh(a) cosh(B)] ",

b,k), A3 = —AT cosh(d)f(d,b,k),
k),

d,
b,

(61)
where d=aw, and b=bw, and k = ka/kp. Substitution of the
above constants (A9, A4, A, and Ab) in Eqs. (59) and (60) results
in the final solution of the perturbation temperature P(x, y) in the
lower fluid as

P’(x,y) = ATf(@, b, k)[sinh(d) cosh(wy) — ksinh(wy) cosh(d)]

cos(wx). (62)
Similarly, for the upper fluid,
P(x,y) = ATf(@, b, k) sinh(d@ — wy) cos(wx). (63)
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Appendix D. Characteristic thermocapillary velocity scale on
the interface in self-rewetting fluids

The characteristic velocity scale can be derived by considering
the balance of shear stress with the Marangoni stress due to the
surface tension gradient on the interface. The shear stress scales as

b ~ 1PUs
w b’

where b is the thickness of the lower fluid and Us is the unknown

characteristic velocity scale to be determined in what follows. Fur-

thermore, the surface tension gradient scales as

do do AT

dx T dT 1

where [ is the length of the microchannel, and for SRFs with
a quadratic dependence of surface tension on temperature (see
Eq. (4))

do

dT

Thus, the velocity scale can be deduced by from the first two equa-
tions above by setting 7:3 ~do/dx and then substituting the last
equation for do /dT as

AT (b\d AT (b
o (T) d_? = o (T) [O’T + ZO'TT(T - Tref)]

Here, we need a scale for the temperature on the interface, which
we take it to be temperature field at x =0 and y =0, where it
reaches a maximum. Now, using the temperature along the inter-
face given as (see Appendix C)

= or + 2077 (T - Tref)~

Us ~ (64)

T(x,y =0) = C; 4+ G, cos (wx),

and evaluating it at x = 0, we get

T(x=0,y=0)=C +G, (65)
where
¢ Ti(§) + Tk . ATsinh(@) ’
(%) +k k cosh(d) sinh(b) + cosh(b) sinh(a)
(66)

Here, k = kq/ky,, @ =aw, and b= bw. Substituting the above esti-
mate for the temperature scale on the interface in Eq. (64), we
finally obtain the characteristic thermocapillary velocity scale in
SRFs as

Us ~ % (?) [UT + 20717 (Cl +G - Tref)]- (67)
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